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Abstract

This brief paper derives the marginal social cost of headway for a
scheduled service, i.e. the cost for users of marginal increases to the
time interval between departures. In brief we may call it the value
of headway in analogy with the value of travel time and the value of
reliability. Users have waiting time costs as well as schedule delay costs
measured relative to their desired time of arrival at the destination.
They may either arrive at the station to choose just the next departure
or they may plan for a specific departure in which case they incur also
a planning cost. Then planning for a specific departure is costly but
becomes more attractive at longer headways. Simple expressions for
the user cost result. In particular, the marginal cost of headway is
large at short headways and smaller at long headways. The difference
in marginal costs is the value of time multiplied by half the headway.

1 Introduction

This paper proposes the concept of the value of headway for a scheduled
service such as a bus route, a train or an air connection. The headway is
the time interval between departures and the value of headway is the social
cost of marginal increases in the headway. The problem derives from the
(rather obvious) observation that users of scheduled services cannot choose
their departure time freely, they are constrained to the departure times of
the service. Furthermore, users must choose whether to plan for a specific
departure or, alternatively, to choose just the time at which to arrive at the
station in order to catch the next departure. It is important to know how

∗I thank John Bates, Robin Lindsey, and Katrine Hjorth for comments. In particular,
I would like to thank the reviewers for their very helpful efforts. This work has been
supported financially by the Danish Social Science Research Council.
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the size of the headway affects user costs. Insights into this may inform
analyses of demand as well as welfare economic analyses of changes in the
supply of scheduled services.

For a frequent service we may imagine users do not plan to use a specific
departure, they just arrive at their chosen time in order to catch the next
departure and they might arrive at any time between two departures. Their
waiting time at the station can be zero if they are lucky enough to arrive just
in time for a departure. At worst, they arrive immediately after a departure
and have to wait for a length of time equal to the headway. In general,
we expect the waiting time at the station to follow a uniform distribution
ranging from zero to the headway. This observation has led some to include
just the average waiting time, half the headway, into the user cost. In the
present case that accounts for scheduling considerations, users are seen to
incur costs of waiting as well as costs due to the uncertainty about the time
at which they will arrive at their destination.

For a less frequent service we may imagine that users plan which de-
parture they want to use. In this case, the choice of service is based on
scheduling considerations. The choice between planning and not planning
we can imagine is governed by a cost of planning, which may include the
effort involved in consulting the time table, the timing of the trip to the
station as well as a planned wait at the station. We may suppose that the
planning cost for a specific trip depends on the frequency of use of the ser-
vice. Frequent users are able to distribute their planning cost over several
trips. They therefore have a small planning cost for a specific trip and will
tend more often to plan for a specific departure. Conversely, occasional
travellers have a comparatively large planning cost and will tend less often
to plan for a specific departure. In general we suppose the planning cost to
have a distribution in the population of users such that no user will plan for
a specific departure at very short headways, while all users will plan for a
specific departure at very long headways. The distribution of planning costs
in the population of users implies a smooth transition between the two cases
as headway increases.

We consider a scheduled service that runs with a fixed headway of h

minutes. The present analysis is based on scheduling preferences, where the
user cost is described in terms of waiting time at the station and a sched-
ule delay cost given as a function of the time of arrival at the destination
relative to a preferred arrival time. We are not concerned with the travel
time on the service and take this to be simply zero in order to simplify the
analysis. Hence a user who boards the service at time t also arrives at his
final destination at time t. If the travel time is known and not random, the
cost of travel time may just be added to the cost expression obtained in this
paper. Scheduling preferences are generally used to analyse situations with
congestion where users trade travel time against deviations from the desired
timing of a trip (see, e.g., Vickrey, 1969; Small, 1982; Arnott et al., 1993).
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Here they are used to analyse a situation where users trade waiting time at
the station against the desired timing of a trip with a scheduled service.

We consider a continuum of users, each of whom has a preferred arrival
time (PAT), such that the PATs are uniformly distributed over time. This is
a common idealisation that reflects the assumption that the distribution of
PATs does not change much over a span of a few headways. The assumption
ties in naturally with the interest in the headway and not the timetable for
the scheduled service over, e.g., a day.

