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Abstract

This paper considers the value of travel time variability under
scheduling preferences that are de�ned in terms of linearly time-varying
utility rates associated with being at the origin and at the destina-
tion. The main result is a simple expression for the value of travel
time variability that does not depend on the shape of the travel time
distribution. The related measure of travel time variability is the vari-
ance of travel time. These conclusions apply equally to travellers who
can freely choose departure time and to travellers who use a scheduled
service with �xed headway. Depending on parameters, travellers may
be risk averse or risk seeking and the value of travel time may increase
or decrease in the mean travel time.

1 Introduction

Congestion is widespread in road, rail and air networks and causes delay,
entailing signi�cant costs for societies. This cost is generally valued by the
value of travel time, a concept with a long and distinguished history starting

�mf@transport.dtu.dk.
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from Becker (1965) and DeSerpa (1971). An associated e¤ect of congestion
is that travel times become variable and random from the perspective of
travellers deciding whether and when to travel. The cost of this travel time
variability is thought to be of the same order of magnitude as the cost of
delays when congestion is strong. Random travel time variability a¤ects not
only transport by car but also users of scheduled services such as buses, trains
and airplanes.
The concept of travel time is quite straightforward. The concept of the

value of travel time is then just as straightforward, at least in principle: it
is the value of marginal changes in travel time. The concept of travel time
variability, however, is less straightforward. In general it takes a (countable)
in�nite number of parameters to characterise a random travel time distribu-
tion and so a choice must be made concerning which aspects of the travel time
distribution to vary. The implications of this choice are tightly connected to
the assumptions made concerning traveller preferences.
Recently, Fosgerau and Karlstrom (2010) presented a derivation of the

value of travel time variability based on scheduling preferences adapted from
Vickrey (1969) and Small (1982).1 They derived the time cost for a trip of
random duration for a traveller who could freely choose his departure time,
with these scheduling preferences and optimal choice of departure time. The
time cost is the value of travel time multiplied by the mean travel time plus
a constant, the value of travel time variability, times the standard deviation
of travel time. As will be discussed below, this result is appealing in some
ways but not in other ways. The present paper uses a di¤erent formulation of
scheduling preferences to derive an alternative expression for the traveller�s
time cost of a trip of uncertain duration. The alternative result has some
advantages over the Fosgerau and Karlstrom (2010) result.
The scheduling preferences used by Fosgerau and Karlstrom (2010) are

often referred to as � � � � 
 preferences. A traveller is assumed to have
a preferred arrival time, which can be normalised to be time 0: He dislikes
being early or late at the destination and he also dislikes travel time. His
scheduling utilility � associated with departing at time t and arriving at time

1Following Vickrey (1969), this type of scheduling preferences is often used in bottleneck
models of congestion (e.g. Arnott et al., 1993). Noland and Small (1995) and Bates et al.
(2001) preceded Fosgerau and Karlstrom (2010) with similar results for some speci�c travel
time distributions.
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a is written as

�� (t; a) = � (a� t) + �max (0;�a) + 
max (0; a) ; (1)

where � > 0 is the marginal value of travel time (a� t) ; � > 0 is the
marginal cost of earliness max (0;�a) ; and 
 > 0 is the marginal cost of
lateness max (0; a). If travel time is random (a� t) = � + �X; where X is
random with CDF �, EX = 0 and the distribution of X is independent of
t; and if the traveller chooses departure time to maximise scheduling utility,
then the maximum expected utility is

�E�� = ��+ (� + 
) �

Z 1



�+


��1 (s) ds: (2)

The scale of the travel time distribution � can be taken as a measure of
the degree of travel time variability. It can be any measure of scale such as the
standard deviation or measures based on quantiles (e.g. Small et al., 2005).

