
Munich Personal RePEc Archive

Endogenously Proportional Bargaining

Solutions

Saglam, Ismail

TOBB University of Economics and Technology

1 November 2012

Online at https://mpra.ub.uni-muenchen.de/42386/

MPRA Paper No. 42386, posted 05 Nov 2012 05:14 UTC



Endogenously Proportional Bargaining Solutions

Ismail Saglam∗

Department of Economics, TOBB University of Economics and Technology

Sogutozu Cad. No: 43, Sogutozu 06560 Ankara, Turkey

Abstract. This paper introduces a class of endogenously proportional bargaining solutions.

These solutions are independent of the class of Directional solutions, which Chun and Thom-

son (1990a) proposed to generalize (exogenously) proportional solutions of Kalai (1977). En-

dogenously proportional solutions relative to individual i are characterized by weak Pareto

optimality and continuity together with two new axioms that depend on the pairwise total

payoff asymmetry of the bargaining problem with respect to each pair involving individual i.

Each of these solutions satisfies the basic symmetry axiom and also a stronger axiom called

total payoff symmetry.
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1 Introduction

In this paper, we introduce a class of endogenously proportional solutions to Nash’s

(1950) bargaining problem, which is a subset of the n-dimensional euclidean space rep-

resenting the utility alternatives available to a society involving n individuals. Each
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endogenously proportional solution relative to individual i associates a vector of propor-

tionality to the given bargaining problem. This vector is identical for any two distinct

problems that have the same pairwise total payoff asymmetry with respect to each pair

involving individual i.

While the proposed class of endogenous solutions is new, exogenously proportional

solutions are already known. The first - and most well - known member of this class is

the Egalitarian solution, recommended by Rawls (1971). This solution chooses in each

bargaining problem the highest utility point with equal coordinates. Characterization

of the Egalitarian solution was offered by Kalai (1977), who generalized this solution

to a class of exogenously proportional solutions.1 In this class, given a positive n-tuple

p, the corresponding solution selects in each bargaining problem the highest utility

point proportional to p. Although the Egalitarian solution has been well studied, other

exogenously proportional solutions have received less attention. Among a few stud-

ies, Roth (1979) extended Kalai’s (1977) generalization to bargaining problems where

utilities are not restricted to be freely disposable. Peters (1986) offered alternative

characterizations of exogenously proportional solutions, focusing on ‘simultaneity of

issues and additivity’ in bargaining games. Chun and Thomson (1990a) further gen-

eralized exogenously proportional solutions to the Directional solutions, focusing on

‘uncertain disagreement points’ in bargaining games. Characterizations of the Direc-

tional solutions and, in particular, exogenously proportional solutions were proposed

by Chun and Thomson (1990a, 1990b). Recently, Hougard and Tvede (2010) extended

proportional solutions to bargaining games with nonconvex problems.

We show that the class of endogenously proportional solutions are independent

of the class of Directional solutions. The proposed solutions relative to individual i

1Kalai (1977) simply calls these solutions proportional solutions, whereas we call them exogenously

proportional solutions to highlight the distinction between Kalai’s solutions and ours.
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are characterized by weak Pareto optimality, continuity, and two new conditions that

depend on the pairwise total payoff asymmetry of a given bargaining problem with

respect to each pair involving individual i. Moreover, these solutions satisfy a stronger

form of the basic symmetry axiom that we call total payoff symmetry.

The paper is organized as follows: Section 2 introduces the basic structures and

Section 3 presents the results. Finally, Section 4 concludes.

2 Basic Structures

A 0-normalized n−person bargaining problem for a society of individuals N =

{1, 2, . . . , n}, where n ≥ 2, is denoted by S, a non-empty subset of Rn
+, represent-

ing von Neumann-Morgenstern utilities attainable through the cooperative actions of

the individuals in N .2 If the individuals fail to agree on any point in S, then each of

them receives zero utility (for notational simplicity). Hence, the bargaining problems

are 0-normalized. The bargaining problem (simply, problem) S satisfies the following

two conditions:

(a) S is convex and compact, and there exists x ∈ S such that x > 0.3

(b) S is comprehensive; i.e., if x ∈ S, y ∈ R
n
+, and x ≥ y then y ∈ S (implying that

utility is freely disposable).

Let Σn
0 denote the set of all bargaining problems.

A problem S is said to be symmetric if for all one-to-one functions γ : N → N ,

S = {y ∈ R
n
+ | ∃ x ∈ S such that yγ(i) = xi for all i}.

