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Abstract

Multiple fractional response variables have two features. Each response is be-

tween zero and one, and the sum of the responses is one. In this paper, I develop

an estimation method not only accounting for these two features, but also allowing

for endogeneity. It is a two step estimation method employing a control function

approach: the first step generates a control function using a linear regression, and

the second step maximizes the multinomial log likelihood function with the multi-

nomial logit conditional mean which depends on the control function generated in

the first step. Monte Carlo simulations examine the performance of the estimation

method when the conditional mean in the second step is misspecified. The simu-

lation results provide evidence that the method’s average partial effects (APEs) esti-

mates approximate well true APEs and that the method’s approximations is prefer-

able to an alternative linear method. I apply this method to the Michigan Educa-

tional Assessment Program data in order to estimate the effects of public school

spending on fourth grade math test outcomes, which are categorized into one of

four levels. The effects of spending on the top two levels are statistically significant

while almost those on the others are not.
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1 Introduction

Fractional responses have interesting functional form issues that have been attracting

econometricians’ attentions. The research began with a single fractional response, a

fractional scalar yi , which has a salient feature - the bounded nature: 0 ≤ yi ≤ 1. Then

it has moved to two kinds of systems of fractional responses. One is panel data setting

in which a cross sectional unit has relatively smaller time periods. The other is multiple

responses in which a cross sectional unit has a set of several choices, which is the interest

of this paper.

As to single fractional responses, it is true that the OLS estimator or the IV esti-

mator of a linear model are consistent even though they ignore the bounded nature.

They, however, do not guarantee that their fitted values lie within the unit interval nor

that their partial effect estimates for regressors’ extreme values are good. Theses are

the same drawbacks as the linear probability model for binary response has. The log-

odds transformation, log
y

1−y
, is a traditional solution to recognize the bounded na-

ture. But it requires the responses to be strictly inside the unit interval. Papke and

Wooldridge (1996) introduce a quasi maximum likelihood estimation (QMLE), a par-

ticular QMLE that Gourieroux, Monfort, and Trognon (1984) describe. This nonlinear

estimation method directly models the conditional mean of the responses as an appro-

priate function. It can provide a consistent estimator even when the responses take the

boundary values.

Papke and Wooldridge (2008) extend their single fractional response discussion to

panel data with allowing for endogeneity. They allow time invariant unobserved effect to

be correlated with explanatory variables and develop another QMLE method employing

a control function approach to account for endogeneity.
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Multiple fractional responses have one additional feature as well as the bounded na-

ture: an adding-up constraint - the sum of an observation’s responses is one. Suppose

a researcher studies individual’s asset allocation behavior with the research question,

how much people have their pension funds invested in stocks and bonds. Let her re-

sponse variables be an individual i ’s two shares of pension funds, (yi ,stock , yi ,bond ) where

yi ,stock + yi ,bond = 1. Since there are only two shares, this example can fall into the sin-

gle fractional response category. But when there are more than two shares, it requires

a different estimation method to exploit the whole available information. For example,

there are four shares in my application. I estimate the effects of Michigan’s public school

spending on fourth grade math test outcomes using the year of 2005 Michigan Educa-

tional Assessment Program (MEAP) data. The test outcomes are graded the student’s

level of proficiency from Level 1 (Excellence) to Level 4 (Apprentice). The MEAP data

provides districts’ shares of the four levels where each share is a fraction and the sum of

each district’s four shares is one.

The estimation method by Sivakumar and Bhat (2002) handles multiple fractional

responses with more than two shares. It is a method of QMLE with the multinomial dis-

tribution and the multinomial logit conditional mean specification. It is a multivariate

generalization of the method proposed by Papke and Wooldridge (1996). In the eco-

nomic literature, Mullahy (NBER 2010) studies the same QMLE method with more de-

tails. Buis (2008) writes a STATAr module of this QMLE method and dubs it as “frac-

tional multinomial logit (fmlogit).” In this paper, I also refer this QMLE as fractional

multinomial logit or fmlogit.

Although these studies develop a new estimation method for multiple fractional re-

sponses which can consistently estimate the parameters in the mean as long as the

mean specification is correct, they do not address endogeneity. In empirical works, how-
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ever, endogeneity arises very prevalently. The asset allocation researcher might suspect

that some regressors such as age or income are correlated with individual’s risk attitude,

which is unobservable to her but definitely affects people’s decisions. In my application,

I suspect that the district school spending is correlated with unobserved district effects

such as parental involvement. This endogeneity issue may lead to inconsistency of the

fractional multinomial logit estimation.

Here I develop an estimation method for multiple fractional responses with endoge-

nous explanatory variables. In the model, I allow a continuous endogenous explanatory

variable to be correlated with an unobserved omitted variable. To deal with it, I pro-

pose a two step estimation method employing a control function approach. The first

step generates a control function and the second step applies fractional multinomial

logit with including the control function as extra regressors in the conditional mean.

It provides consistent estimates of the conditional mean parameters provided that the

conditional mean specification in the second step is correct.

A distinct feature of this method is that although the multinomial logit specification

for the second step is sensible as a conditional mean for multiple fractional responses,

it is not underpinned by the underlying assumptions. The functional form of the condi-

tional mean in the second step is determined by the two elements. One is the functional

form of the conditional mean depending on the unobserved omitted variable. The other

is the distributional assumption of the error, which appears when control function ap-

proach is applied. However, no combination of an explicit functional form and a distri-

bution is known to derive the multinomial logit functional form. Thus, I suggest directly

specifying the conditional mean of the second step as multinomial logit without assum-

ing the underlying conditions. This approach reflects the way in which Petrin and Train

(2010) generate a mixed logit.
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In order to investigate how the two step estimation method works when the multi-

nomial logit specification is wrong, I conduct Monte Carlo simulations. The simulations

focus on whether or not the estimation method can approximate well the average par-

tial effects of the endogenous explanatory variable, which is the partial effects of the

endogenous explanatory variable on the conditional mean averaged across the popula-

tion. I compare the method’s performance with an alternative linear model’s.

The simulation results provide evidence that the two step estimation method ap-

proximates well the true APEs as long as a strong instrument is used. It is preferable to

the alternative linear approach. With a weak instrument, its approximation is not good.

However the approximation by the linear approach is worse.

The rest of the paper is organized as follows. Section 2 describes the model and dis-

cusses the two step estimation method with more details. Section 3 presents a Monte

Carlo simulation design and results where the conditional mean of the estimation method

is misspecified. Section 4 includes an application of the estimation method to obtain

the average partial effects estimates of district school spending on fourth grade Michi-

gan Educational Assessment Program math test outcomes. And Section 5 concludes the

paper.
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2 The Model and Estimation with Endogeneity

I assume that random sampling across the cross section is available, each cross sectional

unit i has G choices, and the sum across choices is one. The dependent variable for i is

yi =





yi 1

...

yi g

...

yiG





(1)

where 0 ≤ yi g ≤ 1 and (2)

G∑

g

yi g = 1. (3)

(2) and (3) represent the two features of multiple fractional responses: the bounded na-

ture and the adding-up constraint, respectively. For Xi = (xi 1, · · · , xiG ), the set of ex-

planatory variables in all choices, I assume the conditional mean as

E(yi g |Xi ) =Gg (β,Xi ), g = 1,2, · · · ,G , (4)

where 0 <Gg (·) < 1 and (5)

G∑

g

Gg = 1. (6)

(5) ensures that the fitted value will lie between zero and one. The adding-up constraint

(3) leads to (6). G(·) can be any function satisfying both (5) and (6).1

To allow for endogeneity, I assume that Xi includes a continuous endogenous ex-

1Fractional multinomial logit by Sivakmar and Bhat (2002) and Mullahy (NBER 2010) specifies it as

multinomial logit probabilities.
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planatory variable wi g and an unobserved omitted variable ri g , and that wi g and ri g

are correlated. To simplify the exposition, I assume that wi g and ri g are invariant across

choice : ∀g , wi g = wi , ri g = ri where wi and ri are scalars.

To deal with the endogeneity, I employ a control function approach. It includes extra

regressors in the estimating equation so that the remaining variation in the endogenous

explanatory variable would not be correlated with unobservable. To accommodate this

approach to the model, (4) is now written as

E(yi g |Xi ) = E(yi g |Zi , wi ,ri ) =Gg (β,Zi 1, wi ,ri ), g = 1,2, · · · ,G , (7)

Zi ≡ (zi 1, · · · ,ziG ) is the set of exogenous variables in all choices where zi g =
(

zi 1g
... zi 2g

)

is the exogenous variables vector for choice g and a constant is included in zi 1g , ∀g .

Zi 1 ≡ (zi 11, · · · ,zi 1G ) is the set of zi 1g . Note that the approach requires an exclusion re-

striction: only some part of the exogenous variables appear in (7), the conditional mean

depending on ri .

The approach requires additional assumptions. Dropping the cross-sectional unit i ,

for each g ,

wg = w = Zπ= Z1π1 +Z2π2 + v, (8)

rg = r = ρv +e, (9)

D(e|Z, v) = D(e). (10)

(8) is the reduced form of the endogenous variable w where π′ = (π′
1π

′
2) is the param-

eter vector and Zi 2 ≡ (zi 21, · · · ,zi 2G ) is the set of excluded exogenous variables. (9) is the

linear projection of the omitted variable r on v , the reduced form error in (8), which is
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the control function. It reveals that if there is any correlation between w and r , it can

only come through v . ρ shows how much w is correlated with r , and consequently tells

whether w is endogenous or not. (10) shows that e is independent of (Z, v).

Then the mean function conditional on the reduced form error vi , is derived as

E(yi g |Zi , wi , vi ) = Kg (θ,Zi 1, wi , vi ), (11)

where 0 < Kg (·) < 1 and (12)

G∑

g

Kg = 1. (13)

If vi is observed, θ can be estimated by nonlinear least squares or a QMLE using

multinomial distribution with specifying Kg (·) as a proper functional form. When vi is

unobserved, a simple way to estimate the parameters in (11) is to replace vi with its con-

sistent estimator and apply one of those two methods. Therefore, I suggest the following

two step procedure:

PROCEDURE 2.1

Step 1. Obtain the OLS residual v̂i from the regression of wi on zi .

Step 2. Apply fractional multinomial logit of (yi 1, yi 2, yiG ) on zi 1, wi and v̂i to estimate

θ. This is a QMLE using the following log likelihood and conditional mean.