The term
R 1



�+


��1 (s) ds is always positive, since EX = 0:2 Hence travellers

are always risk averse. The optimal departure time is b� = �����
�1
�




�+


�

and the mean arrival time is b� + � = ����1
�




�+


�
:

There are a number of advantages associated with the result (2). First,
maximum expected utility is just a linear combination of the mean travel time
� and the travel time variability �: Second, the result holds for essentially
any distribution of travel times �: Third, the preferred arrival time does
not appear in the expression. It is then not necessary to know the preferred
arrival times of travellers in order to apply scheduling preferences. Previously,
this was thought to be an obstacle as such information is hard to �nd. Fourth,
the result provides a basis for including a measure of scale of the distribution
of travel times directly in the speci�cation of preferences. This has been
done in a range of papers, but lacked the justi�cation that is obtained from
de�ning preferences in terms of travel times outcomes rather than the travel
time distribution. Fifth, Fosgerau & Karlstrom show that the expression (2)
remains a good approximation when � and � are allowed to depend (in a
limited way) on the departure time t:

2The function H (x) =
R
1

x
��1 (s) ds satis�es H (0) = H (1) = 0: It is increasing for

x < � (0) and decreasing for x > � (0) : Hence it is always positive.
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There are however also disadvantages associated with ����
 preferences
(1) and the result (2). First, the value of travel time variability depends on

the shape of the travel time distribution through the term
R 1



�+


��1 (s) ds.

Second, the expression (2) is not additive over parts of a trip. Additivity
would have been a desirable property of a measure of the value of travel time
variability, since then the time cost could have been computed separately for
di¤erent parts and then added. This would have made easier the application
of (2) to links in a network. Third, and perhaps most importantly, it is
not given that (1) is the best representation of the scheduling preferences of
travellers. Finally, the traveller must be able to freely choose his departure
time, which is not true for a scheduled service.
Just as many travellers may care about not being late for some activity,

they might also care about not leaving some other activity too early. The
����
 preferences treat departure time di¤erently from arrival time. There
is a special time for arrivals but no special time for departures. A priori it is
not clear why this should be so.
Consider travellers who di¤er in one respect only, the duration of the trip.

The �� � � 
 preferences imply that the traveller with the longer duration
would depart earlier but arrive at the same time as the traveller with the
shorter duration. This is an empirically testable proposition which may be
used to refute (in an appropriately loose sense) �� � � 
 preferences. This
is considered in section 5 below.
Vickrey (1973) considered another type of scheduling preferences, recently

reused by Tseng and Verhoef (2008).3 They are introduced in section 2
below. This type of scheduling preferences associates a time varying utility
rate with time spent at the origin and a similar time varying utility rate
with time spent at the destination. The scheduling utility associated with
a trip departing at time t and arriving at time a is the utility gained from
being at the origin until time t and at the destination after time a: This is
appealing since it connects scheduling preferences with the activities before
and after the trip in a symmetric way.4 The main purpose of this paper

3Tseng and Verhoef do not cite Vickrey (1973).
4Based on stated-preference data, Ettema et al. (2004) estimated parameters of the

time varying utility rates for the departure time choice of complete tours while Tseng
and Verhoef (2008) applied non-parametric techniques to estimation of such rates for trips
from home to work. Wang (1996) estimate a schedule delay cost function for the morning
commute. Zhang et al. (2005) uses utility rates in conjunction with the bottleneck model
to carry out an analysis of trip timing.
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is to show that such scheduling preferences, under appropriate simplifying
assumptions, lead to a value of travel time variability that is as simple and
applicable as the Fosgerau & Karlstrom result (2), while not sharing some of
its disadvantages. First, it does not depend on the shape of the travel time
distribution. Second, the associated measure of travel time variability is the
variance of the travel time, which is additive over parts of a journey if the
travel time parts are independent. Third, the result applies also to scheduled
services. Fourth, under natural assumptions on the time varying utility rates,
the value of travel time is increasing with expected trip duration, which is in
compliance with empirical evidence (Gunn, 2001). Finally, it may turn out
that these scheduling preferences provide a better explanation of observed
scheduling behaviour.
The layout of the paper is as follows. Section 2 introduces the alternative

formulation of scheduling preferences. Section 3 considers the case of random
travel time for a traveller who can choose his departure time freely. Section
4 considers scheduled services. Section 5 discusses empirical implications of
the two models of scheduling preferences and evaluate these against empirical
data. Section 6 concludes. Table 1 in the appendix provides a list of the
notation used.

