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Abstract. The Regression Anatomy (RA) theorem (Angrist and Pischke 2009) is
an alternative formulation of the Frisch-Waugh-Lovell (FWL) theorem (Frisch and
Waugh 1933; Lovell 1963), a key finding in the algebra of OLS multiple regression
models. In this paper, we present a command, reganat, to implement graphi-
cally the method of RA. This addition complements the built-in Stata command
avplot in the validation of linear models, producing bidimensional scatterplots
and regression lines obtained controlling for the other covariates, along with sev-
eral fine-tuning options. Moreover, the article provides (1) a fully worked-out proof
of the RA theorem and (2) an explanation of how the RA and FWL theorems re-
late to partial and semipartial correlations, whose coefficients are informative when
evaluating relevant variables in a linear regression model. 1
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models, Partial correlation, Semipartial correlation.
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1 Inside the black box

In the case of a linear bivariate model of the type

yi = α+ βxi + εi

the OLS estimator for β has the known simple expression

β =

∑n

i (xi − x) (yi − y)
∑n

i (xi − x)
2

=
cov(yi, xi)

var(xi)
.

In this framework a bidimensional scatterplot can be a useful graphical device during
the process of model building to detect, for instance, the presence of nonlinearities or
anomalous data.
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2 Regression Anatomy, Revealed

When the model includes more than a single independent variable there is no
straightforward equivalent for the estimation of β and the same bivariate scatterplot
between the dependent variable and the independent variable of interest becomes po-
tentially misleading because, in the general case, the independent variables are not
orthogonal between them. Consequently, most econometrics textbooks limit themselves
to providing the formula for the β vector of the type

β = (X ′X)
−1

X ′y.

and drop altogether any graphical depiction of the relation of interest. Although com-
pact and easy to remember, this formulation is a sort black box, since it hardly reveals
anything about what really happens during the estimation of a multivariate OLS model.
Furthermore, the link between the β and the moments of the data distribution disappear
buried in the intricacies of matrix algebra.

Luckily, an enlightening interpretation of the β’s in the multivariate case exists and
has relevant interpreting power. It was originally formulated more than seventy years
ago by Frisch and Waugh (1933), revived by Lovell (1963), and recently brought to
a new life in the world of applied econometrics by Angrist and Pischke (2009) under
the catchy phrase regression anatomy. According to this result, given a model with K
independent variables, the coefficient β for the k-th variable can be written as

βk =
cov(yi, x̃

k
i )

var(x̃k
i )

(1)

where x̃k
i is the residual obtained by regressing xk

i on all remaining K − 1 independent
variables.

The result is striking since it establishes the possibility of breaking a multivariate
model withK independent variables intoK bivariate models and also sheds light into the
machinery of multivariate OLS. This property of OLS does not depend on the underlying
Data Generating Process or on its causal interpretation: it is a purely numerical property
of the estimator which holds because of the algebra behind it.

For example, the regression anatomy theorem makes transparent the case of the
so-called problem of multicollinearity. In a multivariate model with two variables which
are highly linearly related, the theorem implies that for a variable to have a statistically
significant β it must retain sufficient explicative power after the other independent
variables have been partialled out. Obviously, this is not likely to happen in a highly
multicollinear model as the most part of variability is between the regressors and not
between the residual variable x̃k

i and the dependent variable y.

While this theorem is widely known as a standard result of the matrix algebra of
the OLS model, its practical relevance in the modelling process has been overlooked,
Davidson and MacKinnon (1993) say, most probably because the original articles had
a limited scope, but it nonetheless illuminated a very general property of the OLS
estimator. Hopefully, the introduction of a Stata command which implements it will
help spreading its use in econometric practice.
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2 The Frisch-Waugh-Lovell theorem

The regression anatomy is an application of the Frisch-Waugh-Lovell (FWL) theorem
about the relationship between the OLS estimator and any vertical partitioning of the
data matrix X. Originally, Frisch and Waugh (1933) tackled a confusing issue in time-
series econometrics. Since many temporal series exhibit a common temporal trend,
during the early days of econometrics it was common to detrend these variables before
entering them in a regression model. The rationale behind this two-stage methodol-
ogy was to purify the variables from spurious temporal correlation and using only the
residual variance in the regression model of interest.

