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Abstract 

Random Utitly Models (RUMs) are a particularly convenient way of modelling product 

differentiation. In this paper we demonstrate that they can be used to examine the possibilities 

of creating quality measures from data on prices and sales volumes. We formulate conditions 

sufficient for the existence of quality measures in two broad families of RUMs: additive 

random utility models and pure vertical differentiation models.  
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1.Introduction 

Random utility models have a wide range of applications in psychology, social science, 

economics and natural science. They have also been subject to a considerable amount of 

theoretical work. This work has been partly inspired by application problems, but is also, to a 

large extent, ‘autonomous’ in nature (see the review by Marley (2002)). The problem we pose 

and partly solve in this paper, belongs in the first category. It is motivated by our work on the 

theory of consumer choice in a market with product differentiation.  

One of the aspects of product differentiation is ‘quality’. Assuming the quality of individual 

product varieties is unobservable, it might be tempting to infer it from data on sales volumes 

and prices. Examples of such works are Khandelwal (2010) and Hallak and Schott (2011) 

who create (and estimate) indicators of quality in foreign trade. Both papers use specific 

demand functions (nested logit and a two-tier CES function, respectively), which can be 

inverted so that the vector of qualities is isolated.  The question we would like to ask is, when 

is such an inversion possible in general? Or in other words: when can the quality measure be 

theoretically identified, given the vector prices and sales volumes? 

It is particularly convenient to formulate this problem in terms of random utility theory. In 

this line of RUM applications, the deterministic components of the conditional utility function 

are interpreted as price and quality of the product variety, whereas the stochastic component 

stands for consumers’ subjective tastes. We demonstrate that the conditions sufficient for the 

existence of quality measures can be expressed in terms of the specification of the random 

utility function and the distribution of the stochastic component.  

The rest of the paper is structured as follows. In Section 2 we formulate the problem in strict 

terms. In Section 3 we demonstrate the results for some broad classes of random utility 

functions, while in Section 4 we offer conclusions.  

2. Problem Formulation 

Assume a market with a differentiated product wherein the demand for different varieties of 

the product is a result of the aggregation of individual choices made according to a random 

utility model (RUM). We use the notation by Anderson et al. (1992)
1
 to describe these choices 

by the individual conditional indirect utility function: 

 ( ), ,i i i iV V p a ε=  (2.1) 

                                                 
1
 This is slightly different from an econometrician’s notation. For the latter see  e.g. Walker and Ben-Akiva 

(2002)  
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– where 
i

V  is the utility of a the consumer from consuming the variety (model) i  of a 

differentiated good ( 1, ,i n= � ). 
i

V  is a function of three variables: the price of the i -th model 

i
p

+∈ R , the quality of the model 
i

a ∈ R , and 
i

ε  which is a random variable interpreted as 

the individual satisfaction of the consumer from buying the variety. By definition, 
i

p  is 

nonnegative. Function V  is increasing in 
i

a  and 
i

ε , and decreasing in 
i

p . Variable 
i

a  

represents the vertical dimension of product differentiation while the random variable 
i

ε  

represents the horizontal dimension. A special case of (2.1) is the additive random utility 

model (ARUM): 

( , )
i i i i

V w p a ε= +  (2.2a) 

where 2:w R R�  is decreasing in the first argument and increasing in the second argument; 

or, even more specifically a linear random utility model (LRUM): 

i i i i
V p a ε= − + +  (2.2b) 

Regardless of the form of the V  function, it is assumed that the consumer makes a discrete 

choice, i.e. she chooses only one model of the n  varieties available: the one that yields her the 

biggest utility 
i

V .  

Usually it is further assumed that she buys only one unit of the preferred variety, which has 

the implication that choice probabilities are the same as market shares
2
. We keep this 

assumption for expositional convenience, but it is not critical for our results, as long as choice 

probabilities can be easily translated into market shares. 

Without loss of generality, we consider only one consumer (alternatively, we could assume a 

finite number of identical consumers). The choice probability for variety i  equals:  

( )(p,a)i iS P Tε=  (2.3) 

where  ( ) ( ){ }1( , , ) : , , max , ,
i n i i i j j j

j
T e e e V p a e V p a e= = =�   and Pε  is the probability of the 

joint distribution: ( )1, , nε ε ε= � .   

