
Munich Personal RePEc Archive

Scoring rules for judgment aggregation

Dietrich, Franz

CNRS (Paris, France), University of East Anglia (UK)

26 December 2011

Online at https://mpra.ub.uni-muenchen.de/42431/

MPRA Paper No. 42431, posted 06 Nov 2012 17:17 UTC



Scoring rules for judgment aggregation

Franz Dietrich1

December 2011 (minor revisions later)

Abstract

This paper studies a class of judgment aggregation rules, to be called �scoring rules� after

their famous counterpart in preference aggregation theory. A scoring rule delivers the

collective judgments which reach the highest total �score� across the individuals, subject

to the judgments having to be rational. Depending on how we de�ne �scores�, we obtain

several (old and new) solutions to the judgment aggregation problem, such as distance-

based aggregation, premise- and conclusion-based aggregation, truth-tracking rules, and a

generalization of Borda rule to judgment aggregation. Scoring rules are shown to generalize

the classical scoring rules of preference aggregation theory.

JEL Classi�cation: D70, D71

Keywords: judgment aggregation, social choice, scoring rules, Kemeny rule, Borda rule,

distance-based aggregation

1 Introduction

The judgment aggregation problem consists in merging many individuals� yes/no judgments

on some interconnected propositions into collective yes/no judgments on these propositions.

The classical example, born in legal theory, is that three jurors in a court trial disagree on

which of the following three propositions are true: the defendant has broken the contract

(p); the contract is legally valid (q); the defendant is liable (r). According to a univer-

sally accepted legal doctrine, r (the �conclusion�) is true if and only if p and q (the two

�premises�) are both true. So, r is logically equivalent to p ^ q. The simplest rule to ag-
gregate the jurors� judgments � namely propositionwise majority voting � may generate

logically inconsistent collective judgments, as Table 1 illustrates. There are of course nu-

premise p premise q conclusion r (, p ^ q)
Individual 1 Yes Yes Yes

Individual 2 Yes No No

Individual 3 No Yes No

Majority Yes Yes No

Table 1: The classical example of logically inconsistent majority judgments

merous other possible �agendas�, i.e., kinds of interconnected propositions a group might

face. Preference aggregation is a special case with propositions of the form �x is better than

1CNRS, Cerses, Paris, France & UEA, Norwich, U.K. Mail: post@franzdietrich.net. Web:

www.franzdietrich.net.
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y� (for many alternatives x and y), where these propositions are interconnected through

standard conditions such as transitivity. In this context, Condorcet�s classical voting para-

dox about cyclical majority preferences is nothing but another example of inconsistent

majority judgments. Starting with List and Pettit�s (2002) seminal paper, a whole series

of contributions have explored which judgment aggregation rules can be used, depending

on, �rstly, the agenda in question, and, secondly, the requirements placed on aggregation,

such as anonymity, and of course the consistency of collective judgments. Some theorems

generalize Arrow�s Theorem from preference to judgment aggregation (Dietrich and List

2007, Dokow and Holzman 2010; both build on Nehring and Puppe 2010a and strengthen

Wilson 1975). Other theorems have no immediate counterparts in classical social choice

theory (e.g., List 2004, Dietrich 2006a, 2010, Nehring and Puppe 2010b, Dietrich and

Mongin 2010).

It is fair to say that judgment aggregation theory has until recently been dominated

by �impossibility� �ndings, as is evident from the Symposium on Judgment Aggregation

in Journal of Economic Theory (C. List and B. Polak eds., 2010, vol. 145(2)). The

recent conference �Judgment aggregation and voting� (Freudenstadt, 2011) however marks

a visible shift of attention towards constructing concrete aggregation rules and �nding

�second best� solutions in the face of impossibility results. The new proposals range from

a �rst Borda-type aggregation rule (Zwicker 2011) to, among others, new distance-based

rules (Duddy and Piggins 2011) and rules which approximate the majority judgments when

these are inconsistent (Nehring, Pivato and Puppe 2011). The more traditional proposals

include premise- and conclusion-based rules (e.g., Kornhauser and Sager 1986, Pettit 2001,

List & Pettit 2002, Dietrich 2006, Dietrich and Mongin 2010), sequential rules (e.g., List

2004, Dietrich and List 2007b), distance-based rules (e.g., Konieszni and Pino-Perez 2002,

Pigozzi 2006, Miller and Osherson 2008, Eckert and Klamler 2009, Hartmann et al. 2010,

Lang et al. 2011), and quota rules with well-calibrated acceptance thresholds and various

degrees of collective rationality (e.g., Dietrich and List 2007b; see also Nehring and Puppe

2010a).

The present paper contributes to the theory�s current �constructive� e¤ort by investi-

gating a class of aggregation rules to be called scoring rules. The inspiration comes from

classical scoring rules in preference aggregation theory. These rules generate collective pref-

erences which rank each alternative according to the sum-total �score� it receives from the

group members, where the �score� could be de�ned in di¤erent ways, leading to di¤erent

classical scoring rules such as Borda rule (see Smith 1973, Young 1975, Zwicker 1991, and

for abstract generalizations Myerson 1995, Zwicker 2008 and Pivato 2011b). In a general

judgment aggregation framework, however, there are no �alternatives�; so our scoring rules

are based on assigning scores to propositions, not alternatives. Nonetheless, our scoring

rules are related to classical scoring rules, and generalize them, as will be shown.

The paradigm underlying our scoring rules � i.e., the maximization of total score of

collective judgments � di¤ers from standard paradigms in judgment aggregation, such as

the premise-, conclusion- or distance-based paradigms. Nonetheless, it will turn out that

several existing rules can be re-modelled as scoring rules, and can thus be �rationalized� in

terms of the maximization of total scores. Of course, the way scores are being assigned

to propositions � the �scoring � � di¤ers strongly across rules; for instance, the Kemeny

rule and the premise-based rule can each be viewed as a scoring rule, but with respect

to two very di¤erent scorings. This paper explores various plausible scorings. It uncovers

the scorings which implicitly underlie several well-known aggregation rules, and suggests
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other scorings which generate novel aggregation rules. For instance, a particularly natural

scoring, to be called reversal scoring, will lead to a new generalization of Borda rule from

preference aggregation to judgment aggregation. The problem of how to generalize Borda

rule has been a long-lasting open question in judgment aggregation theory. Recently, an

interesting (so far incomplete) proposal was made by William Zwicker (2011). Surprisingly,

his and the present Borda generalizations are distinctively di¤erent, as detailed below.2

Though large, the class of scoring rules is far from universal: some important aggrega-

tion rules fall outside this class (notably the mentioned rule approximating the majority

judgments, by Nehring, Pivato and Puppe 2011). I will also investigate a natural general-

ization of scoring rules, to be called set scoring rules, which are based on assigning scores

to entire judgment sets rather than single propositions (judgments). Set scoring rules are

for instance interesting in the context of epistemic (�truth-tracking�) aggregation models,

where they have recently been studied by Pivato (2011a).

After this introduction, Section 2 de�nes the general framework, Section 3 analyses

various scoring rules, Section 4 goes on to analyse several set scoring rules, and Section 5

draws some conclusions about where we stand in terms of concrete aggregation procedures.

2 The framework, examples and interpretations

I now introduce the framework, following List and Pettit (2002) and Dietrich (2007).3 We

consider a set of n (� 2) individuals, denoted N = f1; :::; ng. They need to decide which
of certain interconnected propositions to �believe� or �accept�.

The agenda. The set X of propositions under consideration is called the agenda. It

is subdivided into issues, i.e., pairs of a proposition and its negation, such as �it will

rain� and �it won�t rain�. Rationally, an agent accepts exactly one proposition from each

issue (�completeness�), while respecting any logical interconnections between propositions

(�consistency�). We write �:p� for the negation of a proposition �p�, so that the agenda
takes the form X = fp;:p; q;:q; :::g, with issues fp;:pg, fq;:qg, etc. It is worth de�ning
the present notion of an agenda formally:

De�nition 1 An agenda is a set X (containing the propositions) which is:

(a) partitioned into pairs fp; p0g (the issues, where the members p and p0 of an issue are
the negations of each other, written p � :p0 and p0 � :p);

(b) endowed with logical interconnections, i.e., a notion of which subsets of X are con-

sistent, or formally, a system C � CX of subsets (the consistent sets).4

A simple example is the agenda given by

X = fp;:p; q;:q; p ^ q;:(p ^ q)g; (1)

where p and q are two atomic sentences, for instance �it rains� and �it is cold�, and p ^ q
is their conjunction. Here, propositions are formulated as logical sentences. This is an

2 I know from him that also Conal Duddy and Ashley Piggins have independent work in progress about

�generalizing Borda�, and Klaus Nehring told me that he also had ideas similar to those in this paper.
3To be precise, I use a slimmer variant of their models, since the logic in which propositions are formed

is not explicitly part of the model.
4Algebraically, the agenda is thus the structure (X; I; C), where I is the partition into issues, or equiv-

alently, the structure (X;:; C), where : is the negation operator on X corresponding to I.
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example of the logical, or more precisely syntactic, approach of de�ning an agenda. This

approach is particularly natural, partly because the structure of the agenda � i.e., the

partition into issues and the interconnections � need not be speci�ed explicitly as it is

directly inherited from logic. Logic for instance tells us that the set fp; p^ qg is consistent
while the set f:p; p ^ qg is not.
Given an agenda X, an individual�s judgment set is the set J � X of propositions he

accepts. It is complete if it contains a member of each pair p;:p 2 X, and (fully) rational
if it is complete and consistent. The set of all rational judgment sets is denote by J .
Notationally, a judgment set J � X is often abbreviated by concatenating its members in

any order (so, p:q:r is short for fp;:q;:rg); and the negation-closure of a set Y � X is

denoted

Y � � fp;:p : p 2 Y g.
We now introduce the two lead examples of this paper, the �rst one being isomorphic to

the previous example (1).

Example 1: the �doctrinal paradox agenda�. This agenda is

X = fp; q; rg�,

where p, q and r are atomic sentences and where the logical interconnections are de�ned

by classical logic relative to the external constraint r $ (p^ q). So, there are four rational
judgment sets:

J = fpqr; p:q:r;:pq:r;:p:q:rg:

Example 2: the preference agenda. For an arbitrary, �nite set of alternatives A, the

preference agenda is de�ned as

X = XA = fxPy : x; y 2 A; x 6= yg;

where the negation of a proposition xPy is of course :xPy = yPx, and where logical

interconnections are de�ned by the usual conditions of transitivity, asymmetry and con-

nectedness, which de�ne a strict linear order. Formally, to each binary relation � over A

uniquely corresponds a judgment set, denoted J� = fxPy 2 X : x � yg, and the set of all
rational judgment sets is

J = fJ� : � is a strict linear order over Ag.

Henceforth let X be a given �nite agenda faced by the group. As usual, we assume that

the agenda � more precisely, its consistency notion � is well-behaved. Well-behavedness or

�regularity� can be expressed by three conditions (see Dietrich 2007):

C1: no set fp;:pg is consistent (self-entailment);
C2: subsets of consistent sets are consistent (monotonicity);

C3: ? is consistent and each consistent set can be extended to a complete and consistent

set (completability).