Consider a user with a preferred arrival time t∗, who arrives at the
station at time t1 and boards a departure at time t2. He then has a waiting
time at the station of t2 − t1 and arrives at his final destination at time
t2, since the travel time on the service has been normalised to 0. He has
schedule delay cost given by the function D such that the scheduling cost
associated with departing at time t2 is D(t2 − t∗). The simplest case of D

arises when D(t2 − t∗) = γ(t2 − t∗)+ + β(t2 − t∗)−. In general we assume
that D is convex with minimum at D(0) = 0. We also allow for a convex
or linear cost term A (·) with A(0) = 0 and A ′ > 0 that is a function of
waiting time such that the total time cost becomes A + D. In the linear
case we define A(t2 − t1) = α(t2 − t1) and obtain the (α, β, γ)−framework
that has been used in many papers. A user who arrives at the station at
time t1 and catches a service at time t2 then incurs a total scheduling cost
of A (t2 − t1) + D (t2 − t∗) .

A number of previous contributions have focused on the socially optimal
joint choice of fare and service frequency but have not presented an analysis
of the value of headway. Mohring (1972) investigates the consequences of
scale economies for optimal fares and frequency for urban bus services with
unplanning users, paying particular attention to the effect of the number of
users on travel time. He assumes that the waiting time is proportional to the
headway and does not include schedule delay costs in his analysis. The case
of planning users was dealt with by Panzar (1979), who considered optimal
airline frequency and ticket price for users having schedule delay costs. The
cases of unplanning and planning users were integrated by Jansson (1993)
who also analysed the socially optimal choice of public transport price and
service frequency. He includes a planning cost to select between the two
cases, but it is the same for all users such that there is a distinct headway
at which all users switch from not planning to planning.

The paper that the present paper resembles most is probably Tisato
(1991), who presents an analysis that is similar to the one presented here.
Broadly speaking, all the elements of the present analysis also appear in
Tisato’s. The present paper improves on Tisato’s analysis in a number of
ways. Most importantly, Tisato considers schedule delay as a function of
the difference between the scheduled departure time and the preferred de-
parture time, where the latter is the time which the user would like to be
the scheduled departure time. Tisato does not consider schedule delay to be
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a function of the actual time the user arrives at the station nor of the actual
departure time. This means that the waiting time at the station does not
affect schedule delay. This seems unreasonable for the case of an unplanning
user whose waiting time at the station is random. The formulation of sched-
ule delay seems particularly unreasonable since Tisato allows for randomness
of the actual departure times relative to the scheduled departure time. In
Tisato’s model a planning user will arrive early in order to take random de-
parture time deviations into account. This affects his user cost only through
the expected waiting time. It does not affect his schedule delay cost. The
user can only affect his schedule delay cost by choosing between scheduled
departures. In contrast, the present paper considers schedule delay to occur
relative to the arrival time at the destination. Furthermore, Tisato allows
only a linear scheduling cost where the marginal cost of schedule delay is
the same for early and late delays, i.e. D(t− t∗) = β(t1− t∗)++β(t1− t∗)−.
The present analysis allows for a general convex scheduling cost function D.

Tisato’s analysis allows actual departure times to deviate randomly from
scheduled departure times, whereas the present paper assumes that depar-
tures conform to the schedule. The literature has established a number of
times (references given by Tisato) that the expected waiting time for an
unplanning user is then expanded by a factor depending on the variance of
actual random headways.1 So for the calculation of the expected waiting
time it is sufficient to know the variance of headways, one does not need to
know the distribution of headways. This simple result does not carry over to
the schedule delay cost which is a nonlinear function of the actual departure
time. Tisato does not carry out an analysis of the effect of random headways
in the case of a planning user. Instead he merely imports some empirical
estimates of the effect of average headway and the variance of headway on
the average waiting time at the station. This average waiting time is then
just plugged into the user cost. Tisato presents no theory to support this.

de Palma and Lindsey (2001) consider the optimal time table under fixed
demand, and a fixed number of departures over a period of fixed length.
Users have linear, possibly heterogeneous, scheduling cost. They plan for
a specific departure and differ with respect to their PAT. As part of their
analysis, de Palma and Lindsey obtain the average schedule delay cost as
also found in this paper for a planning user with linear schedule delay cost.