It will be useful to adopt the following working definition: 

                                                 
2
 Provided all the consumers are identical 
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Definition 1. We call the set ( ) ( ){ }1( , , ) : , , max , ,
i n i i i j j j

j
T e e e V p a e V p a e= = =�   

the bearing set of variety i. 

 

For 1, ,
n

S S�  to be choice probabilities we have to make one more assumption: 

( )1 2 0i iP T Tε ∩ =   if 1 2i i≠   (2.4) 

i.e. the probability of the consumer being indifferent when choosing between any two 

varieties is zero. 

We are interested in inferring qualities from the data on prices and choice probabilities. Note 

however that in additive models, increasing all the qualities by a constant does not change the 

choice probabilities (with prices given). Consequently, the following definition of a quality 

measure takes into account its ‘relative’ character. 

Definition 2. Let ( ):
n

n nV + ×R R R�  be a random utility function and let Im( )H V= . 

Function ( ):
n

k n

V
m H+ × ×R R R�  where {1,..., }k n∈  is a quality measure for the random 

utility model generated by V , if for any vectors 1a=( ,..., )
n

a a , 1p=( ,..., )
n

p p  and  

1S=( ,..., )
n

S S  complying with equality (2.3) the following equality holds: 

(p,S, ) ak

V k
m a =   (2.5) 

 

The quality of any variety i  is measured relatively to the quality of variety k , which can be 

thought of as a kind of quality numeraire. The principal problem we are addressing in this 

paper is the following: which conditions imposed on the RUM allow for the respective quality 

measure to exist? 

Example (multinomial logit model). 

For the multionomial logit model (MNL), a quality measure exists. By the Holman-Marley 

theorem, MNL is a LRUM model (type (2.2b)) in which the variables nεε ,,1 �  are i.i.d. 

extreme value (type 1) distributed (cf. Anderson et al. 1992, p.38). The multinomial logit 

model has a convenient closed form for choice probabilities: 
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exp

(p,a)

exp

i i

i

j j

j

p a

S
p a

µ

µ

� − + �
� �
� �=

− +� �
� �
� �

�
  

where 0>µ  is a parameter of the extreme value distribution. By implication, for any two 

varieties 1i  and 2i , 

1 2 1 2 1 2( ) (ln ln )
i i i i i i

a a p p S Sµ− = − + −   

Let the function 1( ,..., )k

V n
m m m=  be defined as follows. 

if

(ln ln ) if

k

i

k i k i k

a i k
m

a p p S S i kµ

=� 	
= 
 �

+ − + − ≠� 
 

It can be verified that k

V
m  meets condition (2.5) and hence it is a quality measure. 

In the above example the quality measure could be explicitly constructed, which will not 

always be the case. However, the multinomial logit model has another property that is worth 

generalizing about. It was said above that shifting the quality vector in a LRUM leaves the 

choice probabilities intact. If this is the only manipulation of the qualities that has this effect 

in an additive RUM, then a quality measure exists: 

 

Lemma 1.Consider an additive random utility model (ARUM): 

( , )
i i i i

V w p a ε= +  

if it has the following property: 

(p,a) (p,a') w' w + S S c= � = I  (2.6) 

where i' ( , ' )
i i

w w p a= , I  is the identity matrix, and c ∈ R , then a quality measure exists for 

this model. 

 

Proof. Let {1,..., }k n∈  be any number and let the function ( ): 2
nn

k

V
h H+ × × RR R � ,  

be defined as follows:  

(p,S, )k

V k
h a A=  
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where A  is the set of all the vectors 1a=( ,..., ,..., )
k n

a a a , such that vectors p ,S  and a  comply 

with equality (2.3). We shall demonstrate that A  consists of only one element and hence it 

can be identified with k

V
m . Indeed, assume that for a given triple (p,S, )

k
a , A  consists of at 

least  two elements: a, a' A∈ . But since there must be '
k k

a a= , and hence also '
k k

w w=  

assumption (2.6) implies that c=0  and so a=a'  

� 

Generally, quality measures need not exist, as the following example shows.  

Example (LRUM with a ‘gap’ in the support of ε ). 