For a problem S, a point x ∈ S is said to be weakly Pareto optimal if there

exists no y ∈ S such that y > x. Let WPO(S) denote the set of weakly Pareto optimal

2
R

n

+ = {x ∈ R
n |xi ≥ 0 for all i} and R

n

++ = {x ∈ R
n |xi > 0 for all i}.

3Given x and y in R
n

+, x ≥ y means xi ≥ yi for all i and x > y means xi > yi for all i.
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points in S.

We denote the total payoff of each X ⊂ R
n
+ as TP (X) =

∫

x∈X
dx. Note that

TP (λX) = λnTP (X) for all λ > 0.

For each problem S and distinct individuals i and j, define the sets Si,j
L,β = {y ∈

S | βyi < yj} and Si,j
R,β = {y ∈ S | βyi > yj} for each β > 0.

For each problem S and distinct individuals i and j, also define αi,j(S) such that

TP (Si,j

R,αi,j(S)
) = TP (Si,j

L,1) if TP (Si,j
L,1) ≤ TP (Si,j

R,1)

and

TP (Si,j

L,αi,j(S)
) = TP (Si,j

R,1) if TP (Si,j
L,1) > TP (Si,j

R,1).

Clearly, αi,j(S) always exists and it is unique. In addition, αi,j(S) = 1/αj,i(S). We will

call αi,j(S) (a measure of) pairwise total payoff asymmetry of S with respect to

individuals i and j.

A problem S is said to satisfy pairwise total payoff symmetry with respect

to individuals i and j if αi,j(S) = 1. Furthermore, S is said to satisfy total payoff

symmetry if it satisfies pairwise total payoff symmetry with respect to each pair

involving individual 1. Clearly, if S satisfies total payoff symmetry, then for each i it is

true that S satisfies pairwise total payoff symmetry with respect to each pair involving

individual i.

For each problem S and distinct individuals i and j, define the set

Bi,j(S) =



















Si,j
R,1\S

i,j

R,αi,j(S)
if αi,j(S) ∈ (0, 1),

S\(Si,j
L,1 ∪ Si,j

R,1) if αi,j(S) = 1,

Si,j
L,1\S

i,j

L,αi,j(S)
if αi,j(S) > 1.

Note that Bi,j(S) is always nonempty. We call Bi,j(S) the pairwise balancing subset

of S with respect to individuals i and j, given the fact that it balances (the total
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Figure 1. Basic Sets for n = 2.

(a) α1,2(S) < 1. (b) α1,2(S) = 1. (c) α1,2(S) > 1.

payoffs of) the sets Si,j

R,αi,j(S)
and Si,j

L,1 if αi,j(S) ∈ (0, 1] and the sets Si,j

L,αi,j(S)
and Si,j

R,1

if αi,j(S) > 1.

Finally, a solution is a function µ : Σn
0 → Rn

+ such that µ(S) ∈ S for each S ∈ Σn
0 .

3 Results

For each problem S and individual i, define αi(S) = (αi,j(S))j 6=i. We say that a solution

µ is endogenously proportional relative to individual i if there exists a continuous

function ri,j : Rn−1
++ → (0, 1] for all j 6= i such that µ(S) = λ(S)p(S) for all S ∈ Σn

0 ,

where p(S) ∈ R
n
++ is such that pj(S)/pi(S) = 1 − ri,j(αi(S)) + ri,j(αi(S))αi,j(S) for

all j 6= i and λ(S) = max{t | tp(S) ∈ Bi,j(S) for all j 6= i}. We will denote by EPi

the class of solutions that are endogenously proportional relative to individual i.

Obviously, the class EPi is not independent of i since the (weight) functions ri,j

and rj,i are independent for all i, j such that i 6= j. Any solution µ in the class EPi

is called proportional since for each pair of problems S and T , we have µ(S)/λ(S) =
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p(S) = p(T ) = µ(T )/λ(T ) if there exists no individual j that the pairwise total payoff

asymmetry with respect to individuals i and j is different for S and T . On the other

hand, the proportionality of any solution µ in EPi is endogenous since the vector of

proportionality p is not invariant to changes in the problem S that affect αi(S), the

profile involving pairwise total payoff asymmetries relative to individual i. Note also

that the range of the functions ri,j in the definition of EPi excludes the point 0, which

would yield a vector of proportionality corresponding to the Egalitarian solution, an

exogenously proportional solution.

The distinction between our solutions and Kalai’s (1977) exogenously proportional

solutions should be apparent, given the definition that a solution µ over Σn
0 is ex-

ogenously proportional if there exists p ∈ R
n
++ such that µ(S) = λ(S)p for each

S ∈ Σn
0 , where λ(S) = max{t | tp ∈ S}.