ℓi (θ) =
G∑

g

yi g logKg (θ,zi 1, wi , v̂i ) and (14)

Kg (θ, x̂vi ) =
exp

(
x̂viθg

)

∑G
h

exp(x̂viθh)
(15)

where x̂vi =
(

zi 1 wi v̂i

)
is a 1 × p vector, θ =

(
θ′

1 . . . θ′
G

)′
is a pG ×1 parameter
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vector and θ1 = 02.

The two step estimation method specifies Kg (·) as multinomial logit since it is a nat-

ural choice that satisfies (12) and (13). Hence, this method is appropriate for problems

where characteristics of choices are unimportant or are not of interest because condi-

tioning variables in the basic multinomial logit change by unit i , not by choice g . With

the specification, (8) becomes

wi g = wi = ziπ= zi 1π1 +zi 2π2 + vi , (16)

where zi =
(

zi 1
... zi 2

)
is a 1 × M vector of exogenous variables which are the same

across g , and then the first step of the procedure comes from (16).

Under the assumption (15), the second step consistently estimates θ. For the consis-

tency, it does not need any additional assumptions. It is because the QMLE uses multi-

nomial distribution, which is a member of linear exponential family (LEF). Gourieroux,

Monfort, and Trognon (1984) show that a QMLE with a distribution in LEF provides con-

sistent estimates of the parameters in a correctly specified conditional mean even when

the rest of distribution is misspcified. The asymptotic variance of θ̂ needs to consider

the additional variation from the first step. Appendix derives its asymptotic variance

estimator.

Notice that the method does not make any assumptions regarding Gg (·) and D(e)

even though they determine the functional form of Kg (·). If Kg (·) is explicitly derived by

assuming them, θ is consistently estimated by the two step estimation using the derived

form for Kg (·) instead of multinomial logit. However, no combination of Gg (·) and D(e)

is known to derive an explicit form of Kg (·).

2the first choice is chosen as a reference.
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Although a natural choice of Gg (·) is also multinomial logit because it holds (5) and

(6), it is not a proper choice since it does not derive an explicit form of Kg (·) whatever

D(e) is. Gg (·) specified as the following can bring a known form of Kg (·) with assuming

that e is normally distributed.

Gg (β,Xi ) =Φ(xi gβ) g = 1, · · · ,G −1,

GG (β,Xi ) = 1−
G−1∑

g

Φ(xi gβ) (17)

where Φ(·) is the standard normal cumulative distribution function. Based on the mix-

ing property of normal distribution, Kg (·) becomes a similar form of (17). But GG (·),

the conditional mean of the last choice, is not necessarily between zero and one, which

violates (5). So (17) is inappropriate as well.

Therefore, I suggest directly specifying Kg (·) as multinomial logit without assuming

anything about Gg (·) and D(e). This idea reflects the manner in which Petrin and Train

(2010) employ a control function approach. They divide the structural error in their

consumer utility into two parts to generate a mixed logit. Without the structural error’s

distributional assumption, one divided part is assumed to be normal and the other is

assumed to be type 1 extreme value.

The consistency of the proposed two step estimation method hinges on the multino-

mial logit specification which are not supported by underlying assumptions. So in the

next section, I conduct Monte Carlo simulations to evaluate the performance of the es-

timation method when the multinomial logit specification is not true. The simulations

examine how well the partial effects estimates approximate the true ones. Especially,

I am interested in the partial effects of the endogenous explanatory variable w on the

conditional mean,
∂E(yg |z,w,r )

∂w
. It, however, is not identified due to the unobserved r .
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Instead, I use average partial effects (APEs), which can be identified by averaging the

partial effects over the distribution of r , Eri

(
∂E(yg |z◦,w◦,ri )

∂w

)
.

3 Monte Carlo Simulation Design

3.1 Data Generating Process

The right-hand side variables:

The number of observation N and the number of iteration are set to be 500 and 1000,

respectively. For each replication, I generate 500 observations of zi , wi , ri , vi and ei as

following.

• zi =
(

zi 1
... zi 2

)
=

(
1 zi 1

... zi 2

)

1×3




zi 1

zi 2



∼ MV Nor mal








0

0



 ,




1 τ

τ 1









There are one included exogenous variable and one excluded exogenous variable

where they are drawn from multivariate normal distribution. Some simulations

allow them to be correlated: τ 6= 0.

• D(e) has one of the three distribution.

(a) e ∼ Nor mal (0,1)

(b) e ∼ Log i st i c(0,1)

(c) e ∼χ2
3

To study various misspecifications, three distributions of e are used: two symmet-

ric distributions and one asymmetric distribution.
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• v ∼ Nor mal (0,σ2)

• wi =π1zi 1 +π2zi 2 + vi

The endogenous variable is generated by (16). The constant coefficient parameter

is set to be zero. π2 shows the instrument’s predictive power. Several values of

these parameters are used in the simulations. When the parameters have different

values, the value of σ2 is also adjusted for the variance of wi to be invariant3.

• ri = ρvi +ei where ρ ∈ {0.1,0.5,1}

The omitted variable is generated by (9). ρ indicates the amount of endogeneity.

The conditional mean specifications:

In the simulation, Gg (·), the conditional mean depending on ri , is multinomial logit.

E(yi g |zi , wi ,ri ) =Gg (β,zi 1, wi ,ri ) =
exp

(
xiβg

)

∑G
h

exp
(
xiβh

) (18)

where xi =
(

zi 1 wi ri

)
is a 1×4 vector, β=

(
β′

1 . . . β′
G

)′
is a 4G ×1 parameter vector

and β1 = 0 since the first choice is chosen as a reference. The parameters for the other

choices are set to be 1 in the simulation: βg =
(
1 1 1 1

)′
for g = 2, · · · ,G . Note that

(15) is a wrong specification under any of the three distributions for e and (18).

The multiple fractional dependent variables:

The number of choice G is chosen as 3. The multiple fractional dependent variables for

each observations i are generated by the following process.

1) By using (18) and the variables generated above, calculate the response probabilities,

Gi 1, Gi 2, and Gi 3.

3V ar (w) = 2
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2) Draw 100 multinomial outcomes among 1, 2, and 3 based on the calculated response

probabilities.

3) Count the frequency and obtain the proportion for each outcome.

For instances, if 1 is drawn 50 times, 2 is drawn 30 times, and 3 is drawn 20 times

for the observation i , then yi 1 = 0.5, yi 2 = 0.3, and yi 3 = 0.2. Through this process, the

upper corner 1 is generated only for the reference choice, which is the first choice in this

simulation, while the lower corner 0 is generated for all three choices. It is due to the

multinomial logit response probabilities.

3.2 Estimation

After generating the data, the simulations examine if the APEs estimates by the two step

estimation method approximate well the true APEs and if the approximation is better

than an alternative linear model’s.

True APEs

The true APEs of choice g , evaluated at (z◦1, w◦), is

Eri

[
∂Gg (x◦)

∂w

]
= Eri

[

G◦
i g ·

(

βw g −
∑3

h
βwh exp

(
x◦βh

)

∑3
h

exp
(
x◦βh

)

)]

, (19)

where x◦ =
(

z◦1 w◦ ri

)
and G◦

i g
=Gg (x◦).

By the law of large numbers, I obtain the true APEs as following:

1

N

N∑

i

[

G◦
i g ·

(

βw g −
∑3

h
βwh exp

(
x◦βh

)

∑3
h

exp
(
x◦βh

)

)]

(20)

Two step estimation’s APEs estimates
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The two step estimation’s APEs estimate for choice g , evaluated at (z◦1, w◦) is calculated

as

δ̂w g ≡
1

N

N∑

i

[

K̂ ◦
i g ·

(

θ̂w g −
∑3

h
θ̂wh exp

(
x̂◦

v θ̂h

)

∑3
h

exp
(
x̂◦

v θ̂h

)

)]

(21)

where θ̂ is obtained from PROCEDURE 2.1, x̂◦
v =

(
z◦1 w◦ v̂i

)
and K̂ ◦

i g
= Kg (x̂◦

v ). δ̂w g ’s

asymptotic standard errors are described in Appendix.

To obtain a single APEs estimate, I use two approaches. One is averaging the esti-

mates out across the sample and the other is evaluating them at a certain set of values,

(z1, wp ) where z1 is the mean of z1 and wp stands for the 10th , 25th , 50th , 75th and 90th

percentiles of w ’s distribution. I call the former APEs estimate “average APEs estimate”

and the latter “percentile APEs estimate”.

Linear model’s APEs estimates

Researchers, who are inclined to use a linear model rather than a nonlinear model,

would drop one of three choices and apply the linear control function (LCF) approach to

the remaining choices. γ̂w g , the coefficient estimates of this LCF estimation are compa-

rable to the APEs estimates4. The simulations drop the first choice, the reference choice.

PROCEDURE 3.1

Step 1. Obtain the OLS residual v̂i from the regression of wi on zi .

This is the same step as Procedure 2.1.

Step 2. For each g = 2,3, regress yi g on zi 1, wi and v̂i to estimate γg , where γg is a 4×1

parameter vector for choice g .

4Since γ̂w g does not depend on the variable, the LCF approach has one estimate for both the average

APEs estimate and the percentile APEs estimate.
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The first choice coefficients are obtained by the constraint that the sum of yi g across

choices is one : γ1 = e1 −γ2 −γ3, where e1 is a 1×4 unit vector. The standard errors of

γ̂g also need the adjustment to take the extra variation from the first step into account:

See Appendix.

Additional Estimation

Some simulations examine whether allowing for the flexibility of the control function

improves the approximation or not when there exists a nonlinearity of w in the model. I

include w 2 in the model5 and let the second steps in PROCEDURE 2.1 and PROCEDURE

3.1 contain v̂2
i

and v̂3
i

as well as v̂i
6.

3.3 Simulation Results

The first columns of Tables show whether the model includes w 2 or not: w indicates the

model including only w , and w 2 indicates the models including w 2 as well as w . The

second rows of Tables represent the choice, g . Tables report the means of the estimates

over the 1000 replications (Mean), the standard deviations (SD), and the means of the

1000 adjusted standard errors (SE). When the mean of the standard errors is huge, the

median of the adjusted standard errors (SE*) is reported. Due to the calculational diffi-

culty, I can not report δ̂w g ’s standard errors: obtaining them in the simulation takes too

much time to obtain. The results are rounded off to the three decimal places in Tables.

Condition 1

Table 1 through Table 3 report the results of the simulations where the instrument’s pre-

dictive power is strong (π2 = 1) and the endogeneity is also strong (ρ = 1):

5The corresponding parameter is set to be 0.1: βw2g = 0.1 for g = 2,3.
6The LCF APEs estimates, γ̂w g +w γ̂w2g , are comparable to the two APEs estimates.
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• wi = zi 2 + vi

• ri = vi +ei

For those simulations, z1 has no effect on w (π1 = 0)7.

