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Forecasting the Index of Financial Safety (IFS) of South Africa using neural networks 

 

Abstract 

This paper investigates neural network tools, especially the nonlinear autoregressive model with 

exogenous input (NARX), to forecast the future conditions of the Index of Financial Safety (IFS) of 

South Africa. Based on the time series that was used to construct the IFS for South Africa 

(Matkovskyy, 2012), the NARX model was built to forecast the future values of this index and the 

results are benchmarked against that of Bayesian Vector-Autoregressive Models. The results show that 

the NARX model applied to IFS of South Africa and trained by the Levenberg-Marquardt algorithm 

may ensure a forecast of adequate quality with less computation expanses, compared to BVAR models 

with different priors. 

JEL Classifications: G01, C38, C11, C32, C53, E50, G17 

Keywords: Index of Financial Safety (IFS), neural networks, nonlinear dynamic network 

(NDN), nonlinear autoregressive model with exogenous input (NARX), forecast 

 

1. INTRODUCTION 

The recent financial crisis, which influenced a number of well-developed countries, again emphasised 

the role of financial system safety in maintaining macro-stability. The question of accuracy of 

predictions concerning future conditions of financial safety of a country may be of interest to investors 

and policy-makers alike. 

For the purpose of forecasting financial perturbation, a variety of instruments based on time-

series analysis may be applied, for example: Markov switching models (see, among others Abiad, 

2003; Chen, 2005), state space methods and the mixed-measurement dynamic factor model (Koopman, 

Lucas & Schwaab, 2010), Bayesian vector autoregressive models (see Matkovskyy, 2012) etc. 

However, another class of models, namely neural networks, have also been found to be very effective 

at time series forecasting (Bacha & Meyer, 1992). One type of model, based on neural networks, 

namely nonlinear autoregressive exogenous (NARX) models, combines past values of the same series 

and present and past values of exogenous series. Additionally, this model includes an error (or 

residual) term. NARX models have broad applications, which include predictions, simulations and 
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identifications. Some of its advantages include the approximation and simplicity of control design as 

well as simplicity and the fast convergence of identification. 

The aim of this research is to use a constructed Index of Financial Safety of South Africa, 

estimated in Matkovskyy (2012), to predict the future conditions of financial safety in South Africa 

through the application of nonlinear autoregressive exogenous (NARX) modelling with different 

learning algorithms, as one of the most effective models of neural networks. 

The methodological base of the current research is formed by means of the macro-prudential 

approach, system analyses, the basic principles of the theory of logical inference, the principal of 

parsimony, principal component analysis and neural networks, especially nonlinear autoregressive 

exogenous (NARX) models with different training algorithms (including the Levenberg-Marquardt 

algorithm and Bayesian regulation).   

The structure of this paper is as follows. Section 2 briefly focuses on the theory and method 

underlying the construction of the Index of Financial Safety of a country. In Section 3, the methods of 

modelling and forecasting the IFS, based on the nonlinear autoregressive with exogenous inputs 

(NARX) model, are presented. In Section 4, the empirical results for the estimation of the IFS (as 

explained in Matkovskyy, 2012) and the forecasting of the IFS of South Africa are presented. The 

paper concludes in Section 5.  

 

2. THE INDEX OF FINANCIAL SAFETY OF SOUTH AFRICA 

For the purpose of this paper, the financial safety of a country is defined as a state in which the 

financial system, and all elements of this system, is shielded against real and potential internal and 

external threats. In other words, financial safety indicates a very small probability of the appearance of 

a crisis in a financial system (see Matkovskyy (2012) for a more detailed discussion).  

The estimation of an index of financial safety of South Africa is based on the identification of 

key indicators. Such indicators should be able to capture the financial system‟s functions on macro-

level that provide leading information on future performance and are relatively easy to estimate and 

use. 