2 Scheduling preferences

Consider a traveller who departs from the origin of a trip at time t and
arrives at the destination at time a; where t < a and who has the following
scheduling utility.

u (t; a) =

Z t

0

(�0 + �1s) ds+

Z 0

a

(
0 + 
1s) ds; t � a: (3)

The greek letters � and 
 are chosen such that � is associated with time
spent at the origin of the trip and 
 is associated with time spent at the
destination. The traveller derives utility at the rate �0 + �1s from being at
the origin at clock time s. He derives utility at the rate 
0+
1s from being at
the destination at clock time s: Both rates are assumed to be linear in clock
time. They may be interpreted as di¤erences in the utility rate between time
spent in the activities at the origin and at the destination from time spent
during travel. This scheduling utility is illustrated in Figure 1. The zeros in
the integration limits in (3) are chosen for convenience and can be replaced
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Figure 1: The utility rate functions and the optimal departure and arrival
times given travel time �. Except for a constant, the corresponding schedul-
ing utility (3) is given by the shaded area.

by arbitrary constants, such as A and B in the �gure, since utility can be
shifted by a constant and represent the same preferences. The requirement
that �1 < 
1 ensures that there is a time when it becomes preferable to
be at the destination rather than at the origin. Note that this requirement
does not rule out that �1 and 
1 have the same sign.

5 The normalisation
�1 = 
1�1 is imposed for mathematical convenience at no loss of generality.
Note that the formulation of utility does not include a term for monetary
trip cost.
Consider a trip that lasts � time units with certainty. Then the optimal

departure time t is given by t� = argmaxt u (t; t+ �) : The �rst-order con-
dition is �0 + �1t� = 
0 + 
1 (t� + �) ; such that the optimal departure time
is given as a linear function of � by t� (�) = (�0 � 
0) � 
1�: The corre-
sponding arrival time is a� (�) = (�0 � 
0)� (
1 � 1)�: If travel time is zero,

5The formulation of scheduling preferences does not allow for a discrete lateness penalty
such as found by Small (1982).
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then the traveller will optimally transfer from origin to destination at time
t� (0) = �0 � 
0: This time is normalised at no loss of generality such that
�0 = 
0 and t� (0) = 0: The second-order condition is always satis�ed.

6

The optimal utility is

u (t�; t� + �) =

Z t�

0

(
0 + �1s) ds+

Z 0

t�+�

(
0 + 
1s) ds

= 
0t� +
�1
2
t2� �

�

0 (t� + �) +


1
2
(t� + �)2

�

= �
0�+
�1
1
2

�2;

such that the value of travel time is 
0 � �1
1�; which may be increasing or
decreasing with the duration of the trip �:
The typical case would have �1 < 0 < 
1; such that the marginal utility

of being at the origin is decreasing in clock time and the marginal utility of
being at the destination is increasing in clock time. In this case, the value of
travel time is increasing with the duration of the trip. As mentioned above,
the cases where �1 and 
1 have the same sign are not ruled out. In these
cases, the value of travel time decreases in the duration of the trip.

3 Random travel time

Consider now the situation where travel time T = a � t is random, but
independent of t. Denote the mean travel time by � = ET and the variance
of travel time by �2 = E [T 2] � �2: The traveller chooses t� to maximise
E (ujt) : The �rst-order condition is

0 =
@

@t
E

�Z t

0

(
0 + �1s) ds+

Z 0

t+T

(
0 + 
1s) ds

�

= E [
0 + (
1 � 1) t� (
0 + 
1t+ 
1T )]

= �E [t+ 
1T ]

= �t� 
1�;

6With the linear formulation of the utility rates, they become very small or very large
far away from the point where they intersect. This is just a mathematical convenience.
It does not matter for results what the utility rates are at points in time that are farther
away from t� (0) than the duration of any trip.
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such that t� = �
1�: This is exactly the same as when travel time is certain
and does not depend on the distribution of travel time except for the mean.
The second-order condition is always sati�ed.
The corresponding optimal expected utility is given by the following ex-

pression.

E (ujt�) =

Z t�

0

(�0 + �1s) ds+ E

�Z 0

t�+T

(�0 + 
1s) ds

�

= �0t� +
�1
2
t2� � E

h
�0 (t� + T ) +


1
2
(t� + T )2

i

=
�1
2
t2� � �0��


1
2

�
t2� + 2t��+ �2 + �2

�

=
�1
2

21�

2 � �0��

1
2

�

21�

2 � 2
1�
2 + �2 + �2

�

= ��0�+
�1
1
2

�2 �

1
2
�2:

This shows that the optimal expected utility depends only on the mean
and the variance of travel time. The natural measure of travel time variability
corresponding to these scheduling preferences is the variance of travel time.
The associated value is 
1

2
: The value of mean travel time 
0 � �1
1� is the

same as in the deterministic case.
The result based on time varying utility rates (3) has some advantages.