Equivalently, well-behavedness can be expressed by a single condition:

� C = fC � J : J 2 J g 6= ?, i.e., the consistent sets are precisely the subsets of fully
rational sets.
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The systems C of consistent and J of fully rational judgment sets are thus interde�nable,
so that we could use J instead of C to concisely characterize the logical interconnections
of a well-behaved agenda.5

Aggregation rules. A (multi-valued) aggregation rule is a correspondence F which to

every pro�le of �individual� judgment sets (J1; :::; Jn) (from some domain, usually J n)

assigns a set F (J1; :::; Jn) of �collective� judgment sets. Typically, the output F (J1; :::; Jn)

is a singleton set fCg, in which case we identify this set with C and write F (J1; :::; Jn) = C.
If F (J1; :::; Jn) contains more than one judgment set, there is a �tie� between these judgment

sets. An aggregation rule is called single-valued or tie-free if it always generates a single

judgment set. A standard (single-valued) aggregation rule is majority rule; it is given by

F (J1; :::; Jn) = fp 2 X : p 2 Ji for more than half of the individuals ig
and generates inconsistent collective judgment sets for many agendas and pro�les. If both

individual and collective judgment sets are rational (i.e., in J ), the aggregation rule de�nes
a correspondence J n � J , and in the case of single-valuedness a function J n ! J .6

Approaches and interpretations. For interested readers, let me add some considera-

tions about the present model and its �exibility. Firstly, I mention three salient ways of

specifying an agenda in practice. All three approaches could qualify broadly as �logical�:

� Under the syntactic approach mentioned above, the propositions are logical sentences,
i.e., X is a subset of the set L of sentences of some logic, where X is negation-closed.7

Such an agenda inherits its partition into issues (i.e., its negation operator) and its

interconnections (i.e., its consistency notion) from the logic. The logic is general: it

could for instance be standard propositional logic, standard predicate logic, or vari-

ous modal or conditional logics (see Dietrich 2007). Many real-life agendas draw on

non-standard logics by involving for instance modal operators or non-material condi-

tionals. Fortunately, most relevant logics are well-behaved, i.e., satisfy the conditions

C1-C3 (now read as conditions on sentences in L), so that the agenda is automatically

well-behaved.

� Under the semantic approach, the propositions are subsets of some set 
 of possi-
bilities or worlds, i.e., X � 2
, where X is closed under taking complements in 


(�negations�). The issues are simply the pairs fp;
npg � X, and the consistent sets
are the sets S � X which are satis�able, i.e., \p2Sp 6= ?. Notice that, just as in the
syntactic approach, the agenda�s structure (i.e., the issues and interconnections) is

inherited and thus need not be introduced explicitly.8

5So, algebraically speaking, a well-behaved agenda X could be de�ned as the structure (X; I;J ) instead

of (X; I; C) (where I is the partition of X into issues, replaceable by the negation operator : on X). To

see why C and J are indeed interde�nable, note that if we start from a system J (any non-empty system

of sets containing exactly one member from each pair p;:p 2 X) then we can derive the system C as

[J2J fC : C � Jg (using that C must be well-behaved). A future challenge is to relax well-behavedness

by studying, e.g., judgment aggregation in non-monotonic logics.
6More generally, dropping the requirement of collective rationality, we have a correspondence J n � 2X ,

where 2X is the set of all judgment sets, rational or not. As usual, I write ��� instead of �!� to indicate

a multi -function.
7Negation-closure means that if X contains a sentence p then it also contains the sentence �not p� (or,

if p is already a negated sentence �not q�, the sentence q). Technically, we also exclude doube-negated

sentences �not not p� from the agenda. In summary, the agenda thus consists of pairs of an unnegated

sentence p and its negation �not p�. (Negation-closure of course implicitly assumes the negation symbol

�not� to belong to the logic, a minimal requirement of expressiveness.)
8Nehring and Puppe�s (2010a) property spaces are essentially semantically de�ned agendas.
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� Under an algebraic (or abstract semantic) approach, the agenda is a subset of an arbi-
trary Boolean algebra9 , where this subset is closed under taking (Boolean-algebraic)

complements. Here again the agenda directly inherits a structure of issues and inter-

connections.

Secondly, I mention an interpretational point (orthogonal to the formal question of

whether one works with a syntactic, semantic or abstract agenda). The standard interpre-

tation of judgment aggregation is of course an aggregation of �judgments�, i.e., belief-type

attitudes towards propositions. But one may re-interpret the nature of the attitude, so that

judgment sets become desire sets, or hope sets, or normative approval sets, or intention

sets, and so on; which leads to desire aggregation, or hope aggregation, and so on. In this

case we still aggregate propositional attitudes, albeit not judgments. In a more radical de-

parture, we may consider the aggregation of attributes other than propositional attitudes.

Here the agenda contains not propositions which one may or may not believe (or desire,

or hope etc.), but arbitrary attributes which one may or may not have. For instance, the

agenda might contain the attributes of liking piece, being successful, and so on, each of

which someone may or may not have. This leads to general attribute aggregation rather

than propositional attitude aggregation.10

3 Scoring rules

Scoring rules are particular judgment aggregation rules, de�ned on the basis of a so-called

scoring function. A scoring function � or simply a scoring � is a function s : X � J ! R

which to each proposition p and rational judgment set J assigns a number sJ(p), called the

score of p given J and measuring how p performs (�scores�) from the perspective of holding

judgment set J . As an elementary example, so-called simple scoring is given by:

sJ(p) =

�
1 if p 2 J
0 if p 62 J , (2)

so that all accepted propositions score 1, whereas all rejected propositions score 0. This

and many other scorings will be analysed. Let us think of the score of a set of propositions

as the sum of the scores of its members. So, the scoring s is extended to a function which

(given the agent�s judgment set J 2 J ) assigns to each set C � X the score

sJ(C) �
X

p2C

sJ(p).

A scoring s gives rise to an aggregation rule, called the scoring rule w.r.t. s and denoted

Fs. Given a pro�le (J1; :::; Jn) 2 J n, this rule determines the collective judgments by

9A Boolean algebra is a lattice L (with its operations of join and meet) in which there exists a top element

| (tautology) and a bottom element ? (contradiction) and in which every element p has a complement

(i.e., an element whose join with p is | and whose meet with p is ?). An important example is a concrete

Boolean algebra L � 2
 (for some underlying set of �worlds� 
), in which the join is given by the union,

the meet by the intersection, the top by 
, the bottom by ?, and the complement by the standard set-

theoretic complement. In this case the algebraic approach reduces to the standard semantic approach.

Another example is the Boolean algebra generated from a logic by considering the set of sentences modulo

logical equivalence (where the logic includes classical negation and conjunction, which induce the algebra�s

join, meet and complement operations).
10Attribute aggregation raises the question of what it means for the collective to �have� an attribute.

Presumably, collective attributes are something quite di¤erent from individual attributes (just as collective

judgments di¤er in status from individual judgments).
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selecting the rational judgment set(s) with the highest sum-total score across all judgments

and all individuals:

Fs(J1; :::; Jn) = judgment set(s) in J with highest total score

= argmaxC2J
X

p2C;i2N

sJi(p) = argmaxC2J
X

i2N

sJi(C).

By a scoring rule simpliciter we of course mean an aggregation rule which is a scoring

rule w.r.t. some scoring. Di¤erent scorings s and s0 can generate the same scoring rule

Fs = Fs0 , in which case they are called equivalent. For instance, s is equivalent to s
0 = 2s.11

3.1 Simple scoring and Kemeny rule

We �rst consider the most elementary de�nition of scoring, namely simple scoring (2).

Table 2 illustrates the corresponding scoring rule Fs for the case of the agenda and pro�le

of our doctrinal paradox example. The entries in Table 2 are derived as follows. First, enter

Score of...

p :p q :q r :r pqr p:q:r :pq:r :p:q:r
Indiv. 1 (pqr) 1 0 1 0 1 0 3 1 1 0

Indiv. 2 (p:q:r) 1 0 0 1 0 1 1 3 1 2

Indiv. 3 (:pq:r) 0 1 1 0 0 1 1 1 3 2

Group 2 1 2 1 1 2 5* 5* 5* 4

Table 2: Simple scoring (2) for the doctrinal paradox agenda and pro�le

the score of each proposition (p;:p; q; :::) from each individual (1, 2 and 3). Second, enter

each individual�s score of each judgment set by taking the row-wise sum. For instance,

individual 1�s score of pqr is 1 + 1+ 1 = 3, and his score of p:q:r is 1 + 0+ 0 = 1. Third,
enter the group�s score of each proposition by taking the column-wise sum. For instance,

the group�s score of p is 1 + 1 + 0 = 2. Finally, enter the group�s score of each judgment

set, by taking either a vertical or a horizontal sum (the two give the same result), and

add a star �*� in the �eld(s) with maximal score to indicate the winning judgment set(s).

For instance, the group�s score of pqr using a vertical sum is 3 + 1 + 1 = 5, and using a

horizontal sum it is 2+ 2+ 1 = 5. Since the judgment sets pqr, p:q:r and :pq:r all have
maximal group score, the scoring rule delivers a tie:

F (J1; J2; J3) = fpqr; p:q:r;:pq:rg:

This is a tie between the premise-based outcome pqr and the conclusion-based outcomes

p:q:r and :pq:r. Were we to add more individuals, the tie would presumably be broken
in one way or the other. In large groups, ties are a rare coincidence.

To link simple scoring to distance-based aggregation, suppose we measure the distance

between two rational judgment sets by using some distance function (�metric�) d over J .12
11More generally, certain increasing transformations have no e¤ect. As one may show, scorings s and s0

are equivalent (i.e., Fs = Fs0 ) whenever there are coe¢cients a > 0 and bp 2 R (p 2 X) with bp = b:p for

all p 2 X such that s0 is given by s0J (p) = asJ (p) + bp.
12A distance function or metric over J is a function d : J � J ! [0;1) satisfying three conditions:

for all J;K;L 2 J , (i) d(J;K) = 0 , J = K, (ii) d(J;K) = d(K; J) (�symmetry�), and (iii) d(J; L) �

d(J;K) + d(K;L) (�triangle inequality�).

7



The most common example is Kemeny distance d = dKemeny , de�ned as follows (where by

a �judgment reversal� I mean the replacement of an accepted proposition by its negation):

dKemeny(J;K) = number of judgment reversals needed to transform J into K

= jJnKj = jKnJ j = 1

2
jJ 4Kj .

For instance, the Kemeny-distance between pqr and p:q:r (for our doctrinal paradox
agenda) is 2.

Now the distance-based rule w.r.t. distance d is the aggregation rule Fd which for

any pro�le (J1; :::; Jn) 2 J n determines the collective judgment set(s) by minimizing the

sum-total distance to the individual judgment sets:

Fd(J1; :::; Jn) = judgment set(s) in J with minimal sum-distance to the pro�le

= argminC2J
X

i2N

d(C; Ji).

The most popular example, Kemeny rule FdK em eny , can be characterized as a scoring rule:

Proposition 1 The simple scoring rule is the Kemeny rule.