According to Matkovskyy (2012), the following indicators are used to estimate an index of 

financial safety for South Africa: 
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TABLE 1: The list of the indicators of financial safety estimation 

Financial safety indicators Character of financial safety indicators* 

Money in circulation/M2*100 non-stimulant 

Money in circulation/GDP*100 non-stimulant 

M1/M2*100% stimulant 

M2/GDP*100 stimulant 

 M2/M0 stimulant 

PPI / WPI non-stimulant 

Money market interest rates % non-stimulant 

GDP/M2  stimulant 

M2/Money in circulation non-stimulant 

Monetary base/reserves Stimulant 

Coverage of import by reserves Stimulant 

Total domestic credit/GDP non-stimulant 

M2/ market capitalisation  non-stimulant 

Changes of share price index % to a previous 

quarter 

Stimulant 

Real effective exchange rate non-stimulant 

*The difference between stimulants and non-stimulants lies in the nature of the influence, i.e. direct or indirect.  The 

relationship between the integral estimation and indicator‟s stimulants is direct, and the relationship between and the 
indicator‟s non-stimulants is indirect 

 

The process of aggregation of raw signals is based on the logic of the superposition principle 

(Oppenheim, Willsky & Nawab, 1997; Hsu & Hwei, 1995) applied to Economics. The selected 

indicators have different information “directions” that complicate the aggregation of the indicators. In 

order to perform the additive aggregation, it is therefore necessary to normalise the information 

contained in each indicator. The method of normalisation entails an equalisation of empiric (xi) values 

with the optimum (xoptim) values, cordon (xcordon) values, and extreme (x extreme) values. 

In order to transform the raw data, which are possibly strongly correlated between themselves, 

into new, uncorrelated components‟ factors, the data are further normalised using factor analysis 

(especially principal component methodology). To ensure the transformation of the data into the new 

set with values from „0‟ to „1‟, a varimax rotation is applied (Kaiser, 1958). 

The following time series are used for the construction of an Index of Financial Safety for 
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South Africa (source of data: International Financial Statistics database; 1992Q1-2011Q1):  M0, M1, 

M2, M3, money in circulation, GDP, total reserves (minus gold), exchange rate (ZARs per USD), real 

effective exchange rate, imports, money market interest rate, share prices, and market capitalisation. 

Data of total domestic credit was obtained from the Reserve Bank of South Africa. These raw data 

series are treated as input for the IFS of South Africa‟s estimation and prediction. To calculate the 

integral index of financial safety (IFS) of a country (in our case, of South Africa), one should sum the 

multiplications of weight coefficients and normalised values of indicators. The detailed process of the 

estimation of the Index of Financial Safety of South Africa can be found in Matkovskyy (2012). The 

graphical representation of it is provided in Figure 1. 

 

3. NONLINEAR AUTOREGRESSIVE WITH EXOGENOUS INPUTS (NARX) MODEL 

Throughout this study, the nonlinear autoregressive with exogenous inputs (NARX) model is used to 

model and forecast. This type of model was chosen because a properly designed NARX is equal to an 

observable general recurrent neural network, which, in turn, can emulate any nonlinear, dynamic state 

space model (Haykin, 1999). 

 

3.1. The structure of NARX 

The NARX is a recurrent dynamic network, with feedback connections enclosing several layers 

(incl. hidden layers) of the network. This model is characterised by non-linear relations between past 

inputs, past outputs and the predicted process output and can be delineated by a high order differential 

equation. The defining equation for the NARX model is as follows (Leontaritis & Billings, 1985; 

Siegelmann et al., 1997; Haykin, 1999; Lin et al., 2000; Menezes Jose et al., 2006 etc.): 

    (                                   )     ,       (1) 

where the next value of the dependent process    is regressed on previous values of the output signal 

(y) and previous values of an independent input signal (u); nu and ny are the corresponding maximum 

lags for input and output; and et explains the uncertainties and possible noise. The function f is a 

nonlinear function. The system input vector with a known dimension          is:  ̅                                      .        (2) 

The function f is unknown. Therefore, it is approximated by the regression model of the form: 
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   ∑         ∑                   ∑ ∑                ∑ ∑                                    ∑ ∑                             ,          (3) 

where    and      are the linear and nonlinear coefficients of the originating exogenous term, 

respectively;    and      are the linear and nonlinear coefficients of the autoregressive term, 

respectively;      are the coefficients of the nonlinear terms. 

