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On the Third Order Stochastic Dominance for

Risk-Averse and Risk-seeking Investors

Abstract

This paper studies some properties of stochastic dominance (SD) for risk-averse

and risk-seeking investors, especially for the third order SD (TSD). We call the

former ascending stochastic dominance (ASD) and the latter descending stochastic

dominance (DSD). We first discuss the basic property of ASD and DSD linking the

ASD and DSD of the first three orders to expected-utility maximization for risk-

averse and risk-seeking investors. Thereafter, we prove that a hierarchy exists in

both ASD and DSD relationships and that the higher orders of ASD and DSD cannot

be replaced by the lower orders of ASD and DSD. Furthermore, we study conditions

in which third order ASD preferences will be ‘the opposite of’ or ‘the same as’ their

counterpart third order DSD preferences. In addition, we construct examples to

illustrate all the properties developed in this paper. The theory developed in this

paper provides investors with tools to identify first, second, and third order ASD

and DSD prospects and thus they could make wiser choices on their investment

decision.

Keywords: Third order stochastic dominance, ascending stochastic dominance,

descending stochastic dominance, expected-utility maximization, risk averters, risk

seekers.



1 Introduction

According to the von Neuman and Morgenstern (1944) expected utility theory, the func-

tions for risk averters and risk seekers are concave and convex respectively, and both are

increasing functions. In this context stochastic dominance (SD) theory has generated a

rich and growing academic literature. Linking SD theory to the selection rules for risk

averters under different restrictions on the utility functions include Quirk and Saposnik

(1962), Fishburn (1964), Hanoch and Levy (1969), Whitmore (1970), Hammond (1974)

and Tesfatsion (1976). Linking SD theory to the selection rules for risk seekers include

Hammond (1974), Meyer (1977), Stoyan (1983), Wong and Li (1999), Anderson (2004),

and Wong (2007).

There are numerous developments in theory and applications for stochastic Domi-

nance. Most of them are related up to second order stochastic Dominance. Studying of

third order stochastic Dominance (TSD) are relative rare. Here we list some of the study

in TSD. For example, Whitmore (1970) first introduces the concept of third order TSD.

Bawa (1975) proves that the TSD rule is the optimal rule when comparing uncertain

prospects with equal means. He also demonstrates that third-order stochastic dominance

implies dominance under mean-lower partial variance rule. Fishburn and Vickson (1978)

show that TSD and DARA stochastic dominance are equivalent concepts when the means

of the random alternatives are equal to one another. Bawa, et al. (1979) develop algorithm

to obtain the second and third order stochastic dominance admissible Sets by using the

empirical distribution function for each stock as a surrogate for the true but unknown

distribution. Eeckhoudt and Kimball (1992) make the stronger assumption that the dis-

tribution of background risk conditional upon a given level of insurable loss deteriorates

in the sense of third-order stochastic dominance as the amount of insurable loss increases.

There are some studies on the TSD for both risk averters and risk seekers. For example,

Wong and Li (1999) extend the first and second order convex stochastic dominance theory

for risk averters developed by Fishburn (1974) to the first three orders for both risk

averters and risk seekers. Li and Wong (1999) extend the theory of stochastic dominance

and diversification for risk averters developed by Hadar and Russell (1971) and others by

including the third order SD and including the theory to examine the preferences for risk
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seekers. Wong (2007) further extends the SD theory of the first three orders to compare

both return and loss.

There are also some applications of TSD theory or link TSD theory to other theories.

For example, Gotoh and Konno (2000) show that portfolios son a significant portion of

the efficient frontier generated by mean-lower semi-skewness model are efficient in the

sense of third degree stochastic dominance. They also prove that the portfolios generated

by mean-variance-skewness model are semi-efficient in the sense of third degree stochastic

dominance. Using stock index data for 24 countries over the period 1989-2001, Fong, et

al. (2005) show that winner portfolios stochastically dominate loser portfolios at second

and third order. By considering second- and third-order stochastic dominance, Gasbarro,

et al. (2007) determine whether investors could increase their utility by switching from

one fund to another. Zagst and Kraus (2011) derive parameter conditions implying the

second- and third-order stochastic dominance of the Constant Proportion Portfolio In-

surance strategy. TSD has been promoted as a normative criterion to refine the partial

ordering over income distributions (Davies and Hoy, 1994). In addition, Le Breton and

Peluso (2009) introduce the concepts of strong and local third-degree stochastic dominance

and characterize them in the spirit of the Lorenz characterization of the second-degree

stochastic order. Ng (2000) constructs two examples in the third order stochastic domi-

nance. Thorlund-Petersen (2001) develops the necessary and sufficient conditions for third

order SD and provides provide a simple set of axioms for convexity of the marginal utility

function of income.

