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A New Pseudo-Bayesian Model of Investors’
Behavior in Financial Crises

Abstract

In this paper, we introduce a new pseudo-Bayesian model to incorporate the
impact of a financial crisis and establish some properties of stock returns and
investors’ behavior during a financial crisis and subsequent recovery. Our ap-
proach provides a quantitative description for investors’ representative and con-
servative heuristics by assuming that the earnings shock of an asset follows a
modified random walk model to incorporate the impact of a financial crisis
on the earnings of a firm. By using this model setup, we first establish some
properties on the expected earnings shock and its volatility. Thereafter, we de-
rive some properties of investors’ behavior on the stock price and its volatility
during a financial crisis and subsequent recovery. Last, we develop properties
to explain some market anomalies, including short-term underreaction, long-
term overreaction, and excess volatility during a financial crisis and subsequent
recovery.

KEYWORDS: Bayesian model; Representative and conservative heuristics; Un-
derreaction; Overreaction; Stock price; Stock return; financial crisis.

1 Introduction

Explaining market anomalies such as market excess volatility, overreaction, and un-

derreaction is one of the most important issues in finance. Classical theorists of

market rationality (e.g., Fama and French 1996) hypothesize that overreaction and

underreaction can be explained by the efficient market paradigm. On the other hand,

behaviorial economists (e.g., Barberis, Shleifer, and Vishny, 1998) combine psycho-

logical phenomena with finance theories to explain market anomalies such as the

overreaction and underreaction phenomena.

There are five ingredients in the traditional asset-pricing model: (1) an economic

structure for asset price dynamics, (2) rational agents’ beliefs on asset prices, (3) the

structure of market information, (4) rational agents’ predictions by updating their

views based on available information, and (5) rational agents’ investment decisions.

Most behavioral models use the bounded rationalism approach, which could vio-

late some assumptions under rational expectations in traditional asset-pricing theory.
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These assumptions include (1) the agents’ knowledge of the economic structure of

asset price dynamics is correct, (2) agents can process the homogeneously distributed

information immediately, (3) investors update their beliefs using the Bayes rule, and

(4) investors’ choices are determined by Savage’s notion of subjective expected utility.

Violating the assumptions imposed in the rationality paradigm due to behavioral

biases could result in deviating from the traditional asset-pricing theory in a typical

behavioral model. For example, Barberis, Shleifer, and Vishny (1998) assume that

investors adopt conservative and representative heuristics and believe that the earn-

ings announcements follow a random walk and fall into either a trending regime or

a mean-reverting regime; this leads to both short-term underreaction and long-term

overreaction in the market. Daniel, Hirshleifer, and Subrahmanyam (1998) document

that the market exhibits short-term underreaction and long-term overreaction, since

some investors who have private information are overconfident. On the other hand,

Gervais and Odean (2001) argue that insider traders assign excessive weights to their

past successful predictions of a security’s dividend via a learning bias factor and use

an updated probability that is larger than that derived from the Bayes rule. In addi-

tion, Grinblatt and Han (2005) believe that investors refuse to sell in a falling market

because they are unwilling to admit their mistakes.

It has been observed that people are too conservative and slow in changing their

prior beliefs when new information emerges. For example, Edwards (1968) argues that

conservative investors might pay little attention, or even no attention, to the recent

earnings announcements and still hold their prior beliefs based on past earnings in

their valuation of shares. He formally establishes a Bayesian model that put less

weigh on useful statistical evidence and put more weight on investors’ priors. On

the other hand, representative heuristics, the bias by which individuals expect main

population parameters to be “represented” in recent data, have been used in many

experimental studies. For example, Kahneman and Tversky (1973) find that a person

following this heuristic evaluates the probability of an uncertain event by the degree

to which the essential properties resemble its parent population and reflect the salient

features of the process by which it is generated. To handle the issue, Tversky and

Kahneman (1971) suggest that local representativeness is a belief in the “law of small
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numbers,” and investors may find that even small samples are highly representative

of the populations.

Griffin and Tversky (1992) combine conservatism with representativeness by as-

suming that people update their beliefs based on the “strength” (the salient and

extreme aspects of the evidence) and “weight” (the statistical information, such as

sample sizes). In this setup, when revising their forecasts, people overemphasize

the strength of the evidence and de-emphasize its weight. Conservatism would fol-

low when facing evidence with high weight but low strength, whereas overreaction

occurs in a manner consistent with representativeness when the evidence has high

strength but a low weight. Furthermore, Shefrin and Statman (1995) find that in-

vestors rely on representative heuristics in forming expectations because they tend

to regard good stocks as the stocks of large companies with low book-to-market ra-

tios. Barberis, Shleifer and Vishny (1998, henceforth BSV) extend their work by

developing a Bayesian model to explain investors’ behavioral biases by using both

conservatism and representativeness heuristics in making decisions. Lam, Liu, and

Wong (2010, 2012, henceforth LLW) further extend the model to assign weights by

using a pseudo-Bayesian approach that reflects investors’ behavioral biases.