The layout of the paper is the following. Section 2 treats the case of long
headways where the users plan which departure to use. Section 3 treats the
case of a frequent service where users do not bother to consult the time
table but merely choose when to appear at the station to catch the next
departure. Section 4 integrates these two cases through the concept of a
planning cost, such that users will plan for a specific departure if the benefit

1For example, in the case of departure times following a Poisson distribution, the
expected waiting time is not half the headway but the expected headway.
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of planning exceeds the cost. Section 5 discusses how the model may be
applied in practice, while section 6 presents some concluding remarks.

2 A service with long headway

We first consider the case of a service with long headway, where a user plans
which departure he wants to use. He does not wait and so his cost is given
only in terms of the schedule delay cost function D. The waiting time cost
A is not relevant. Instead of thinking of users being uniformly distributed
over time, we may take the perspective of a single user and consider arrivals
to be uniformly distributed over time. We may take a user with PAT=0 as
representative of all users.

As figure 1 illustrates, the representative user will choose the departure
in the interval [t − h; t] where the time t is defined by the equation

D(t − h) = D(t). (1)

The equation states that the user is indifferent between arriving t minutes
late and −(t − h) minutes early. Equation (1) defines a unique t with t > 0

since D is convex and has minimum at 0. Any arrival time inside the interval
is preferred to t and t−h and any arrival time outside the interval is strictly
worse than any arrival time inside the interval. Since the travel time on the
service is normalised to zero, the user will choose a departure in the interval
[t−h, t] defined by (1) and be at most t minutes late. In the case of a linear
D, we have t = hβ/(γ + β). With departures considered to be uniformly
distributed over time, the expected scheduling cost is then

Cp(h) =
1

h

∫t

t−h

D (s)ds, (2)

where we use the subscript p to denote that this cost applies to a planning
user. In the case of a linear schedule delay cost D, we find that Cp (h) =

h γβ
2(γ+β)

.2 Since the user with PAT=0 is representative, we have that Cp(h)

is the average scheduling cost for all users.
We may use the convexity of D to find a bound for Cp (h), namely

Cp (h) ≤
1

h

(

t
D (t)

2
− (t − h)

D (t − h)

2

)

=
D (t)

2
, (3)

with equality when D is linear. This bound will be useful below.
The marginal cost of headway can be found by differentiating the cost

with respect to h. Note first that the maximal time a planning user will be

2This result may be found in Proposition 2 of de Palma and Lindsey (2001).
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Figure 1: Optimal interval around the PAT

late, t, is a function of h. We may then find how t changes by differentiating
(1) with respect to h,

D ′ (t) t ′ = D ′ (t − h)
(

t ′ − 1
)

,

such that

t ′ =
−D ′ (t − h)

D ′ (t) − D ′ (t − h)
.

This is positive by the assumptions on D, such that increasing the headway
will increase the maximal lateness of a planning user. In the case of a linear
D this becomes t ′ = β/ (γ + β).

Using Leibnitz’ integral rule to differentiate Cp(h) in (2) we find that

C ′

p(h) =
D(t)

h
t ′ −

D(t − h)

h
(t ′ − 1) −

Cp(h)

h

=
D (t) − Cp (h)

h
. (4)

In the case of a linear D we have C ′

p(h) = γβ
2(γ+β)

, which is constant as a
function of h.
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Apply the bound on Cp(h) in (3) to the expression for C ′

p(h) in (4) to
find that

C ′

p(h) ≥
D (t)

2h
> 0,

such that the marginal cost of headway is strictly positive for general convex
D.

It may be of interest how the marginal cost of headway depends on h.
Differentiate again to find that

C
′′

p(h) =
D ′(t)t ′ − 2C ′

p(h)

h
.

The remainder of this section shows that the second derivative of Cp is in
fact positive such that the average scheduling cost of planning users is convex
in headway and the marginal cost of headway is increasing.3 The following
lemma uses the scheduling cost function to define a function K(h) = D(t(h)),
and shows that K is convex. This will be useful in proving the desired result.

Lemma 1 Let D : R → R
+ be a convex function with minimum at D(0) =

0. Define the function K : R
+ → R

+ by K(h) = D(t) where t is the unique

solution to the equation D(t) = D(t − h). Then K is convex.