Consider a linear RUM ( iii apw +−= ) with just two varieties. The probability of choosing 

option 1 in such a model equals ( )1 1(p,a)S P T=  where the set 

{ }1 1 2 1 2 1 2( , ) :T e e e e e w w= = − ≥ − +  is the shaded area in Figure 1. 

 

Figure 1. The probability of choosing variety 1  

 

Assume further that the consumer might like variety 1 more or she might like variety 2 more, 

but either way, her preference for the favoured variety is very strong. Hence, for some 0d >  : 

( )1 2 0P dε ε− < =  

The area between the dotted lines in Figure 1 has zero probability. This implies that as long as 

the difference 1 2w w−  remains in the interval ( , )d d− , the choice probability 1S  is unchanged. 

Consequently, there can be no quality measure, because with prices and choice probabilities 

given, qualities can still be manipulated and hence function k

V
m  cannot be well defined. 

Observe that this counterexample works for several distributions of ε , as long as the measure 

of the area between the dotted lines is zero.  

d 

x1 

x2 

w1 – w2 

-d 

A1 
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3. Conditions sufficient for the existence of quality measures 

We will discuss the conditions sufficient for the quality measure to exist in two families of 

RUMs that are quite popular in the economic literature: additive random utility models and 

what we call the ‘pure vertical differentiation model’. It can be demonstrated that in both 

cases, the assumption that makes the existence of a quality measure possible eliminates the 

non-convexity of the bearing sets of the kind that generate the counterexample in the previous 

section.  

3.1. Additive Random Utility Model  

Our first major result is the following. 

Theorem 1. If the market demand function is generated by an ARUM model ( , )
i i i i

V w p a ε= +  

and the support of the random variable ( )1, , nε ε ε= �  is identical with the nR  space, then a 

quality measure exists. 

Proof. We use the notation ( , )
i i i

w w p a=  and let : n nf R R�  be the choice probability: 

(w) (p,a)f S≡ . We will demonstrate that if (w) (w')f f= , then there exists a number c ∈ R , 

such that: 

w' w + c= I   (3.1) 

- which by Lemma 1 guarantees the existence of a quality measure.  

The proof is by contradiction. Assume that for some vectors w  and 'w  holds ( ) ( ')f w f w=  

but not (3.1). Consequently, the difference '
j j

w w−  is not constant for all j . Let us define  

{ }' max 'r r j j
j

w w w w− = −   (3.2) 

{ }' min 's s j j
j

w w w w− = −  (3.3) 

We shall prove that ( ) ( ')
r r

f w f w< , which contradicts the assumption. By analogy to 
i

T  let us 

define { }1' ( , , ) : ' ' for 1, ,
i n i i j j

T x x x w x w j n= + ≥ + =� � . Observe that ( )( )r rf w P T=  and 

( )( ') 'r rf w P T= . We will demonstrate that '
r r

T T⊆  and the difference ' \
r r

T T  has a positive 

probability implying ( ) ( )'r rP T P T< .  
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To see that '
r r

T T⊆  take any 1( , , )
n r

x x x T= ∈� . Then for any j  the following inequality 

holds: 

r j j r
w w x x− ≥ −   (3.4) 

On the other hand (3.2) implies  

' '
r j r j

w w w w− ≥ −   (3.5) 

(3.4) and (3.5) together yield: 

' '
r j j r

w w x x− ≥ − , hence 

' '
r r j j

x w x w+ ≥ +  

which is equivalent to '
r

x T∈ .  

Now, let ' '
r r s s

d w w w w= − − +  (by (3.2) and (3.3) this number is positive) and let 0T be an 

open ball of radius 4
d  centered at ( )1, , ny y y= �  where: 

'

2

s s
r

w w
y

+
= , 

'

2

r r
s

w w
y

+
= , 

for ,
i

y M i r s= − ≠  

where M  is any positive number satisfying the following condition: 

( ){ }1
2

max ' ' 'j r r s
j

M w w w w> − + −  

We will demonstrate that 0 '
r

T T⊆  but 0 r
T T∩ = ∅ . 

The proof of inclusion 0 '
r

T T⊆   

Let ( )1 0, , nx x x T= ∈� . To show that '
k

x T∈  we have to demonstrate that for any i :  

' '
i i r r

x w x w+ ≤ +   (3.6) 

For i r=  (3.6) is obviously true. We will consider two other cases: r i s≠ ≠  and i s= . 