In this paper, we extend the theory to study the impact of investors’ behavior

on stock price and its volatility before and during a financial crisis and subsequent

recovery. We modify LLW’s pseudo-Bayesian approach to provide a quantitative

description of investors’ representative and conservative heuristics by assuming that

the earnings shock of an asset follows a modified random walk model to incorporate

the impact of a financial crisis on the earnings of a firm. In addition, we assume

that the likelihood function for earning shocks of the stock in a Bayesian paradigm

is weighted by investors’ behavioral biases. The degree of deviation of the weights

could quantitatively reflect investors’ level of behavioral biases. By using this model

setting, we establish some properties on the expected earnings shock and its volatility.

This information could then be used to derive some properties of investors’ behavior

on the stock price and its volatility during a financial crisis and subsequent recovery.

Thereafter, we develop properties to explain some market anomalies, including short-

term underreaction, long-term overreaction, and excess volatility during a financial
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crisis and subsequent recovery.

The rest of the paper is organized as follows. In the next section, we present

the asset-pricing theory based on the modified random walk model for the earnings

announcement of an asset. In Section 3, we first discuss the pseudo-Bayesian frame-

work to update information about earning shocks in the asset-pricing theory. We

then develop some properties for the stock returns based on the pseudo-Bayesian

asset-pricing theory. Section 4 is devoted to discussing how cognitive biases are re-

flected in the weight assignment schemes. Thereafter, we will use our proposed model

to explain excess volatility, short-term underreaction, long-term overreaction, and the

magnitude effect during a financial crisis and subsequent recovery in Sections 5 to 7.

The final section gives concluding remarks.

2 Asset Pricing Model With Financial Crisis

The pioneer work from Barberis, Shleifer, and Vishny (1998) considers a model of

market sentiment in which a representative investor observes the earnings of an asset

and updates her belief to value the asset and the earnings announcement of the asset

at time t. Nt is assumed to follow a random walk:

Nt = Nt−1 + yt , (1)

where yt is an earnings shock at time t. Using a discounting model based on rational

expectations (Wong and Chan, 2004), the asset is priced at time t as Pt given by:

Pt = Et

[

Nt+1

1 + r
+

Nt+2

(1 + r)2
+ · · ·

]

=
Nt

r
+

1 + r

r
×

[

Et[yt+1]

1 + r
+

Et[yt+2]

(1 + r)2
+ · · ·

]

, (2)

in which r is the discount rate, or the investor’s anticipated return, which, for simplic-

ity, is assumed to be a positive constant and Et[·] represents the investor’s conditional

expectation given the information set Ωt containing all information available to the

investor at time t. We assume that yt is Ωt-measurable; that is, the value of yt is
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known exactly given information Ωt up to time t inclusively. Consequently, both Nt

and Pt are Ωt-measurable.

In this paper we extend the theory by considering the following modified random

walk model with/without drifts to incorporate the impact of a financial crisis on the

dynamics of the earnings announcement:

Nt =











Nt−1 + yt, t < t0 , t ≥ t2 ;

δ0 + Nt−1 + yt, t0 ≤ t < t1 ;

δ1 + Nt−1 + yt, t1 ≤ t < t2 ;

(3)

in which δ0 < 0 and δ1 > 0. In (3), we consider an economy with four states: normal

economic conditions, economic conditions under a financial crisis, conditions under

recovery, and eventually back to normal economic conditions. We suppose that when

the economy is operating under normal conditions, the earnings announcement of the

asset follows a random walk model, the same as in (1). If the economy is experiencing

a financial crisis starting at time t0, the earnings announcement of the asset after time

t0 is the random walk model with negative drift δ0 in which the one-period conditional

expected earning is discounted by the amount of |δ0| with δ0 < 0. During recovery,

the earnings announcement of the asset will follow another random walk with positive

drift δ1.

The rationale for using this model is to incorporate the impact of a downward

trend and recovery from a financial crisis on the earnings announcement of the asset.

Specifically, when the economy goes into a crisis at time t0, earnings are expected

to fall and the stock market starts to crash at that time. At time t1, the economy

is expected to recover, earnings are expected to rise, and thus, stock prices start to

rise. From time t2 onward, the economy then becomes stable and stock prices follow

the random walk without drift again. We note that the random walk model after the

recovery from a financial crisis could be different from the model before the financial

crisis. However, without loss of generality, we assume these two models are the same

because the conclusion drawn from different random walk models before and after

the financial crisis is the same as that drawn from the same random walk model.

Barberis, Shleifer and Vishny (1998) assume that the earnings shock is indepen-

dent and follows a distribution with equal chance on discrete values y0 or −y0. Lam,
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Liu, and Wong (2010, 2012) relax this assumption to let the earnings shock follow a

normal distribution. In this paper, we further relax the assumption to assume that

the earnings shock follows an exponential family distribution. We then apply the

pseudo-Bayesian framework to study price behavior after a financial crisis and will

present the results in Section 3. We first state our modified assumptions as follows:

Assumption 1: The earnings announcement process {Nt} may follow a random walk

model in (1) or the random walk model with drifts δ0 and δ1 as stated in (3).