This paper studies some properties of SD for risk-averse and risk-seeking investors, es-

pecially for TSD. We call the former ascending stochastic dominance (ASD) and the latter

descending stochastic dominance (DSD). We first discuss the basic property of ASD and

DSD linking the ASD and DSD of the first three orders to expected-utility maximization

for risk-averse and risk-seeking investors. Thereafter, we prove that a hierarchy exists in

both ASD and DSD relationships and that the higher orders of ASD and DSD cannot

be replaced by the lower orders of ASD and DSD. Furthermore, we study conditions in

which third order ASD (TASD) preferences will be ‘the opposite of’ or ‘the same as’ their

counterpart third order DSD (TDSD) preferences. In addition, we provide examples to

illustrate each case of ASD and DSD to the first three orders and demonstrate that the
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higher order ASD and DSD cannot be replaced by the lower order ASD and DSD, pro-

vide examples to illustrate that TASD could be ‘the opposite of’ or ‘the same as’ their

counterpart TASD, and provide example to illustrate existence of TASD (TDSD) does

not imply the existence of its counterpart TDSD (TASD).

The paper is organized as follows. We begin by introducing definitions and notations in

the next section. Section 3 develops several theorems and properties for the ASD and DSD.

Section 4 provides examples for ASD and DSD to illustrate all the properties developed

in this paper. Section 5 concludes our findings.

2 Definitions and Notations

Let R be the set of extended real numbers and Ω = [a, b] be a subset of R in which a < b.

Let B be the Borel σ-field of Ω and µ be a measure on (Ω, B). We first define the functions

FA and FD of the measure µ on the support Ω as

FA
1 (x) ≡ F (x) ≡ µ[a, x] and FD

1 (x) ≡ µ[x, b] for all x ∈ Ω . (2.1)

Function F is a cumulative distribution function (CDF)1 or simply distribution function

and µ is a probability measure if µ(Ω) = 1. All functions are assumed to be measurable and

all random variables are assumed to satisfy FA
1 (a) = 0 and FD

1 (b) = 0. It is well known in

probability theory that for any random variable X with an associated probability measure

P , there exists a unique induced probability measure µ on (Ω, B) and a distribution

function F such that F satisfies (2.1) and µ(B) = P (X−1(B)) = P (X ∈ B) for any

B ∈ B.

An integral written in the form of
∫

A
f(t) d µ(t) or

∫

A
f(t) dF (t) is a Lebesgue-Stieltjes

integral for integrable function f(t). If the integrals have the same value for all A among

(c, d], [c, d), or [c, d], then we use the notation
∫ d

c
f(t) d µ(t) instead. In addition, if µ is a

Borel measure with µ(c, d] = d − c, then we write the integral as
∫ d

c
f(t) dt.

Random variables, denoted by X and Y , defined on Ω are considered together with

their corresponding distribution functions F and G, and their corresponding probability

density functions f and g, respectively. The following notations will be used throughout

this paper:

1In this paper, the definition of F is slightly different from the “traditional” definition of a distribution

function.
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µF = µX = E(X) =

∫ b

a

t d F (t) , µG = µY = E(Y ) =

∫ b

a

t d G(t) ,

HA
j (x) =

∫ x

a

HA
j−1(y) dy , HD

j (x) =

∫ b

x

HD
j−1(y) dy j = 2, 3; (2.2)

h(x) = HA
0 (x) = HD

0 (x) ,

where h = f or g and H = F or G.2 In (2.2), µF = µX is the mean of X, whereas µG = µY

is the mean of Y .

We note that the definition of HA
i can be used to develop the stochastic dominance

theory for risk averters (see, for example, Quirk and Saposnik 1962) and thus we could

call this type of SD ascending stochastic dominance (ASD) and call HA
i the ith order

ASD integral or the ith order cumulative probability as HA
i is integrated in ascending

order from the leftmost point of downside risk. On the other hand, HD
i can be used to

develop the stochastic dominance theory for risk seekers (see, for example, Hammond,

1974) and thus we could call this type of SD descending stochastic dominance (DSD) and

call HD
i the ith order DSD integral or the ith order reversed cumulative probability as

HD
i is integrated in descending order from the rightmost point of upside profit. Typically,

risk averters prefer assets that have a smaller probability of losing, especially in downside

risk while risk seekers prefer assets that have a higher probability of gaining, especially in

upside profit. To make a choice between two assets F or G, risker averters will compare

their corresponding ith order ASD integrals FA
i and GA

i and choose F if FA
i is smaller

since it has a smaller probability of losing. On the other hand, risk seekers will compare

their corresponding ith order DSD integrals FD
i and GD

i and choose F if FD
i is bigger

since it has a higher probability of gaining. In this paper we will study the properties

of ASD and DSD in detail, especially for the third order SD. We next define the first-,

second-, and third-order ASDs that are applied to risk averters; and then define the first-,

second-, and third-order DSDs that are applied to risk seekers. The following definitions

of stochastic dominance are widely used; see, for example, Li and Wong (1999):

Definition 2.1 Given two random variables X and Y with F and G as their respective

distribution functions, X is at least as large as Y and F is at least as large as G in the

sense of:

1. FASD, denoted by X º1 Y or F º1 G, if and only if FA
1 (x) ≤ GA

1 (x) for each x in

[a, b],

2. SASD, denoted by X º2 Y or F º2 G, if and only if FA
2 (x) ≤ GA

2 (x) for each x in

[a, b],

2The above definitions are commonly used in the literature; see for example, Wong and Li (1999) and

Anderson (2004).
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3. TASD, denoted by X º3 Y or F º3 G, if and only if FA
3 (x) ≤ GA

3 (x) for each x in

[a, b] and µX ≥ µY ,

where FASD, SASD, and TASD stand for first-, second-, and third-order ascending

stochastic dominance, respectively.