Assume i s≠ . If 0x T∈ , then 4
dx y− < , and in particular for any i  4

d
i ix y− < , hence 
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( )

4 4

A

d d
r r

x y− < − <
 

( )

4 4

B

d d
i i

x y− < − <  

Adding both sides of ( )A  and ( )B  and transforming the result we arrive at: 

2
d

i i r r
x y x y− < + −    (3.7) 

Using the definitions of 
i

y , 
r

y  and d  we can substitute: 

( ) ( )1 1
2 2

' ' 'i r r s s r s sx M w w w w x w w+ < − − + + − +  

( )1
2

' 'i r r r sx M w w x w+ < − + −  

Adding '
i

w  to both sides yields 

( )1
2

' ' ' 'i i r r r s ix w M w w x w w+ < − + − + − +  

Which can be transformed as follows 

( )( )1
2

' ' ' ' 'i i r r r r s ix w x w w w w w M+ < + + − + − + −  

By the definition of M , the expression in brackets must be negative, so 

' '
i i r r

x w x w+ < +  

which proves the inclusion 0 '
r

T T⊆  for r i s≠ ≠ . 

Now suppose that i s= . Inequality (3.7) is still true implying that:  

2
d

s s r r
x y x y− < + −  

Substituting for 
s

y , 
r

y  and d  yields: 

( )1 1 1
2 2 2
( ' ) ' ' ( ' )r r r r r s s r s sx w w w w w w x w w− + < − − + + − +  

' '
s s r r

x w x w+ < +  

which completes the proof of the inclusion 0 '
r

T T⊆ . 

To demonstrate that 0 ' \
r r

T T T⊆  we still have to show that 0 r
T T∩ = ∅ . 

The proof of 0 r
T T∩ = ∅  
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Let 0x T∈ . Then: 

( )

4 4

C

d d
r r

x y− < − <
 

( )

4 4

D

d d
s s

x y− < − <
 

Adding both sides of ( )C  and ( )D  and rearranging the result we arrive at: 

2
d

r r s s
x y x y− < − +  

Substituting for 
r

y , 
s

y  and d : 

( ) ( ) ( )1 1 1
2 2 2

' ' ' 'r s s s r r r r s sx w w x w w w w w w− + < − + + − − +  

r r s s
x w x w+ < +  

But this contradicts the very definition of 
r

T , because 
r r i i

x w x w+ ≥ +  must hold for any 

r
x T∈ , in particular i s= . Consequently if 0x T∈  then 

r
x T∉ , so 0 r

T T∩ = ∅ . And since we 

have demonstrated already that 0 '
r

T T⊆ , then 0 ' \
r r

T T T⊆ . 

However, given that 0T  is an open ball, its measure is positive ( ( )0 0P T > ) by the assumption 

that the support of ε  is the entire space nR . This reasoning is illustrated by Figure 3. 

Figure 2. Proof of Theorem 1  

 

We conclude that: 

( ) ( ) ( ) ( ) ( )0 0( ) ' ( ')
r r r r r r

f w P T P T P T P T T P T f w= < + = ∪ ≤ <  

contradicting (w) (w ')f f= .  

� 

'rT  r
T  

0T  
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What does it mean that the support of ε  is identical to the space nR ? It is equivalent to the 

assumption that each nontrivial n-cube ),(),(),( 2211 nn bababa ××× �  has a positive 

probability. The interpretation is that no configuration of tastes for different varieties is 

impossible. If the rationale behind employing a RUM is consumer heterogeneity (as it often is 

in empirical studies of demand), Theorem 1 requires that there is a nonnegligible group of 

consumers exhibiting any combination of preferences one can think of. One family of demand 

functions that meet this assumption are those generated by McFadden’s Theorem of General 

Extreme Value (cf. Anderson et al 1992, p. 48). They include, in particular, the logit model 

and nested logit models that fulfill certain additional conditions
3
. 

From Theorem 1 almost immediately follows: 

Corollary 1. If the market demand function is generated by an ARUM model 

( , )
i i i i i

V w p a ε= + , random variables nεε ,,1 �  are independent and for each iε  its support is 

identical with the R  space, then a quality measure exists
4
. 