Furthermore, the earnings shocks {yt} are a sequence of independent and iden-

tically distributed (i.i.d.) random variables following an exponential family dis-

tribution:

yt ∼ f(yt) = exp {(ytθ − b(θ))/a(φ) + c(yt; φ)} , (4)

where θ is the canonical parameter, a(> 0), b, and c are known functions, and

φ is the dispersion parameter. The dispersion parameter is assumed to be a

constant, either known or considered as a nuisance parameter.

Assumption 2: The representative agent knows the nature of the random walk model,

except that the mean µ is unknown. The agent estimates µ using observations

about the earning shocks {yt}. We assume that the agent knows the value of σ2
y.

Assumption 3: The agent uses a “biased” statistical method to update her belief in

a way that reflects the agent’s behavioral bias.

We note that in Assumption 1, we relax BSV’s Bernoulli assumption and LLW’s

normality assumption to use the exponential family distribution. The advantage

of using the exponential family distribution is that it is the most commonly used

continuous distribution, including normal, gamma, and other distributions, and thus,

it can fit into situations with symmetric as well as asymmetric distributions. We

further note that this relaxation is very important because it is well known that

market information could be asymmetric. A bear market will be more sensitive to

bad news while a bull market is more sensitive to good news. We also note that, for an

exponential family distribution, the mean µ = b′(θ) and the variance σ2
y = b′′(θ)a(φ).
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3 A Pseudo-Bayesian Approach and Properties of

Stock Returns

By the standard and rational Bayesian approach to updating information on the

mean level of the earnings shock, one could consider a vague, or improper, prior for

the unknown mean µ; that is,

P0(µ) ∝ 1 ,

see, for example, Matsumura, Tsui and Wong (1990) for related discussions. The

likelihood function of µ given the observed earning shocks {yt} is:

L(y1, y2, · · · , yt|µ) =
t

∏

i=1

L
(

yt−i+1|µ
)

. (5)

It is well known that by applying the Bayes formula, the posterior distribution of µ

given {y1, y2, · · · , yt} is:

P
(

µ | y1, y2, · · · , yt

)

∝

t
∏

i=1

L
(

yt−i+1 | µ
)

. (6)

In this standard Bayesian approach, an equal weight is placed on each observation

in y1, y2, · · · , yt. Consistent with the traditional efficient market hypothesis,1 the ra-

tional expectations asset-pricing theory assumes that investors can have access both

to the correct specification of the “true” economic model and to unbiased estimators

of the model parameters (Friedman, 1979). If a rational investor is endowed with an

objectively correct prior and the correct likelihood function, she will obtain the ra-

tional expectation equilibrium and, consequently, any structural irrationally inducing

financial anomaly would disappear.

Violation of the rational expectation solution has been studied widely in the lit-

erature. For example, Blume and Easley (1982) show that if investors do not recog-

nize the effect of learning on prices to obtain equilibrium, convergence of beliefs is

not guaranteed within a general equilibrium learning model. Furthermore, Bray and

Kreps (1987) observe that investors recognize and incorporate how their beliefs about

1Readers may refer to Chan, de Peretti, Qiao, and Wong (2012) and the references therein for
more information.
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the unknown essential features of an economy influence the structural model of the

economy. However, the extreme knowledge required in these models is implausible.

As evidence has mounted against the traditional Bayesian model, theories to ex-

plain financial anomalies have been developed by relaxing some of those assumptions

imposed in the standard theories. One approach is to assume that investors are

plagued with cognitive biases (Slovic, 1972) and they may incorrectly assign different

weights to different observations. To model such behavioral biases, in this paper we

follow LLW to assume that investors place weight ω1 on the most recent observation

yt, ω2 on the second most recent observation yt−1 , and so on, with the possibility

that ωi’s may not equal 1. We consider the following weighted likelihood function

associated with the vector of weights ω := (ω1, ω2, · · · , ωt):

Lω(y1, y2, · · · , yt|µ) =
t

∏

i=1

L
(

yt−i+1|µ
)ωi , (7)

in which Lω represents the weighted likelihood function depending on the subjective

weighted ω. By the Bayes formula, the posterior distribution of µ given {yt} becomes:

P
(

µ | y1, · · · , yt

)

∝

t
∏

i=1

L
(

yt−i+1 | µ
)ωi . (8)

Consequently, obtaining the posterior mean and posterior variance of the unknown

mean µ from the posterior distribution of µ, we establish the price and return dynam-

ics of the stock under the behavioral model as shown in the following proposition:

Proposition 1 (Price and return dynamics in the pseudo-Bayesian ap-

proach) Under a pseudo-Bayesian approach with a vague prior, the random walk

Nt stated in (1) or (3), and an incorrect likelihood Lω(µ) stated in (7), for any k ≥ 1,

the predictive mean Et[yt+k] of the future earning shock yt+k given {y1, y2, · · · , yt},

and the posterior variance σ2
t of µ given {y1, y2, · · · , yt} are, respectively, given by:

Et[yt+k] =
ωty1 + · · · + ω1yt

st

:= dt and σ2
t =

σ2
yst

∑t

i=1 ω2
i

, (9)

where st = Σt
i=1ωi.
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Lam, Liu, and Wong (2010, 2012) develop the results of the rational expectations

pricing model in (2) when the random walk {Nt} follows (1), whereas Fung, Lam,

Siu, and Wong (FLSW, 2011) extend LLW’s work by developing the results of the

rational expectations pricing model when the random walk {Nt} follows (3). In their

work, they assume that the earnings shock is normally distributed. In this paper,

by applying Proposition 1 and assuming the earnings shock yt follows an exponential

family distribution (4), we extend FLSW’s work to relax the normality assumption

and obtain the following proposition:

Proposition 2 Under the assumptions stated in Proposition 1, we have

a. if the random walk {Nt} follows (1), then the price at time t using the rational

expectations pricing model in (2) becomes:

Et

[

Pt+k

(1 + r)k

]

=
Nt

r(1 + r)k
+

[(1 + k)r + 1]dt

r2(1 + r)k
, and (10)

b. if the random walk {Nt} follows (3), then the price at time t using the rational
expectations pricing model in (2) is given by:

Et

[

Pt+k

(1 + r)k

]

=
Nt

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
+



























































































δ0
r2(1+r)bt−2

[

(r + 1)bt−at − 1
]

+ δ1
(r+1)ct−2r2

(

(r + 1)ct−bt − 1
)

if t < t + k < t0
δ0

r2(1+r)bt−2

[

(r + 1)bt−k−2([k + 2 − at]r + 1) − 1
]

+ δ1
(r+1)ct−2r2

(

(r + 1)ct−bt − 1
)

if t < t0 ≤ t + k < t1
(bt−at)δ0
r(1+r)k

+ δ1
r2(1+r)ct−2

[

(r + 1)ct−k−2([k + 2 − bt]r + 1) − 1
]

if t < t0, t1 ≤ t + k < t2
(bt−at)δ0+(ct−bt)δ1

r(1+r)k
if t < t0, t2 ≤ t + k

δ0
r2(1+r)bt−2

[

(r + 1)bt−k−2([k + 1]r + 1) − 1
]

+ δ1
(r+1)ct−2r2

(

(r + 1)ct−bt − 1
)

if t0 ≤ t < t + k < t1
δ0(bt−1)

r(1+r)k
+ δ1

(r+1)ct−2r2

(

(r + 1)ct−k−2([k + 2 − bt]r + 1) − 1
)

if t0 ≤ t < t1 ≤ t + k < t2
δ0(bt−1)+δ1(ct−bt)

r(1+r)k
if t0 ≤ t < t1, t2 ≤ t + k

δ1
(r+1)ct−2r2

(

(r + 1)ct−2−k([k + 1]r + 1) − 1
)

if t1 ≤ t < t + k < t2
δ1(ct−1)

r(1+r)k
if t1 ≤ t < t2 ≤ t + k

0 if t2 ≤ t < t + k ,

(11)

where at = max{⌈t0 − t⌉ , 0}, bt = max{⌈t1 − t⌉ , 0}, ct = max{⌈t2 − t⌉ , 0},

and dt = ωty1+···+ω1yt

st
.

We note that FLSW consider the situation in which there is a crash but no recovery.

We believe that this is not reasonable, and thus, we skip discussing this situation.
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From Proposition 2, we observe that the conditional expected present value of the

asset at time t+k given information Ωt depends on the current and the future earnings

shocks. For example, in the simplest random walk model as stated in (1), the current

earnings announcement depends only on the current earnings announcement and the

current as well as the expected future earning shocks. However, it is generally believed

that the price of the asset also depends on the economic situation. In the view of

economic cycles, the economy will experience an expansion period after suffering a

period of financial recession. Furthermore, the economy will eventually go back to

normal. The present value of the asset is, therefore, proportional to the predictive

mean of the future earning shocks, the current earnings announcement, the duration

of the economic recovery, and the recovery rate of the economy. It is also inversely

proportional to the risk-free interest rate, the duration of the economic downturn,

and the deteriorating rate under economic crisis.

To describe this situation, we let the random walk {Nt} follow (3). Under this

circumstance, when the current economy is in the state just before the economic

downturn or during the recession, the price of the asset depends not only on the

current earnings announcement, the predictive mean of the future earning shocks,

and the risk-free interest rate but also on how long and how serious is the impact

of both the economic turmoil and the economic expansion on the price of the asset.

If the duration of the economic turmoil is long or the effect of the economic turmoil

is serious, the price of the asset falls. This is reflected in the coefficients of δ0 and

δ1, respectively. Similarly, the coefficient of δ1 is determined by the duration of

the economic expansion, while the value of δ1 depends on the level of the economic

expansion. In particular, when we are in the economic expansion period, (i.e., t1 ≤

t < t2), the effect of the term δ0 vanishes, and only the term δ1 reflects the effect of

the economy’s shift. Thereafter, if the bad days and the good days of the economy

are all gone (i.e., t2 ≤ t), the estimation of the price of the asset is the same as that

obtained from the random walk, {Nt}, from (1).