If, in addition, there is a subinterval I ⊂ [a, b] such that for any x ∈ I such that

FA
i (x) < GA

i (x) for i = 1, 2 and 3, we say that X is larger than Y and F is larger than G

in the sense of SFASD, SSASD, and STASD, denoted by X ≻1 Y or F ≻1 G, X ≻2 Y or

F ≻2 G, and X ≻3 Y or F ≻3 G, respectively, where SFASD, SSASD, and STASD stand

for strictly first-, second-, and third-order ascending stochastic dominance, respectively.

Definition 2.2 Given two random variables X and Y with F and G as their respective

distribution functions, X is at least as large as Y and F is at least as large as G in the

sense of:

1. FDSD, denoted by X º1 Y or F º1 G, if and only if FD
1 (x) ≥ GD

1 (x) for each x in

[a, b],

2. SDSD, denoted by X º2 Y or F º2 G, if and only if FD
2 (x) ≥ GD

2 (x) for each x in

[a, b],

3. TDSD, denoted by X º3 Y or F º3 G, if and only if FD
3 (x) ≥ GD

3 (x) for each x in

[a, b] and µX ≥ µY ,

where FDSD, SDSD, and TDSD stand for first-, second-, and third-order descending

stochastic dominance, respectively.

If, in addition, there is a subinterval I ⊂ [a, b] such that for any x ∈ I such that

FD
i (x) > GD

i (x) for i = 1, 2 and 3, we say that X is larger than Y and F is larger than G

in the sense of SFDSD, SSDSD, and STDSD, denoted by X ≻1 Y or F ≻1 G,X ≻2 Y or

F ≻2 G, and X ≻3 Y or F ≻3 G, respectively, where SFDSD, SSDSD, and STDSD stand

for strictly first-, second-, and third-order descending stochastic dominance, respectively.

We note that if F ºi G or F ≻i G, then −HA
j is a distribution function for any

j > i, and there exists a unique measure µ such that µ[a, x] = −HA
j (x) for any x ∈ [a, b].

Similarly, if F ºi G or F ≻i G, then HD
j is a distribution function for any j > i. HA

j and

HD
j are defined in (2.2).

The stochastic dominance approach is regarded as one of the most useful tools for rank-

ing investment prospects when there is uncertainty, since ranking assets has been proven

to be equivalent to expected-utility maximization for the preferences of investors/decision

makers with different types of utility functions. Before we carry on our discussion, we first

state different types of utility functions as shown in the following definition:
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Definition 2.3 For n = 1, 2, 3, UA
n , USA

n , UD
n and USD

n are sets of utility functions u

such that:

UA
n (USA

n ) = {u : (−1)iu(i) ≤ (<) 0 , i = 1, · · · , n} ,

UD
n (USD

n ) = {u : u(i) ≥ (>) 0 , i = 1, · · · , n}.

where u(i) is the ith derivative of the utility function u.

Note that in Definition 2.3 ‘increasing’ means ‘nondecreasing’ and ‘decreasing’ means

‘nonincreasing’. We also note that in Definition 2.3, UA
1 = UD

1 and USA
1 = USD

1 . We note

that the theory can be easily extended to satisfy utilities defined in Definition 2.3 to be

non-differentiable.3 It is noted that investors in UA
n are risk averse while investors in UD

n

are risk seeking. Refer to Figure 1 for the shape of utility functions in UA
2 and UD

2 and

refer to Figure 2 for the shape of the first derivatives of the utility functions in UA
3 and

UD
3 respectively.

It is well known that a positive third derivative for the utility function is a necessary,

but not sufficient condition for decreasing absolute risk aversion (DARA). Menezes, Geiss

and Tressler (1980) show that one cumulative distribution function is an increase in down-

side risk from another if and only if the latter is preferred to the former by all decision

makers whose utility function has a positive third derivative. Utility functions in UA
3 have

a non-negative third derivative. This implies the empirically attractive feature of DARA.

On the other hand, if we find DARA of any utility u is increasing, we could conclude that

u′′′ > 0 and u ∈ UD
3 . Post and Levy (2005) suggest that a third-order polynomial utility

function implies that investors care only about the first three central moments of the

return distribution (mean, variance, and skewness). On the other hand, Post and Versijp

(2007) suggest that third-order stochastic dominance (TSD) efficiency applies if and only

if a portfolio is optimal for some nonsatiable, risk-averse, and skewness-loving investor.

Fong, et al. (2008) comment that third order stochastic dominance adds to risk aversion

with the assumption of skewness preference.