3.2 Classical scoring rules for preference aggregation

I now show that our scoring rules generalize the classical scoring rules of preference ag-

gregation theory. Consider the preference agenda X for a given set of alternatives A of

�nite size k. Classical scoring rules (such as Borda rule) are de�ned by assigning scores

to alternatives in A, not to propositions xPy in X. Given a strict linear order � over A,

each alternative x 2 A is assigned a score SCO�(x) 2 R. The most popular example is of
course Borda scoring, for which the highest ranked alternative in A scores k, the second-

highest k � 1, the third-highest k � 2, ..., and the lowest 1. Given a pro�le (�1; :::;�n)
of individual preferences (strict linear orders), the collective ranks the alternatives x 2 X
according to their sum-total score

P

i2N SCO�i
(x). To translate this into the judgment

aggregation formalism, recall that each strict linear order � over A uniquely corresponds

to a rational judgment set J 2 J (given by xPy 2 J , x � y); we may therefore write

SCOJ(x) instead of SCO�(x), and view the classical scoring SCO as a function of (x; J)

in A�J . Formally, I de�ne a classical scoring as an arbitrary function SCO : A�J ! R,

and the classical scoring rule w.r.t. it as the judgment aggregation rule F � FSCO for the
preference agenda which for every pro�le (J1; :::; Jn) 2 J n returns the rational judgment

set(s) that rank an alternative x over another y whenever x has a higher sum-total score

than y:13

F (J1; :::; Jn) = fC 2 J : C contains all xPy 2 X s.t.
X

i2N

SCOJi(x) >
X

i2N

SCOJi(y)g:

13A technical di¤erence between the standard notion of a scoring rule in preference aggregation theory

and our judgment-theoretic rendition of it arises when there happen to exist distinct alternatives with

identical sum-total score. In such cases, the standard scoring rule returns collective indi¤erences, whereas

our FSCO returns a tie between strict preferences. From a formal perspective, however, the two de�nitions

are equivalent, since to any weak order corresponds the set (tie) of all strict linear orders which linearize

the weak order by breaking its indi¤erences (in any cycle-free way). The structural asymmetry between

input and output preferences of scoring rules as de�ned standardly (i.e., the possibility of indi¤erences at

the collective level) may have been one of the obstacles � albeit only a small, mainly psychological one �

for importing scoring rules and Borda aggregation into judgment aggregation theory.
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Now, any given classical scoring SCO induces a scoring s in our (proposition-based) sense.

In fact, there are two canonical (and, as we will see, equivalent) ways to de�ne s: one might

de�ne s either by

sJ(xPy) = SCOJ(x)� SCOJ(y); (3)

or, if one would like the lowest achievable score to be zero, by

sJ(xPy) = maxfSCOJ(x)� SCOJ(y); 0g =
�
SCOJ(x)� SCOJ(y) if xPy 2 J
0 if xPy 62 J (4)

(where the last equality assumes that SCOJ(x) > SCOJ(y) , xPy 2 J for all x, y

and J , a property that is so natural that we might have built it into the de�nition of a

�classical scoring� SCO). This allows us to characterize classical scoring rules in terms of

proposition-based rather than alternative-based scoring:

Proposition 2 In the case of the preference agenda (for any �nite set of alternatives),

every classical scoring rule is a scoring rule, namely one with respect to a scoring s derived

from the classical scoring SCO via (3) or via (4).

3.3 Reversal scoring and a Borda rule for judgment aggregation

Given the agent�s judgment set J , let us think of the score of a proposition p 2 X as a

measure of how �distant� the negation :p is from J ; so, p scores high if :p is far from J , and
low if :p is contained in J . More precisely, let the score of a proposition p given J 2 J be

the number of judgment reversals needed to reject p, i.e., the number of propositions in J

that must (minimally) be negated in order to obtain a consistent judgment set containing

:p. So, denoting the judgment set arising from J by negating the propositions in a subset

R � J by J:R = (JnR) [ f:r : r 2 Rg, so-called reversal scoring is de�ned by

sJ(p) = number of judgment reversals needed to reject p (5)

= min
R�J:J:R2J&p62J:R

jRj = min
J02J :p62J0

jJnJ 0j = min
J02J :p62J0

dKemeny(J; J
0).

For instance, a rejected proposition p 62 J scores zero, since J itself contains :p so that
it su¢ces to negate zero propositions (R = ?). An accepted proposition p 2 J scores
1 if J remains consistent by negating p (R = fpg), and scores more than 1 otherwise
(R ) fpg). Table 3 illustrates reversal scoring for our doctrinal paradox example. For
instance, individual 1�s judgment set pqr leads to a score of 2 for proposition p, since in

order for him to reject p he needs to negate not just p (as :pqr is inconsistent), but also
r (where :pq:r is consistent). The scoring rule delivers a tie between the judgment sets

Score of...

p :p q :q r :r pqr p:q:r :pq:r :p:q:r
Indiv. 1 (pqr) 2 0 2 0 2 0 6 2 2 0

Indiv. 2 (p:q:r) 1 0 0 2 0 2 1 5 2 4

Indiv. 3 (:pq:r) 0 2 1 0 0 2 1 2 5 4

Group 3 2 3 2 2 4 8 9* 9* 8

Table 3: Reversal scoring (5) for the doctrinal paradox agenda and pro�le

p:q:r and :pq:r. This is a tie between two conclusion-based outcomes; the premise-based
outcome pqr is rejected (unlike for simple scoring in Section 3.1).
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The remarkable feature of reversal scoring rule is that it generalizes Borda rule from

preference to judgment aggregation. Borda rule is initially only de�ned for the preference

agenda X (for a given �nite set of alternatives), namely as the classical scoring rule w.r.t.

Borda scoring; see the last subsection. The key observation is that reversal scoring is

intimately linked to Borda scoring:

Remark 1 In the case of the preference agenda (for any �nite set of alternatives), reversal

scoring s is given by (4) with SCO de�ned as classical Borda scoring.

Let me sketch the simple argument � it should sound familiar to social choice theorists.

Let s be reversal scoring, X the preference agenda for a set of alternatives A of size k <1,
and SCO classical Borda scoring. Consider any xPy 2 X and J 2 J . If xPy 2 XnJ , then
:xPy = yPx 2 J , which implies sJ(xPy) = 0, as required by (4). Now suppose xPy 2 J .
Clearly, SCOJ(x) > SCOJ(y). Consider the alternatives in the order � established by J :

xk � xk�1 � � � � � x � � � � � y � � � � � x1,

where xj is the alternative with SCOJ(xj) = j. Step by step, we now move y up in the

ranking, where each step consists in raising the position (score) of y by one. Each step

corresponds to negating one proposition in J , namely the proposition zPy where z is the

alternative that is currently being �overtaken� by y. After exactly SCOJ(x) � SCOJ(y)
steps, y has �overtaken� x, i.e., xPy has been negated. So, sJ(xPy) is at most SCOJ(x)�
SCOJ(y). It is exactly SCOJ(x) � SCOJ(y), since, as the reader may check, no smaller
number of judgment reversals allows y to �overtake� x in the ranking.

Remark 1 and Proposition 2 imply that reversal scoring allows us to extend Borda rule

to arbitrary judgment aggregation problems:

Proposition 3 The reversal scoring rule generalizes Borda rule, i.e., matches it in the

case of the preference agenda (for any �nite set of alternatives).

I note that one could use a perfectly equivalent variant of reversal scoring s which, in

the case of the preference agenda, is related to classical Borda scoring SCO via (3) instead

of (4):

Remark 2 Reversal scoring s is equivalent (in terms of the resulting scoring rule) to the

scoring s0 given by

s0J(p) = sJ(p)� sJ(:p) =
�
sJ(p) if p 2 J
�sJ(:p) if p 62 J ,

and in the case of the preference agenda (for any �nite set of alternatives) this scoring is

given by

s0J(xPy) = SCOJ(x)� SCOJ(y)
with SCO de�ned as classical Borda scoring.

For comparison, I now sketch Zwicker�s (2011) interesting approach to extending Borda

rule to judgment aggregation � let me call such an extension a �Borda-Zwicker� rule. The

motivation derives from a geometric characterization of Borda preference aggregation ob-

tained by Zwicker (1991). Let me write the agenda as X = fp1;:p1; p2;:p2; :::; pm;:pmg,

10



where m is the number of �issues�. Each pro�le gives rise to a vector v � (v1; :::; vm) in Rm
whose jth entry vj is the net support for pj , i.e., the number of individuals accepting pj mi-

nus the same number for :pj . Now ifX is the preference agenda for any �nite set of alterna-

tives A, then each pj takes the form xPy for certain alternatives x; y 2 A. Each preference
cycle can be mapped to a vector in Rm; for instance, if p1 = xPy, p2 = yPz and p3 = xPz,

then the cycle x � y � z � x becomes the vector (1; 1;�1; 0; :::; 0) 2 Rm. The linear
span of all vectors corresponding to preference cycles de�nes the so-called �cycle space�

Vcycle � Rm, and its orthogonal complement de�nes the �cocycle space� Vcocycle � Rm.

Let vcocycle be the orthogonal projection of v on the cocycle space Vcocycle. Intuitively,

vcocycle contains the �consistent� or �acyclic� part of v. The upshot is that the Borda out-

come can be read o¤ from vcocyle: for each pj = xPy, the Borda group preference ranks x

above (below) y if the jth entry of vcocyle is positive (negative). Zwicker�s strategy for ex-

tending Borda rule to judgment aggregation is to de�ne a subspace Vcycle analogously for

agendas other than the preference agenda; one can then again project v on the orthogonal

complement of Vcycle and determine collective �Borda� judgments according to the signs of

the entries of this projection. This approach has proved successful for simple agendas, in

which there is a natural way to de�ne Vcycle. Whether the approach is viable for general

agendas (i.e., whether Vcycle has a useful general de�nition) seems to be open so far.
14

A Borda-Zwicker rule is not just constructed di¤erently from a scoring rule in our sense,

but, as I conjecture, it also cannot generally be remodelled as a scoring rule, since most

interesting scoring rules use information that goes beyond the information contained in

the pro�le�s �net support vector� v 2 Rm. (Even more does the required information go
beyond the projection of v on the orthogonal complement of Vcycle.)

In summary, there seem to exist two quite di¤erent approaches to generalizing Borda

aggregation. One approach, taken by Zwicker, seeks to �lter out the pro�le�s �inconsistent

component� along the lines of the just-described geometric technique. The other approach,

taken here, seeks to retain the principle of score-maximization inherent in Borda aggrega-

tion (with scoring now de�ned at the level of propositions, not alternatives, as these do

not exist outside the world of preferences). The normative core of the scoring approach is

to use information about someone�s strength of accepting a proposition (as measured by

the score), just as Borda preference aggregation uses information about someone�s strength

of preferring one alternative x over another y (as measured by the score of xPy, i.e., the

di¤erence between x�s and y�s score). Whether strength or intensity of preference is a

permissible or even meaningful concept is a notoriously controversial question; the purely

ordinalist approach takes a sceptical stance here. This is where Borda preference aggrega-

tion di¤ers from Condorcet�s rule of pairwise majority voting, which uses only the (ordinal)

information of whether someone prefers an alternative over another, without attempting

to extract strength-of-preference information from that person�s full preference relation.

3.4 A generalization of reversal scoring

Recall that the reversal score of a proposition p can be characterized as the distance by

which one must deviate from the current judgment set in order to reject p � where �distance�

is understood as Kemeny-distance. It is natural to also consider other kinds of a distance.

14One might at �rst be tempted to generally de�ne Vcycle as the linear span of those vectors which

correspond to the agenda�s minimal inconsistent subsets. Unfortunately, this span is often the entire space

R
m, an example for this being our doctrinal paradox agenda.
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Relative to any given distance function d over J , one may de�ne a corresponding scoring
by

sJ(p) = distance by which one must depart from J to reject p (6)

= min
J02J :p62J0

d(J; J 0).