Moreover, our solutions are also independent of the class of Directional solutions,

to which Chun and Thomson (1990) further generalized exogenously proportional so-

lutions. To see this, consider a class of n-person problems Σn, where each problem

involves a bargaining set S ⊂ R
n satisfying the usual feasibility assumptions and a

disagreement point d in S, where the individuals end up if they fail to agree on a point

in S. If for a given solution µ there exists a continuous function p from the set of

feasible bargaining sets to the n-dimensional simplex ∆n such that for all (S, d) ∈ Σn,

µ(S, d) = d + λ(S)p(S), where λ(S) = max{t | d + tp(S) ∈ S}, then µ is called the

Directional solution relative to p.

To make a comparison with the Directional solutions, we can simply extend the class

of solutions EPi for any i from Σn
0 to Σn, by setting µ(S, d) = d+λ(S)p(S) for all µ in

EPi and replacing αi,j(S) by αi,j(IR(S−d, 0)) for all j 6= i, where IR(S−d, 0) = {x ∈

S−d | x ≥ 0}. Obviously, we can, without loss of generality, restrict pi(S), which is kept

free for simplicity in our definition, such that p(S) ∈ ∆n holds as in the definition of the
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Directional solutions. But, there remains a significant difference between this class of

solutions and ours: For any solution belonging to our class, the vector of proportionality,

p(S), on a given problem S is not independent of d over Σn. The reason is that over Σn,

any solution µ in EPi would require on any problem S a vector of proportionality p(s)

satisfying pj(S)/pi(S) = 1− ri,j(αi(IR(S − d, 0))) + ri,j(αi(IR(S − d, 0)))αi,j(IR(S −

d, 0)) for all j 6= i, where αi(IR(S − d, 0)) = (αi,j(IR(S − d, 0)))j 6=i. Therefore, no

member of the class of endogenously proportional solutions is a Directional solution.

Below, we present four axioms to characterize our solutions. The first two axioms

are well known. The third and fourth axioms are stated for each individual i.

Weak Pareto Optimality (WPO): µ(S) ∈ WPO(S).

Continuity (CON): If {Sk} converges in the Hausdorff topology to S, then {µ(Sk)}

converges to µ(S).

Balancedness Relative to Individual i (BAL-i): µ(S) ∈ Bi,j(S) for all j 6= i.

Invariance of Payoffs Relative to Individual i under Constant Pairwise

Total Payoff Asymmetry (IPRI-i): If S, T are such that αi,j(S) = αi,j(T ) for some

i and j 6= i, then µj(S)/µi(S) = µj(T )/µi(T ).

The axiom BAL−i requires that the vector of proportionality corresponding to

any solution depends on the pairwise balancing subset of the bargaining problem with

respect to each pair involving individual i. Finally, IPRI−i requires that if the pairwise

total payoff asymmetry with respect to individual i and another individual j is the same

in two distinct problems, then the utility of individual j relative to individual i must
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also be the same in these problems.

Below, we will show that WPO and IPRI−i together imply the well known

homogeneity axiom. We will use this result in proving our characterization theorem.

Homogeneity (HOM). µ(cS) = cµ(S) for all c > 0.

Lemma 1. A solution satisfies HOM if it satisfies WPO and IPRI−i for some i.

Proof. Let a solution µ satisfy WPO and IPRI−i for some individual i. Fix i. Pick

any S and c > 0. By WPO, µ(S) ∈ WPO(S) and µ(cS) ∈ WPO(cS). It follows

that cµ(S) ∈ WPO(cS) since cWPO(S) = WPO(cS). Clearly, αi,j(cS) = αi,j(S)

for all j 6= i. Then, by IPRI−i, µj(cS)/µi(cS) = µj(S)/µi(S) for all j 6= i. Suppose

µi(cS) > cµi(S); then µ(cS) > cµ(S), contradicting cµ(S) ∈ WPO(cS). Similarly,

µi(cS) < cµi(S) would imply µ(cS) < cµ(S), contradicting µ(cS) ∈ WPO(cS). So, we

must have µi(cS) = cµi(S), implying µ(cS) = cµ(S). �

Theorem 1. A solution on Σn
0 satisfies WPO, CON, BAL-i, and IPRI−i if and only

if it is endogenously proportional relative to individual i.