In practice, when an analyst was faced with the problem of estimating a model of
the following type

yi = β0 + β1x1i + . . .+ βkxki + . . .+ βKxKi + ei (2)

with each variable possibly depending linearly on time, the analyst first estimated a set
of K auxiliary regressions of the type

xki = ck + c1kt+ eki

plus an analogous regression for the dependent variable

yi = c0y + c1yt+ eyi

and then used the residuals from these models to build an analogue to model (2)

ỹi = β′

0 + β′

1x̃1i + . . .+ β′

kx̃ki + . . .+ β′

K x̃Ki + e′i. (3)

Alternately, other analysts entered directly the time variable in (2) and estimated the
full model

yi = β∗

0 + β∗

1x1i + . . .+ β∗

kxki + . . .+ β∗

KxKi + dt+ e∗i . (4)

These two schools of econometric practice debated over the merits and the shortcomings
of the respective methods until Frisch and Waugh quite surprisingly demonstrated that
the two estimation methods are numerically equivalent, viz. they provide exactly the
same results, namely

β′

k = β∗

k (5)

and
e′i = e∗i . (6)

In broader terms, the theorem applies to any regression model with two or more inde-
pendent variables which can be partitioned in two groups

y = X ′

1β1 +X ′

2β2 + r. (7)

Consider the general OLS model y = X ′β+e, with XN,K . Next, partition the X matrix
in the following way: let X1 be a N × K1 matrix and X2 be a N × K2 matrix, with
K = K1 +K2. It follows that X = [X1X2]. Let us now consider the model

M1y = M1X2β2 + e (8)
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where M1 is the matrix projecting off the subspace spanned by the columns of X1. In
this formulation, y and the K2 columns of X2 are regressed on X1; then, the vector of
residuals M1y is regressed on the matrix of residuals M1X2. The Frisch-Waugh-Lovell
theorem states that the β’s calculated for the model (8) are identical to those calculated
for the model (7). A complete proof can be found in advanced econometrics textbooks
like Davidson and MacKinnon (1993, p. 19–24) or Ruud (2000, p. 54–60).

3 The regression anatomy theorem

A straightforward implication of the FWL theorem states that the βk coefficient can be
also estimated without partialling the remaining variables out of the dependent variable
yi. This is exactly the regression anatomy theorem (RA) which has been advanced by
Angrist and Pischke as a fundamental tool in applied econometrics. In this subsection,
for the sake of simplicity and relevance to our Stata command reganat, we provide a
proof restricted to the case in which XN,K , K1 = 1 and K2 = K − 1, building on the
indications provided in Angrist and Pischke (2009).

Theorem 1 (Regression anatomy) Given the regression model

yi = β0 + β1x1i + . . .+ βkxki + . . .+ βKxKi + ei (9)

and an auxiliary regression in which the variable xki is regressed on all the remaining

independent variables

xki = γ0 + γ1x1i + . . .+ γk−1xk−1i + γk+1xk+1i + . . .+ γKxKi + fi (10)

with x̃ki = xki− x̂ki being the residual for the auxiliary regression, the parameter βk can

be written as

βk =
cov(yi, x̃ki)

var(x̃ki)
(11)

Proof. To prove the theorem, plug (9) and the residual x̃ki from (10) into the covariance
cov(yi, x̃ki) from (11) and obtain

βk =
cov(β0 + β1x1i + . . .+ βkxki + . . .+ βKxKi + ei, x̃ki)

var(x̃ki)

=
cov(β0 + β1x1i + . . .+ βkxki + . . .+ βKxKi + ei, fi)

var(fi)

(12)

1. Since by construction E[fi] = 0, it follows that the term β0E[fi] = 0.

2. Since fi is a linear combination of all the independent variables with the exception
of xki, it must be that

β1E[fix1i] = . . . = βk−1E[fixk−1i] = βk+1E[fixk+1i] = . . . = βKE[fixKi] = 0
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3. Consider now the term E[eifi]. This can be written as

E[eifi] = E[eifi]

= E[eix̃ki]

= E[ei(xki − x̂ki)]

= E[eixki]− E[eix̂ki]

(13)

Since ei is uncorrelated with any independent variable, it is also uncorrelated with
xki: accordingly, we have E[eixki] = 0. With regard to the second term of the
subtraction, substituting the predicted value from (10) we get

E[ei(γ0 + γ1x1i + . . .+ γk−1xk−1i + γk+1xk+1i + . . .+ γKxKi)].