This provides us with a whole class of scoring rules, all of which are variants of our

judgment-theoretic Borda rule. In the special case of the preference agenda, we thus

obtain new variants of classical Borda rule.

Interestingly, if we adopt Duddy and Piggins� (2011) distance function, i.e., if d(J; J 0)

is the number of minimal consistent modi�cations needed to transform J into J 0,15 then

scoring (6) reduces to simple scoring (2), and so the scoring rule reduces to the Kemeny rule

by Proposition 1. So, ironically, while Duddy and Piggins had introduced their distance

in the di¤erent context of distance-based aggregation to develop an alternative to Kemeny

rule, when we use their distance (instead of Kemeny�s) in our context of scoring rules we

are led back to Kemeny rule.

3.5 Scoring based on logical entrenchment

We now consider scoring rules which explicitly exploit the logical structure of the agenda.

Let us think of the score of a proposition p (2 X) given the judgment set J (2 J ) as the
degree to which p is logically entrenched in the belief system J , i.e., as the �strength� with

which J entails p. We measure this strength by the number of ways in which p is entailed

by J , where each �way� is given by a particular judgment subset S � J which entails p,

i.e., for which S [ f:pg is inconsistent. If J does not contain p, then no judgment subset
� not even the full set J � can entail p; so the strength of entailment (score) of p is zero.

If J contains p, then p is entailed by the judgment subset fpg, and perhaps also by very
di¤erent judgment subsets; so the strength of entailment (score) of p is positive and more

or less high.

There are di¤erent ways to formalise this idea, depending on precisely which of the

judgment subsets that entail p are deemed relevant. I now propose four formalizations.

Two of them will once again allow us to generalize Borda rule from preference to judgment

aggregation. These generalizations di¤er from that based on reversal scoring in Section

3.3.

Our �rst, naive approach is to count each judgment subset which entails p as a separate,

full-�edged �way� in which p is entailed. This leads to so-called entailment scoring, de�ned

by:

sJ(p) = number of judgment subsets which entail p (7)

= jfS � J : S entails pgj .

If p 62 J then sJ(p) = 0, while if p 2 J then sJ(p) � 2jXj=2�1 since p is entailed by at least
all sets S � J which contain p, i.e., by at least 2jJj�1 = 2jXj=2�1 sets. One might object
15Judgment sets J; J 0 2 J are minimal consistent modi�cations of each other if the set S = JnJ 0 of

propositions in J which need to be negated to transform J into J 0 is non-empty and minimal (i.e., J

couldn�t have been transformed into a consistent set by negating only a strict non-empty subset of S). For

our doctrinal paradox agenda, the judgment sets pqr and p:q:r are minimal consistent modi�cations of

each other, and hence have Duddy-Piggins-distance of 1.
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that this de�nition of scoring involves redundancies, i.e., �multiple counting�. Suppose for

instance p belongs to J and is logically independent of all other propositions in J . Then p

is entailed by several subsets S of J � all S � J which contain p � and yet these entailments
are essentially identical since all premises in S other than p are irrelevant.

I now present three re�nements of scoring (7), each of which responds di¤erently to the

mentioned redundancy objection. In the �rst re�nement, we count two entailments of p

as di¤erent only if they have no premise in common. This leads to what I call disjoint-

entailment scoring, formally de�ned by:

sJ(p) = number of mutually disjoint judgment subsets entailing p (8)

= maxfm : J has m mutually disjoint subsets each entailing pg.

In the mentioned case where p (2 J) is logically independent of all other propositions in
J , we now avoid �multiple counting�: sJ(p) is only 1, as one cannot �nd di¤erent mutually

disjoint judgment subsets entailing p. For our doctrinal paradox agenda and pro�le, the

scoring rule delivers a tie between the two conclusion-based outcomes p:q:r and :pq:r,

Score of...

p :p q :q r :r pqr p:q:r :pq:r :p:q:r
Indiv. 1 (pqr) 2 0 2 0 2 0 6 2 2 0

Indiv. 2 (p:q:r) 1 0 0 2 0 2 1 5 2 4

Indiv. 3 (:pq:r) 0 2 1 0 0 2 1 2 5 4

Group 3 2 3 2 2 4 8 9* 9* 8

Table 4: Disjoint-entailment scoring (8) for the doctrinal paradox agenda and pro�le

as illustrated in Table 4. For instance, individual 2 has judgment set p:q:r, so that p
scores 1 (it is entailed by fpg but by no other disjoint judgment subset), :q scores 2 (it
is disjointly entailed by f:qg and fp;:rg), :r scores 2 (it is disjointly entailed by f:rg
and f:qg), and all rejected propositions score zero (they are not entailed by any judgment
subsets).

Disjoint-entailment scoring turns out to match reversal scoring for our doctrinal paradox

agenda (check that Tables 3 and 4 coincide), as well as for the preference agenda (as shown

later). Is this pure coincidence? The general relationship is that the disjoint-entailment

score of a proposition p is always at most the reversal score, as one may show.16

While this re�nement of naive entailment scoring (7) avoids �multiple counting� by only

counting entailments with mutually disjoint sets of premises, the next two re�nements use

a di¤erent strategy to avoid �multiple counting�. The new strategy is to count only those

entailments whose sets of premises are minimal � with minimality understood either in the

sense that no premises can be removed, or in the sense that no premises can be logically

weakened. To begin with the �rst sense of minimality, I say that a set minimally entails

p (2 X) if it entails p but no strict subset of it entails p, and I de�ne minimal-entailment
scoring by

sJ(p) = number of judgment subsets which minimally entail p (9)

= jfS � J : S minimally entails pgj .
16The reason is that, given m mutually disjoint judgment subsets which each entail p, the reversal score

of p is at least m since one must negate at least one proposition from each of these m sets in order to

consistently reject p.

13



If for instance p is contained in J , then fpg minimally entails p,17 but strict supersets of
fpg do not and are therefore not counted. For our doctrinal paradox agenda, this scoring
happens to coincide with reversal scoring and disjoint-entailment scoring. Indeed, Table 3

resp. 4 still applies; e.g., for individual 2 with judgment set p:q:r, p still scores 1 (it is
minimally entailed only by fpg), :q still scores 2 (it is minimally entailed by f:qg and by
fp;:rg), :r still scores 2 (it is minimally entailed by f:rg and by f:qg), and all rejected
propositions still score zero (they are not minimally entailed by any judgment subsets).

Scoring (9) is certainly appealing. Nonetheless, one might complain that it still al-

lows for certain redundancies, albeit of a di¤erent kind. Consider the preference agenda

with set of alternatives A = fx; y; z; wg, and the judgment set J = fxPy; yPz; zPw;
xPz; yPw; xPwg (2 J ). The proposition xPw is minimally entailed by the subset

S = fxPy; yPz; zPwg. While this entailment is minimal in the (set-theoretic) sense that
we cannot remove premises, it is non-minimal in the (logical) sense that we can weaken

some of its premises: if we replace xPy and yPz in S by their logical implication xPz,

then we obtain a weaker set of premises S0 = fxPz; zPwg which still entails xPw. We
shall say that S fails to �irreducibly� entail xPw, in spite of minimally entailing it. In

general, a set of propositions is called weaker than another one (which is called stronger)

if the second set entails each member of the �rst set, but not vice versa. A set S (� X)
is de�ned to irreducibly (or logically minimally) entail p if S entails p, and moreover there

is no subset Y ( S which can be weakened (i.e., for which there is a weaker set Y 0 � X
such that (SnY ) [ Y 0 still entails p). Each irreducible entailment is a minimal entailment,
as is seen by taking Y 0 = ?.18 In the previous example, the set fxPy; yPz; zPwg mini-
mally, but not irreducibly entails xPw, and the set fxPz; zPwg irreducibly entails xPw.
Irreducible-entailment scoring is naturally de�ned by

sJ(p) = number of judgment subsets which irreducibly entail p (10)

= jfS � J : S irreducibly entails pgj .

This scoring matches reversal scoring and both previous scorings in the case of our doc-

trinal paradox example: Table 3 resp. 4 still applies. But for many other agendas these

scorings all deviate from one another, resulting in di¤erent collective judgments. As for

the preference agenda, we have already announced the following result:

Proposition 4 Disjoint-entailment scoring (8) and irreducible-entailment scoring (10)

match reversal scoring (5) in the case of the preference agenda (for any �nite set of alter-

natives).

Propositions 3 and 4 jointly have an immediate corollary.

Corollary 1 The scoring rules w.r.t. scorings (8) and (10) both generalize Borda rule,

i.e., match it in the case of the preference agenda (for any �nite set of alternatives).

3.6 Propositionwise scoring and a way to repair quota rules with

non-rational outputs

We now consider a special class of scorings: propositionwise scorings. This will allow us to

relate scoring rules to the well-known judgment aggregation rules called quota rules � in

17Assuming that p is not a tautology, i.e., that f:pg is consistent. (Otherwise, ? minimally entails p.)
18Assuming X contains no tautology, i.e., no p such that f:pg is inconsistent.
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fact, to �repair� these rules by rendering their outcomes rational across all pro�les.

I call scoring s propositionwise if the score of a proposition p 2 X only depends on

whether p is accepted, i.e., if sJ(p) = sK(p) whenever J and K (in J ) both contain p or
both do not contain p. Equivalently, scoring is propositionwise just in case for each p 2 X
there is a pair of real numbers s+(p); s�(p) such that

sJ(p) =

�
s+(p) for all J 2 J containing p

s�(p) for all J 2 J not containing p.
(11)

Intuitively, s+(p) is the score of an accepted proposition p, and s�(p) is the score of a

rejected proposition p. Typically, of course, s+(p) > s�(p). An example is simple scoring:

there, s+(p) = 1 and s�(p) = 0.

How do propositionwise scoring rules behave? They derive a proposition p�s sum-total

score �locally�, i.e., based only on people�s judgments about p. This property stands in

obvious analogy to a well-studied axiom on aggregation rules, namely the axiom of propo-

sitionwise or independent aggregation, which prescribes that the collective judgment about

any given proposition p is derived �locally�, i.e., again based only on people�s judgments

about p. Can we therefore relate propositionwise scoring to independent aggregation?

The paradigmatic independent aggregation rules are the quota rules.19 A quota rule is a

(single-valued) aggregation rule which is given by an acceptance threshold mp 2 f1; :::; ng
for each proposition p 2 X. The quota rule corresponding to the so-called threshold family
(mp)p2X is denoted F(mp)p2X and accepts those propositions p which are supported by at

least mp individuals: for each pro�le (J1; :::; Jn) 2 J n,

F(mp)p2X (J1; :::; Jn) = fp 2 X : jfi : p 2 Jigj � mpg.

Special cases are unanimity rule (given by mp = n for all p), majority rule (given by

the majority threshold mp = d(n+ 1)=2e for all p), and more generally, uniform quota

rules (given by a uniform threshold mp � m for all p). A uniform quota rules is also

referred to as a supermajority rule if m exceeds the majority threshold, and a submajority

rule if m is below the majority threshold. Note that supermajority rules may generate

incomplete collective judgment sets, while submajority rule may accept both members of

a pair p;:p 2 X, a drastic form of inconsistency. If one wishes that exactly one member

of each pair p;:p 2 X is accepted, the thresholds of p and :p should be �complements� of
each other: mp = n+ 1�m:p.