Table 1 presents the average APEs estimates. For all three distributions of e, the two

step estimation method provides more similar APEs estimates to the true APEs than the

LCF approach. When w 2 is included in the models, allowing for the flexible forms of v̂i

does not improve the approximation much. It provides almost the same estimates as

allowing for only v̂ .

Table 2 and Table 3 report the percentile APEs estimates with the normal and the

χ2
3 distributional assumptions, respectively. The results with the logistic distribution are

similar to those with the normal distribution. In Table 2, the estimates by the two step

estimation method under the normal distribution are similar to the true APEs across the

percentiles of w distribution. Especially when w 2 is included, their biases are smaller

than those by the LCF approach whether or not the flexible forms of v̂i is allowed. The

estimation with the flexible forms of v̂i yields better estimates only for the 90th per-

centile for the LCF approach. Table 3 also presents the similar results in general. But the

approximation by the LCF approach is not good: its estimates at the 90th percentile of

w distribution have the opposite directions to the true APEs.

Therefore, the simulations under Condition 1 suggest that the approximation by the

two step estimation method even with a misspecified conditional mean is better than

the LCF approach. Allowing for the additional terms of v̂i does not improve the approx-

imation of the two approaches.

Condition 2

7I also conduct simulations by letting z1 affect on wi : wi = 0.5zi 1 + zi 2 + vi , τ = −0.5 and σ2 = 1.25.

The results are similar as those under the Condition 1.
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To examine if the results under Condition 1 are dependent on the instrument’s predic-

tive power, I change the values:

• wi =π2zi 2 + vi , π2 ∈ {0.1,0.2,0.5}

• ri = vi +ei

Table 5 through Table 12 provide the simulation results under Condition 2 with the

normal distributional and the χ2
3 distributional assumptions8. The average APEs es-

timates with the different values of π2 and the normal distributional assumption are

shown in Table 5. According to the rule of the thumb suggested by Staiger and Stock

(1997), the instrument with π2 = 0.1 is considered as a weak instrument and the one

with π2 ≥ 0.2 as a strong instrument. They discuss that the F statistic of the instruments

in the first step dividing weak and strong instruments is 10 when there is one endoge-

nous regressor. Table 4 illustrates the means of the first step’s F statistics, which test

the null hypothesis of π2=0 in the simulations. The F statistics are larger than 10 when

π2 ≥ 0.2.

Table 5 presents that both the two step estimation method and the LCF approach

provide poor approximations with the weak instrument (π2 = 0.1). But the approxima-

tion by the LCF approach is worse. When the nonlinearity of w is included, the LCF

estimates are less biased than the two step method estimates. However, their standard

errors are about ten times as large as the pseudo estimates’. Thus, their mean squared

errors are much bigger than pseudo estimates’ as shown in Table 13.

The two step estimation starts to recover its ability to approximate true APEs when

the π2 increases to 0.2, where the instrument becomes a strong one. Its estimates be-

come less biased and less volatile than those with the weak instrument. However, the

8The logistic distributional assumption produces similar results with those under normal distribu-

tional assumption
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estimates by the LCF approach still yields large biases although the standard deviations

become smaller than those with the weak instrument. The LCF approach provides fairly

good approximation when π2 = 0.5. But the two step estimation still works better.

In addition, Table 5 shows that the additional CF terms in the estimation does not

improve the approximation even when π2 < 1. It causes a worse approximation for the

two estimations.

The percentile APEs estimates under Condition 2 and the normally distributed e are

reported in Table 6 through Table 8. They show similar results as Table 5 in general.

First, Table 6 presents that the weak instrument causes the two estimation methods to

produce the estimates with large biases and standard errors. Considering their mean

squared errors in Table 14, the LCF approach provides worse estimates. Plus, the ap-

proximations by the two step estimation becomes better when π2 increases to 0.2 even

though those by the LCF approach does not. Table 7 shows that the pseudo estimates

are less biased than those in Table 6 while the LCF estimates are not. The LCF approach

manage to recover its approximation ability as π2 rises to 0.5 as illustrated in Table 8.

But still the two step estimation method’s approximation is much better across the per-

centiles of w distribution: the pseudo APE estimates are much closer than the LCF esti-

mates. Furthermore, as in the average APEs estimates, it is still hard to say that includ-

ing the additional CF terms in the estimation improve the approximation. Especially, it

brings explosive standard errors for the two step estimation with the weak instrument

as shown in Table 6.

Table 9 through Table 12 are the results under Condition 2 and the χ2
3 distributional

assumption. The weak instrument also deteriorates the two approach’s approximations

like the two symmetric distributions. According to Table 9, it seems that the LCF ap-

proach can approximate the average APEs as well as the two step estimation method
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when π2 = 0.2. But Table 11 present that only the two step estimation method provides

the percentile estimates having a right direction across the the percentiles whenπ2 = 0.2.

Table 10 through Table 12 shows the smaller π2 is, the more LCF percentile estimates

with the opposite directions there are.

In conclusion, the simulation experiments provide evidence that although the qual-

ity of a instrument affects the two step estimation method’s approximation, it is less

sensitive to the weak instrument than the LCF approach’s approximation.

4 Application: Michigan Educational Assessment Program

math test

I apply the two step estimation method to Michigan Educational Assessment Program

(MEAP) test of the school year 2004/2005 to estimate the effects of spending on students

performance of the fourth grade math test outcomes. The fourth grade MEAP math

test is a statewide assessment test given by the State Board of Education in Michigan.

It measures fourth grade students’ achievements in public schools in relation to Michi-

gan curriculum standards that groups of educators, teachers and school administrators

set. The students’ outcomes are rated at one of the four levels as described in Table 15.

Michigan Department of Education provides each district’s percentage share of students

for the four levels9.

Papke (2005) and Papke and Wooldridge (2008) show that there exist nontrivial causal

effects of spending on the pass rate of the fourth grade by using the MEAP math test

data10. While they study the effects of spending on the pass rate with panel data set, this

9http://www.michigan.gov/mde/
10Papke (2005) uses school level data from 1992 to 1998 and Papke and Wooldridge (2008) uses district

level data from 1992 to 2001. MEAP math test had 3 performance levels (Satisfactory, Moderate, Low)
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application examines how spending shifts students in the four different levels instead of

between pass and fail.

As in the two research, school spending in my application is also suspected to be en-

dogenous. It is likely to be correlated with unobserved district effects such as parental

involvement. For example, the parents who are enthusiastic and interested in their chil-

dren’s academic education are willing to provide extra learning opportunities for their

children’s achievements. And they are likely to put more pressure on schools to spend

the resources more on students. Thus, it is necessary to use an instrumental variable

to precisely estimate the effects of spending on students test outcomes. I use the same

instrument, the foundation allowance that the two research use.

In 1994, Michigan reformed its school funding system with Proposal A. One of its

objectives was to lower the school districts spending gap. It changed Michigan’s school

funding sources and imposed spending floors for school districts by providing mini-

mum per pupil foundation allowances. It reduced the spending inequalities across the

districts by allowing the low spending districts’ foundation allowances to increase faster

than other districts’. The initial foundation allowance for 1994/1995 was determined by

a non-smooth function of per pupil spending in 1993/1994. For the following years, the

incremental dollar increases are decided by comparing the previous year’s foundation

allowance with the basic foundation allowance that the legislature sets each year. There

is no doubt that the foundation allowance is highly correlated with school spending and

it is difficult to think it is correlated with the MEAP math test outcomes. Consequently,

it becomes a natural instrument for spending.

The data set for the application contains 518 school districts11. I turn the percentage

before 2002. The pass rate, the dependent variable in the two research, measures the percent of students

in the satisfactory level.
11The data does not contain charter schools (public school academies).
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shares into proportions to obtain fractional dependent variables12. Table 16 illustrates

the summary of the 518 districts’ fractional dependent variables. While the lower corner

0 appears for all of the four levels, the upper corner 1 appears only for level 1 like the

dependent variables generated in the simulations. Thus, I choose the first level as the

reference choice.

In the estimation, I use log(per pupil expenditure) and log(foundation allowance)

as spending and the instrument, respectively. I also control for the fraction of applica-

tions for the free and reduced-price lunch program as a measure of the poverty rate and

log(enrollment) as a measure of school district size. Table 17 contains summary statis-

tics of the explanatory variables in the data set.

Table 18 contains the first step estimation result. Netting out the other explanatory

variables, the instrument’s t statistic presents the strong correlation between the en-

dogenous variable and the instrument. The F statistic also suggests that log(foundation

allowance) is a strong instrument.

Table 19 reports the average APEs estimates. In general, the two estimation meth-

ods provide statistically significant estimates for level 1 and level 2. Without Including

log(spending)2 in the model, the estimates by the two step estimation method show that

the conditional mean of level 1 is estimated to increase 2.4 percentage points and level

2’s is estimated to decrease 1.7 percentage points if log(spending) increases by 0.1, which

is about 10% increase in spending. The LCF estimates show larger effects. Considering

that 119,687 students took the MEAP math exam in 2004/2005, one percentage point

increase(decrease) in the number of students at a certain level represents about 1200

student increase(decrease) statewide. When the model includes log(spending)2, the ef-

12The original percentage shares from MEAP may not sum to 100 because of rounding. Thus, I calcu-

late the proportions not based on 100, but based on total percentage shares of the four levels.
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fects become larger. The LCF approach has huge standard errors but allowing for v̂2
i

and

v̂3
i

reduces them significantly.

Since the estimates of level 3 and level 4 are generally not statistically significant, av-

erage APEs estimates suggest that spending affects mainly on the top two levels. Plus,

considering the magnitudes of the effects on level 1 and level 2 along with their direc-

tions, an increase in spending shifts the students who are rated at level 2 to level 1.

Although the direct comparison is not valid because the performance level categories

changed in 2002, the result of the application is consistent with the two research.

The percentile APEs estimates in Table 20 tell the similar story with the average APEs

estimates. Interestingly, the estimates do not vary much across the percentiles. It seems

that the spending variation in 2004/2005 is not big enough in the data.

5 Conclusion

This paper proposes a feasible two step estimation method for multiple fractional de-

pendent variables with continuous endogenous explanatory variables. The method’s

important feature is that it suggests directly specifying the conditional mean as multi-

nomial logit without the underlying assumptions. Monte Carlo simulation results pro-

vide evidence that the proposed estimation method is preferable to an alternate linear

control function approach which does not account for the whole features of the frac-

tional dependent variables even when the multinomial logit conditional mean is wrong.