Proof. Observe that D is decreasing on R
− and increasing on R

+. Then
D has two inverse functions, denoted D−1

+ : R
+ → R

+ and D−1
− : R

+ →
R

−. Note that D−1
+ is concave and increasing and that D−1

+ is convex and
decreasing. For d > 0 define K−1(d) = D−1

+ (d) − D−1
− (d) and note that K−1

is concave and increasing. Then the inverse of K−1, namely K, is convex and
increasing. Consider now K(h) and let t = D−1

+ (K(h)). Then D(t) = K(h)

and D(t − h) = K(h) as required.
Figure 2 shows the convex and increasing function K. Define now the

function M(h) = hK(h) −
∫h

0
K(s)ds. This function corresponds to the area

M(h∗) above the function K, also indicated on figure 2. The derivative of
M is M ′(h) = hK ′(h). Note now that convexity of K implies that M(h∗) is
smaller than the triangle bounded by the vertical axis, the horizontal line
at K(h∗) and the line tangent to K through the point (h∗, K(h∗)). This is

clear from inspection of figure 2. The triangle has area (h∗)2

2
K ′(h∗), so we

note that
(h∗)2

2
K ′(h∗) ≥ M(h∗).

The last ingredient needed to prove that Cp(h) is convex is to establish

that M(h) = hD(t) −
∫t

t−h
D(s)ds. To see this, first note that both defi-

nitions of M have M(0) = 0, next use K(h) = D(t) = D(t − h) and note

3Robin Lindsey gave me a very helpful suggestion on how to prove this assertion.
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Figure 2: Illustration of proof that Cp(h) is convex

that

∂
(

hK(h) −
∫t

t−h
D(s)ds

)

∂h
= hK ′(h) + K(h) − D(t)t ′ + D(t − h)(t ′ − 1)

= hK ′(h) = M ′(h).

We have now established all the necessary ingredients to show that Cp(h)

is convex. We need to show that C ′′

p(h) ≥ 0. But

C ′′p(h) =
D ′(t)t ′ − 2C ′

p(h)

h

=
K ′(h) − 2

D(t)−Cp(h)

h

h

=
K ′(h) − 2

h2 M(h)

h
,

which may be seen to be positive using the preceding findings.

3 A service with short headway

We now suppose that service is so frequent that a user will not consult the
time table but appear at the station in order to catch the next departure, not
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knowing exactly when that will be. We may again take a user with PAT=0
as representative. If he arrives at the station at, say, time t − h, where t

will be found below, then the next departure time is uniformly distributed
over the interval [t − h, t]. His cost if the next departure occurs at time s is

A (s − t + h) + D (s)

and the expected cost is

Cu (t) =
1

h

∫t

t−h

A (s − t + h) + D (s)ds,

where the subscript u denotes that the cost applies to an unplanning user.
The optimal arrival time t is found by setting the marginal expected cost
equal to zero, using again Leibnitz’ integral rule.

∂Cu (t)

∂t
=

1

h
(A (h) + D (t))−

1

h
(A (0) + D (t − h))−

1

h

∫t

t−h

A ′ (s − t + h)ds = 0.

Assume that A is linear, A(s) = αs. Then the equation reduces to

1

h
(αh + D(t)) −

1

h
(D(t − h)) − α

1

h

∫t

t−h

ds = 0,

such that the first order condition becomes

D (t − h) = D (t) ,

which is exactly the same as in the planned arrival case. Taking t to be
optimally chosen, we may derive the expected cost for an unplanning user
Cu using the expression for the average cost Cp for a planning user in (2).
The expected cost then becomes

Cu(h) =
α

h

[

s2/2 − (t − h)s
]t

t−h
+ Cp(h) (5)

=
αh

2
+ Cp(h). (6)

This shows that the average schedule delay cost is the same for planning
and unplanning users, which is quite remarkable. This finding is based on
the assumption that the PATs are uniformly distributed over time. It is
easy to construct examples of time tables and nonuniform distributions of
PATs, where the equality of the average schedule delay cost for planning
and unplanning users does not hold.