A �rst advantage over � � � � 
 scheduling preferences is that the shape
of the travel time distribution plays no role. This is a signi�cant advantage
since it implies that a value of travel time variance can be transferred from
one situation to another without a need to consider the di¤erence in travel
time distributions. A second advantage is that the travel time variability
is measured by the variance of travel time. The variance is additive across
parts of a trip if the parts of random travel time are independent.
Travellers may be risk seeking or risk averse, depending on the sign of


1: If 
1 < 0; then travellers are risk seeking. By assumption �1 < 
1: Thus
travellers are risk-seeking if they are travelling near a time where the marginal
utilities of being at the origin or at the destination both are decreasing.
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4 Scheduled services

This section extends the previous analysis to the case of scheduled services.
The traveller is now seen to use a scheduled service with travel time �+ �X
with the same assumptions as before. The service departs with a �xed head-
way of h minutes.7 Consider again a traveller with scheduling preferences
(3). These do not comprise an impact of the service schedule. The under-
lying assumption is still that travellers care only about the time spent at
the origin and at the destination of the trip. Hence preferences for waiting
time and travel time are the same. Travellers are assumed to know the travel
time distribution and with this information the scheduled times make no
di¤erence.
The analysis follows that of Fosgerau (2009). Travellers may be planning

or unplanning. Unplanning travellers choose a departure time from the trip
origin knowing only the headway but not the schedule of the service. They
therefore wait at the station until the next scheduled departure. Planning
travellers incur a planning cost � > 0 in exchange for knowing the schedule
and do not wait at the station.
Consider �rst the case of a planning traveller. His expected scheduling

utility associated with choosing a departure at time t is

Ep (ujt) = E

 


0t� 
0 (t+ �+ �X) + �1
t2

2
� 
1

(t+ �+ �X)2

2

!

� �

= �
0��
t2

2
�

1
2

�
�2 + �2 + 2t�

�
� �;

where the subscript p denotes that this relates to a planning traveller. The
expected utility is concave in t. Therefore the planning traveller will choose
uniquely the departure in the interval [t� h=2; t+ h=2] de�ned byEp (ujt� h=2) =
Ep (ujt+ h=2) : Then t is given uniquely by the equation

(t� h=2)2 + 2
1 (t� h=2)� = (t+ h=2)2 + 2
1 (t+ h=2)�;

which has solution t = �
1�:

7It would be relevant to consider extensions of the present model that allow for non-
constant or random headways, as well as random variability of access time. These issues
are left for future research.
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As previously discussed, the linear speci�cation of the utility rates is
convenient but only appropriate in an interval where they do not become
very large or small. The requirement that the utility rate at the destination
is positive at the time t+��h=2 is equivalent to 
0�
1 (
1 � 1)� > j
1jh=2:
Similarly, the utility rate at the origin at time t � h=2 is positive when

0 � 
1 (
1 � 1)� > j
1 � 1jh=2: Together these inequalities imply that


0 � 
1 (
1 � 1)� >

�����
1 �
1

2

����+
1

2

�
h

2
: (4)

The population of travellers is considered heterogenous in the preferred
time of travel but still homogenous in 
1: It is convenient to instead take the
perspective of a single random traveller and consider the departure times of
the scheduled service to be uniformly distributed over [t� h=2; t+ h=2] : The
average utility of a planning traveller is then

Epu = �
1

h

Z �
1�+
h
2

�
1��
h
2

�

0�+

t2

2
+

1
2

�
�2 + �2 + 2t�

��
dt� �

= �
0��

1
2

�
�2 + �2

�
�
1

h

�
t3

6
+

1
2
�t2
��
1�+h

2

�
1��
h
2

� �

= E (ujt�)�
1

24
h2 � �:

This is exactly the same as in the previous section except for the last two
terms. The in�uence of travel time variability is exactly as in the unscheduled
case. Hence the value and the measure of travel time variability are una¤ected
by the service schedule. The term 1