The application to fourth grade math test in Michigan illustrates that the proposed two

step estimation method and the LCF approach provide similar results showing that an

increase in spending shifts the students in the meeting Michigan standard to the exceed-

ing Michigan standard.
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6 Appendix

6.1 The adjusted standard errors of the two step estimation’s APEs es-

timates

The adjusted standard errors of the parameter estimates by the two step estimation

method should be calculated first in order to obtain the adjusted standard errors of its

APEe estimates.

The first step in Procedure 2.1 obtains v̂i from the regression wi on zi . Under the

standard regularity conditions,

p
N (π̂−π) = N− 1

2

N∑

i

E(z′z)−1z′i vi +op (1) = N− 1
2

N∑

i

qi +op (1) (22)

where qi ≡ E(z′
i
zi )−1z′

i
vi and as mentioned in the simulation setup, z1 contains a con-

stant.

In the second step, I estimate θ from the fmlogit (yi 1 · · · yiG ) on (zi 1wi , v̂i ) with (15)

inserting v̂i instead of vi .

To calculate the adjusted standard errors, I redefine the parameter vectors as θ =
(
θ′

2 . . . θ′
G

)′
is a p(G −1)×1. In (15), θ includes θ1. But in this appendix, I drop the

first choice parameters from θ because they are defined as a zero vector.

The first order conditions is

∑

i

si (θ̂,π̂) = 0 (23)
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where

si (θ) ≡∇θℓi

=





(
∂ℓi

∂θ2
)′

...

(
∂ℓi

∂θg
)′

...

(
∂ℓi

∂θG
)′





=





si 2

...

si g

...

siG





si g = (
∂ℓi

∂θg
)′p×1 = x′

i (yi g −Gi g )

and x =
(

z1 w v

)
.

Using a mean value expansion (MVE) around θ, (23) is expressed as

∑

i

si (θ̂,π̂) =
∑

i

si (θ,π̂)+
[

∇θ

∑

i

si (θ̈)

]

(θ̂−θ) (24)

where θ̈ is on the line segment between θ̂ and θ. I rearrange (24) by multiplying by
p

N

and using (23).

p
N (θ̂−θ) = E(−Hi (θ))−1 1

p
N

∑

i

si (θ,π̂)+op (1) (25)
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where

E [−Hi ] ≡ A ≡ E (−∇θsi (θ))

= E





x′
i
xi Ki 2(1−Ki 2) −x′

i
xi Ki 2Ki 3 · · · · · · −x′

i
xi Ki 2KiG

−x′
i
xi Ki 3Ki 2 x′

i
xi Ki 3(1−Ki 3) · · · · · · −x′

i
xi Ki 3KiG

...
...

...

...
...

...

−x′
i
xi KiG Ki 2 · · · · · · −x′

i
xi KiG (KiG−1) x′

i
xi KiG (1−KiG )





(26)

Since
∑

i si (θ,π̂) depends on the sample, I can not apply a central limit theorem yet.

By using a MVE around π again and multiplying by
p

N , I derive

1
p

N

∑

i

si (θ,π̂) =
1

p
N

∑

i

si (θ,π)+E [∇πsi (θ,π)]
p

N (π̂−π)+op (1). (27)

By plugging (22) into (27), (27) is rewritten as

1
p

N

∑

i

si (θ,π̂) =
1

p
N

∑

i

(
si −Fqi

)
+op (1). (28)

where F = E [∇πsi (θ,π)]p(G−1)×M , ∇πsi (θ,π) = ∂x′
i

∂π
(yi g −Gg )−x′

i

∂Gg

∂π
.

By putting (28) into (25),

p
N (θ̂−θ) = A−1

[
1

p
N

∑

i

di (θ,π)

]

+op (1) (29)

where di ≡ si −Fqi .

Therefore, Avar
(p

N (θ̂−θ)
)
= A−1DA−1 where D ≡ V ar (di ) = V ar (si −Fqi ), and a
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valid estimator of Avar
(p

N (θ̂−θ)
)

is Â−1D̂Â−1 where

D̂ ≡
1

N

∑

i

d̂i d̂′
i =

1

N

∑

i

(̂si − F̂q̂i )(̂si − F̂q̂i )′, (30)

ŝi = si (x̂i , θ̂),

F̂i = Fi (x̂i , θ̂),

q̂ ≡ (
1

N

∑

i

z′i zi )−1z′i v̂i , and

Â ≡
1

N

∑

i

−Ĥi ,

Consequently, the asymptotic variance of θ̂ is estimated as

1

N
Â−1D̂Â−1. (31)

The two step estimation method’s APEs estimate, evaluated at (z1k , wk ), is

δ̂[k]
w g ≡

1

N

∑

i

Ĝ [k]
i g

(

θ̂w g −
∑

h=2 θ̂wh exp(z1k θ̂zh +wk θ̂wh + v̂i θ̂vh)

1+
∑

h=2 exp(z1k θ̂zh +wk θ̂wh + v̂i θ̂vh)

)

(32)

where

Ĝ [k]
i g

= Ĝi g (z1k , wk ) =
exp(z1k θ̂zg +wk θ̂w g + v̂i θ̂v g )

1+
∑

h=2 exp(z1k θ̂zh +wk θ̂wh + v̂i θ̂vh)
g = 2, · · · ,G and

Ĝ [k]
i 1

= Ĝi 1(z1k , wk ) =
1

1+
∑

h=2 exp(z1k θ̂zh +wk θ̂wh + v̂i θ̂vh)
g = 1.
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Average APEs estimates are calculated as

δ̂w g =
1

N

∑

k

δ̂[k]
w g

=
1

N

∑

i

[
1

N

∑

k

Ĝ [k]
i g

(

θ̂w g −
∑

h=2 θ̂wh exp(z1k θ̂zh +wk θ̂wh + v̂i θ̂vh)

1+
∑

h=2 exp(z1k θ̂zh +wk θ̂wh + v̂i θ̂vh)

)]

=
1

N

∑

i

jg (x[k]
i

,zi , η̂) (33)

where

jg (x[k]
i

,zi ,η) ≡
1

N

∑

k

[

Gi g [k]

(

θw g −
∑

h=2θwh exp(x[k]
i

θh)

1+
∑

h=2 exp(x[k]
i

θh)

)]

≡ ji g , (34)

η=




θ

π





(p(G−1)+M)×1

, and

x[k]
i

= (z1k , wk , vi ).

By using a MVE and subtracting
p

Nδw g from both sides, I can derive

p
N (δ̂w g −δw g ) =

p
N

1

N

∑

i

(
ji g (x[k]

i
,zi ,η)−δw g

)
+E

[
∇ηji g

]p
N (η̂−η)+op (1).

(35)

Using (29) and (22), (35) is expressed as

p
N (δ̂w g −δw g ) =

p
N

1

N

∑

i

(
ji g (x[k]

i
,zi ,η)−δw g +E

[
∇ηji g

]
ki

)
+op (1) (36)
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where ki =




A−1di

qi



. Since E
(
ji g (x[k]

i
,zi ,η)−δw g +E

[
∇ηji g

]
ki

)
= 0,

Avar (
p

N (δ̂w g −δw g )) =V ar
(
ji g (x[k]

i
,zi ,η)−δw g + Jg (η)ki

)
(37)

where Jg (η) ≡ E
[
∇ηji g

]
, a 1×p jacobian, and a valid estimator of Avar

(p
N (δ̂w g −δw g )

)

is

1

N

∑

i

[̂
ji g − δ̂w g + Ĵg k̂i

] [̂
ji g − δ̂w g + Ĵg k̂i

]′
(38)

where

ĵi g =
[

1

N

∑

k

K̂i g [k]

(

θ̂w g −
∑

h=2 θ̂wh exp(x̂[k]
i

θ̂h)

1+
∑

h=2 exp(x̂[k]
i

θ̂h)

)]

,

δ̂w g =
1

N

∑

i

ĵi g ,

k̂i =




Â−1d̂i

q̂i



 , and

Ĵg =
1

N

[
∇ηji g (x[k]

i
, η̂)

]
.

The adjusted standard errors of δ̂w g is obtained as the square root of (38) multiplied by

1p
N

.

For the percentile APEs estimates’ standard errors, the same process is used by defin-
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ing δ̂w g and ĵi g as the following:

δ̂w g =
1

N

∑

i

Ĝi g (z1, wp )

(

θ̂w g −
∑

h=2 θ̂wh exp(z1θ̂zh +wp θ̂wh + v̂i θ̂vh)

1+
∑

h=2 exp(z1θ̂zh +wp θ̂wh + v̂i θ̂vh)

)

,

ĵi g = Ĝi g (z1wp )

(

θ̂w g −
∑

h=2 θ̂wh exp(z1θ̂zh +wp θ̂wh + v̂i θ̂vh)

1+
∑

h=2 exp(z1θ̂zh +wp θ̂wh + v̂i θ̂vh)

)

.

When the model includes w 2 and the flexible forms of v̂ is used, the process with

including them can provide the adjusted standard errors.

6.2 The adjusted standard errors of LCF estimates

I calculate the adjusted standard errors of the LCF estimates following Wooldridge (2010,

Appendix 6A). For g = 2, · · · ,G , a researcher using the LCF approach models the follow-

ing:

yi g = zi 1γzg +γw g wi +ui g (39)

The reduced form for the endogenous variable and the errors are written as, respectively,

wi = ziπ+ vi (40)

ui g = ρg vi +ei g (41)

where the dimensions of the variables and the parameters are the same as before. Then

using (41), (39) is rewritten

yi g = zi 1γzg +γw g wi +ρg vi +ei g = xiγg +ei g (42)
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where γg =





γzg

γw g

ρv g




=





γzg

γw g

γv g




.

The second step of Procedure 3.1 uses (42) replacing v with v̂ from the first step. The

estimating equation is

yi g = zi 1γzg +γw g wi +ρg v̂i +
(
ρg (vi − v̂i )+ei g

)
= x̂viγg +

(
ρg (vi − v̂i )+ei g

)
(43)

= x̂viγg + (xi − x̂i )γg +ei g . (44)

The OLS estimator is expressed as

γ̂g = (
∑

i

x̂′
vi x̂vi )−1

∑

i

x̂′
vi yi g =γg + (

∑

i

x̂′
vi x̂vi )−1

∑

i

x̂′
vi

(
(xi − x̂vi )γg +ei g

)
, (45)

and I can derive

p
N (γ̂g −γg ) = (

1

N

∑

i

x̂′
i x̂i )−1 1

p
N

∑

i

x̂′
i

(
(xi − x̂i )γg +ei g

)
(46)

Using MVEs, vec(AX B) = (B ′⊗ A)vec(X ) and a weak law of large numbers, (46) can be

expressed as

p
N

(
γ̂g −γg

)
= C−1

{
1

p
N

N∑

i

(
x′

i ei g −Rg A−1z′i vi

)
}

+op (1) (47)
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where

C ≡ E(x′x),

Rg = E
[
(γg ⊗x)′∇πx(π)

]
, and

A = E(z′z).