An individual chooses between F and G in accordance with a consistent set of pref-

erences satisfying the von Neumann-Morgenstern (1944) consistency properties. Accord-

ingly, F is (strictly) preferred to G, or equivalently, X is (strictly) preferred to Y if

∆Eu ≡ E
[

u(X)
]

− E
[

u(Y )
]

≥ 0(> 0), (2.3)

where E
[

u(X)
]

≡
∫ b

a
u(x)dF (x) and E

[

u(Y )
]

≡
∫ b

a
u(x)dG(x).

3Readers may refer to Wong and Ma (2008) and the references there for more information. In this

paper, we will skip the discussion of non-differentiable utilities.
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3 The Theory

We first state the following basic result linking the ASD and DSD of the first three orders

to expected-utility maximization for risk-averse and risk-seeking investors :

Theorem 3.1 Let X and Y be random variables with distribution functions F and

G, respectively. Suppose u is a utility function. For j = 1, 2 and 3, we have 4

1. X ºj Y if and only if E
[

u(X)
]

≥ E
[

u(Y )
]

for any u in UA
j , and

2. F ºj G if and only if E
[

u(X)
]

≥ E
[

u(Y )
]

for any u in UD
j .

There are many papers that obtain findings similar to the results in the above proposi-

tion for orders 1 and 2. For example, Hadar and Russell (1971) and Bawa (1975) prove the

ascending stochastic dominance results for continuous density functions and continuously

differentiable utility functions. Hanoch and Levy (1969) and Tesfatsion (1976) prove the

first and second order ascending stochastic dominance for general distribution functions.

Rothschild and Stiglitz (1970, 1971) study the special case of distributions with equal

means and have proposed a condition that is equivalent to the second order ascending

stochastic dominance results. Meyer (1977) discusses second order stochastic dominance

for risk averters and risk seekers. Stoyan (1983) proves the first and second order stochastic

dominance results for risk averters as well as risk seekers.

The result in Theorem 3.1 that is still controversial is the result of order 3 because

for order 3 of ASD, some suggest that both conditions (i) FA
3 (x) ≤ GA

3 (x) for each x in

[a, b] and (ii) µX ≥ µY as stated in Definition 2.1 are necessary while some suggest that

condition (ii) is redundant. For example, Schmid (2005) proves that (i) implies (ii) and

thus he suggests that condition (ii) is not necessary. One could draw similar arguments for

DSD. In this paper, we confirm that the condition µX ≥ µY in Definitions 2.1 and 2.2 is

necessary in order to obtain the result of order 3 in Theorem 3.1. Without this condition,

the assertions of Theorem 3.1 do not hold for the case j = 3. We will construct examples

in our illustration section to show that µf ≥ µg is not related to FA
3 (x) ≤ GA

3 (x). One

could easily modify our example to construct another example to show that µf ≥ µg is

not related to FD
3 (x) ≥ GD

3 (x).

We are now ready to discuss some other relationship between the third orders of ASD

and DSD. Before we do so, we first discuss the proposition that hierarchy exists in SD.

4Since most of the established properties of SD require the “strict” form but not the “weak” form

of SD, from now on, we will discuss only the “strict” form of SD in our paper. Thus, for j = 1, 2 and

3, we will use “≻j” to represent both “≻j” and “ºj”, “≻j” to represent both “≻j” and “ºj”, and UJ
j

represent for both UJ
j and USJ

j for J = A and D if no confusion occurs.
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Theorem 3.2 For any pair of random variables X and Y , for i = 1 and 2, we have:

1. if X ºA
i Y , then X ºA

i+1 Y ; and

2. if X ºD
i Y , then X ºD

i+1 Y .

The proof of Theorem 3.2 is straightforward. The results of this theorem suggest prac-

titioners to report the ASD and DSD results to the lowest order in empirical analyses.

Levy and Levy (2002) show that it is possible for ASD to be ‘the opposite’ of DSD in

their second orders and that F dominates G in SDSD, but G dominates F in SASD.

We extend their result to include ASD and DSD to the third order SD as stated in the

following theorem:

Theorem 3.3 For any pair of random variables X and Y , if F and G have the same

mean which is finite, and if either X ºA
2 Y or Y ºD

2 X, then we have

X ºA
3 Y and Y ºD

3 X . (3.1)

The proof of Theorem 3.3 is straightforward. Levy and Levy (2002) show that if X and

Y have the same mean which is finite, then X ºA
2 Y if and only if X ºD

2 Y . The result

of Theorem 3.3 could then be obtained by applying Theorem 3.2.