24
h2 indicates the cost for a planning

traveller of being restricted to a schedule. It is zero if headway h is zero. The
marginal cost of headway for a planning traveller is h=12.
An unplanning traveller chooses his departure time from his origin not

knowing the schedule of the service. In addition to the random travel time
he also incurs a random waiting time for the next departure of the service.
The waiting time is random with a uniform distribution over [0; h] ; which
has mean h=2 and variance h2=12: Travel time on the service is independent
of his departure time from home and hence the traveller considers travel time
on the journey including waiting time to have mean � + h=2 and variance
�2 + h2=12: Using the result from the previous section, his optimal expected
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utility is

Enu = �
0 (�+ h=2) +
�1
1
2

�
�+

h

2

�2
�

1
2

�
�2 +

h2

12

�

= E (ujt�)� 
0h=2 +
�1
1
2

h2

4
+
�1
1
2

�h�

1
2

h2

12

= E (ujt�)� 
0h=2 +
�1
1
2

�h+

�

1 �

4

3

�

1
h2

8
;

where subscript n indicates an unplanning traveller. The �rst term is the op-
timal expected utility without scheduling constraints. The remaining terms
measure the cost associated with being restricted to a schedule. Again, these
terms do not depend on travel time variability and so the value and the
measure of travel time variability are una¤ected by the service schedule.
The marginal cost of headway for an unplanning traveller is 
0=2�

�1
1
2
���


1 �
4
3

�

1

h
4
; which is positive when 
0 > 0 and 
1 � 1 = �1 < 0 < 
1:

De�ne now the gain from plannning � (h) by � (h) � � = Epu � Enu: A
traveller with planning cost � chooses to plan when � (h) > �; where

� (h) = 
0h=2�
�1
1
2

h��

�

1 �

4

3

�

1
h2

8
�
1

24
h2

= 
0h=2�
�1
1
2

h�� �1 (
1 � 1=3)
h2

8
:

If the planning cost � has CDF 	 in the population with density  ; then the
optimal expected utility for an average traveller is8

E (ujt�) + (1�	(� (h)))

�
�
0h=2 +

�1
1
2

h�+

�

1 �

4

3

�

1
h2

8

�

�
1

24
h2	(� (h))�

Z �(h)

0

� (�) d�:

Thus, similarly to the case of individual travel where the departure time
choice is unrestricted, the only term in the overall travel cost related to
travel time variability is proportional to the variance of travel time and does
not depend on the shape of travel time distribution.

8The formula is valid also when � (h) < 0; since the planning cost is assumed to be
strictly positive such that 	(�) =  (�) = 0 when � < 0:

11



Depending on the parameters and the headway, the gain from planning
may be negative, in which case nobody will plan. If the utility rates are
always positive in the interval where planning travellers choose departure
such that (4) holds, then it may be veri�ed that there is a positive gain from

planning for all 
1 2
h
�5
3
;
p
22+5
3

i
.

It is natural to assume that the distribution of the planning cost in the
population of travellers is such that the minimum planning cost is positive
and the maximum is less than in�nity. If furthermore 1=3 < 
1 < 1 then
the gain from planning increases without bound in h; since the coe¢cient to
h2 is then positive. Then no traveller plans at short headways, all travellers
plan at long headways, and there is a transition range of headways in which
some travellers plan and some do not.

5 Empirically testable implications

The departure time choices of travellers are observable as are the arrival
times. The two alternative models of scheduling preferences have di¤erent
implications for these aspects of observable behaviour. This gives a possibility
for discriminating between the models.
It has been noted above how the optimal departure time depends on mean

travel time � and the variance �2: In the case of an �� � � 
 traveller, the

optimal departure time is b� = ��� ��
�1
�




�+


�
and the mean arrival time

is b� + � = ����1
�




�+


�
: An isolated increase in � of � minutes will then

lead to departure � minutes earlier. The mean arrival time is not a¤ected.
An isolated increase in � will lead to earlier departures and to earlier arrivals

on average when ��1
�




�+


�
> 0.