By the central limit theorem,

p
N

(
γ̂g −γg

) a∼ Nor mal
[
0,C−1Mg C−1

]
(48)

where Mg =V ar
(
x′eg −Rg A−1z′v

)
. Asymptotic variance of γ̂g is estimated as

Ĉ−1M̂g Ĉ−1/N (49)

where

Ĉ =
1

N

N∑

i

x̂′
vi x̂vi ,

M̂g =
1

N

N∑

i

(
x̂′

vi êi g − Ĝg Â−1z′i v̂i

)(
x̂′

vi êi g − Ĝg Â−1z′i v̂i

)′
for g = 2, · · · ,G ,

R̂g =
1

N

N∑

i

(
γ̂g ⊗ x̂vi

)′∇πxi (π̂) for g = 2, · · · ,G ,

Â =
1

N

N∑

i

z′i zi , and

êi g = yi g − x̂i γ̂g for g = 2, · · · ,G .

The first choice estimate is γ̂1 = e1 −
∑G

g=2 γ̂g where e1 =
(
1 0 · · · 0

)′

G×1

. Using
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(43) and multiplying by
p

N ,
p

N (γ̂1 −γ1) is written as

p
N

(
γ̂1 −γ1

)
=

(
1

N

∑

i

x̂′
vi x̂vi

)−1 (

−
1

p
N

∑

i

x̂′
vi

[
G∑

g=2

(
(xi − x̂vi )γ̂g +ei g

)
])

. (50)

Using (46) and (47), (50) becomes

p
N (γ̂1 −γ1) = C−1

(

−
1

p
N

N∑

i

G∑

g=2

(
x′

i ei g −Rg A−1z′i vi

)
)

+op (1) (51)

a∼ Nor mal
[
0,C−1M1C−1

]
(52)

where M1 =V ar
(∑G

g=2

(
x′

i
ei g −Rg A−1z′

i
vi

))
. Then a valid estimator of Avar (γ̂1) is

Ĉ−1M̂1Ĉ−1/N (53)

where

M̂1 =
G∑

g=2

M̂g +
1

N

∑

g 6=k

[(
x′

i êi g −Rg A−1z′i vi

)(
x′

i êi k −Rk A−1z′i vi

)′]
.

The adjusted standard errors of γ̂g is obtained by the square roots of the diagonal

elements of (49) and (53). In addition, as I mentioned at the end of 7.1, the adjusted

standard errors of the additional cases need slight modifications.
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7 Tables

Table 1: Average APEs under Condition 1

D(e) Normal Logistic χ2
3

g 1 2 3 1 2 3 1 2 3

w True Mean -0.117 0.059 0.059 -0.108 0.054 0.054 -0.049 0.025 0.025

Two Step Mean -0.117 0.058 0.058 -0.108 0.054 0.054 -0.047 0.024 0.024

SD 0.009 0.005 0.005 0.011 0.006 0.006 0.007 0.004 0.004

SE - - - - - - - - -

LCF Mean -0.109 0.054 0.054 -0.101 0.051 0.051 -0.052 0.026 0.026

SD 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005

SE 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005

w2 True Mean -0.127 0.063 0.063 -0.116 0.058 0.058 -0.061 0.030 0.030

Two Step Mean -0.126 0.063 0.063 -0.115 0.058 0.057 -0.059 0.030 0.030

SD 0.009 0.005 0.005 0.012 0.006 0.006 0.008 0.004 0.005

SE - - - - - - - - -

Two Step Mean -0.126 0.063 0.063 -0.115 0.057 0.057 -0.058 0.029 0.029

(Flexible) SD 0.009 0.005 0.005 0.012 0.006 0.006 0.008 0.004 0.004

SE - - - - - - - - -

LCF Mean -0.117 0.059 0.059 -0.108 0.054 0.054 -0.064 0.032 0.032

SD 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005

SE 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.004 0.004

LCF Mean -0.118 0.059 0.059 -0.108 0.054 0.054 -0.064 0.032 0.032

(Flexible) SD 0.009 0.005 0.005 0.011 0.006 0.006 0.008 0.005 0.005

SE 0.008 0.005 0.005 0.011 0.006 0.006 0.008 0.004 0.004

1. π1 = 0, π2 = 1, ρ = 1
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Table 2: Percentile APEs under Condition 1 and Normal distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.181 0.090 0.090 -0.171 0.085 0.085 -0.132 0.066 0.066 -0.085 0.043 0.043 -0.050 0.025 0.025

Two Step Mean -0.184 0.092 0.092 -0.173 0.087 0.087 -0.131 0.065 0.065 -0.082 0.041 0.041 -0.048 0.024 0.024

SD 0.017 0.009 0.009 0.019 0.010 0.010 0.012 0.007 0.006 0.006 0.004 0.004 0.006 0.004 0.004

SE 0.016 0.008 0.008 0.018 0.009 0.009 0.011 0.006 0.006 0.004 0.003 0.003 0.003 0.003 0.003

w2 True Mean -0.241 0.121 0.121 -0.206 0.103 0.103 -0.132 0.066 0.066 -0.073 0.036 0.036 -0.040 0.020 0.020

Two Step Mean -0.240 0.120 0.120 -0.208 0.104 0.104 -0.132 0.066 0.066 -0.072 0.036 0.036 -0.039 0.020 0.019

SD 0.023 0.011 0.012 0.022 0.012 0.012 0.014 0.008 0.007 0.009 0.005 0.005 0.007 0.005 0.005

SE 0.031 0.010 0.010 0.023 0.008 0.008 0.012 0.005 0.005 0.007 0.005 0.005 0.006 0.008 0.008

Two Step Mean -0.239 0.120 0.120 -0.208 0.104 0.104 -0.132 0.066 0.066 -0.071 0.036 0.035 -0.038 0.019 0.019

(Flexible) SD 0.023 0.012 0.012 0.022 0.012 0.012 0.014 0.008 0.008 0.009 0.005 0.005 0.007 0.006 0.006

SE 0.031 0.011 0.011 0.023 0.009 0.009 0.012 0.005 0.005 0.008 0.005 0.005 0.007 0.009 0.009

LCF Mean -0.206 0.103 0.103 -0.164 0.082 0.082 -0.118 0.059 0.059 -0.071 0.036 0.035 -0.029 0.014 0.014

SD 0.018 0.009 0.009 0.013 0.007 0.007 0.009 0.005 0.005 0.010 0.006 0.006 0.015 0.008 0.009

SE 0.016 0.008 0.008 0.012 0.006 0.006 0.009 0.005 0.005 0.010 0.006 0.006 0.014 0.008 0.008

LCF Mean -0.190 0.095 0.095 -0.156 0.078 0.078 -0.118 0.059 0.059 -0.079 0.040 0.040 -0.045 0.023 0.022

(Flexible) SD 0.018 0.009 0.009 0.013 0.007 0.007 0.009 0.005 0.005 0.009 0.005 0.005 0.014 0.008 0.008

SE 0.016 0.009 0.009 0.012 0.006 0.006 0.008 0.005 0.005 0.009 0.005 0.005 0.012 0.007 0.007

1. APEs at (z1, wp ).
2. π1 = 0, π2 = 1, ρ = 1.
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Table 3: Percentile APEs under Condition 1 and χ2
3 distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True mean -0.100 0.050 0.050 -0.068 0.034 0.034 -0.038 0.019 0.019 -0.018 0.009 0.009 -0.009 0.004 0.004

Two Step Mean -0.096 0.048 0.048 -0.061 0.030 0.030 -0.033 0.017 0.017 -0.017 0.009 0.009 -0.009 0.005 0.005

SD 0.022 0.011 0.011 0.011 0.006 0.006 0.004 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003

SE 0.021 0.010 0.010 0.010 0.005 0.005 0.003 0.003 0.003 0.001 0.003 0.003 0.001 0.003 0.003

w2 True Mean -0.152 0.076 0.076 -0.086 0.043 0.043 -0.038 0.019 0.019 -0.016 0.008 0.008 -0.007 0.004 0.004

Two Step Mean -0.134 0.067 0.067 -0.080 0.040 0.040 -0.040 0.020 0.020 -0.018 0.009 0.009 -0.008 0.004 0.004

SD 0.032 0.016 0.016 0.014 0.007 0.007 0.007 0.004 0.004 0.003 0.003 0.003 0.002 0.004 0.004

SE 0.030 0.020 0.020 0.012 0.012 0.012 0.006 0.006 0.006 0.003 0.003 0.003 0.002 0.013 0.013

Two Step Mean -0.133 0.066 0.066 -0.078 0.039 0.039 -0.038 0.019 0.019 -0.017 0.009 0.009 -0.008 0.004 0.004

(Flexible) SD 0.031 0.016 0.016 0.013 0.007 0.007 0.007 0.004 0.004 0.004 0.004 0.003 0.002 0.004 0.004

SE 0.030 0.023 0.023 0.012 0.015 0.015 0.007 0.008 0.008 0.004 0.005 0.005 0.002 0.016 0.016

LCF Mean -0.162 0.081 0.081 -0.116 0.058 0.058 -0.064 0.032 0.032 -0.013 0.006 0.006 0.034 -0.017 -0.017

SD 0.019 0.010 0.010 0.013 0.007 0.007 0.009 0.005 0.005 0.008 0.005 0.005 0.011 0.007 0.007

SE 0.017 0.009 0.009 0.012 0.007 0.007 0.008 0.005 0.005 0.008 0.005 0.005 0.011 0.006 0.006

LCF Mean -0.143 0.071 0.071 -0.105 0.053 0.053 -0.064 0.032 0.032 -0.023 0.011 0.011 0.015 -0.007 -0.007

(Flexible) SD 0.022 0.011 0.011 0.015 0.008 0.008 0.009 0.005 0.005 0.007 0.004 0.004 0.011 0.007 0.007

SE 0.020 0.010 0.010 0.014 0.007 0.007 0.008 0.004 0.004 0.006 0.004 0.004 0.010 0.006 0.006

1. APEs at (z1, wp ).
2. π1 = 0, π2 = 1, ρ = 1.
3. The grey colored cells indicate that the estimates have the opposite directions to the true APEs.