A non-trivial question is how the acceptance thresholds would have to be set to ensure

that the collective judgment set satis�es some given degree of rationality, such as to be (i)

consistent, or (ii) deductively closed, or (iii) consistent and deductively closed, or even (iv)

fully rational, i.e., in J . These questions have been settled (see Nehring and Puppe 2010a
for (iv), and, subsequently, Dietrich and List 2007b for (i)-(iv)). Unfortunately, for many

agendas the thresholds would have to be set at �extreme� and normatively unattractive

levels. Worse, often no thresholds achieve (iv) (see Nehring and Puppe 2010a). For our

doctrinal paradox agenda X = fp; q; rg� only the extreme thresholds mp = mq = mr = n

and m:p = m:q = m:r = 1 achieve (iv), and for the preference agenda (with more than

two alternatives) no thresholds achieve (iv).

Given that quota rules with �reasonable� thresholds typically violate many of the condi-

tions (i)-(iv), one may want to depart from ordinary quota rules by modifying (�repairing�)

19They are the only independent rules which are anonymous, monotonic and unanimity-preserving.
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them so that they always generate rational outputs. This can be done by using proposi-

tionwise scoring rules. Given an arbitrary quota rule with threshold family (mp)p2X , one

can specify a propositionwise scoring such that the scoring rule replicates the quota rule

whenever the quota rule generates a rational output, while �repairing� the output other-

wise. How must we calibrate s+(p) and s�(p) in order to achieve this? The idea is that

individuals who accept p should contribute a positive score s+(p) > 0, while those who

reject p should contribute a negative score s�(p) < 0. The absolute sizes of s+(p) and

s�(p) should be calibrated such that the sum-total score of p becomes positive (helping

the scoring rule to accept p) exactly when the quota rule accepts p, i.e., when at least mp

individuals accept p. Speci�cally, we set:

sJ(p) =

�
s+(p) = n+ 1�mp for all J 2 J containing p

s�(p) = �mp for all J 2 J not containing p.
(12)

Intuitively, the higher the acceptance threshold mp is, the smaller the positive contribution

s+(p) is and the larger the negative contribution s�(p) is (in absolute value); hence, the

more individuals accepting p are needed for p�s sum-total score to get positive, and the

harder it becomes for the scoring rule to accept p. This scoring does the intended job:

Proposition 5 For every threshold family (mp)p2X , the scoring rule w.r.t. scoring (12)

matches the quota rule F(mp)p2X at all pro�les where the quota rule generates rational

outputs (and still generates rational outputs at all other pro�les).

As an example, consider our doctrinal paradox agenda X = fp; q; rg� with n = 3

individuals, and suppose the quota rule departs only slightly from propositionwise majority

voting: all propositions t in Xnf:rg keep a majority threshold of mt = 2, but :r receives
a unanimity threshold m:r = 3. This quota rule manages to never generate logically

inconsistent collective judgment sets,20 but does so at the expense of allowing collective

incompleteness. Indeed, for our example pro�le, the quota rule returns the collective

judgment set pq, which is silent on the choice between r nor :r. As illustrated in Table 5,
the scoring rule w.r.t. (12) restores collective rationality by leading to the premise-based

Score of...

p :p q :q r :r pqr p:q:r :pq:r :p:q:r
Indiv. 1 (pqr) 2 -2 2 -2 2 -3 6 -3 -3 -7

Indiv. 2 (p:q:r) 2 -2 -2 2 -2 1 -2 5 -3 1

Indiv. 3 (:pq:r) -2 2 2 -2 -2 1 -2 -3 5 1

Group 2 -2 2 -2 -2 -1 2* -1 -1 -5

Table 5: Scoring (12) for the doctrinal paradox agenda and pro�le

outcome pqr. To read the table, note that scoring (12) is given by s+(t) = 2 and s�(t) = �2
for all t in Xnf:rg, s+(:r) = 1 and s�(:r) = �3.

How does our scoring rule �repair� those special quota rules which use a uniform thresh-

old m � mp (p 2 X), such as majority rule?
20This follows from Nehring and Puppe�s (2010) intersection property, generalized to possibly incomplete

collective judgment sets (Dietrich and List 2007b).
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Remark 3 For a uniform threshold m � mp, the scoring rule w.r.t. scoring (12) is the

Kemeny rule, or equivalently, the simple scoring rule.

This remark follows from Proposition 1 and the fact that, for a uniform threshold

m � mp, scoring (12) is equivalent to simple scoring by footnote 11.

Finally, I note that the scoring rules w.r.t. (12) is not the only scoring rule which can

�repair� the quota rule F(mp)p2X � though it might be the most plausible one, as long as we

do not wish to introduce additional parameters. If, however, we are prepared to introduce

additional parameters, scoring (12) can be generalized: for each p 2 X let �p > 0 be a

coe¢cient measuring how important it is that the scoring rule is faithful to the quota rule�s

collective judgment on p; and let scoring be de�ned by

sJ(p) =

�
s+(p) = �p(n+ 1�mp) if p 2 J
s�(p) = ��pmp if p 62 J . (13)

The earlier scoring (12) is obviously a special case in which all �p are 1. Proposition

5 still holds for this generalized kind of propositionwise scoring. The scoring rule will

tend to match the quota rule on propositions p with high importance coe¢cient �p, while

modifying (�repairing�) the quota rule at propositions p with low �p.

3.7 Premise- and conclusion-based aggregation

I have just mentioned the possibility of a di¤erential treatment of propositions when �re-

pairing� a quota rule. This possibility is particularly salient in the popular context of

premise- or conclusion-based aggregation.21 One may indeed view the classical premise-

and conclusion-based rules as two (rival) ways of repairing the simplest of all quota rules �

majority rule � by privileging certain propositions over others, namely premise propositions

or conclusion propositions, respectively.

Let me put this precisely. Consider majority voting, i.e., the quota rule with a uniform

majority threshold m � mp (the smallest integer above n=2). To restore collective ratio-

nality, we again endow each proposition p 2 X with a �coe¢cient of importance�, but now

let this coe¢cient be determined by whether p has a �premise� or �conclusion� status. For-

mally, suppose the agenda is partitioned into two negation-closed sets, the set P of �premise

propositions� and the set XnP of �conclusion propositions�. In the case of our doctrinal

paradox agenda X = fp; q; rg�, we have P = fp; qg�. Each premise proposition p 2 P has
the importance coe¢cient �p � �premise, and each conclusion proposition p 2 XnP has

the importance coe¢cient �p � �conclusion, for �xed parameters �premise; �conclusion � 0.

In this scenario, the scoring (13) becomes equivalent (by footnote 11) to the scoring given

by

sJ(p) =

8

<

:

�premise for accepted premise propositions p 2 J \ P
�conclusion for accepted conclusion propositions p 2 JnP
0 for rejected propositions p 62 J .

(14)

By calibrating the two importance coe¢cients, we can in�uence the relative weights of

premises and conclusions. If we give far more importance to premise propositions (�premise �
�conclusion) or to conclusion propositions (�conclusion � �premise), the scoring rule reduces

to the premise- or conclusion-based rule, respectively. To substantiate this claim, one needs

21See for instance List (2004), Dietrich and Mongin (2010) and Nehring and Puppe (2010b).
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to de�ne both rules. For simplicity, I restrict attention to our doctrinal paradox agenda

X = fp; q; rg� with P = fp; qg� (though more general X and P could be considered22).

In this case, assuming for simplicity that the group size n is odd,

� the premise-based rule is the aggregation rule which for each pro�le in J n delivers

the (unique) judgment set in J containing each premise proposition accepted by a

majority;

� the conclusion-based rule is the aggregation rule which for each pro�le in J n delivers

the judgment set (or sets) in J containing the conclusion proposition accepted by a

majority.23

These two rules have the following characterizations as scoring rules:

Remark 4 For our doctrinal paradox agenda X = fp; q; rg� with set of premise proposi-
tions P = fp; qg�, and for an odd group size, the scoring rule w.r.t. scoring (14) is
� the premise-based rule if and only if �premise > (n� 2)�conclusion,
� the conclusion-based rule if and only if �conclusion > �premise = 0.

This result lets premise- and conclusion-based aggregation appear in a rather ex-

treme light: each rule is based on somewhat unequal importance coe¢cients �premise and

�conclusion, deeming one type of proposition to be overwhelmingly more important than

the other. It might therefore be interesting to consider more equilibrated values of the

importance coe¢cients, so as to achieve a compromise between democracy at the premise

level and democracy at the conclusion level.

4 Set scoring rules: assigning scores to entire judgment

sets

An interesting generalization of scoring rules is obtained by assigning scores directly to

entire judgment sets rather than single propositions. A set scoring function � or simply set

scoring � is a function � which to every pair of rational judgment sets C and J assigns a

real number �J(C), the score of C given J , which measures how well C performs (�scores�)

from the perspective of holding the judgment set J . Formally, � : J � J ! R. The most

elementary example, to be called naive set scoring, is given by

�J(C) =

�
1 if C = J

0 if C 6= J . (15)

Any set scoring � gives rise to an aggregation rule F�, the set scoring rule (or general-

ized scoring rule) w.r.t. �, which for each pro�le (J1; :::; Jn) 2 J n selects the collective

judgment set(s) C in J having maximal sum-total score across individuals:

F�(J1; :::; Jn) = argmaxC2J
X

i2N

�Ji(C).

22Our analysis generalizes easily to any X and P such that (i) the premise propositions in P are logically

independent, and (ii) complete judgments across the premise propositions in P uniquely determine the

judgments on the conclusion propositions in XnP .
23 In the literature, the conclusion-based procedure is usually taken to be silent on the premises, i.e., to

return an incomplete judgment set not in J . I have replaced this silence by a tie between all compatible

judgments on the premise propositions.
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An aggregation rule is a set scoring rule simpliciter if it is the set scoring rule w.r.t. to

some set scoring �. Set scoring rules generalize ordinary scoring rules, since to any ordinary

scoring s corresponds a set scoring �, given by

�J(C) �
X

p2C

sJ(p),

and the ordinary scoring rule w.r.t. s coincides with the set scoring rule w.r.t. �.

4.1 Naive set scoring and plurality voting

Plurality rule is the aggregation rule F which for every pro�le (J1; :::; Jn) 2 J n declares

the most often submitted judgment set(s) as the collective judgment set(s):

F (J1; :::; Jn) = most frequently submitted judgment set(s)

= argmaxC2J jfi : Ji = Cgj .

This rule is of course normatively questionable;24 but it deserves our attention, if only

because of its simplicity and the recognized importance of plurality voting in social choice

theory more broadly. Plurality rule can be construed as a set scoring rule:

Remark 5 The naive set scoring rule is plurality rule.

4.2 Distance-based set scoring

Set scoring rules generalize distance-based aggregation. Given an arbitrary distance func-

tion d over J (not necessarily the Kemeny-distance), all that is needed is to consider what

I call distance-based set scoring, de�ned by

�J(C) = �d(C; J). (16)

So, C scores high if it is close to the judgment set held, J . This renders sum-score-

maximization equivalent to sum-distance-minimization:

Remark 6 For every given distance function over J , the distance-based set scoring rule
is the distance-based rule.