From Theorem 3.3, we find that the dominance relationships of X and Y are reversed

for ASD and DSD. One may wonder whether the relationships of ASD and DSD are

always of different directions? The answer is NO. We construct a theorem to show this

possibility as follows:

Theorem 3.4 For any random variables X and Y , if either X ºA
1 Y or X ºD

1 Y ,

then we have

X ºA
3 Y and X ºD

3 Y . (3.2)

The proof of Theorem 3.4 could be obtained by applying Lemma 3 in Li and Wong

(1999) and Theorem 3.2 in this paper. One might argue that the third orders ASD and

DSD in both Theorems 3.3 and 3.4 are trivial. We get the third orders ASD and DSD

because the second orders or the first order ASD and DSD relationships exist. One might

wonder whether there is any non-trivial third order ASD and DSD relationship. Or, more

specifically, one might ask: it is possible that there are X and Y such that they do not

possess first- and second order ASD and DSD but there exist third order ASD and DSD

and there is a relationship between their third order ASD and DSD. Our answer is YES

and we derive one as follows:
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Theorem 3.5 If F and G satisfy µF = µG and either

FA
3 (b) = GA

3 (b) or FD
3 (a) = GD

3 (a), (3.3)

then

F ºA
3 G if and only if G ºD

3 F .

4 Illustration

Some papers suggest that the condition µX ≥ µY stated in Definition 2.1 is not necessary

to obtain the result in Theorem 3.1. For example, Schmid (2005) proves that FA
3 (x) ≤

GA
3 (x) implies µX ≥ µY and thus he suggests condition µX ≥ µY is not necessary. In

this paper, we confirm that the condition µX ≥ µY in both Definitions 2.1 and 2.2 is

necessary in order to obtain the result of order 3 in Theorem 3.1. Without this condition,

the assertions of Theorem 3.1 do not hold for the case j = 3. In this section, we construct

the following example to illustrate that µf ≥ µg is not related to FA
3 (x) ≤ GA

3 (x). One

could easily modify our example to construct another example to show that µf ≥ µg is

not related to FD
3 (x) ≥ GD

3 (x).

Example 4.1 µf ≥ µg is not related to FA
3 (x) ≤ GA

3 (x)

a. We first construct an example in which GA
3 (x) > FA

3 (x) for all x but yet µg > µf .

Let F (x) = x, the uniform distribution on [0, 1]. Let G(x) be such that

G(x) =











3x
2

0 ≤ x ≤ 0.24,

0.24 + x
2

0.24 ≤ x ≤ 0.74,
3x
2
− 0.5 0.74 ≤ x ≤ 1.

The left panel of Figure 4.1 shows the plot of F (x) and G(x) while the right panel

of Figure 4.1. shows the plot of FA
3 (x), GA

3 (x) and GA
3 (x)−FA

3 (x). We can see that

µg = 0.505 > 0.5 = µf and GA
3 (x) − FA

3 (x) ≥ 0 for all 0 ≤ x ≤ 1.

b. Next, we construct an example where GA
3 (x) > FA

3 (x) for all x yet µg < µf . Again,

let F (x) = x, the uniform distribution on [0, 1]. Let G(x) be such that

G(x) =











3x
2

0 ≤ x ≤ 0.26,

0.26 + x
2

0.26 ≤ x ≤ 0.76,
3x
2
− 0.5 0.76 ≤ x ≤ 1.

Figure 4.2 (left) shows the plot of F (x) and G(x) while Figure 4.2 (right) shows the

plot of FA
3 (x), GA

3 (x) and GA
3 (x) − FA

3 (x). We can see that µg = 0.495 < 0.5 = µf

while GA
3 (x) − FA

3 (x) ≥ 0 for all 0 ≤ x ≤ 1.

10



Figure 4.1: Plots of F (x), G(x), FA
3 (x), GA

3 (x), and their differences

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

F: red−dot, G: blue−dash, G−F: black−solid

mean F = 0.5

mean G = 0.505

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

FA3: red−dot, GA3: blue−dash, GA3−FA3: black−solid

Dotted red line — F (x) or FA
3

(x);

Dashed blue line— G(x) or GA
3
(x)

Solid blue line — GA
1
(x) − FA

1
(x) or GA

3
(x) − FA

3
(x)

Note : The left panel shows F (x) and G(x) and their difference GA
1 (x) − FA

1 (x) while the right

panel shows FA
3 (x), GA

3 (x), and their difference GA
3 (x) − FA

3 (x)

From this example, we can conclude that (i) GA
3 (x) ≥ FA

3 (x) for all x and (ii) µg < µf

have no relationship at all.

To construct an example to illustrate Theorem 3.3, we use the Production/Operations

Management example demonstrated by Wong (2007) who modifies the example from

Weeks (1985) and Dillinger et al. (1992). The example is shown as follows:

Example 4.2 A production/operations system needs extra capacity to satisfy the ex-

pected increased demand. Two mutually exclusive alternative sites have been identified and

the profit (x) with their associated probabilities f and g have been estimated as shown in

Table 4.1.

We use the ASD and DSD integrals HA
j and HD

j for H = F and G and j = 1, 2 and

3 as defined in (2.2). To make the comparison easier, we define their differentials

GFA
j = GA

j − FA
j and GFD

j = GD
j − FD

j (4.1)

for j = 1, 2 and 3 and present the results of the ASD and DSD integrals with their

differentials for the first three orders in Tables 4.1 and 4.2.

In this example, our results show that there are no first order ASD or DSD between F

and G but we have F ºA
j G and G ºD

j F for j = 2 and 3. Thus, this example illustrates

Theorem 3.3.