We may differentiate the expression (5) with respect to h to find the
marginal cost of headway for an unplanning user as

C ′

u (h) =
α

2
+ C ′

p (h) . (7)

This is exactly α/2 larger in the unplanned case than in the planned case.
The term α/2 corresponds to the average waiting time of an unplanning
user. From (7) we see that the marginal cost comprises an additional term,
namely the marginal average schedule delay cost of a planning user.
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4 To plan or not to plan

We have established the scheduling cost as a function of the headway for two
situations. In one the users are assumed to plan for a specific departure while
they are not planning in the other. Otherwise the situations are completely
identical. To complete the story, we therefore need to explain why some
users plan and others do not. At the same time we want the model to have
the property that planning is more worthwhile at longer headways.

Assume that a user has a planning cost of ζ > 0. If he plans for a
specific departure, he will incur a total cost of Cp (h) + ζ. If he does not
plan, then his cost is αh/2 + Cp (h). Choosing the minimum cost option,
he will then plan if ζ < αh/2. Assume that planning costs are distributed
in the population with some cumulative distribution function Φ and density
ϕ with bounded support. This will result in an interval of headways such
that more and more users will decide to plan as the headway increases. The
average user cost at headway h is

C (h) = Cp (h) +

(

1 − Φ

(

αh

2

))

αh

2
+

∫ αh
2

0

ζϕ (ζ)dζ. (8)

The average marginal cost of headway then becomes

C ′ (h) = C ′

p (h) +

(

1 − Φ

(

αh

2

))

α

2
− ϕ

(

αh

2

)

α2h

4
+

α2h

4
ϕ

(

αh

2

)

= C ′

p (h) +

(

1 − Φ

(

αh

2

))

α

2
,

which is always positive. Differentiate again to find that

C ′′(h) = C ′′

p(h) − ϕ

(

αh

2

)

α2

4

such that the cost is concave in headway when scheduling costs are linear.
We may suppose that ϕ has support on some finite interval I with 0 <

min I, such that nobody will plan for very short headways while everybody
will plan for very long headways. Then for very short headways we have
C ′ (h) = C ′

p (h)+α/2 while for very long headways we have a lower marginal
cost of C ′ (h) = C ′

p (h).

5 Application

For the application of the model we need to know first the scheduling prefer-
ences. We assume linear scheduling costs expressed by (α, β, γ). A number
of studies have estimated these parameters, e.g. Bates et al. (2001) and
Small (1982), see the review in Fosgerau et al. (2008), where the parameter
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α is the value of travel time. In the present paper, α represents the value
of waiting time, which is generally thought to be higher than the value of
travel time. Therefore the value of α from the references cited here may be
increased correspondingly, relative to β and γ.

It is harder to presume that we know the distribution of planning costs
in the population. The planning cost makes no difference if we desire to
compare two services where either all users plan or all users do not plan. It
is however necessary to know the cost distribution in order to account for the
planning cost in the case when two service schedules are compared where at
least one of them involve both planning and unplanning users. The following
argument is intended to show that it is possible to find an empirical basis
for forming an opinion about the share of users who will choose a specific
departure at different headways and hence that we may presume that Φ is
known.

One possibility is simply to conduct a survey, asking users about their
behaviour. Another possibility is to observe the relationship between depar-
ture times and the rate at which users arrive at the platform. One would
need observations from a range of places to cover a range of headways. At
places where users arrive at a constant rate we may conclude that they are
not planning. We expect to observe this at places where the service has a
small headway. If, in some other place, most users arrive close to the next
departure, then we may think they are mostly planning. We expect to ob-
serve this at places where the service has a larger headway. In between we
will have some users arriving at random and some users arriving close to the
next departure. If we can estimate the share of users who plan as a function
of headway, and if we know α, then we can identify Φ

(

αh
2

)

. Bowman and
Turnquist (1981) undertake such a study.

We hence assume that Φ is known. In particular we know the support of
Φ, that is, we know the maximum headway at which no users plan hmin and
also the minimum headway at which all users plan hmax. This defines the
interval over which the planning costs are distributed. Let ∆ = hmax − hmin

denote the length of this interval.
Introduce for brevity of notation a function to censor the headway at

hmin and hmax by

Λ(h) =






hmin if h < hmin

h if hmin ≤ h < hmax

hmax if hmax ≤ h.