10



4 How are Cognitive Biases Reflected in the Weight

Assignment Schemes?

In the model setup discussed in the previous sections, we incorporate general weights

on observations into a simple asset-pricing model. This allows us to examine the

price formation process under a rational expectations approach with biased weights

in which investors, with or without cognitive biases, incorporate their prior beliefs

into the historical data to estimate the valuation-relevant parameters that can lead

to anomalous asset-price behavior.

Brav and Heaton (2002) consider weights given by ω1 = · · · = ω t
2

= 1 and ω t
2

=

· · · = ωt = 0, where t is an even number. In this paper, we follow LLW to use

a more general assumption that investors may use weights, ω1, ω2, · · · , satisfying

0 ≤ ωi ≤ 1 for all i. By allowing more flexibility in the choice of weights, we can

represent investors’ various behavioral biases quantitatively. Specifically, in (A), (B),

and (C) below, we state the the following weight assignment schemes to characterize

the conservative and/or representative heuristics in the following definition:

Definition 1

(A) Investors using a conservative heuristic assign weights as: 0 ≤ ω1 ≤ ω2 ≤ · · · ≤

ωn0 = ωn0+1 = · · · = 1 for an integer n0 ≥ 1.

(B) Investors using a representative heuristic assign weights as: 1 = ω1 = ω2 =

· · · = ωm0 ≥ ωm0+1 ≥ ωm0+2 ≥ · · · ≥ 0 where m0 is a positive integer.

(C) Investors using both conservative and representative heuristics assign weights as:

0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωn0 = ωn0+1 = · · · = ωm0 = 1 ≥ ωm0+1 ≥ · · · ≥ 0 for

1 ≤ n0 ≤ m0.

By using Scheme A, we could measure investors’ conservative heuristics because

those who are over-conservative will underweigh recent information and overweigh

prior information. The parameter n0 reflects the conservative heuristic in which

the most recent n0 observations are underweighed. If Edwards (1968) is right in

noting that it takes two to five observations to do one observation’s worth of work
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in inducing a subject to change her opinions, then some of ω1, ω2 , · · · , ωn0 could be

substantially less than 1 for n0 ≤ 5. The smaller the weights, the more conservative

the investors. Thus, the magnitudes of the weights ω1, ω2 , · · · , ωn0 can be used

to measure the degree of conservatism. The evidence suggests that underreaction

reflects the uncertainty regarding a possible structural change in the data and a lack

of knowledge that a change occurred. This will result in a failure to fully incorporate

the price implications of this change into the estimation of the valuation-relevant

parameters.

The weight assignment in Scheme B is consistent with the psychological literature

on the representative heuristic. The representative heuristic is often described as

the tendency of experimental subjects to overweigh recent clusters of observations

and underweigh older observations that would otherwise moderate beliefs. Heavy

weights on recent data could be a reaction to a concern about structural changes.

The representative heuristic is characterized by a parameter m0 showing that the

investor underweighs the observations beyond the most recent m0 data points. Here,

the parameter m0 arises from the “law of small numbers” (Tversky and Kahneman,

1971) in the mind of the investor. Because of their representative heuristic, investors

have the tendency to treat a small sample size, like m0, as if it is large enough to

represent the whole population. Consequently, they assign weights much smaller than

1 for observations beyond the most recent m0 observations.

Our model formulation assumes that investors exhibit both conservative and rep-

resentativeness heuristics. This is different from the regime-switching formulation in

BSV in which investors are under the influence of one heuristic and then suddenly

shift to another regime of being influenced by another heuristic. In other words,

conservatism and representativeness are not mutually exclusive, and investors can be

simultaneously influenced by both heuristics at any point in time. When the investor

is under the influence of both heuristics, the model has two parameters n0 and m0 as

described above. Here, conservatism is reflected by the existence of n0 > 0 and the

smallness of the sum ω1 + ω2 + · · ·+ ωn0−1, and representativeness is reflected by the

existence of m0 < ∞ and the smallness of the sum ωm0+1 + ωm0+2 + · · · . Notice that

investors of Type C described in Definition 1 degenerate into Type A investors when
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m0 = ∞ and degenerate into Type B investors when n0 = 0. Also when m0 = ∞

and n0 = 0, all weights are equal to 1 and the investor has no behavioral bias. In this

sense, the third type of investor embraces all of the other types. Therefore, in this

paper we only consider investors of the third type.

5 Inference on Market Volatility

According to Proposition 2, whatever the random walk {Nt} follows, we can have

Et[Pt+k] =
Nt

r
+

[r(1 + k) + 1]dt

r2
+ ck

where ck may vary in different situations as described in Proposition 2. For Pt, we

can have Pt = Nt

r
+ (r+1)dt

r2 + c0 and Pt+1 = Nt+1

r
+ (r+1)dt+1

r2 + c1, where c0 and c1 are

constants and may have different values in different situations. Consequently, for the

1-period return Rt,t+1 = Pt+1 − Pt, we can have the following result:

Rt,t+1 =
1 + r

r2

[

(
ωt+1

st+1

−
ωt

st

)y1 + · · · + (
ω2

st+1

−
ω1

st

)yt

]

+ (
1

r
+

1 + r

r2

ω1

st+1

)yt+1

+c1 − c0.