So, all distance-based rules can be modelled as set scoring rules (but not vice versa25).

As an example, consider the so-called discrete distance,26 de�ned by

d(J;K) =

�
0 if J = K

1 if J 6= K.

Here, distance-based set scoring (16) is equivalent to naive set scoring (15), since the two

di¤er only by a constant (of one). So, joining Remarks 5 and 6, we may view plurality rule

either as the naive set scoring rule or as the discrete-distance-based rule.

24 It ignores the internal structure of judgment sets, hence �throws away� much information.
25 In trying to re-model an arbitrary set scoring rule F� as a distance-based rule, one might be tempted

to de�ne the �distance� between J and J 0 as d�(J; J 0) := �J (J)��J (J
0). If d� turns out to de�ne a proper

distance function (see fn. 12), then we obtain a distance-based rule Fd� , which coincides with the set

scoring rule F� . But for many plausible set scorings �, d� has little in common with a distance function,

violating up to all three axioms, notably symmetry and the triangle inequality.
26This metric derives its name from the fact that it induces the discrete topology on whatever set it is

de�ned on (such as R instead of J ).
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4.3 Approximating the �average voter�

Given an ordinary scoring s, we have so far aimed for collective judgments with a high

total score. But this is not the only plausible aim or approach. We now turn to an alto-

gether di¤erent approach. Rather than using s to assign scores only from each individual�s

perspective, we now care about how propositions score under the collective judgment set.

Instead of wanting the collective judgments to achieve the highest total score from individ-

uals, we now want them to resemble an �average individual�s judgments� in the sense that

the collective judgments should lead (approximately) to the same scores of propositions

as the individual judgments do on average. In short, any proposition p�s collective score

should be (approximately) p�s average individual score. This approach has its own, rather

di¤erent intuitive appeal. But is it really totally di¤erent? As will turn out, aggregation

rules which follow this approach � I call them �average-score rules� as opposed to �scoring

rules� � can be viewed as a particular kind of set scoring rules. This result is in fact a special

case of a powerful precursor result by Zwicker (2008), as Marcus Pivato kindly pointed out

to me.27

Given an ordinary scoring s, we can represent judgment sets in J as vectors in RX , by

identifying each judgment set J in J with its score vector, i.e., the vector in RX whose pth

component is the score of p, sJ(p).
28 The score vector corresponding to J 2 J is denoted

Js � (sJ(p))p2X 2 RX . Having represented judgment sets as vectors of numbers, we can
apply standard algebraic and geometric operations, such as adding judgment sets, taking

their average, or measuring their distance � where, of course, sums or averages of (score

vectors of) judgment sets in J may be �infeasible�, i.e., not correspond to any judgment

set in J .
The average-score rule w.r.t. scoring s is de�ned as the aggregation rule F which for

every pro�le (J1; :::; Jn) 2 J n chooses the collective judgment set(s) whose score vector

comes closest to the group�s average score vector 1
n

P

i2N J
s
i in the sense of Euclidean

distance in RX :

F (J1; :::; Jn) = j.s. closest to the average individual j.s. in score vector terms

= argminC2J






Cs � 1

n

X

i2N

Jsi






.

Viewed geometrically as an operation in RX , the collective score vector is the orthogonal

projection of the average score vector 1
n

P

i J
s
i on the set J s � fJs : J 2 J g � RX of

feasible score vectors.29

As an illustration, consider once again reversal scoring for our doctrinal paradox agenda.

Table 6 reports the score vector of each judgment set (including the one not submitted by

any individual), and its distance to the group�s average score vector. By minimizing this

distance, the rule delivers a tie between the two conclusion-based outcomes p:q:r and
27Average-score rules are special cases of Zwicker�s �mean proximity rules� in his abstract, more gen-

eral aggregation framework. Zwicker�s Theorem 4.2.1 (more precisely, its proof) reveals that any �mean

proximity rule� can be given a representation which essentially corresponds to our representation of an

average-score rule in Proposition 6.
28This identi�cation is one-to-one as long as the scoring has the (very plausible) property that sJ (p) >

sJ (:p) whenever p 2 J .
29Formally, F (J1; :::; Jn)s = PROJJ s ( 1

n

P

i J
s
i ), where the orthogonal projection of x 2 R

X on Y � RX

is de�ned as PROJY (x) := argminy2Y ky � xk.
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p :p q :q r :r distance to group�s average

pqr (indiv. 1) 2 0 2 0 2 0
p
58=3 � 2:54

p:q:r (indiv. 2) 1 0 0 2 0 2
p
37=3 � 2:03

:pq:r (indiv. 3) 0 2 1 0 0 2
p
37=3 � 2:03

:p:q:r (no indiv.) 0 1 0 1 0 3 7=3 � 2:33
group�s average 1 2

3 1 2
3

2
3

4
3

Table 6: The average-score rule (w.r.t. reversal scoring) for the doctrinal paradox agenda

and pro�le

:pq:r. The premise-based outcome pqr looks worse than ever: it is even farther from the

average than the never-submitted outcome :p:q:r.
Now that we have two rival ways of aggregating based on a scoring s � namely, the

scoring rule and the average-score rule � the question is whether any connection can be

established. The average-score rule can be construed as a set scoring rule, namely in virtue

of the set scoring given by

�J(C) = �kCs � Jsk2 . (17)

Here, C is taken to score high if it is close to J in terms of the squared Euclidean distance

of score vectors.

Proposition 6 For any scoring s, the average-score rule w.r.t. s is the set scoring rule

w.r.t. set scoring (17).

As an application, let s be simple scoring (2). Here, the set scoring (17) is expressible

as an increasing a¢ne transformation of the set scoring corresponding to simple scoring,

i.e., of the set scoring �0 given by30

�0J(C) =
X

p2C

sJ(p) = jC \ J j .

So, the set scoring rule F� coincides with the simple scoring rule Fs, and hence with the

Kemeny rule FdK em eny by Proposition 1. Thus, as a corollary of Propositions 1 and 6, the

Kemeny rule can be characterized not just as a scoring rule but also as an average-score

rule, both times using the same scoring:

Corollary 2 The Kemeny rule is the scoring rule and the average-score rule, both times

w.r.t. simple scoring.

4.4 Probability-based set scoring

I close the analysis by taking a brief (skippable) excursion into an important, but di¤er-

ent approach to judgment aggregation: the epistemic or truth-tracking approach. In this

approach, each proposition p 2 X is taken to have an objective, but unknown truth value

(�true� or �false�), and the goal of aggregation is to track the truth, i.e., to generate true

30Since �J (C) = �
�

p

jC 4 J j
�2

= � jC 4 J j = �2 jCnJ j = �2 (jCj � jC \ J j) = � jXj+ 2 jC \ J j.
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collective judgments.31 The truth-tracking perspective has a long history elsewhere in so-

cial choice theory (e.g., Condorcet 1785, Grofman et al. 1983, Austen-Smith and Banks

1996, Dietrich 2006b, Pivato 2011a); but within judgment aggregation theory speci�cally,

rather little work has been done on the epistemic side (e.g., Bovens and Rabinowicz 2006b,

List 2005, Bozbay et al. 2011).

The epistemic approach warrants the use of particular set scoring rules. To show this, I

import standard statistical estimation techniques (such as maximum-likelihood estimation),

following the path taken by other authors in the context of preference aggregation (e.g.,

Young 1995) and other aggregation problems (e.g., Dietrich 2006b, Pivato 2011a). My goal

is to give no more than a brief introduction to what could be done. The results given below

are essentially variants of existing results; see in particular Pivato (2011a).32

For each combination (J1; :::; Jn; T ) 2 J n�J of n+1 judgment sets, let Pr(J1; :::; Jn; T )
> 0 measure the probability that people submit the pro�le (J1; :::; Jn) and the set of true

propositions is T , where of course
P

(J1;:::;Jn;T )2Jn�J Pr(J1; :::; Jn; T ) = 1. From this joint

probability function we can, as usual, derive various marginal and conditional probabili-

ties, such as the probability that the truth is T 2 J , Pr(T ) = P

(J1;:::;Jn)2Jn Pr(J1; :::;

Jn; T ), the probability that the pro�le is (J1; :::; Jn), Pr(J1; :::; Jn) =
P

T2J Pr(J1; :::; Jn;

T ), the conditional probability Pr(T jJ1; :::; Jn) = Pr(J1;:::;Jn;T )
Pr(J1;:::;Jn)

(called the posterior prob-

ability of T given the �data� J1; :::; Jn), and the conditional probability Pr(J1; :::; JnjT ) =
Pr(J1;:::;Jn;T )

Pr(T ) (called the likelihood of the �data� J1; :::; Jn given T ).

The maximum-likelihood rule is the aggregation rule F : J n � J which for each pro�le

(J1; :::; Jn) 2 J n de�nes the collective judgments such that their truth would make the

observed pro�le (�data�) maximally likely:

F (J1; :::; Jn) = argmaxT2J Pr(J1; :::; JnjT ).

The maximum-posterior rule is the aggregation rule F : J n � J which for each pro�le

(J1; :::; Jn) 2 J n de�nes the collective judgments such that they have maximal posterior

probability of truth conditional on the observed pro�le (�data�):

F (J1; :::; Jn) = argmaxT2J Pr(T jJ1; :::; Jn).

Both of these rules correspond to well-established statistical estimation procedures.

Let us now make two standard, but restrictive assumptions on probabilities. We assume

that voters are �independent� and �equally competent� (in analogy to the assumptions of

Condorcet�s classical jury theorem33). Formally, for every T 2 J ,
(IND) the individual judgment sets are independent conditional on T being the true judg-

ment set, i.e., Pr(J1; :::; JnjT ) = Pr(J1jT ) � � �Pr(JnjT ) for all J1; :::; Jn 2 J (�inde-

pendence�)

(COM) for each J 2 J , each individual has the same probability, denoted Pr(J jT ), of
31The epistemic perspective is usually contrasted with the procedural perspective, which takes the goal of

aggregation to be to generate collective judgments which re�ect the individuals� judgments in a procedurally

fair way. To illustrate the contrast between the two perspectives, suppose that all individuals hold the

same judgment set J . Then J is clearly the right collective judgment set from the perspective of procedural

fairness. But from an epistemic perspective, all depends on whether people�s unanimous endorsement of J

is su¢cient evidence for J being true.
32Proposition 7 follows from proofs in Pivato (2011a), and is also related to Dietrich (2006).
33The classical Condorcet jury theorem is essentially concerned with a simple judgment aggregation

problem with a binary agenda X = fp;:pg.
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submitting the judgment set J conditional on T being the true judgment set (�equal

competence�).

Condition (COM) in particular implies that individuals have the same (conditional)

probability of holding the true judgment set; but nothing is assumed about the size of

this probability of �getting it right�. The just-de�ned aggregation rules turn out to be set

scoring rules in virtue of de�ning the score of T 2 J given J 2 J by, respectively,

�J(T ) = log Pr(J jT ) (18)

�J(T ) = log Pr(J jT ) + 1

n
log Pr(T ). (19)

Proposition 7 If voters are independent (IND) and equally competent (COM), then

� the maximum-likelihood rule is the set scoring rule w.r.t. set scoring (18),
� the maximum-posterior rule is the set scoring w.r.t. set scoring (19).