Table 4: F statistics of the first step

π2 0.1 0.2 0.5 1

F statistic Mean 3.682 11.491 72.848 499.975

SD 3.618 6.781 18.436 63.747

1. H0 : π2 = 0.
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Table 5: Average APEs under Condition 2 and Normal distribution

π2 0.1 0.2 0.5 1

g 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.113 0.056 0.056 -0.113 0.056 0.056 -0.114 0.057 0.057 -0.117 0.059 0.059

Two Step Mean -0.094 0.046 0.047 -0.100 0.050 0.050 -0.112 0.056 0.056 -0.117 0.058 0.058

SD 0.103 0.062 0.056 0.061 0.033 0.032 0.020 0.011 0.011 0.009 0.005 0.005

SE - - - - - - - - - - - -

LCF Mean -0.079 0.042 0.037 -0.071 0.036 0.036 -0.100 0.050 0.050 -0.109 0.054 0.054

SD 1.101 0.731 0.427 0.390 0.188 0.203 0.021 0.011 0.011 0.009 0.005 0.005

SE 6.501 4.264 2.297 0.568 0.275 0.296 0.020 0.011 0.011 0.009 0.005 0.005

w2 True Mean -0.121 0.060 0.060 -0.121 0.061 0.061 -0.122 0.061 0.061 -0.127 0.063 0.063

Two Step Mean -0.100 0.050 0.050 -0.106 0.053 0.054 -0.120 0.060 0.060 -0.126 0.063 0.063

SD 0.106 0.060 0.060 0.064 0.035 0.032 0.021 0.011 0.011 0.009 0.005 0.005

SE - - - - - - - - - - - -

Two Step Mean -0.094 0.046 0.047 -0.102 0.051 0.052 -0.119 0.059 0.059 -0.126 0.063 0.063

(Flexible) SD 0.104 0.059 0.060 0.063 0.035 0.033 0.021 0.012 0.011 0.009 0.005 0.005

SE - - - - - - - - - - - -

LCF Mean -0.114 0.059 0.055 -0.080 0.039 0.041 -0.108 0.054 0.054 -0.117 0.059 0.059

SD 1.262 0.584 0.705 0.397 0.227 0.171 0.020 0.011 0.010 0.009 0.005 0.005

SE 7.251 3.272 4.003 0.577 0.327 0.254 0.019 0.010 0.010 0.009 0.005 0.005

LCF Mean -0.110 0.057 0.053 -0.077 0.037 0.040 -0.108 0.054 0.054 -0.118 0.059 0.059

(Flexible) SD 1.381 0.651 0.755 0.467 0.268 0.200 0.019 0.011 0.010 0.009 0.005 0.005

SE 7.877 3.547 4.350 0.670 0.382 0.292 0.019 0.010 0.010 0.008 0.005 0.005

1. π1 = 0, ρ = 1.
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Table 6: Percentile APEs under Condition 2, π2 = 0.1, and Normal distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.164 0.082 0.082 -0.156 0.078 0.078 -0.127 0.064 0.064 -0.089 0.044 0.044 -0.057 0.028 0.028

Two Step Mean -0.133 0.065 0.068 -0.170 0.084 0.086 -0.120 0.059 0.061 -0.049 0.025 0.024 -0.017 0.009 0.008

SD 0.117 0.066 0.060 0.168 0.092 0.086 0.138 0.082 0.073 0.084 0.058 0.052 0.059 0.045 0.042

SE 0.186 0.112 0.104 0.215 0.122 0.113 0.198 0.114 0.118 0.136 0.098 0.089 0.136 0.092 0.103

w2 True Mean -0.219 0.110 0.110 -0.188 0.094 0.094 -0.127 0.064 0.064 -0.075 0.037 0.037 -0.044 0.022 0.022

Two Step Mean -0.160 0.080 0.080 -0.198 0.099 0.099 -0.122 0.061 0.062 -0.041 0.020 0.021 -0.007 0.003 0.004

SD 0.121 0.065 0.066 0.178 0.093 0.094 0.139 0.077 0.079 0.085 0.054 0.055 0.061 0.042 0.043

SE 0.256 3.819 10.748 0.243 2.116 5.910 0.191 1.227 3.343 0.147 0.292 0.245 0.192 2.059 6.471

Two Step Mean -0.155 0.076 0.078 -0.193 0.095 0.098 -0.122 0.060 0.061 -0.036 0.018 0.018 0.009 -0.004 -0.005

(Flexible) SD 0.141 0.080 0.079 0.178 0.097 0.097 0.146 0.080 0.083 0.106 0.063 0.066 0.097 0.061 0.061

SE 2E+17 8E+28 6E+29 9E+04 1E+29 5E+29 6E+09 8E+28 5E+29 8E+19 9E+28 5E+29 1E+25 2E+29 2E+29

SE* 0.222 0.155 0.154 0.190 0.159 0.155 0.121 0.095 0.093 0.088 0.051 0.059 0.104 0.113 0.122

LCF Mean -0.213 0.109 0.104 -0.166 0.085 0.081 -0.114 0.059 0.055 -0.062 0.033 0.029 -0.015 0.010 0.005

SD 1.262 0.584 0.705 1.262 0.584 0.705 1.262 0.584 0.705 1.262 0.584 0.704 1.261 0.584 0.704

SE 7.253 3.273 4.004 7.252 3.272 4.004 7.251 3.272 4.003 7.252 3.272 4.003 7.253 3.273 4.004

LCF Mean -0.178 0.092 0.086 -0.146 0.076 0.070 -0.110 0.057 0.053 -0.075 0.039 0.036 -0.042 0.022 0.020

(Flexible) SD 1.477 0.692 0.808 1.407 0.660 0.771 1.378 0.649 0.754 1.422 0.676 0.771 1.507 0.722 0.810

SE 8.089 3.649 4.461 7.955 3.585 4.389 7.877 3.547 4.350 7.918 3.566 4.380 8.033 3.620 4.446

1. APEs at (z1, wp ).
2. π1 = 0, ρ = 1.
3. SE* is the median of the standard errors.
4. The grey colored cells indicate that the estimates have the opposite directions to the true APEs.
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Table 7: Percentile APEs under Condition 2, π2 = 0.2, and Normal distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.164 0.082 0.082 -0.157 0.078 0.078 -0.127 0.064 0.064 -0.089 0.044 0.044 -0.057 0.028 0.028

Two Step Mean -0.151 0.075 0.076 -0.156 0.077 0.078 -0.115 0.057 0.058 -0.067 0.033 0.034 -0.037 0.019 0.019

SD 0.087 0.045 0.044 0.103 0.053 0.052 0.076 0.041 0.039 0.046 0.028 0.027 0.033 0.022 0.021

SE 0.084 0.043 0.043 0.100 0.053 0.052 0.076 0.039 0.042 0.040 0.026 0.029 0.034 0.026 0.024

w2 True Mean -0.220 0.110 0.110 -0.189 0.094 0.094 -0.127 0.064 0.064 -0.075 0.037 0.037 -0.043 0.022 0.022

Two Step Mean -0.190 0.094 0.095 -0.184 0.092 0.093 -0.117 0.058 0.059 -0.057 0.028 0.029 -0.025 0.012 0.013

SD 0.090 0.047 0.045 0.110 0.058 0.055 0.076 0.043 0.039 0.047 0.029 0.026 0.037 0.024 0.023

SE 0.137 4.547 0.109 0.120 1.900 0.075 0.072 0.510 0.034 0.042 0.033 0.027 0.045 0.072 0.033

Two Step Mean -0.187 0.093 0.094 -0.183 0.091 0.093 -0.116 0.057 0.059 -0.053 0.026 0.027 -0.015 0.008 0.007

(Flexible) SD 0.102 0.054 0.054 0.111 0.059 0.057 0.078 0.044 0.041 0.060 0.034 0.033 0.062 0.036 0.037

SE 0.314 14.131 0.578 0.200 5.955 0.312 0.120 1.580 0.105 0.099 0.093 0.044 0.294 0.392 0.122

LCF Mean -0.179 0.088 0.091 -0.132 0.065 0.067 -0.080 0.039 0.041 -0.028 0.013 0.015 0.019 -0.011 -0.008

SD 0.397 0.227 0.171 0.397 0.227 0.171 0.397 0.227 0.171 0.398 0.227 0.172 0.398 0.227 0.172

SE 0.580 0.328 0.255 0.578 0.327 0.254 0.577 0.327 0.254 0.577 0.327 0.254 0.579 0.328 0.255

LCF Mean -0.138 0.068 0.070 -0.109 0.053 0.056 -0.077 0.037 0.040 -0.045 0.021 0.024 -0.016 0.006 0.010

(Flexible) SD 0.499 0.285 0.215 0.481 0.275 0.206 0.467 0.268 0.200 0.459 0.264 0.197 0.458 0.264 0.197

SE 0.698 0.395 0.307 0.681 0.387 0.298 0.669 0.382 0.292 0.670 0.385 0.293 0.683 0.395 0.300

1. APEs at (z1, wp ).
2. π1 = 0, ρ = 1.
3. The grey colored cells indicate that the estimates have the opposite directions to the true APEs.
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Table 8: Percentile APEs under Condition 2, π2 = 0.5, and Normal distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.167 0.084 0.084 -0.159 0.080 0.080 -0.128 0.064 0.064 -0.088 0.044 0.044 -0.055 0.028 0.028

Two Step Mean -0.168 0.084 0.084 -0.162 0.081 0.081 -0.127 0.063 0.063 -0.083 0.042 0.042 -0.051 0.026 0.026

SD 0.038 0.019 0.019 0.041 0.021 0.020 0.026 0.014 0.014 0.011 0.008 0.007 0.007 0.007 0.007

SE 0.036 0.018 0.018 0.039 0.020 0.020 0.025 0.013 0.013 0.008 0.007 0.007 0.006 0.007 0.007

w2 True Mean -0.224 0.112 0.112 -0.192 0.096 0.096 -0.128 0.064 0.064 -0.074 0.037 0.037 -0.043 0.021 0.021

Two Step Mean -0.216 0.108 0.108 -0.192 0.096 0.096 -0.129 0.064 0.064 -0.073 0.036 0.037 -0.041 0.020 0.020

SD 0.041 0.020 0.020 0.045 0.023 0.022 0.027 0.015 0.014 0.014 0.009 0.009 0.010 0.008 0.008

SE 0.060 0.013 0.013 0.048 0.012 0.012 0.024 0.010 0.010 0.012 0.008 0.008 0.011 0.013 0.013

Two Step Mean -0.216 0.108 0.108 -0.192 0.096 0.096 -0.127 0.063 0.064 -0.071 0.035 0.035 -0.038 0.019 0.019