To illustrates Theorem 3.4, we use Experiments 1 in Levy and Levy (2002) as follows:
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Table 4.1: The Profits of two Locations and their ASD Integrals and Integral Differentials

Profit FASD SASD TASD ASD Integral

(in million) Probability Integrals Integrals Integrals Differentials

x f g FA
1 GA

1 FA
2 GA

2 FA
3 GA

3 GFA
1 GFA

2 GFA
3

1 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0

2 0 0 0.5 0.5 0.5 0.5 0.25 0.25 0 0 0

3 0 0.1 0.5 0.6 1 1 1 1 0.1 0 0

4 0.25 0.05 0.75 0.65 1.5 1.6 2.25 2.3 -0.1 0.1 0.05

5 0.25 0.35 1 1 2.25 2.25 4.125 4.225 0 0 0.1

Note: The ASD integrals HA
j is defined in (2.2) for H = F or G and the integral differential

GFA
j is defined in (4.1) for j = 1, 2 and 3.

Table 4.2: The Profits of two Locations and their DSD Integrals and Integral Differentials

Profit FDSD SDSD TDSD DSD Integral

(in million) Probability Integrals Integrals Integrals Differentials

x f g FD
1 GD

1 FD
2 GD

2 FD
3 GD

3 GFD
1 GFD

2 GFD
3

1 0.5 0.5 1 1 1.75 1.75 3.125 3.225 0 0 0.1

2 0 0 0.5 0.5 1.25 1.25 1.625 1.725 0 0 0.1

3 0 0.1 0.5 0.5 0.75 0.75 0.625 0.725 0 0 0.1

4 0.25 0.05 0.5 0.4 0.25 0.35 0.125 0.175 -0.1 0.1 0.05

5 0.25 0.35 0.25 0.35 0 0 0 0 0.1 0 0

Note: The DSD integral HD
j is defined in (2.2) for H = F or G and the integral differential

GFD
j is defined in (4.1) for j = 1, 2 and 3.
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Figure 4.2: Plots of F (x), G(x), FA
3 (x), GA

3 (x), and their differences

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

F: red−dot, G: blue−dash, G−F: black−solid

mean F = 0.5

mean G = 0.495

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

FA3: red−dot, GA3: blue−dash, GA3−FA3: black−solid

Dotted red line — F (x) or FA
3

(x);

Dashed blue line— G(x) or GA
3
(x)

Solid blue line — GA
1
(x) − FA

1
(x) or GA

3
(x) − FA

3
(x)

Note : The left panel shows F (x) and G(x) and their difference GA
1 (x) − FA

1 (x) while the right

panel shows FA
3 (x), GA

3 (x), and their difference GA
3 (x) − FA

3 (x)

Example 4.3 The gains one month later and their probabilities for an investor who

invests $10,000 either in stock A or in stock B is shown in the following experiment:

Experiments 1

Stock A Stock B

Gain (in thousand) Probability Gain (in thousand) Probability

0.5 0.3 -0.5 0.1

2 0.3 0 0.1

5 0.4 0.5 0.1

1 0.2

2 0.1

5 0.4

We let X and Y be the gain or profit for investing in Stocks A and B with the cor-

responding probability functions f and g and the corresponding cumulative probability

functions F and G, respectively. Thereafter, we depict the ASD and DSD integral differ-

entials GFA
j and GFD

j for the gain of investing in Stocks A and B in Table 4.3 in which

GFA
j and GFD

j are defined in (4.1) for j = 1, 2 and 3.

From Table 4.3, we obtain X ºA
1 Y and X ºD

1 Y , X ºA
2 Y and X ºD

2 Y , as well as

X ºA
3 Y and X ºD

3 Y . This example illustrates Theorem 3.4.

In the above examples, we find that we have both SASD, SDSD, TASD, and TDSD

for a pair of random variables. Is it possible to have TASD and TDSD but no SASD or

13



Table 4.3: The ASD and DSD integral differentials for the gain of investing in Stocks A

and B.
Profit ASD Integral DSD Integral

(in million) Probability Differentials Differentials

x f g GFA
1 GFA

2 GFA
3 GFD

1 GFD
2 GFD

3

-1 0 0 0 0 0 0 -0.35 -0.6625

-0.5 0 0.1 0.1 0 0 0 -0.35 -0.4875

0 0 0.1 0.2 0.05 0.0125 -0.1 -0.3 -0.325

0.5 0.3 0.1 0 0.15 0.0625 -0.2 -0.2 -0.2

1 0 0.2 0.2 0.15 0.1375 0 -0.2 -0.1

2 0.3 0.1 0 0.35 0.3875 -0.2 0 0

5 0.4 0.4 0 0.35 1.4375 0 0 0

Note: The integral differentials GFA
j and GFD

j are defined in (4.1) for j = 1, 2 and 3.

SDSD? The answer is YES and this is exactly what Theorem 3.5 tells us. Thus, herewith

we construct an example to illustrate Theorem 3.5 as follows:

Example 4.4 Consider

F (x) =
x + 1

2
, −1 ≤ x ≤ 1

and

G(t) =







































0 −1 ≤ x ≤ −3/4,

x + 3
4

−3/4 ≤ x ≤ −1/4,
1
2

−1/4 ≤ x ≤ 0,

x + 1
2

0 ≤ x ≤ 1/4,
3
4

1/4 ≤ x ≤ 3/4,

x 3/4 ≤ x ≤ 1.