5 Concluding remarks

I hope to have convinced the reader that scoring rules, and more generally set scoring rules,

form interesting positive solutions to the judgment aggregation problem. They for instance

allow us to generalize Borda aggregation to judgment aggregation (the simplest method

being to use reversal scoring). Figure 1 summarizes where we stand by depicting di¤erent

classes of rules (scoring rules, set scoring rules, and distance-based rules) and positioning

several concrete rules (such as Kemeny rule). While the positions of most rules in Figure 1

arbitrary rules

distancebase

rules

scoring

rules

set scoring

rules

the Condorcet

admissibility rule

the “truthtracking”

rules of Section 4.4

Kemeny rule

generalized Borda

rule using, e.g.,

reversal scoring

nonanonymous rules

plurality rule
propositionwise

scoring rules

entailmentbased

scoring rules (Section 3.4)

averagescore

rules

the premise and

conclusionbased

rules (and other

priority rules)

Figure 1: A map of judgment aggregation possibilities

have been established above or follow easily, a few positions are of the order of conjectures.

This is so for the placement of our Borda generalization outside the class of distance-based

rules.34

34For technical correctness, I also note two details about how to read Figure 1. First, for trivial agendas,

such as a single-issue agenda X = fp;:pg, several rules of course become equivalent, and distinctions

drawn in Figure 1 disappear. More precisely, by positioning a rule outside a class of rules (e.g., by
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Though several old and new aggregation rules are scoring rules (or at least set scoring

rules), there are important counterexamples. One counterexample is the mentioned rule

introduced by Nehring et al. (2011) (the so-called Condorcet-admissibility rule, which

generates rational judgment set(s) that �approximate� the majority judgment set). Other

counterexamples are non-anonymous rules (such as rules prioritizing experts), and rules

that return boundedly rational collective judgments (such as rules returning incomplete but

still consistent and deductively closed judgments). The last two kinds of counterexamples

suggest two generalizations of the notion of a scoring rule. Firstly, scoring might be allowed

to depend on the individual; this leads to �non-anonymous scoring rules�. Secondly, the

search for a collective judgment set with maximal total score might be done within a larger

set than the set J of fully rational judgment sets (such as the set of consistent but possibly

incomplete judgment sets); this leads to �boundedly rational scoring rules�. The same

generalizations could of course be made for set scoring rules. Much work is ahead of us.
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7 Appendix: proofs

Proof of Proposition 1. The Kemeny-distance between J;C 2 J can be written as

dKemeny(J;C) =
1

2
jJ 4 Cj = 1

2
(jXj � (jJ \ Cj+

�
�J \ C

�
�)).

Now, since J and C each contains exactly one member of each pair fp;:pg � X, we have
p 2 J\C , :p 2 J\C, and so, jJ \ Cj =

�
�J \ C

�
�. Hence, dKemeny(J;C) =

1
2 jXj�jJ \ Cj.

So, for each pro�le (J1; :::; Jn) 2 J n, minimizing
P

i2N dKemeny(Ji; C) is equivalent to

maximizing
P

i2N jJi \ Cj. Hence, rewriting each jJi \ Cj as
P

p2C sJi(p) where s is simple

scoring (2), it follows that FdK em eny (J1; :::; Jn) = Fs(J1; :::; Jn). �

Before proving Proposition 2, I start with a lemma.

Lemma 1 Consider the preference agenda (for any �nite set of alternatives A), any clas-

sical scoring SCO, and the scoring s given by (4). For all distinct x; y 2 A and all J 2 J ,

SCOJ(x)� SCOJ(y) = sJ(xPy)� sJ(yPx): (20)

Proof. This follows easily from (4). �

Two elements of a set of alternatives A are called neighbours w.r.t. a strict linear order

� over A if they di¤er and no alternative in A is ranked strictly between them. In the

case of the preference agenda (for a set of alternatives A), the strict linear order over A

corresponding to any J 2 J is denoted �J .

Proof of Proposition 2. Consider the preference agenda X for a set of alternatives A of

�nite size k, and let SCO be any classical scoring. I show that FSCO = Fs for each scoring

s satisfying (20), and hence for the scoring (4) (since it satis�es (20) by Lemma 1) and the

scoring (3) (since a half times it satis�es (20)).

Consider any scoring s satisfying (20). Fix a pro�le (J1; :::; Jn) 2 J n; I show Fs(J1; :::;

Jn) = FSCO(J1; :::; Jn). The proof is in three claims.

Claim 1. For all a; b 2 A and C;C 0 2 J , if CnC 0 = faPbg, then
X

i2N

SCOJi(a)�
X

i2N

SCOJi(b) =
X

i2N;p2C

sJi(p)�
X

i2N;p2C0

sJi(p).

Consider a; b 2 A and C;C 0 2 J such that CnC 0 = faPbg. For each individual i 2 N ,
we by (20) have

SCOJi(a)� SCOJi(b) = sJi(aPb)� sJi(bPa);
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which, noting that C 0 = (CnfaPbg) [ fbPag, implies that

SCOJi(a)� SCOJi(b) =
X

p2C

sJi(p)�
X

p2C0

sJi(p).

Summing over all individuals, the claim follows, q.e.d.

Claim 2. Fs(J1; :::; Jn) � FSCO(J1; :::; Jn).
Consider any C 2 Fs(J1; :::; Jn). We have to show that C 2 FSCO(J1; :::; Jn), i.e., that

for all distinct x; y 2 A,
X

i2N

SCOJi(x) >
X

i2N

SCOJi(y)) xPy 2 C,

or equivalently,

yPx 2 C )
X

i2N

SCOJi(y) �
X

i2N

SCOJi(x).

Said in yet another way, we have to show that

X

i2N

SCOJi(xk) �
X

i2N

SCOJi(xk�1) � � � � �
X

i2N

SCOJi(x1),

where I have labelled the alternatives x1; x2; :::; xk such that xk �C xk�1 �C � � � �C x1.
Consider any t 2 f1; :::; k�1g, and write a for xt+1 and b for xt. Let C 0 be the judgment set
arising from C by replacing aPb with its negation bPa. Now C 0 2 J ; this is because a and
b are neighbours w.r.t. �C , which guarantees that C 0 corresponds to a strict linear order
(namely to the same one as for C except that b now ranks above a). Since C 2 Fs(J1; :::; Jn),
C has maximal sum-total score within J ; in particular,

X

i2N;p2C

sJi(p) �
X

i2N;p2C0

sJi(p),

which by Claim 1 implies the desired inequality,

X

i2N

SCOJi(a) �
X

i2N

SCOJi(b), q.e.d.

Claim 3. FSCO(J1; :::; Jn) � Fs(J1; :::; Jn).
Consider any C 2 FSCO(J1; :::; Jn). To show that C 2 Fs(J1; :::; Jn); we consider an

arbitrary C 0 2 J nfCg and have to show that C has an at least as high sum-total score as
C 0:

X

i2N;p2C

sJi(p) �
X

i2N;p2C0

sJi(p). (21)

To prove this, we �rst transform C gradually into C 0 in m � jC 0nCj steps, where each
step consists in a single judgment reversal, i.e., in the replacement of a single proposition

xPy (2 CnC 0) by its negation yPx (2 C 0nC). This de�nes a sequence of judgment sets
C0; :::; Cm, where C0 = C and Cm = C 0, and where for each step t 2 f1; :::;mg there is
a proposition xtPyt such that Ct = (Ct�1nfxtPytg) [ fytPxtg. Note that fxtPyt : t =
1; :::;mg = CnC 0. By a standard relation-theoretic argument, we may assume that in each
step t the judgment reversal consists in switching the relative order of two neighbouring

alternatives; i.e., xt; yt are neighbours w.r.t. the old and new relations �Ct�1 and �Ct .
This guarantees that each step t generates a set Ct such that �Ct is still a strict linear
order, i.e., such that Ct 2 J .
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Now for each step t, by Claim 1 we have
X

i2N

SCOJi(xt)�
X

i2N

SCOJi(yt) =
X

i2N;p2Ct�1

sJi(p)�
X

i2N;p2Ct

sJi(p),

and also, since ytPxt 62 C and C 2 FSCO(J1; :::; Jn), we have
X

i2N

SCOJi(yt) �
X

i2N

SCOJi(xt);

it follows that
X

i2N;p2Ct�1

sJi(p)�
X

i2N;p2Ct

sJi(p) � 0.

Summing this inequality over all steps t 2 f1; :::;mg, we obtain
X

i2N;p2C0

sJi(p)�
X

i2N;p2Cm

sJi(p) � 0,

which is equivalent to the desired inequality (21) since C0 = C and Cm = C
0. �

Proof of Remark 2. Let s0 be de�ned from reversal scoring s in the speci�ed way.

Claim 1. s0 and s are equivalent.

Consider any pro�le (J1; :::; Jn) 2 J n. I show for all C;D 2 J that
X

i2N;p2C

sJi(p) �
X

i2N;p2D

sJi(p),
X

i2N;p2C

s0Ji(p) �
X

i2N;p2D

s0Ji(p).

Consider any C;D 2 J . I prove that � � 0, �0 � 0, where

� �
X

i2N;p2C

sJi(p)�
X

i2N;p2D

sJi(p) � 0,

�0 �
X

i2N;p2C

s0Ji(p)�
X

i2N;p2D

s0Ji(p) � 0.

We have

� =
X

i2N

8

<

:

X

p2C

sJi(p)�
X

p2D

sJi(p)

9

=

;
=
X

i2N

8

<

:

X

p2CnD

sJi(p)�
X

p2DnC

sJi(p)

9

=

;
.

So, noting that DnC = f:p : p 2 CnDg, we obtain

� =
X

i2N

X

p2CnD

(sJi(p)� sJi(:p)).

By an analogous reasoning,

�0 =
X

i2N

X

p2CnD

(s0Ji(p)� s0Ji(:p)).

Hence, using the de�nition of s0,

�0 =
X

i2N

X

p2CnD

([sJi(p)� sJi(:p)]� [sJi(:p)� sJi(p)])

= 2
X

i2N

X

p2CnD

(sJi(p)� sJi(:p))

= 2�.
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So, � � 0, �0 � 0, q.e.d.
Claim 2. If X is the preference agenda, SCO is classical Borda scoring, J 2 J , and

xPy 2 X, then s0J(xPy) = SCOJ(x)� SCOJ(y).
Let X, SCO, J and xPy be as speci�ed. If xPy 2 J , then

s0(xPy) = s(xPy) by de�nition of s0

= SCOJ(x)� SCOJ(y) by Remark 1, as xPy 2 J .

If xPy 62 J , i.e., yPx 2 J , then

s0(xPy) = �s(yPx) by de�nition of s0

= �(SCOJ(y)� SCOJ(x)) by Remark 1, as yPx 2 J
= SCOJ(x)� SCOJ(y). �

Proof of Proposition 4. Let X be the preference agenda for some set of alternatives

A of size k < 1. Let srev , sdis and sirr be reversal, disjoint-entailment, and irreducible-
entailment scoring, respectively. Consider any J 2 J , denote the corresponding strict linear
order by �, let x1; :::; xk be the alternatives in the order given by xk � xk�1 � � � � � x1,
and consider any p 2 X, say p = xiPxi0 2 X.
Claim 1. srevJ (p) = sirrJ (p).