From this result, we obtain the following proposition for the inference on market

volatility:

Proposition 3 Under the assumptions stated in Proposition 2, we have

a. if st → ∞, then the market volatility V ar(Rt,t+1) →
σ2

y

r2 , and

b. if behavioral biases are severe, i.e., st → s∞ < ∞, then the market volatility

V ar(Rt,t+1) is given by

[ 1

r2
+ 2

1

r

1 + r

r2

s1

s∞

]

σ2
y +

(1 + r)2

r4

1

s2
∞

A∞σ2
y , (12)

where A∞ = ω2
1 +

∑∞

t=1(ωt+1 − ωt)
2.

In addition, from Proposition 3, one could easily obtain some interesting observa-

tions about excess volatility as stated in the following property:

13



Property 4 Under the assumptions stated in Proposition 2, we have

Observation 1: Excess volatility is a decreasing function of the discount rate or

investors’ anticipated return r.

Observation 2: Conservative heuristics will reduce excess volatility.

Observation 3: Representative heuristics will increase excess volatility.

Observation 4: Observations 1-3 hold regardless of the symmetric/asymmetric in-

formation on the signs of the earnings shock.

Observation 5: Observations 1-3 hold in the normal economic situation, as well as

during the crash or during the recovery of the economy.

One could obtain Observation 1 by conducting some simple computation. We

provide some remarks for Observations 2 and 3 as follows: If investors adopt a con-

servative heuristic, then they will choose a positive integer n0 and assign the following

weights: 0 ≤ ω1 < ω2 < · · · < ωn0 = ωn0+1 = · · · = 1. This leads to st → ∞, and

thus, the excess volatility V ar(Rt,t+1) →
σ2

y

r2 . On the other hand, if investors se-

lect a representative heuristic, they will choose a positive integer m0 and assign the

weights 1 = ω1 = ω2 = · · · = ωm0 > ωm0+1 > ωm0+2 > · · · ≥ 0. In this situa-

tion, if the behavioral biases are severe, then ωi are very close to 0 for any i > m0

and st → s∞ < ∞. Thus, the excess volatility will appear in the form of (12)

and can be larger than that in the conservative heuristic case. For the third case,

investors adopt both conservative and representative heuristics, and thus, they will

choose both n0 and m0 such that 1 ≤ n0 ≤ m0 and assign the following weights:

0 ≤ ω1 < ω2 < · · · < ωn0 = ωn0+1 = · · · = ωm0 = 1 > ωm0+1 > · · · ≥ 0. Their market

volatility will be larger than that in the conservative heuristic case but smaller than

that in the representative heuristic case. If ωi are very close to zero for any i with

m0 < i < n0, then st → s∞ < ∞, and consequently, the excess volatility will also

appear in the form of (12). In this situation, it will be larger than
σ2

y

r2 . However, when

compared with the representative heuristic, because 0 ≤ ω1 < 1, the terms A∞ and

s1

s∞
will be smaller than those of the representative heuristic, and thus, reduce its

excess volatility.
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One may think that different market situations and different shapes of the earnings

shock would lead to different excess volatility. For example, one may think that during

a market crash, excess volatility would increase sharply. However, Observations 4 and

5 tell us that this is not the case. We note that this does not mean that different

market situations and different shapes of the earnings shock have no effect on excess

volatility. These observations only tell us that the effects of different market situations

and different shapes of the earnings shock are already reflected in the use of different

heuristics. It does have an effect on excess volatility. For example, when the market

is going to crash, investors realize that they could lose most of their investment

if they do not sell their stocks. This means that investors will count the recent

observations more, and thus, they select representative heuristics. In this situation,

from Observation 3, excess volatility is increasing. Thus, the theory developed from

our model could be used to explain the empirical situation as well.

6 Inference on Underreaction and Overreaction

To examine the underreaction and overreaction phenomenon, we first define the lag-

one autocovariance, γk
1 , of the k-period return as

γk
1 = Cov(Rt,t+k, Rt,t−k)

where Rt,t+k is the k-period return and Rt,t−k is the k-period return from time t − k

to time t. The lag-one autocorrelation, ρk
1, of the k-period return is then defined as

ρk
1 =

Cov(Rt,t+k, Rt,t−k)
√

V ar(Rt,t+k)V ar(Rt,t−k)
. (13)

Because underreaction is associated with positive autocorrelation and overreaction

is associated with negative autocorrelation, we define short-term underreaction and

long-term overreaction as follows:

Definition 2 Prices of a single asset exhibit

a. a short-term underreaction if ρk
1 > 0 for sufficiently small k, and

b. a long-term overreaction if ρk
1 < 0 for sufficiently large k,
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where ρk
1 is defined in (13).