The implementation of the approximation of the function f also allows for a vector ARX model 

to be estimated (i.e. the input and output can be multidimensional). Therefore, equation (3) may be re-

written in the matrix form: 

[             
]                                ,       (4) 

where                  ,            (5)                ,            (6) 

                                 ,        (7)                                  ,         (8) 

                                 ,         (9) 

                  ,           (10) 

                  ,           (11) 

                                                   ,      (12)                                                 ,      (13) 

Alternatively, equation (4) may be re-written as: 

                [   
      ]   

 
.           (14) 
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To simplify we denote:  ̅    ,              (15)  ̅              ,            (16) 

and  ̅              .            (17)  

Which means that equation (14) is now simplified as:  ̅    ̅  ̅             (18) 

while the solution to the problem can be presented by:  ̅   ̅  ̅.             (19) 

 

3.2. Identification of the number of neurons in the hidden layer  

The identification of the number of neurons in the hidden layer has no commonly accepted 

definition. The best number of hidden units depends, in a complex way, on: (i) the numbers of input 

and output units; (ii) the number of training cases; (iii) the amount of noise in the targets; (iv) the 

complexity of the function or classification to be learned; (v) the architecture of the type of hidden unit 

activation function; (vi) the training algorithm; and (vii) regularisation.  

There are a number of theories for the optimal neural-network size determination. For example: 

- the final prediction error, FPE (Akaike, 1970) or generalized final prediction error, GPE 

(Moody, 1992);  

- the Network Information Criterion, NIC (Amari, 1995; Ripley, 1995 etc.), which is a 

generalisation of the Akaike Information Criterion;  

- the Vapnik-Chervonenkis, VC, dimension (Cohn & Tesauro, 1992; Bartlett, 1993; Maass, 

1995 etc.).  

The NIC depends on a single, well-defined minimum and can be unreliable in the case of several local 

minima (Ripley, 1995). The evaluation of NIC or GPE is expensive for large networks, while the 

computation of VC for practical networks is also difficult (for an in-depth discussion on the problem of 

number of neurons, please refer to Lawrence et al., 1996; Elisseeff & Paugam-Moisy, 1997). 

On the other hand, there are algorithms like the Cascade Correlation (Fahlman & Lebiere, 

1991), which starts with a minimal network, and then adds hidden nodes during the training.  
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A good result may also be obtained from experiments with multiple architectures, which select 

the one that performs best on held-out data. This approach will be used in our case to forecast the IFS 

for South Africa. 

 

3.3. Performance estimation 

The forecasting performance of the system model is mainly compared using a mean square 

error normalised with respect to the variance of the target signal. Mean Squared Error (MSE) is 

defined as:  

      ∑             ∑             ,         (20) 

where    – are target outputs,    – are  network outputs. The use of MSE will allow the comparison of 

the empirical results from this study with the results obtained by Matkovskyy (2012). 

 

3.4. Algorithm for training 

Training is performed using the Levenberg-Marquardt algorithm and Bayesian Regularization. The 

Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) is an iterative technique that 

locates the minimum of a multivariate function, which is expressed through the sum of squares of non-

linear real-valued functions. The advantage of this algorithm is that it is guaranteed to converge.  