(Flexible) SD 0.044 0.022 0.022 0.045 0.023 0.023 0.027 0.015 0.015 0.017 0.010 0.011 0.016 0.011 0.012

SE 0.063 0.025 0.025 0.048 0.021 0.021 0.025 0.012 0.012 0.016 0.010 0.010 0.019 0.015 0.015

LCF Mean -0.204 0.102 0.102 -0.159 0.079 0.079 -0.108 0.054 0.054 -0.057 0.029 0.029 -0.012 0.006 0.006

SD 0.027 0.015 0.014 0.023 0.012 0.012 0.020 0.011 0.010 0.021 0.012 0.011 0.026 0.014 0.014

SE 0.025 0.013 0.013 0.021 0.011 0.011 0.019 0.010 0.010 0.020 0.011 0.011 0.024 0.013 0.013

LCF Mean -0.169 0.084 0.085 -0.140 0.070 0.070 -0.108 0.054 0.054 -0.075 0.038 0.038 -0.046 0.023 0.023

(Flexible) SD 0.035 0.018 0.018 0.026 0.014 0.013 0.019 0.011 0.010 0.019 0.011 0.011 0.025 0.014 0.014

SE 0.032 0.016 0.016 0.024 0.013 0.013 0.019 0.010 0.010 0.017 0.010 0.010 0.021 0.012 0.012

1. APEs at (z1, wp ).
2. π1 = 0, ρ = 1.
3. The grey colored cells indicate that the estimates have the opposite directions to the true APEs.
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Table 9: Average APEs under Condition 2 and χ2
3 distribution

π2 0.1 0.2 0.5 1

g 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.051 0.026 0.026 -0.051 0.025 0.025 -0.051 0.025 0.025 -0.049 0.025 0.025

Two Step Mean -0.048 0.023 0.024 -0.045 0.022 0.023 -0.049 0.024 0.025 -0.047 0.024 0.024

SD 0.093 0.056 0.053 0.046 0.026 0.026 0.015 0.009 0.008 0.007 0.004 0.004

SE - - - - - - - - - - - -

LCF Mean -0.019 0.016 0.003 -0.045 0.023 0.022 -0.053 0.027 0.027 -0.052 0.026 0.026

SD 0.700 0.452 0.421 0.113 0.068 0.065 0.018 0.010 0.010 0.008 0.005 0.005

SE 3.288 2.637 2.268 0.095 0.091 0.080 0.017 0.010 0.010 0.008 0.005 0.005

w2 True Mean -0.062 0.031 0.031 -0.062 0.031 0.031 -0.062 0.031 0.031 -0.061 0.030 0.030

Two Step Mean -0.060 0.029 0.031 -0.058 0.029 0.029 -0.061 0.030 0.030 -0.059 0.030 0.030

SD 0.091 0.056 0.054 0.045 0.027 0.025 0.015 0.009 0.009 0.008 0.004 0.005

SE - - - - - - - - - - - -

Two Step Mean -0.045 0.022 0.024 -0.047 0.023 0.024 -0.057 0.029 0.029 -0.058 0.029 0.029

(Flexible) SD 0.094 0.056 0.056 0.052 0.029 0.029 0.015 0.009 0.009 0.008 0.004 0.004

SE - - - - - - - - - - - -

LCF Mean -0.044 0.016 0.028 -0.054 0.026 0.029 -0.065 0.033 0.033 -0.064 0.032 0.032

SD 0.760 0.400 0.525 0.136 0.098 0.051 0.017 0.010 0.010 0.008 0.005 0.005

SE 4.077 1.878 3.020 0.186 0.143 0.050 0.016 0.009 0.009 0.008 0.004 0.004

LCF Mean -0.049 0.019 0.030 -0.051 0.024 0.027 -0.065 0.033 0.033 -0.064 0.032 0.032

(Flexible) SD 0.882 0.418 0.594 0.215 0.151 0.069 0.017 0.010 0.009 0.008 0.005 0.005

SE 4.998 2.112 3.393 0.315 0.221 0.101 0.016 0.009 0.009 0.008 0.004 0.004

1. π1 = 0, ρ = 1.
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Table 10: Percentile APEs under Condition 2, π2 = 0.1, and χ2
3 distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.097 0.049 0.049 -0.071 0.035 0.035 -0.043 0.022 0.022 -0.023 0.012 0.012 -0.012 0.006 0.006

Two Step Mean -0.146 0.072 0.074 -0.098 0.048 0.050 -0.030 0.014 0.015 0.005 -0.002 -0.002 0.014 -0.007 -0.007

SD 0.165 0.087 0.086 0.146 0.080 0.078 0.102 0.062 0.060 0.075 0.051 0.048 0.059 0.041 0.041

SE 0.229 0.132 0.120 0.209 0.117 0.115 0.166 0.108 0.097 0.150 0.099 0.099 0.163 0.099 0.107

w2 True Mean -0.146 0.073 0.073 -0.088 0.044 0.044 -0.043 0.022 0.022 -0.020 0.010 0.010 -0.010 0.005 0.005

Two Step Mean -0.163 0.081 0.083 -0.125 0.061 0.064 -0.042 0.020 0.023 -0.002 0.000 0.002 0.008 -0.005 -0.003

SD 0.174 0.092 0.090 0.158 0.086 0.084 0.100 0.064 0.061 0.069 0.050 0.049 0.052 0.040 0.040

SE 0.220 17.102 13.753 0.209 7.810 7.516 0.196 2.186 3.149 0.170 0.184 0.250 0.208 1.094 5.276

Two Step Mean -0.154 0.077 0.077 -0.105 0.052 0.054 -0.044 0.020 0.024 0.014 -0.008 -0.006 0.045 -0.023 -0.022

(Flexible) SD 0.197 0.108 0.105 0.149 0.085 0.085 0.128 0.075 0.073 0.122 0.071 0.071 0.123 0.072 0.072

SE 4E+29 7E+28 3E+25 2E+28 8E+27 2E+23 5E+22 3E+30 1E+27 2E+31 3E+29 1E+27 8E+27 5E+28 2E+30

SE* 0.443 1.018 0.961 0.193 0.807 0.771 0.112 0.389 0.376 0.155 0.117 0.123 0.314 0.698 0.689

LCF Mean -0.172 0.080 0.092 -0.111 0.050 0.062 -0.044 0.016 0.028 0.023 -0.017 -0.006 0.084 -0.047 -0.036

SD 0.760 0.399 0.525 0.760 0.399 0.525 0.760 0.400 0.525 0.760 0.400 0.525 0.760 0.400 0.525

SE 4.078 1.879 3.021 4.078 1.878 3.020 4.077 1.878 3.020 4.077 1.878 3.020 4.078 1.879 3.020

LCF Mean -0.131 0.061 0.070 -0.093 0.041 0.051 -0.049 0.019 0.030 -0.006 -0.003 0.009 0.033 -0.023 -0.010

(Flexible) SD 1.055 0.506 0.671 0.913 0.434 0.610 0.881 0.418 0.593 1.007 0.484 0.639 1.211 0.589 0.721

SE 5.427 2.313 3.611 5.182 2.194 3.485 4.998 2.111 3.393 5.089 2.164 3.439 5.334 2.279 3.567

1. APEs at (z1, wp ).
2. π1 = 0, ρ = 1.
3. SE* is the median of the standard errors.
4. The grey colored cells indicate that the estimates have the opposite directions to the true APEs.
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Table 11: Percentile APEs under Condition 2, π2 = 0.2, and χ2
3 distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.098 0.049 0.049 -0.071 0.035 0.035 -0.043 0.022 0.022 -0.023 0.011 0.011 -0.012 0.006 0.006

Two Step Mean -0.120 0.060 0.060 -0.070 0.035 0.035 -0.028 0.014 0.014 -0.009 0.004 0.005 -0.002 0.001 0.001

SD 0.115 0.058 0.058 0.070 0.037 0.037 0.037 0.022 0.023 0.029 0.019 0.020 0.027 0.018 0.019

SE 0.107 0.057 0.056 0.068 0.036 0.037 0.036 0.024 0.024 0.032 0.024 0.025 0.022 0.020 0.020

w2 True Mean -0.146 0.073 0.073 -0.088 0.044 0.044 -0.043 0.022 0.022 -0.020 0.010 0.010 -0.010 0.005 0.005

Two Step Mean -0.143 0.071 0.072 -0.094 0.047 0.048 -0.041 0.020 0.021 -0.016 0.008 0.008 -0.006 0.003 0.003

SD 0.127 0.065 0.064 0.080 0.043 0.041 0.035 0.025 0.021 0.026 0.020 0.018 0.022 0.018 0.018

SE 0.098 0.576 0.242 0.081 0.270 0.132 0.035 0.072 0.036 0.030 0.025 0.024 0.021 0.068 0.067

Two Step Mean -0.139 0.069 0.070 -0.085 0.042 0.043 -0.038 0.019 0.020 -0.002 0.001 0.001 0.022 -0.011 -0.011

(Flexible) SD 0.130 0.069 0.068 0.073 0.041 0.040 0.057 0.032 0.032 0.064 0.035 0.036 0.080 0.044 0.045

SE 4E+06 2E+29 2E+27 1E+17 4E+29 1E+28 1E+29 4E+29 4E+28 6E+25 8E+18 2E+18 2E+25 5E+17 2E+17

SE* 0.158 0.326 0.326 0.067 0.250 0.249 0.037 0.111 0.112 0.030 0.028 0.029 0.038 0.175 0.170

LCF Mean -0.181 0.089 0.092 -0.121 0.059 0.062 -0.054 0.026 0.028 0.013 -0.008 -0.005 0.073 -0.038 -0.035

SD 0.137 0.098 0.051 0.136 0.098 0.051 0.136 0.098 0.050 0.137 0.098 0.051 0.137 0.098 0.051

SE 0.188 0.144 0.051 0.187 0.143 0.050 0.186 0.143 0.050 0.186 0.143 0.050 0.187 0.143 0.051

LCF Mean -0.129 0.063 0.067 -0.092 0.044 0.048 -0.051 0.024 0.027 -0.010 0.003 0.007 0.027 -0.015 -0.012

(Flexible) SD 0.284 0.186 0.106 0.242 0.166 0.083 0.215 0.151 0.069 0.212 0.146 0.074 0.231 0.151 0.091

SE 0.381 0.254 0.133 0.347 0.236 0.116 0.315 0.221 0.101 0.307 0.220 0.100 0.333 0.234 0.113

1. APEs at (z1, wp ).
2. π1 = 0, ρ = 1.
3. SE* is the median of the standard errors.
4. The grey colored cells indicate that the estimates have the opposite directions to the true APEs.