Relevant examples include the CES function
5
 and (again) the logit model. Note, however, that 

neither Theorem 1 nor Corollary 1 require that variables nεε ,,1 �  are identically distributed, 

so quality measures can exist even for the demand functions for which varieties are unequally 

popular with customers.  

3.2. Pure Vertical Differentiation Models 

The second class of models for which we can prove that quality measures exist is one that has 

been quite intensively worked on in industrial organization: pure vertical differentiation 

models (PVDM). 

Definition 3. A Pure Vertical Differentiation Model (PVDM) is a random utility model in 

which 1 ...
n

ε ε ε= = = .  

 

                                                 
3
 The condition is that the heterogeneity of preferences at the higher level (nest) is at least as great as at the lower 

level. Otherwise a nested multinomial logit model might not be generated by a RUM (Anderson et al 1992, p. 

48). 
4
 Note that this result adds to our knowledge on independent RUMs, advanced among others by Suck (2002). 

5
 It can be demonstrated that the CES (constant elasticity function) is generated by the following ARUM: 

ln lni i i iV a p ε= − + , where nεε ,,1 �  are i.i.d. extreme value (type 1) distributed, provided that consumers buy a 

certain variable amount of the differentiated good (cf. Anderson et. al 1992, p. 86-88). In this case, choice 

probabilities are different than market shares. 
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Classic examples of PVDMs are those by Shaked and Sutton (1983) who consider 

( )i i iV p aε= −  and Mussa and Rosen (1978) who consider
6
 

i i i
V a pε= − . Admittedly, neither 

of the models is specified in terms of random utility. Instead they are formulated more in the 

spirit of location models: there is no random variable but a parameter representing the 

heterogeneity of consumers. In Shaked and Sutton’s paper, consumers differ in income while 

in Mussa and Rosen’s they differ in the ‘intensity of a consumer’s taste for quality’. However 

these models can be interpreted as RUMs as well
7
. PVDM is a special case of a random utility 

model, though, with some particularly ‘good’ properties, as the following lemma shows 

Lemma 2. If all choice probabilities in a PVDM are positive, then: 
i j i j

a a p p> ⇔ > . 

 

Proof. Consider the random utility function, which in the case of a PVDM is:  

( ), ,i i iV V p a ε=   

V is decreasing in the first argument but increasing in the other two. Consequently if 
i j

a a>  

but 
i j

p p< , then 
i j

V V>  for any value of ε  implying 0
j

S = .  

� 

Corollary. If all choice probabilities are positive then 
i j i j

a a p p= ⇔ = . 

� 

 

In the rest of the paper we assume that the qualities 1 n
a a�  are pairwisely different, which is 

consistent with assumption (2.4). 

Interestingly, also for pure vertical differentiation models, the characteristics that are key to 

the existence of a quality measure are related to the support of the stochastic component. On 

one hand, the sufficient condition is weaker than it is in the case of an ARUM: it is enough 

that the support of ε  is a convex subset of R . On the other hand there is also an additional 

condition related to the utility function. Before our second major result is introduced we need 

the following lemma. 

 

                                                 
6
 Strictly speaking, their model is more general: is not even a discrete choice model. Nevertheless the implied 

conditional utility function is this. Indeed, it is invoked as by other authors studying discrete choice models who 

refer to Mussa’s and Rosen’s article (cf. Cremer and Thisse 1991). 
7
 On the other hand, we know of no prior work that would define the vertical differentiation model as a RUM. 
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Lemma 3. Assume a PVDM and let 1 2 ...
n

a a a< < < . If the support of ε  is a convex subset of 

R  and the model has the following property 

For any , 'i j e e> ≥ : ( ) ( ) ( ) ( ), , , , , , ' , , '
i i j j i i j j

V p a e V p a e V p a e V p a e≥ � ≥      (3.8) 

– then each bearing set 
i

T  is convex.  

 

Proof. Suppose that ,
i

x y T∈  with x y<  and (1 )z x yα α= + −  for some [0,1]α ∈ . We will 

demonstrate that 
j

z T∉  for any j i≠ , which implies 
j

z T∈  by the convexity of support T .  