Figure 4.3: Plots of FA
i (x), GA

i (x), FD
i (x), GD

i (x), i = 1, 2, 3, and their differences

In Figure 4.3 (first-row, left panel), we draw F (x), G(x), and their difference. Notice that

both distributions have the same zero mean. In Figure 4.3 (first-row, right panel), we draw

FA
2 and GA

2 and their difference. Notice that the difference has both positive and negative

values. This means that we do not have F ºA
2 G or G ºA

2 F . In Figure 4.3 (second

row, left panel), we draw FA
3 and GA

3 and their difference. We see that the difference is

non-positive. This means that F ºA
3 G. From the figure or by simple calculation, we can

find that FA
3 (b) = GA

3 (b) = 2/3, so the conditions of Theorem 3.5 hold and we expect

G ºD
3 F . In Figure 4.3 (second row, left and right panel and in third row, right panel),

we draw FD
i and GD

i , i = 1, 2, 3 and their differences. We see from Figure 4.3 (third row,
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right panel) that the difference GA
3 −FA

3 is nonnegative. This means that indeed G ºD
3 F

as predicted by Theorem 3.5.

We now ask: is it possible that we have TASD and TDSD but no SASD or SDSD,

and the conditions of Theorem 3.5 do not hold? The answer is YES and we construct an

example to illustrate this possibility.

Example 4.5 Consider

F (x) = x and G(x) =



















2x 0 ≤ x ≤ 0.2,

2/5 0.2 ≤ x ≤ 0.4,

x/3 + 4/15 0.4 ≤ x ≤ 0.7,

(5x − 2)/3 0.7 ≤ x ≤ 1.

In Figure 4.4 (first-row, left panel), we draw F (x), G(x), and their difference. Notice that

µF = 0.5 6= 0.52 = µG. Thus the conditions of Theorem 3.5 do not hold. In Figure 4.4

(first-row, right panel), we draw FA
2 and GA

2 and their difference. Notice that the difference

has both positive and negative values. This means that we do not have F ºA
2 G or G ºA

2 F .

In Figure 4.4 (second row, left panel), we draw FA
3 and GA

3 and their difference. We see

that the difference is non-negative. This means that G ºA
3 F . From the figure we can see

that FA
3 (b) 6= GA

3 (b), so the conditions of Theorem 3.5 do not hold. In Figure 4.4 (second

row, left and right panel and in third row, right panel), we draw FD
i and GD

i , i = 1, 2, 3

and their differences. We see from Figure 4.4 (third row, right panel) that the difference

GA
3 − FA

3 is nonnegative. This means that indeed G ºD
3 F .

In the above examples, we find that we have both TASD and TDSD for a pair of

random variables. Is it possible to have TASD but no TDSD or vice versa? The answer is

YES and we construct an example in which there exists F and G such that G ºD
3 F but

neither F ºA
3 G nor G ºA

3 F holds. We also construct an example in which there exists

F and G such that G ºA
3 F but neither F ºD

3 G nor G ºD
3 F holds.

Example 4.6 F ºA
3 G and F ºD

3 G are not related

a. We construct an example in which there exists F and G such that G ºD
3 F but

neither F ºA
3 G nor G ºA

3 F holds.

Consider

F (t) =



















4(t + 1)/5 −1 ≤ t ≤ −3/4,

2t/5 + 1/2 −3/4 ≤ t ≤ −1/4,

(4t + 3)/5 −1/4 ≤ t ≤ 0,

1 − G(−t) 0 ≤ t ≤ 1,

and G(t) = t

In Figure 4.5 (first-row, left panel), we draw F (x), G(x), and their difference. In

Figure 4.5 (first-row, right panel), we draw FA
3 and GA

3 and their difference. Notice
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that the difference has both positive and negative values showing that we do not have

F ºA
3 G or G ºA

3 F . In Figure 4.5 (second row, left panel), we draw FD
3 and GD

3

and their difference. We see that the difference is non-negative showing that we have

G ºD
3 F .

b. Next we construct an example in which there exists F and G such that G ºA
3 F but

neither F ºD
3 G nor G ºD

3 F holds.

Consider

F (t) = t and G(t) =



















4t/5 0 ≤ t ≤ 0.4,

3t/4 + 1/5 0.4 ≤ t ≤ 0.8,

0.8 0.8 ≤ t ≤ 0.9,

2t − 1 0.9 ≤ t ≤ 1,

In Figure 4.6 (first-row, left panel), we draw F (x), G(x), and their difference. In

Figure 4.6 (first-row, right panel), we draw FA
3 and GA

3 and their difference. Notice

that the difference is non-negative showing that F ºA
3 G. In Figure 4.6 (second row,

left panel), we draw FD
3 and GD

3 and their difference. We see that the difference has

both positive and negative values showing that we do not have F ºD
3 G or G ºD

3 F .

In this example, one can easily show that we do not have F ºA
3 G or G ºA

3 F but we

have G ºD
3 F .5 The above corollary and example show that under some regularities, F is

‘the same’ as G in the sense of TASD and TDSD. One may wonder whether this ‘same

direction property’ could appear in FASD vs FDSD and SASD vs SDSD. In the following

corollary, we show that this is possible.