We could assume for simplicity that the distribution of planning costs in (8)
is uniform, such that

Φ

(

αh

2

)

=
Λ(h) − hmin

∆
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or

Φ (ζ) =
2ζ/α − hmin

∆

ϕ(ζ) =
2

α∆

for values of ζ in the interval [α
2
hmin;

α
2
hmax].

Recall that with linear scheduling cost we have Cp(h) = C ′

p(h)h and

C ′

p(h) = γβ
γ+β

. We can then write the user cost function as

C(h) = Cp(h) +

(

1 − Φ

(

αh

2

))

αh

2
+

∫ αΛ(h)

2

αhmin

2

ζϕ (ζ)dζ

= C ′

p(h)h +

(

hmax − Λ(h)

∆

)

αh

2
+

1

α∆

(

α2Λ2 (h)

4
−

α2h2
min

4

)

.

This expression simplifies when h is outside the interval where users change
from not planning to planning.

h < hmin : C(h) = C ′

p(h)h +
αh

2
,C ′(h) = C ′

p(h) +
α

2

h > hmax : C (h) = C ′

p(h)h +
α

4
(hmax + hmin), C

′(h) = C ′

p(h)

Note here that the last term in C(h) when h > hmax is E (ζ) = α (hmax + hmin) /4.

Substituting numerical values for the scheduling parameters yields an
expression for the cost associated with headway. Figure 3 uses (α, β, γ) =

(2, 0.5, 2), hmin = 5 and hmax = 15. We see that the cost curve is steep with
slope C ′

p(h) + α/2 up to the point hmin where some users begin to plan.
The curve is dashed in the interval [hmin, hmax] where more and more users
switch to planning. It is drawn here as a straight line but the shape depends
on the distribution of planning costs in the population. Thereafter the curve
becomes again linear with the smaller slope of C ′

p(h). The first and last line
segments have been extended with light dashed segments to indicate that
the cost curve is bounded above by these lines. The intersection of the
extension of the last line segment with the y-axis corresponds to the average
planning cost when all users plan.

6 Concluding remarks

This paper provides a model in which the headway of a scheduled service
affects user costs in a simple way. It is then straight-forward to work the
effect of headway into a user cost expression alongside the effect of various
travel time components and monetary cost.

In some situations, one may think that schedule delay is related to the
time of departure rather than to the time of arrival at the destination. For
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Figure 3: Illustration of the cost function as a function of headway

a planning user, there is no difference, since travel time is fixed and waiting
time is zero. Then the choice of a departure simultaneously chooses the
departure time and the arrival time. For an unplanning user we have to
imagine that the random waiting time does not make him care about being
late at his destination. He will just arrive at the station at his preferred
time and will incur only waiting cost. So to cover the general case of a user
who cares about his departure time, we need only remove the schedule delay
term for the unplanning case. Everything else stays the same.

The paper leads up to some issues that may be considered in future re-
search. A main aspect that is missing in the present analysis is the analysis
of travel time on the service. While I have argued that the cost of travel
time can just be added when travel time is fixed and independent of the de-
parture time, it is relevant to investigate what happens when this is not the
case. Incorporating that travel time may be random seems to be an inter-
esting extension to consider. Fosgerau and Karlstrom (2007) use scheduling
considerations to obtain a simple expression for the value of reliability, the
value of marginal changes to the standard deviation of travel time, for the
case of car drivers who can choose their departure time freely. They also
show that their result does not carry over to the case of a scheduled service.
There is however still the possibility that the results of this paper regarding
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the value of headway may carry over in some form to the case of travel time
risk.

As discussed in the introduction, Tisato (1991) goes some way in allowing
for service unreliability in the form of random deviations of departures from
schedule. This remains an unresolved issue for the case when users care
about being early or late at their destination.

The present paper views the planning cost as heterogenous with a con-
tinuous distribution in the population of travellers, where Jansson (1993)
views it as being the same for all users. This gives him some problems
since his welfare optimisation problem then has potentially more than one
solution. It is conceivable that adopting the present paper’s assumption
about a continuous distribution could be used to streamline the analysis of
Jansson. Where adding heterogeneity in many cases makes analysis more
complicated, here it could perhaps make analysis both more tractable and
more realistic.
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