The basis of the Levenberg-Marquardt algorithm is the linear approximation to f. When the 

performance function is in the form of a sum of squares, the Hessian matrix is approximated in the 

following way:      ,             (21) 

and the gradient is calculated as:      ,             (22) 

where J is the Jacobian matrix with the first derivatives of the network errors with respect to the 

weight and biases;   is a vector of network errors. Next, the algorithm applies this approximation to 

the Hessian matrix:                      .          (23) 
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If the scalar     in equation (23), the algorithm becomes Newton‟s method. If not, this method 

becomes a gradient descent with a small step size. A detailed analysis of the Levenberg-Marquardt 

algorithm is beyond the scope of this research (for a more comprehensive discussion please refer, 

among others, to Nielsen, 1999; Nocedal & Wright, 1999; Kelley, 1999). 

Bayesian Regularization takes place within the Levenberg-Marquardt algorithm described 

above (see MacKay (1992); Foresee & Hagan (1997) for more detailed discussions of Bayesian 

Regularization). It minimises a linear combination of squared errors and weights. Therefore, this 

algorithm also modifies the linear combination. Its advantage is that it causes the resulting network, at 

the end of training, to have good generalisation qualities. In the algorithm, Bayesian Regularization 

back-propagation is used to calculate the Jacobian jX of performance, taking into account the weight 

and bias variables (X). Therefore, each variable is adjusted based on the Levenberg-Marquardt 

algorithm,         ,             (24)        ,             (25)                ,           (26) 

where E is all errors; and I is the identity matrix. 

 

4. EMPIRICAL RESULTS 

The IFS of South Africa is considered as an output series. All calculations were made in 

MatLab. The general scheme of the NARX model of the IFS of South Africa is provided in Figure 2. 

Both the Levenberg-Marquardt algorithm and Bayesian Regularization for training were 

applied to the network. The application randomly divides input vectors and target vectors into three 

sets, as follows: 75% are used for training; 15% are used to validate that the network is generalising 

and to stop training before overfitting; the last 15% are used as a completely independent test of 

network generalisation. 

Table 2: The results of the NARX model training for the IFS of South Africa prediction (Levenberg-

Marquardt algorithm) 

 Target value MSE R 

Training 59 4.02946e-17 1.000000 

Validation 13 9.91773e-3 9.31977e-1 
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Testing 13 4.92878e-3 9.59343e-1 

Hidden neurons = 48, delay = 4 

As we can see from the Table 2, the small values of MSE and the high values of R give us reason to 

consider the obtained NARX model as adequate. If one compares the forecasting results to the ones 

obtained in the research of Matkovskyy (2012), using a BVAR (2) model with Minnesota prior, the 

MSE of training (4.02946e-17) is much lower than that of the BVAR(2) model (0,0000009). 

Compared to the BVAR(2), the same indicator for validation and testing is higher: 0,00991773 and 

0,00492878, respectively. 

 The best validation performance is provided in Figure 3. It shows that the process of the 

network‟s performance improved during training. This performance is measured in terms of mean 

square error and it is shown in log scale. It is evident that the MSE is decreasing rapidly while the 

network is trained. In this case, the results are reasonable, because of the following: 

- the final mean-square error is very small (less than 10
-15

); 

- the test set error and the validation set error have similar characteristics. 

In Figure 4, the training data indicate a good fit. The validation and test results also show R values 

greater than 0.9. Although it is not a perfect fit, the reason may be sought in the length of the time 

series – in this case, we do not have long time series. 

Figure 5 shows how the error sizes are distributed. Typically, when most errors are near zero, it 

suggests a better trained model. In this case, we also have errors near zero. 

The correlation between input and error is provided in Figure 6. This figure illustrates how the 

errors are correlated with the input sequence. The perfect prediction model means that all the 

correlations should be zero. In our case, all of the correlations are within the confidence bounds around 

zero. 

The function of autocorrelations of errors is used to validate the network performance. 