Proof. Obviously, any solution in the class EPi satisfies all four axioms. Conversely,

let µ be a solution satisfying WPO, CON, BAL-i, and IPRI−i. Pick φj ∈ R++ for all

j 6= i. Let φ = (φj)j 6=i. Consider the problem

D(i,φ) = {y ∈ R
n
+ | yi ≤ 1 and yj ≤

√

φj for all j}.
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Pick k 6= i. We have αi,k(D(i,φ)) = φk, since

TP (Di,k
L,1(i,φ)) =

φk

2

∏

j 6=k
j 6=i

√

φj = TP (Di,k

R,φk(i,φ)) if φk ∈ (0, 1], and

TP (Di,k

L,φk(i,φ)) =
1

2

∏

j 6=k
j 6=i

√

φj = TP (Di,k
R,1(i,φ)) if φk > 1.

By BAL-i, we have µ(D(i,φ)) ∈ Bi,k(D(i,φ)), implying

µk(D(i,φ))

µi(D(i,φ))
∈



















[φk, 1) if φk ∈ (0, 1),

{1} if φk = 1,

(1, φk] if φk > 1.

Let

ri,k(φ) =
1

φk − 1

(

µk(D(i,φ))

µi(D(i,φ))
− 1

)

if φk 6= 1. Clearly, ri,k is defined at all n − 1 tuples (φj)j 6=i ∈ ℜn−1
++ such that φk 6= 1.

Let ri,k((φ−k, 1)) = limφk→1 r
i,k((φ−k, φk)), where φ−k = (φj)j 6=i

j 6=k

∈ R
n−2
++ and φk ∈

R++\{1}. (Note that µ
k(D(i, (φ−k, φk)))/µi(D(i, (φ−k, φk))) is continuous in (φ−k, φk),

since µ satisfies CON; hence the above limit exists.) Note that ri,k(φ) ∈ (0, 1] for all

φ ∈ R
n−1
++ . Since k was arbitrary, we have constructed a continuous function ri,j :

R
n−1
++ → (0, 1] for each j 6= i.

Now pick a problem S. Given αi(S) = (αi,j(S))j 6=i, let p(S) = µ(D(i,αi(S))).

By construction, pj(S)/pi(S) = 1 − ri,j(αi(S)) + ri,j(αi(S))αi,j(S) for all j 6= i. Let

λ(S) = max{t | tp(S) ∈ Bi,j(S) for all j 6= i}. Clearly, λ(S)p(S) ∈ WPO(S) since µ

satisfies WPO.

Consider the problem V (i, S) = λ(S)D(i,αi(S)). Pick any j 6= i. If αi,j(S) ∈ (0, 1],
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then we have

TP (V i,j
L,1(i, S)) = [λ(S)]nTP (Di,j

L,1(i,α
i(S)))

= [λ(S)]nTP (Di,j

R,αi,j(S)
(i,αi(S)))

= TP (V i,j

R,αi,j(S)
(i, S)).

On the other hand, if αi,j(S) > 1, then we have

TP (V i,j
R,1(i, S)) = [λ(S)]nTP (Di,j

R,1(i,α
i(S)))

= [λ(S)]nTP (Di,j

L,αi,j(S)
(i,αi(S)))

= TP (V i,j

L,αi,j(S)
(i, S)).

Since j was arbitrary, it follows that αi,j(V (i, S)) = αi,j(D(i,αi(S))) = αi,j(S) for all

j 6= i.

Agent 1

Agent 2

45°

D(1,1/4)

�1,2(S)

0

1/4

0 11/2

1/2

p(S) = μ(D(1,1/4))

S

μ(S) = λ(S)p(S)

�

V(1,S)

�

Figure 2. Sketch of the Proof for n = 2 and α1,2(S) = 1/4.

Also, µ(V (i, S)) = λ(S)µ(D(i,αi(S))) = λ(S)p(S), since µ satisfies HOM by

Lemma 1. By IPRI−i, µj(S)/µi(S) = µj(V (i, S))/µi(V (i, S)) for all j 6= i, since
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αi,j(V (i, S)) = αi,j(S). Moreover, µ(V (i, S)) ∈ WPO(V (i, S)), since µ satisfies

WPO. Then, µi(V (i, S)) = µi(S) for all j 6= i, for otherwise we would have either

µ(V (i, S)) > µ(S) contradicting µ(S) ∈ WPO(S) or µ(V (i, S)) < µ(S) contradict-

ing µ(V (i, S)) = λ(S)p(S) ∈ WPO(S). Therefore, µ(S) = µ(V (i, S)) = λ(S)p(S). �

The axioms WPO and CON are also satisfied by exogenously proportional solu-

tions, as already shown by Kalai (1977). Besides, these solutions satisfy IPRI−i as

well, since by definition the vector of proportionality of any exogenously proportional

solution is invariant to changes in the bargaining problem. Thus, endogenously and

exogenously proportional solutions are only distinguished, in our characterization, by

the balancedness axiom. It should be evident from the definition of endogenously pro-

portional solutions that any possible alternative characterization of the class EPi may

constantly depend on the axiom BAL-i. This dependence is similar to the constant

appearance of the strong individual rationality (SIR) axiom in three alternative charac-

terizations of exogenously proportional solutions offered by Kalai (1977).4 The axiom

SIR requires that for each problem the solution should assign a positive utility to each

individual.5 The need for SIR by the class of exogenously proportional solutions is obvi-

ous as these solutions restrict the vector of proportionality to strictly positive n-tuples.