Based on the above definition, we establish the following proposition for the short-

term underreaction and the long-term overreaction:

Proposition 5 Under the assumptions stated in Proposition 2, if investors possess

both conservative and representative heuristics, then prices exhibit short-term under-

reaction and long-term overreaction in terms of return autocorrelations. Specifically,

there exist positive integers K1 and K2 such that for sufficiently large t , we have
{

ρk
1 > 0 k ≤ K1,

ρk
1 < 0 k > K2,

(14)

where ρk
1 is defined in (13). Furthermore, the correlation coefficients above are non-

trivial for sufficiently large t , i.e., the limiting correlation coefficients for t → ∞ are

non-zero.

In addition, the results in (14) hold regardless of the symmetric/asymmetric in-

formation on the signs of the earnings shock and they hold under normal economic

conditions as well as during a crash or during a recovery.

Lam, Liu, and Wong (2010) have shown that the results in (14) hold under normal

economic conditions. We note that it is natural that the results in (14) hold for the

asymmetric information on the signs of the earnings shock and under normal economic

conditions as well as during a crash or during a recovery. For example, during a crash

it is generally common for stock prices to fall day after day. This is exactly what

is shown in Proposition 5: that ρk
1 > 0 for k ≤ K1 for some small integers K1; this

condition holds during the recovery of the economy as well. On the other hand, during

a crash, one would expect the market to recover after some time; this is exactly what

is shown in Proposition 5: that ρk
1 < 0 for k > K2 for some large values K2. Similarly,

during a recovery, one would expect that a recession could arise in the future; this is

also exactly what is shown in Proposition 5: that ρk
1 < 0 for k > K2 for some large

values K2. Similar arguments hold true for the asymmetric information on the signs

of the earnings shock. For example, bad news arriving after bad news will result in

a further decline in stock price. This is exactly what is shown in Proposition 5: that

ρk
1 > 0 for k ≤ K1 for some small integers K1.
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We now adopt the event approach used by BSV to describe under- and overre-

action. It is well known that sometimes the average return on a company’s stock in

a period following an announcement of good news is higher than that in a period

following an announcement of bad news, whereas sometimes the average return fol-

lowing a series of good news announcements turns out to be lower than that following

a series of bad news announcements. The market is said to be underreacting in the

former situation and overreacting in the latter situation. We follow the approach

used by BSV to quantify such under- and overreaction by considering the difference

in average returns after a string of good or bad news denoted as follows:

Ut(s, j) = E{Rt+1|yt > µ + sσy, · · · , yt−j+1 > µ + sσy}

−E{Rt+1|yt < µ − sσy, · · · , yt−j+1 < µ − sσy}, (15)

where j represents the time length of the string of good or bad news and s represents

the intensity of the news content. The quantity Ut(s, j) defined in (15) represents the

expected profit of a momentum trading strategy that dictates buying when there is

a string of good news and selling when there is a string of bad news. On the other

hand, if one adopts a contrarian trading strategy of selling when there is a string

of good news and buying when there is a string of bad news, the expected profit

of such a contrarian trading strategy is represented by −Ut(s, j). We can use the

sign of Ut(s, j) to measure underreaction and overreaction as stated in the following

definition:

Definition 3 Prices exhibit

a. a short-term underreaction if Ut(s, j) > 0 for sufficiently small j, and

b. a long-term overreaction if Ut(s, j) < 0 for sufficiently large j.

Using the above definition, we establish the following proposition:

Proposition 6 Under the assumptions stated in Proposition 2, if investors pos-

sess both conservative and representative heuristics, modeling by a weight assignment

scheme (C), we have
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a. prices exhibit short-term underreaction and long-term overreaction using an

event approach. Specifically, there exist integers J1 and J2 such that for a given

s > 0 and for large t , we have

{

Ut(s, j) > 0, j ≤ J1,
Ut(s, j) < 0, j ≥ J2,

(16)

where Ut(s, j) is defined in (15), and

b. the expected momentum trading profit Ut(s, j) is non-trivial when t tends to

infinity, i.e., the limiting trading profit is non-zero for t → ∞.

c. In addition, the results in (a) and (b) hold regardless of the symmetric/asymmetric

information on the signs of the earnings shock, and

d. the results in (a) and (b) hold under normal economic conditions as well as

during a crash or during a recovery.

I is observed that the representative heuristic contributes to the contrarian profit,

whereas the conservative heuristic contributes to the momentum profit. Proposition

6 also links investors’ irrational cognitive biases to financial anomalies of overreaction

and underreaction by showing that overreaction occurs after long periods of good or

bad performance, while underreaction happens after short periods of good or bad

performance. In addition, Proposition 6 provides good insights into how the contrar-

ian and momentum profits arise. The representative heuristic has to overpower the

conservative heuristic for a contrarian profit to surface. The long-run assumption is

necessary for a contrarian profit because under a long-run situation, the represen-

tativeness bias will become noticeable. Another interesting observation is that both

momentum and contrarian profits are sensitive to the discount rate r. The smaller the

discount rate, the larger the momentum and contrarian profits. This is because when

r is small, future cash flows become important, and a mis-estimation of future cash

flows will intensify the over- or underreaction phenomena. Last, Proposition 6 shows

that these properties hold true for asymmetric as well as symmetric information on

the signs of the earnings shock and they hold under normal economic conditions as

well as during a crash or during a recovery.
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7 Inference on Magnitude Effect

If the momentum (contrarian) profit Ut(s, j) (-Ut(s, j)) increases as s or j increases,

we say the profit possesses a magnitude effect in s or j. The following propositions

state the magnitude effect for investors using both conservative and representative

heuristics.