Autocorrelation describes how the prediction errors are related in time. For the perfect model, there 

should be only one nonzero value of the autocorrelation at zero lag (this is the mean square error). This 

means that there is no correlation in prediction errors with each other and there is white noise. In our 

case, the correlations, except the one at zero lag, are within the 95% confidence limits around zero. 

Based on the various diagnostics described up to now, we may conclude that the model is adequate.  

Figure 8 confirms that the responses, obtained from the NARX prediction model for the IFS of 

South Africa, are adequate, since the errors are quite small. 
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The predictions, obtained based on the Bayesian Regularization method of network training, do 

not improve the ones obtained based on ML network training (see Figures 9a and 9b). 

Although the errors are not correlated with the input sequence, all the correlations are not 

within the 95% confidence limit around zero. The response of output element (the IFS of SA) in the 

NARX model, obtained using Bayesian Regularization, is also worse compared to the model trained 

by the Levenberg-Marquardt algorithm. This is illustrated in Figure 10. 

 

5 CONCLUDING REMARKS 

In this study, the nonlinear autoregressive with exogenous input (NARX) model with different network 

training methods was applied to the Index of Financial Safety (IFS) of South Africa to obtain high 

quality forecasts. The Levenberg-Marquardt algorithm and Bayesian Regularization for training of the 

network were used. The first conclusion of the paper is that although neural models may frequently 

suffer from a certain degree of inaccuracy, the results showed that the NARX model applied to the IFS 

of South Africa may ensure forecasts of adequate quality, while using less of computational expanses 

compared to Bayesian Vector-Autoregressive Models with different priors. The NARX model, with 

nu=4 and ny= 4 and the number of hidden neurons=48, was chosen since it resulted in the best 

performance, according to MSE. Therefore, the NARX models have the potential to capture the 

dynamic of nonlinear systems. 

 The second conclusion is that the NARX models are mainly dependent on the applied 

architecture and training method. Within the context of the architecture, the behaviour of NARX 

models mostly depends on the numbers of neurons in hidden layers. Too many hidden neurons in 

network cause over-fitting that, in turn, leads to poor predictions. 

 Future applications of the NARX model to IFS of South Africa may be based on a 

harmonically limited N-D Fourier transformation of the right-hand side of the NARX equation that 

entails the possibility of adaptive characteristics of NARX appearing. This new advantage of the 

NARX model will ensure the updating of the system of IFS monitoring with quarterly incoming data 

online that may be of interest to policy-makers and investors.  

 

 

 

 



12 

 

APPENDIX 

 

FIGURE 1: Dynamics of the estimated Index of Financial Safety (IFS) of South Africa, 1990Q1-

2011Q1, (Matkovskyy, 2012) 

 

 

 

 

 

 

 

 

FIGURE 2: The general scheme of the Series-Parallel Architecture of the NARX model of the IFS of 

South Africa 

 

INPUT 

(85x11) 

1:4 W 

b 

1:4 W + 

W 

b 

+ 

OUTPUT 

(85x1) - 

IFS 

48 hidden neurons 

1 neuron 

IFS (85x1) 



13 

 

 

FIGURE 3: The process of the network‟s performance 

 

 

FIGURE 4: Regression plot for the NARX to predict IFS for South Africa 
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FIGURE 5: Error histogram of the NARX prediction model for IFS of South Africa 

 

 

FIGURE 6: The input-output cross-correlation function 
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FIGURE 7: Autocorrelation of errors of NARX prediction model for IFS of South Africa 

 

 

FIGURE 8: Response of NARX prediction model for IFS of South Africa (trained by the Levenberg-

Marquardt algorithm) 
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FIGURE 9a: Autocorrelation of errors of the SA IFS 

NARX prediction model trained by Bayesian 

Regulation 

FIGURE 9b:  The input-output cross-

correlation function for the SA IFS NARX 

prediction model trained by Bayesian 

Regulation 

 

 

FIGURE 10: Response of NARX prediction model for IFS of South Africa (trained by the Bayesian 

Regulation method) 
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