By the argument given in footnote 16, srevJ (p) � sdisJ (p). I now show that sdisJ (p) �
srevJ (p). This inequality is trivial if p 62 J , since then srevJ (p) = 0 (as :p 2 J). Now suppose
p 2 J . By Remark 1, srevJ (p) = i � i0. So we need to show that sdisJ (p) � i � i0. Consider
the i� i0 judgment subsets S1; :::; Si�i0 � J de�ned as follows: for each j 2 f1; :::; i� i0g,

Sj � fxiPxi�j ; xi�jPxi0g � J ,

where Si�i0 is interpreted as the set fxiPxi0g (rather than the set fxiPxi0 ; xi0Pxi0g, which
is not well-de�ned since xi0Pxi0 is not a proposition in X). Since these judgment subsets

are pairwise disjoint and each of them entails p (= xiPxi0), we have s
dis
J (p) � i� i0, q.e.d.

Claim 2. srevJ (p) = sirrJ (p).

If p 62 J , then srevJ (p) = sirrJ (p) since s
rev
J (p) = 0 (as :p 2 J) and sirrJ (p) = 0 (as J

does not entail p). Now suppose p 2 J . Then, as already mentioned, srevJ (p) = i � i0
by Remark 1. So we need to show that sirrJ (p) = i � i0. As one may show, each of

the just-de�ned sets S1; :::; Si�i0 irreducibly entails p (= xiPxi0). So it remains to show

that no other judgment subset irreducibly entails p. Suppose S � J irreducibly entails

p. I have to show that S 2 fS1; :::; Si�i0g. As is easily checked, the set S [ f:pg
(= S [ fxi0Pxig) is minimal inconsistent. Hence, this set is cyclic, i.e., of the form

S [ f:pg = fy1Py2; y2Py3; :::; ym�1Pym; ymPy1g for some m � 2 and some distinct al-

ternatives y1; :::; ym 2 A (see Dietrich and List 2010). Without loss of generality, assume
y1 = xi and ym = xi0 , so that ymPy1 = xi0Pxi and

S = fy1Py2; y2Py3; :::; ym�1Pymg:

If m = 2, then S = fy1Py2g = fxiPxi0g, which equals Si�i0 , and we are done. If m = 3,

then S = fy1Py2; y2Py3g = fxiPy2; y2Pxi0g. Since S is by assumption included in J ,
it follows that J ranks y2 between xi and xi0 . So there is a j 2 f1; :::; i � i0 � 1g such
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that y2 = xi�j . Hence, S is the set fxiPxi�j ; xi�jPxi0g = Sj , and we are done again.

Finally, m cannot exceed 3, since otherwise the set S (= fxiPy2; y2Py3; :::; ym�1Pxi0g)
would entail p (= xiPxi0) non-irreducibly, since the set arising from S by replacing xiPy2
and y2Py3 with their implication xiPy3 still entails p. �

Proof of Proposition 5. Consider any threshold family (mp)p2X (2 f1; :::; ngX), and de-
�ne scoring s by (12). Consider a pro�le (J1; :::; Jn) 2 J n for which C� � F(mp)p2X (J1; :::;

Jn) belongs to J . We have to show that Fs(J1; :::; Jn) = C�. For each proposition p 2 X,
writing the number of individuals accepting p as np � jfi : p 2 Jigj, the sum-total score of
p is given by

X

i2N

sJi(p) =
X

i2N :p2Ji

(n+ 1�mp) +
X

i2N :p62Ji

(�mp)

= np(n+ 1�mp) + (n� np)(�mp)

= nnp + np � nmp.

= n(np �mp) + np;

and so,
X

i2N

sJi(p)

�
> 0 if np � mp, i.e., if p 2 C�
< 0 if np < mp, i.e., if p 62 C�.

(22)

Now we have fC�g = argmaxC2J
P

p2C;i2N sJi(p), because for each C 2 J nfC�g,
X

p2C�;i2N

sJi(p)�
X

p2C;i2N

sJi(p) =
X

p2C�nC

X

i2N

sJi(p)

| {z }

>0 by (22)

�
X

p2CnC�

X

i2N

sJi(p)

| {z }

<0 by (22)

> 0.

So, Fs(J1; :::; Jn) = fC�g � C�. �

Proof of Remark 4. Consider this X and P , let n be odd, and let s be scoring (14). I

write �pr for �premise and �co for �conclusion. Whenever I consider a pro�le (J1; :::; Jn) 2 J n,

I write Nt := fi : t 2 Jig for all t 2 X, and I writeMAJ , PRE , CON and SCO for the

outcome of majority rule, premise-based rule, conclusion-based rule, and the scoring rule

w.r.t. (14), respectively. Note that for all (J1; :::; Jn) 2 J n the sum-total score of a

C = fp0; q0; r0g 2 J (where p0 2 fp;:pg, q0 2 fq;:qg and r0 2 fr;:rg) is given by
X

i2N;t2C

sJi(t) = (jNp0 j+ jNq0 j)�pr + jNrj�co: (23)

Claim 1. [PRE = SCO for all pro�les in Jn] if and only if �pr > (n� 2)�co.
First, assume PRE = SCO for all pro�le in Jn. As one may check, there is a pro�le

such that jNpj = jNqj = n+1
2 and jNrj = 1. For this pro�le, PRE = fp; q; rg. So,

SCO = fp; q; rg. Hence, the sum-total score of fp; q; rg exceeds that of f:p; q;:rg. By
(23), these two sum-total scores can be written, respectively, as

X

i2N;t2fp;q;rg

sJi(t) =
n+ 1

2
�pr +

n+ 1

2
�pr + �co = (n+ 1)�pr + �co

X

i2N;t2f:p;q;:rg

sJi(t) =
n� 1
2

�pr +
n+ 1

2
�pr + (n� 1)�co = n�pr + (n� 1)�co.
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Hence,

(n+ 1)�pr + �co > n�pr + (n� 1)�co,
or equivalently, �pr > (n� 2)�co.
Conversely, assume �pr > (n � 2)�co. Consider any pro�le. We have to show that

PRE = SCO.
Case 1 : MAJ 2 J . Check that it follows that PRE =MAJ , and also that SCO =

MAJ . So, PRE = SCO.
Case 2 : MAJ 62 J . Check that it follows that MAJ = fp; q;:rg. Hence PRE =

fp; q; rg. We thus have to show that SCO = fp; q; rg, i.e., that

�1 �
X

i2N;t2fp;q;rg

sJi(t)�
X

i2N;t2f:p;q;:rg

sJi(t) > 0

�2 �
X

i2N;t2fp;q;rg

sJi(t)�
X

i2N;t2fp;:q;:rg

sJi(t) > 0

�3 �
X

i2N;t2fp;q;rg

sJi(t)�
X

i2N;t2f:p;:q;:rg

sJi(t) > 0.

By (23),

�1 = (jNpj � jN:pj)�pr + (jNrj � jN:rj)�co = (2 jNpj � n)�pr + (2 jNrj � n)�co: (24)

In this, as p 2 MAJ we have jNpj � (n+ 1)=2; and further, as p; q 2 MAJ the sets Np
and Nq each contain a majority, so that Np \Nq 6= ?, which (since Np \Nq � Nr) implies
jNrj � 1. Using these lower bounds for jNpj and jNrj, we obtain

�1 � ((n+ 1)� n)�pr + (2� n)�co = �pr + (2� n)�co > 0.

The proof that �2 > 0 is analogous. Finally, by (23),

�3 = (jNpj � jN:pj)�pr + (jNqj � jN:qj)�pr + (jNrj � jN:rj)�co.

Since jNqj > jN:qj (since q 2 MAJ), it follows using (24) that �3 > �2, and hence, that
�3 > 0, q.e.d.

Claim 2. [CON = SCO for all pro�les in Jn] if and only if �co > �pr = 0.

Unlike in the proof of the Claim, there may be ties, and so we treat CON and SCO
as subsets of J, not elements. First, if �co > �pr = 0, then it is easy to show that

CON = SCO for each pro�le. Conversely, suppose it is not the case that �co > �pr =

0. Then either �co = �pr = 0 or �pr > 0. In the �rst case, clearly CON 6= SCO
for some pro�les, since SCO is always J. In the second case, again CON 6= SCO for

some pro�les: for instance, if each individual submits :pq:r then SCO = f:pq:rg while
CON = f:pq:r; p:q:r;:p:q:rg. �

Proof of Proposition 6. It will sometimes be convenient to write a vectorD = (D1; :::; Dn)

2 Rn as hDii. The mean and variance of this vector D are denoted and de�ned by, respec-

tively,

D � 1

n

X

i2N

Di and V ar(D) �
1

n

X

i2N

(Di �D)2.
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In this notation, the average square deviation of a constant c 2 R from the components in

D is h(c�Di)2i and satis�es

h(c�Di)2i = (c�D)2 + V ar(D); (25)

by the following argument borrowed from statistics:

h(c�Di)2i =


(c�D +D �Di)2

�

=


(c�D)2 + 2(c�D)(D �Di) + (D �Di)2

�

= (c�D)2 + 2(c�D)


D �Di

�
+


(D �Di)2

�

= (c�D)2 + 0 + V ar(D).

Now consider any scoring s and let the set scoring � be de�ned by (17). Consider any

pro�le (J1; :::; Jn) 2Jn and any C 2 J . Under �, the sum-total score of C can be written

as
X

i2N

�Ji(C) = �
X

i2N

kCs � Jsi k2

= �
X

i2N

X

p2X

(Csp � Jsip)2

= �n
X

p2X

1

n

X

i2N

(Csp � Jsip)2.

Here, the inner expression can be re-expressed as

1

n

X

i2N

(Csp � Jsip)2 =


(Csp � Jsip)2

�
= (Csp �



Jsip
�
)2 + V ar(



Jsip
�
),

where the last equality applies (25) with c = Csp and D =


Jsip
�
. It follows that

X

i2N

�Ji(C) = �n
X

p2X

n

(Csp �


Jsip
�
)2 + V ar(



Jsip
�
)
o

= �n
X

p2X

(Csp �


Jsip
�
)2 + d (for some d independent of C)

= �n


C � hJsi i





2

+ d.

Maximizing this expression w.r.t. C 2 J is equivalent to minimizing its strictly decreasing

transformation


C � hJsi i



 w.r.t. C 2 J . So, the set scoring rule w.r.t. � delivers the

same collective judgment set(s) C as the average-score rule w.r.t. s. �

Proof of Proposition 7. Assume (IND) and (COM) and consider a pro�le (J1; :::; Jn) 2
J n.

Firstly, using (IND), the likelihood of the pro�le given C 2 J can be written as

Pr(J1; :::; JnjT ) =
Y

i2N

Pr(JijT ).

Maximizing this expression (w.r.t. T 2 J ) is equivalent to maximizing its logarithm,
X

i2N

log Pr(JijT ),
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which is precisely the sum-total score of T under set scoring (18).

Secondly, writing � for the pro�le�s probability Pr(J1; :::; Jn), the posterior probability

of T 2 J given the pro�le can be written as

Pr(T jJ1; :::; Jn) =
1

�
Pr(T ) Pr(J1; :::; JnjT ) =

1

�
Pr(T )

Y

i2N

Pr(JijT ).

Maximizing this expression (w.r.t. T 2 J ) is equivalent to maximizing its logarithm, and
hence, to maximizing

log Pr(T ) +
X

i2N

log Pr(JijT ) =
X

i2N

(log Pr(JijT ) +
1

n
log Pr(T )),

which is the sum-total score of T under set scoring (19). �
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