Consider the case when j i< . Since x z< , by property (3.8) there must be 
j

z T∉ . Now 

assume j i>  and suppose 
j

z T∈ . Given that z y< , property (3.8) implies that 
j

y T∈  which 

contradicts the definition of y . Hence 
j

z T∉   

� 

Property (3.8) is important but not too restrictive from a practical point of view. Indeed it is 

quite intuitive and consistent with the interpretation of PVDMs in industrial organization, 

where higher values of ε  are associated with higher income or a stronger inclination to buy 

higher quality products. Hence if a lower realization of ε  implies that among two given 

varieties, the higher-quality option is preferred, then it is plausible to assume that higher 

quality will also be preferred for a higher realization of ε . Also the assumption about the 

convexity of the support of ε  is consistent with the literature in industrial organization, where 

the support is routinely assumed to be an interval.  

 

Theorem 2. If a PVDM has property (3.8), the support of ε  is convex, and all choice 

probabilities are positive, then a quality measure exists.  

 

Proof. Let the varieties be renumbered so that 1 2 ...
n

a a a< < < . By Lemma 2 we also have 

1 2 ...
n

p p p< < < . We know from Lemma 3 that all the bearing sets are convex. Since they are 

all subsets of R , they must be either intervals or half-lines (we assumed away empty sets). 

This can be easily verified by invoking a reasoning similar to the Lemma 3 proof that they 

must be located on the R line in the same order as the varieties (cf. Figure 3). 
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Figure 3. Bearing sets in a PVDM  

 

Note that any two ‘consecutive’ bearing sets 
i

T , 1i
T +  have at most one common point. Indeed, 

since they are convex, their intersection has to be convex too. By assumption (2.4) this 

intersection has to have zero measure. But since the support of ε  is convex, it means that 

1i i
T T +∩  is either empty or it is a single point. In practice, either 

i
T  is right-closed and 1i

T +  is 

left-closed and so { }1i i iT T θ+∩ =  for some number 
i

θ ∈ R  (cf. Figure 3) or 
i

θ  is in only one 

of these sets while the other is right-open (or left-open). In any case we can define numbers 

1 1, ,
n

θ θ −�  as points that separate consecutive bearing sets. Let us also define 0 1minTθ =  and 

max
n n

Tθ = . Note that: 

( ) 1( ) ( )i i i iS P T G Gε θ θ+= = −  

where G is the cdf of ε . Hence: 

1 1

0

1 1

( ) ( )
i i

i j j

j j

G G S Sθ θ
− −

= =

= + =� �  (3.9) 

The convexity of support T  implies that G  is strictly increasing, so there exists an inverted 

function 1
G

−  and (3.9) yields: 

1
1

1

i

i j

j

G Sθ
−

−

=

� �
= � �

� �
�  

Consequently, with the vector S  known, vector ( )1� , , nθ θ= �  can be unequivocally 

determined. This suggests a way of defining the quality measure k

V
m . Suppose that k n< .The 

definition of 
k

θ  implies: 

( ) ( )1 1, , , ,
k k k k k k

V p a V p aθ θ+ +=  

1k
a +  is the solution of this equation, which is unique, because V  is increasing in its second 

argument. By applying the same procedure to 1k
a +  and 2k

a + , one can unequivocally define 

2k
a +  and so on. Obviously one can also define 1k

a −  by considering 

( ) ( )1 1 1 1, , , ,
k k k k k k

V p a V p aθ θ− − − −=  

i
θ  

1i
T +  i

T  1i
T −  



 15 

and, by analogy all the other elements of the quality vector left to 
k

a . The method of 

constructing a quality measure has been demonstrated. 

� 

 

4. Conclusions 

Random utility models are a particularly convenient way of modelling product differentiation. 

In this paper we demonstrated that they can be used to examine the possibilities of creating 

quality indicators. We formulated conditions sufficient for the existence of quality measures 

in two broad families of RUMs: additive random utility models and pure vertical 

differentiation models. In both cases, the conditions proved to be strongly related to the 

convexity of the support of the model’s random component. 

Our study contributes to the characteristics of RUMs: in terms of the research classification 

outlined by Marley (2002), we add to the ‘characterization’ problems. Obviously there is 

considerable room for improvement in our results, from the sufficient conditions for other 

types of RUMs (or generalized RUMs as defined by Walker and Ben-Akiva (2002)) to a full 

characterization of necessary conditions. Nevertheless, we demonstrated that the family of 

demand functions for which quality measures exist is much wider than the specific functions 

used so far in applied studies. 
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