4
2



Table 12: Percentile APEs under Condition 2, π2 = 0.5, and χ2
3 distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w True Mean -0.098 0.049 0.049 -0.070 0.035 0.035 -0.042 0.021 0.021 -0.022 0.011 0.011 -0.011 0.006 0.006

Two Step Mean -0.100 0.050 0.050 -0.065 0.032 0.032 -0.036 0.018 0.018 -0.019 0.010 0.010 -0.011 0.005 0.006

SD 0.045 0.023 0.023 0.023 0.013 0.012 0.008 0.006 0.006 0.003 0.005 0.005 0.003 0.005 0.005

SE 0.042 0.021 0.021 0.021 0.012 0.011 0.007 0.006 0.006 0.003 0.005 0.005 0.003 0.005 0.005

w2 True Mean -0.147 0.074 0.074 -0.087 0.044 0.044 -0.042 0.021 0.021 -0.019 0.010 0.010 -0.009 0.005 0.005

Two Step Mean -0.128 0.064 0.064 -0.088 0.044 0.044 -0.047 0.024 0.024 -0.022 0.011 0.011 -0.010 0.005 0.005

SD 0.058 0.029 0.029 0.028 0.015 0.015 0.010 0.007 0.007 0.006 0.006 0.006 0.004 0.006 0.006

SE 0.047 0.059 0.059 0.024 0.032 0.032 0.009 0.010 0.010 0.005 0.006 0.006 0.005 0.028 0.028

Two Step Mean -0.129 0.064 0.065 -0.081 0.041 0.041 -0.042 0.021 0.021 -0.019 0.010 0.009 -0.008 0.004 0.004

(Flexible) SD 0.056 0.029 0.029 0.025 0.014 0.014 0.013 0.008 0.008 0.009 0.007 0.007 0.010 0.009 0.009

SE 0.058 0.093 0.093 0.029 0.063 0.063 0.025 0.031 0.031 0.043 0.018 0.019 0.110 0.068 0.069

LCF Mean -0.186 0.093 0.093 -0.129 0.064 0.064 -0.065 0.033 0.033 -0.002 0.001 0.001 0.055 -0.028 -0.028

SD 0.025 0.014 0.013 0.020 0.011 0.011 0.017 0.010 0.010 0.017 0.010 0.010 0.020 0.011 0.011

SE 0.022 0.012 0.012 0.019 0.010 0.010 0.016 0.009 0.009 0.016 0.009 0.009 0.019 0.011 0.011

LCF Mean -0.141 0.070 0.071 -0.105 0.052 0.053 -0.065 0.033 0.033 -0.025 0.013 0.012 0.011 -0.005 -0.006

(Flexible) SD 0.045 0.023 0.023 0.031 0.016 0.016 0.017 0.010 0.009 0.012 0.008 0.008 0.021 0.013 0.013

SE 0.039 0.021 0.021 0.028 0.015 0.015 0.016 0.009 0.009 0.010 0.007 0.007 0.016 0.011 0.011

1. APEs at (z1, wp ).
2. π1 = 0, ρ = 1.
3. The grey colored cells indicate that the estimates have the opposite directions to the true APEs.
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Table 13: Mean Squared Errors of Average APEs estimates under Condition 2 and Normal distribution

π2 0.1 0.2 0.5 1

g 1 2 3 1 2 3 1 2 3 1 2 3

w two step 0.011 0.004 0.003 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

LCF 1.214 0.535 0.183 0.154 0.036 0.042 0.001 0.000 0.000 0.000 0.000 0.000

w2 two step 0.012 0.004 0.004 0.004 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

two step (Flexible) 0.012 0.004 0.004 0.004 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

LCF 1.592 0.341 0.496 0.160 0.052 0.030 0.001 0.000 0.000 0.000 0.000 0.000

LCF (Flexible) 1.908 0.423 0.571 0.220 0.073 0.040 0.001 0.000 0.000 0.000 0.000 0.000

1. The Mean Squared Errors are calculated from Table 5.
2. π1 = 0, ρ = 1.

Table 14: Mean Squared Errors of Percentile APEs estimates under Condition 2, π2 = 0.1, and Normal distribution

wp 10th 25th 50th 75th 90th

g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

w2 two step 0.018 0.005 0.005 0.032 0.009 0.009 0.019 0.006 0.006 0.008 0.003 0.003 0.005 0.002 0.002

two step (Flexible) 0.024 0.008 0.007 0.032 0.009 0.009 0.021 0.006 0.007 0.013 0.004 0.005 0.012 0.004 0.004

LCF 1.594 0.342 0.497 1.594 0.342 0.497 1.593 0.341 0.497 1.592 0.341 0.496 1.591 0.341 0.496

LCF (Flexible) 2.184 0.480 0.654 1.981 0.436 0.595 1.900 0.422 0.568 2.022 0.456 0.595 2.270 0.521 0.655

1. The Mean Squared Errors are calculated from Table 6.
2. π1 = 0, ρ = 1.
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Table 15: Four levels of MEAP
Variable Description

Level 1 Exceeded Michigan Standards

Level 2 Met Michigan Standards

Level 3 demonstrated Basic knowledge and skills of Michigan Standards

Level 4 Apprentice level, showing little success in meeting Michigan standards

Table 16: The descriptions for the dependent variables

Variable Mean SD Min Max Description

y1 0.282 0.139 0 1.000 fraction of Level 1

y2 0.463 0.084 0 0.742 fraction of Level 2

y3 0.222 0.099 0 0.643 fraction of Level 3

y4 0.033 0.038 0 0.329 fraction of Level 4

Total 1.000

Table 17: Sample mean of the right-hand side variables

Variable Mean (standard deviations)

enrollment 3132.272 (6939.982)

Fraction of applications for free and reduced lunch 0.353 (0.178)

per pupil expenditure 8092.164 (1092.165)

foundation allowance 6982.72 (655.638)

# of districts 518

Table 18: The first step estimation

coefficient SE t p-values

log(enrollment) 0.006 0.005 1.190 0.233

lunch 0.306 0.025 12.470 0.000

log(foundation allowance) 1.069 0.061 17.510 0.000

constant -0.617 0.528 -1.170 0.244

R2 0.6111

F (H0 : log(foundation allowance)=0) 306.63
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Table 19: Average APEs estimates of log(spending) on 4th grade

MEAP math test

level 1 2 3 4

w Two Step Estimates 0.242* -0.166* -0.069 -0.007

SE 0.050 0.033 0.037 0.017

LCF Estimates 0.275* -0.207* -0.069* 0.002

SE 0.057 0.035 0.034 0.014

w 2 Two Step Estimates 0.287* -0.197* -0.096 0.006

SE 0.070 0.049 0.055 0.018

Two Step Estimates 0.266* -0.189* -0.067 -0.010

(Flexible) SE 0.076 0.050 0.057 0.021

LCF Estimates 0.319 -0.220 -0.101 0.003

SE 2135.4 559.4 1282.7 293.2

LCF Estimates 0.297* -0.207* -0.071 -0.019

(Flexible) SE 0.092 0.053 0.057 0.021

1. w = log(spending).
2. The standard errors of the pseudo/pseudo flexible APE estimates are

calculated using 1000 bootstrap replications.
3. The standard errors of the LCF estimates are adjusted.
4. * is significant at, or below, 5 percent.
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Table 20: Percentile APEs estimates of log(spending) on 4th grade MEAP math test

wp 10th 25th 50th

level 1 2 3 4 1 2 3 4 1 2 3 4

w Two Step Estimates 0.229* -0.158* -0.065 -0.006 0.234* -0.161* -0.067 -0.006 0.241* -0.165* -0.069 -0.007

SE 0.053 0.038 0.042 0.017 0.055 0.038 0.042 0.017 0.059 0.038 0.042 0.017

w2 Two Step Estimates 0.317 -0.215 -0.123 0.022 0.311 -0.212 -0.117 0.017 0.300* -0.205 -0.106 0.011

SE 0.226 0.310 0.185 0.038 0.174 0.222 0.132 0.034 0.115 0.170 0.082 0.038

Two Step Estimates 0.251* -0.202* -0.047 -0.002 0.257* -0.199* -0.054 -0.004 0.265* -0.193* -0.064 -0.007

(Flexible) SE 0.089 0.079 0.079 0.035 0.087 0.073 0.072 0.056 0.083 0.062 0.062 0.080

LCF Estimates 0.368 -0.235 -0.137 0.003 0.354 -0.231 -0.126 0.003 0.331 -0.224 -0.110 0.003

SE 4481.9 1174.2 2692.3 615.4 3789.0 992.7 2276.1 520.2 2694.5 705.9 1618.6 370.0

LCF Estimates 0.295 -0.202 -0.061 -0.032 0.296* -0.203* -0.064 -0.028 0.296* -0.206* -0.069 -0.022

(Flexible) SE 0.152 0.089 0.095 0.040 0.133 0.077 0.083 0.034 0.105 0.061 0.065 0.025

wp 75th 90th

level 1 2 3 4 1 2 3 4

w Two Step Estimates 0.251* -0.171* -0.073 -0.007 0.265* -0.180* -0.077 -0.008

SE 0.064 0.038 0.042 0.016 0.071 0.040 0.041 0.016

w2 Two Step Estimates 0.279* -0.190 -0.089 0.001 0.238 -0.162 -0.063 -0.014

SE 0.126 0.207 0.086 0.054 0.230 0.267 0.117 0.081

Two Step Estimates 0.276* -0.186* -0.078 -0.012 0.291* -0.176* -0.097 -0.018

(Flexible) SE 0.075 0.049 0.056 0.085 0.077 0.044 0.069 0.055

LCF Estimates 0.299 -0.214 -0.087 0.002 0.250 -0.200 -0.051 0.002

SE 1156.1 302.9 694.5 158.7 1184.8 310.4 711.7 162.7

LCF Estimates 0.297* -0.209* -0.075 -0.013 0.298* -0.214* -0.085* 0.001

(Flexible) SE 0.072 0.042 0.044 0.015 0.067 0.045 0.039 0.021

1. w = log(spending).
2. The standard errors of the pseudo/pseudo flexible APE estimates are calculated using 1000 bootstrap replications.
3. The standard errors of the linear CF estimates are adjusted.
4. * is significant at, or below, 5 percent.
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