Proposition 7 (a magnitude effect in s). Under the assumptions stated in Propo-

sition 2, if investors possess both conservative and representative heuristics, both the

long-term overreaction and the short-term underreaction established in Proposition 6

will exhibit a magnitude effect in s. Specifically, there exist integers J1 and J2 such

that

a. the momentum profit Ut(s, j) is positive and is monotonically increasing with s

for any sufficiently small t and for any j < J1 , and

b. the contrarian profit −Ut(s, j) is positive and is monotonically increasing with

s for any sufficiently large t, and for any j > J2.

c. In addition, the result of the momentum profit stated in (a) and the results of

the contrarian profit stated in (b) hold regardless of the symmetric/asymmetric

information on the signs of the earnings shock, and

d. the result of the momentum profit stated in (a) and the results of the contrarian

profit stated in (b) hold under normal economic conditions as well as during a

crash or during a recovery.

Proposition 8 (a magnitude effect in j). Under the assumptions stated in Propo-

sition 7,

a. when j is sufficiently small, the momentum profit based on j consecutive good

or bad news increases as j decreases; and

b. when j is sufficiently large, the contrarian profit based on j consecutive good or

bad news increases as j increases.
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c. In addition, the result of the momentum profit stated in (a) and the results of

the contrarian profit stated in (b) hold regardless of the symmetric/asymmetric

information on the signs of the earnings shock, and

d. the result of the momentum profit stated in (a) and the results of the contrarian

profit stated in (b) hold under normal economic conditions as well as during a

crash or during a recovery.

8 Concluding Remarks

Barberis, Shleifer and Vishny (1998) and others have developed Bayesian models to

explain investors’ behavioral biases by using conservative heuristics and representative

heuristics in making decisions. In this paper, we extend the theory to study the

impact of investors’ behavior on the stock price and its volatility before and during

a financial crisis and subsequent recovery. We assume that (1) investors exhibit

both conservative and representative heuristics that lead them to underweigh recent

observations and past observations of the earnings shocks of corporations, (2) the

earnings shock of an asset follows a modified random walk model to incorporate the

impact of a financial crisis on the earnings of a firm, and (3) the likelihood function

for earning shocks of the stock in a Bayesian paradigm is weighted by investors’

behavioral biases. By using this model setting, we establish some properties on the

expected earnings shock and its volatility. This information is then used to derive

some properties of investors’ behavior on the stock price and its volatility during a

financial crisis and subsequent recovery. Thereafter, we use these properties to explain

some market anomalies, including short-term underreaction, long-term overreaction,

and excess volatility during a financial crisis and subsequent recovery.

Understanding investors’ behavior will be useful in making decisions about in-

vestments. The information on companies, (Thompson and Wong, 1991, 1996), the

economic and financial environment (Broll, Wahl and Wong, 2006; Fong, Lean, and

Wong, 2008), technical analysis (Wong, Manzur, and Chew, 2003) could be used
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to make better investment decisions. Academic researchers and practitioners could

incorporate the theory developed in this paper with the mean-variance rule (Wong,

2007; Wong and Ma, 2008; Bai, Hui, Wong, and Zitikis, 2012), CAPM statistics (Le-

ung and Wong, 2008), VaR rule (Ma and Wong, 2010), portfolio optimization (Bai,

Liu, and Wong, 2009, 2011; Egozcue and Wong, 2010; Broll, Egozcue, Wong, and

Zitikis), or other advanced econometric techniques (Wong and Miller, 1990; Li and

Lam, 1995; So, Lam and Li, 1998; Bai, Li, Liu, and Wong, 2011) to make better

investment decisions. Another extension to improve investment decision-making is

to study the behavior of different types of investors (Wong and Li, 1999; Li and

Wong, 1999; Wong and Chan, 2008) or to incorporate stochastic dominance criteria

(Gasbarro, Wong and Zumwalt, 2007; Post, 2003; Wong, Phoon, and Lean, 2008) to

study investors’ conservative and representative heuristics. For example, based on

the empirical study on momentum profit from Fong, Wong, and Lean (2005), and

Sriboonchitta, Wong, Dhompongsa, and Nguyen (2009) conclude that risk averters

prefer to invest in winner portfolios, while risk seekers prefer to invest in loser port-

folios. This finding could explain why the momentum profit could still exist after

discovery. In addition, recently, Qiao, Clark, and Wong (2012) examine the Taiwan

spot and futures markets and conclude that risk averters prefer to invest in the spot

market, whereas risk seekers prefer to invest in the futures market.
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