In contrast, travellers with scheduling preferences (3) would optimally
depart at time t� = �
1� with corresponding mean arrival time ��1�: As-
sume that 
1 � 1 = �1 < 0 < 
1; which would be the typical case. Then
0 < 
1 < 1: An isolated increase in � of � would lead to departure 
1�
minutes earlier, which is less than in the �� �� 
 case. Similarly, the mean
arrival time would be ��1� minutes later, whereas the mean arrival time in
the ����
 case would be una¤ected. An isolated increase in �2 would not
a¤ect the departure time or the mean arrival time, whereas both will change
in the �� � � 
 case. A change in the shape of the standardised travel time
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distribution � would a¤ect the departure time in the �� � � 
 case but not
in the case (3).
These observations provide means of distinguishing empirically between

travellers with scheduling preferences of the two types considered. We provide
a small illustratíon of how this may be done. Consider now identical travellers
going to a common destination but located at di¤erent distances. They face
deterministic travel time. Then � � � � 
 travellers who live further away
will depart earlier and arrive at their preferred arrival time. In contrast,
travellers with scheduling preferences (3) who live further away will depart
earlier but arrive later.
A dataset has been extracted from the Danish national travel survey

for the years 2006-2008. The chosen observations are commuting trips by
car to the central municipalities of Copenhagen. There are 175 trips that
go directly from home to work and end in Copenhagen between 7 and 10
AM. The data record departure and arrival times and the trip distance.
Regressing the departure time against the distance from home to work yields
that these commuters depart on average 0.73 minutes earlier per km (t-stat
4.2). Regressing the arrival time against the distance from home to work
yields that they arrive on average 0.31 minutes later per km (t-stat 1.8).
The latter is signi�cantly greater than zero in a one-sided test. Moreover,
constant terms in the regressions both indicate that commuters would depart
and arrive very close to 8 AM, if the distance was zero. Regressing trip
duration against distance shows that the average speed in the data is 57.6
km/h and that there is an additional startup time of 7.3 minutes per trip.
The variance of travel time in this sample increases with distance, but it is
not clear how much of this is day to day variability since observed trips do
not have the same origin and destination.
This small empirical exercise shows a pattern that is consistent with the

present model of scheduling preferences (3) but not with ����
 scheduling
preferences, when travel time is considered deterministic from the point of
view of travellers. It should however be noted that we have not used any
controls with our small dataset. Distance could be correlated with other
variables that a¤ect trip-timing preferences. For example, highly-paid pro-
fessionals who have the �exibility to arrive at work when they want may live
in a­uent suburbs far from where they work. Evidence that professionals
do arrive late at work is reported in studies by Ott et al. (1980), Abkowitz
(1981) and Moore et al. (1984) . Evidence on the e¤ect of travel distance
on trip timing is mixed. Ott et al. (1980) �nd that individuals with longer
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commutes tend to arrive later, but Neveu and Koeppel (1980) and Moore
et al. (1984) �nd that they arrive earlier.

6 Concluding remarks

This paper has shown that a certain model of scheduling preferences, based
on Vickrey (1973), leads to the variance of random travel time as the rele-
vant measure of travel time variability. The associated value of travel time
variability does not depend on the shape of the travel time distribution. The
same result applies equally to travellers who can choose departure time freely
and to travellers using a scheduled service.
The variance of travel time is an attractive measure of travel time vari-

ability since it only requires random travel times on parts of the trips to be
independent in order to be additive over parts. The model implies, however,
that the cost related to mean travel time is not additive over parts, unless
the utility rate at the origin is constant (�1 = 0). In this case, the utility rate
at the destination must be increasing. A small empirical exercise indicates
that actual departure and arrival times are more consistent with this model
of scheduling preferences than with �� � � 
 scheduling preferences.
The universe of possible formulations of scheduling preferences contains

many more possibilities than the scheduling preferences (3) used in this paper
and the ����
 scheduling preferences (1). Both are special cases of general
scheduling preferences U (t; a) that are concave, increasing in t and decreasing
in a: The main advantages of the two simple types of scheduling preferences
are simplicity and convenience. Ultimately, the choice between formulations
of scheduling preferences and the associated measures and value of travel
time variability should not be based on convenience but on conformity with
observable behaviour.
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Table 1: List of notation
Variable De�nition
t Departure time
t� Optimal departure time
a Arrival time
�0; �1 Intercept and slope of utility rate at origin

0; 
1 Intercept and slope of utility rate at destination
u Scheduling utility
T Random travel time
�; �2 Mean and variance of travel time
X Standardised travel time
Epu; Enu Expected utility for planning traveller and for nonplanning traveller
h Headway
� Planning cost
� Gain from planning
	;  Cumulative distribution and density of planning cost
� Cumulative distribution of standardised travel time
�; �; 
 Vickrey/Small scheduling parameters
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