On the other hand, SIR is not strong enough to account for the demanding restrictions

our solutions put on the vector of proportionality corresponding to each problem. The

restrictions put by any solution in EPi require, for each problem, the exact knowledge

of the pairwise total payoff asymmetry with respect to each pair involving individual i,

4Kalai (1977) shows that exogenously proportional solutions are characterized by WPO, HOM,

SIR together with monotonicity or step-by-step negotiations or a collection of three axioms involving

independence of irrelevant alternatives, individual monotonicity and continuity.

5Note that WPO and BAL-i together imply SIR. Therefore any solution in the class EPi trivially

satisfies SIR.
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hence the direct reflection of these restrictions onto an axiom like BAL-i seems to be

inevitable.

We should also note that the separation of endogenously and exogenously propor-

tional solutions with regard to the balancedness axiom implies that the two classes of

solutions also differ with respect to their relation to a basic axiom in the bargaining

literature, called symmetry.

Symmetry. If S is symmetric, then µi(S) = µj(S) for all i and j.

While symmetry is satisfied by no exogenously proportional solution except for the

Egalitarian solution, it is satisfied by every endogenously proportional solution. The

reason is that given any i, this axiom is implied by BAL−i, because if S is symmetric,

then αi,j(S) = 1 and Bi,j(S) = {y ∈ S | yi = yj} for all j 6= i. In fact, endogenously

proportional solutions satisfy a stronger form of symmetry, as well.

Total Payoff Symmetry. If S is total payoff symmetric, then µi(S) = µj(S) for all i

and j.

It is clear that total payoff symmetry implies symmetry, since every bargaining prob-

lem is total payoff symmetric if it is symmetric. But, the converse is not true since there

are total payoff symmetric problems that are not symmetric. For example, consider

n = 2 and S = convex hull ({(0, 0), (0, 3/2), (1/2, 3/2), (1, 1), (7/4, 0)}). Clearly, S is

not symmetric, but it is total payoff symmetric since TP (S1,2
L,1) = TP (S1,2

R,1) = 7/8 and

α1,2(S) = 1.

Finally, when we eliminate the axiom IPRI−i from our list of characterizing axioms,

we can further generalize our solutions to a family that we call total payoff balancing
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class of solutions . Obviously, each bargaining solution already satisfying WPO and

CON can be simply extended to be a member of this general class of solutions, by

picking some individual i and restricting the solution outcome on each problem S to

the set ∩j 6=iB
i,j(S).

4 Conclusion

In this paper, we have introduced a class of endogenously proportional solutions. The

solutions relative to individual i are characterized by weak Pareto optimality, continuity

and two new axioms that depend on the pairwise total payoff asymmetry of a given

problem with respect to each pair involving individual i.

Interestingly, endogenously proportional solutions satisfy a stronger form of the

symmetry axiom, while exogenously proportional solutions, except for the Egalitarian

solution, fail to satisfy symmetry. Definitely, for non-Egalitarian members of the Kalai’s

(1977) class of solutions this is not a deficiency per se, since in environments where

the players may not have the same bargaining power, asking for symmetry would be

unreasonable. On the other hand, in environments where the bargaining problem is

known to intrinsically contain the bargaining power of the players, it would be natural

to focus on solutions that choose symmetric outcomes in symmetric problems. The

solutions we propose may enable players in such environments to use proportional

solutions without dispensing with symmetry. However, one difficult problem that was

already addressed by Kalai (1977) for exogenously proportional solutions is what the

vector of proportionality should be. For the case of each endogenously proportional

solution relative to individual i, this problem boils down to how the weight functions

{ri,j}j 6=i, which determine the direction of the solution inside the set ∩j 6=iB
i,j(S) for

any problem S, should be constructed.
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Finally, new bargaining solutions can be derived from the already known solutions

in the literature, restricting the outcome chosen by any proposed solution to lie in

the intersection of the pairwise balancing subsets of the bargaining problem relative

to a given individual. This procedure can be especially useful for finding symmetric

extensions of solutions that fail to satisfy symmetry.
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