In this example, one can easily show that there is no SASD and no SDSD dominance

but F ºA
3 G and G ºD

3 F .6 The above corollary provides the conditions in which F is

‘the opposite’ of G and the above example shows that there exist pairs of distributions

which are ‘opposites’ in the third order but not in the second order. On the other hand,

we find that under some regularities, F becomes ‘the same’ as G in the sense of TASD

and TDSD as shown in the corollary below:

In this example, one can easily show that there is no SASD and no SDSD dominance

but F ºA
3 G and G ºD

3 F .7 The above corollary provides the conditions in which F is

‘the opposite’ of G and the above example shows that there exist pairs of distributions

which are ‘opposites’ in the third order but not in the second order. On the other hand,

we find that under some regularities, F becomes ‘the same’ as G in the sense of TASD

and TDSD as shown in the corollary below:

In fact, if some of the assumptions are not satisfied, there exists F and G such that (a)

G ºA
3 F but neither F ºD

3 G nor G ºD
3 F holds, and (b) G ºD

3 F but neither F ºA
3 G nor

5The working is available on request.
6The working is available on request.
7The working is available on request.
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G ºA
3 F holds. To illustrates the case in (a) we use Experiments 2 in Levy and Levy (2002)

as shown in Example 4.7. To illustrates the case in (b), one could simply let Y = −X

where Y is the gain defined in Example 4.7, then one could obtain SD relationship as

shown in (b) by applying Lemma 3a in Li and Wong (1999) and the results from Example

4.7.

Example 4.7 The gains one month later and their probabilities for an investor who

invests $10,000 either in stock A or in stock B is shown in the following experiment:

Stock A Stock B

Gain (in thousand) Probability Gain (in thousand) Probability

-1.6 0.25 -1 0.25

-0.2 0.25 -0.8 0.25

1.2 0.25 0.8 0.25

1.6 0.25 2 0.25

We let X and Y be the gain or profit for investing in Stocks A and B with the cor-

responding probability functions f and g and the corresponding cumulative probability

functions F and G, respectively. Thereafter, we depict the ASD and DSD integral differ-

entials GFA
j and GFD

j for the gain of investing in Stocks A and B in Table 4.3 in which

GFA
j and GFD

j are defined in (4.1) for j = 1, 2 and 3.

Table 4.4: The ASD and DSD integral differentials for the gain of investing in Stocks A

and B.
Profit ASD Integral DSD Integral

(in million) Probability Differentials Differentials

x f g GFA
1 GFA

2 GFA
3 GFD

1 GFD
2 GFD

3

-1.6 0.25 0 -0.25 0 0 0 0 -0.04

-1 0 0.25 0 -0.15 -0.045 0.25 -0.15 0.005

-0.8 0 0.25 0.25 -0.15 -0.075 0 -0.15 0.035

-0.2 0.25 0 0 0 -0.12 -0.25 0 0.08

0.8 0 0.25 0.25 0 -0.12 0 0 0.08

1.2 0.25 0 0 0.1 -0.1 -0.25 0.1 0.06

1.6 0.25 0 -0.25 0.1 -0.06 0 0.1 0.02

2 0 0.25 0 0 -0.04 0.25 0 0

Note: The integral differentials GFA
j and GFD

j are defined in (4.1) for j = 1, 2 and 3.

From Table 4.4, we obtain if some of the assumptions are not satisfied, there exists (b)

G ºA
3 F but neither F ºD

3 G nor G ºD
3 F holds. For (a), G ºD

3 F but neither F ºA
3 G

nor G ºA
3 F holds, a similar example can be obtained.
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5 Concluding Remarks

In this paper, we develop some properties for the ASD and DSD theory We first discuss

the basic property of ASD and DSD linking the ASD and DSD of the first three orders

to expected-utility maximization for risk-averse and risk-seeking investors. Thereafter,

we prove that a hierarchy exists in both ASD and DSD relationships and that the higher

orders of ASD and DSD cannot be replaced by the lower orders of ASD and DSD. Further-

more, we study conditions in which third order ASD preferences will be ‘the opposite of’

or ‘the same as’ their counterpart third order DSD preferences. In addition, we construct

examples to illustrate all the properties developed in this paper. The theory developed in

this paper provides investors with tools to identify first, second, and third order ASD and

DSD prospects and thus they could make wiser choices on their investment decision.
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Figure 4.4: Plots of FA
i (x), GA

i (x), FD
i (x), GD

i (x), i = 1, 2, 3, and their differences
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Figure 4.5: Plots of F (x), G(x), FA
3 (x), GA

3 (x), FD
3 (x), GD

3 (x), and their differences
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Figure 4.6: Plots of F (x), G(x), FA
3 (x), GA

3 (x), FD
3 (x), GD

3 (x), and their differences
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