Once again, since ei is uncorrelated with any independent variable, the expected
value of the terms is equal to zero. Then, it follows that E[eifi] = 0.

4. The only remaining term is E [βkxkix̃ki]. The term xki can be substituted using
a rewriting of the model (10) such that

xki = E [xki|X−k] + x̃ki.

This gives

E [βkxkix̃ki] = βkE [x̃ki (E [xki|X−k] + x̃ki)]

= βk

{

E
[

x̃2
ki

]

+ E [(E [xki|X−k] x̃ki)]
}

= βkvar(x̃ki)

(14)

which follows directly from the orthogonality between E [xki|X−k] and x̃ki.

From previous derivations we finally get

cov(yi, x̃ki) = βkvar(x̃ki)

which completes the proof.

4 A comparison between reganat and avplot

To sum up our results so far, the value of the coefficient βk can be obtained alternately
by the FWL theorem and the RA theorem. While the FWL states that

βk =
cov(ỹi, x̃

k
i )

var(x̃k
i )

(15)

regression anatomy states that

βk =
cov(yi, x̃

k
i )

var(x̃k
i )

. (16)

There are good reasons to use both formulations during the process of building a mul-
tivariate model, since both have advantages and shortcomings.
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1. Variance of residuals
The OLS residuals obtained by the FWL theorem and the RA theorem are gen-
erally different: in particular, those obtained via the FWL theorem coincide with
those obtained for the multivariate full OLS model and are valid for inferences
about βk, while the residuals obtained via the RA theorem tend to be inflated
because

var (yi) ≥ var (ỹi) .

This holds true since the variance of y can be written, in the simple case of a
univariate model yi = α+ βxi + εi, as

σ2
y = β2σ2

x + σ2
ε

(17)

where β2σ2
x is the variance of ỹ.

2. Partial and semipartial correlations
In a regression model with just one independent variable, the OLS estimator can
be written as

β =
cov(yi, xi)

var(xi)
= ρyx

σy

σx

where ρyx is the correlation coefficient between x and y. The same relation applied
to a multivariate model provides two alternative expressions when using either the
FWL or the RA methods. In the case of the FWL method we have

βk =
cov(ỹi, x̃

k
i )

var(x̃k
i )

= ρỹx̃
σỹ

σx̃

, (18)

while in the case of the RA theorem we have

βk =
cov(yi, x̃

k
i )

var(x̃k
i )

= ρyx̃
σy

σx̃

. (19)

The term ρỹx̃ is the partial correlation coefficient while ρyx̃ is the semipartial

correlation coefficient. Since the FWL and the RA methods provide the same
estimate for βk we can write the relation between the two types of correlation
coefficients as

ρyx̃ =
σỹ

σy

ρỹx̃

from which is evident that ρyx̃ ≤ ρỹx̃ since the variance of y is larger than the
variance of ỹ.

The advantage of using the semipartial coefficient over the partial coefficient is
that the former is expressed in term of σy units, whereas the latter’s metrics is
dependent on the independent variable under study. Then, using the semipartial
coefficient allows for a comparison of the relative strength of different independent
variables.

3. Semipartial correlations and R2

In a multivariate OLS model each independent variable’s variance can be split
into three components:
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a. variance not associated with y;

b. variance associated with y and shared with other regressors;

c. variance associated with y and not shared with other regressors.

When constructing an OLS model, the inclusion of a new regressor is valuable
when the additional explaining power contained in it is not already fully captured
by the other K regressors: accordingly, the new variable must mainly provide the
kind of variance denoted with (c).

A measure of the value of this informative variance for new regressor is its semipar-
tial correlation coefficient: this fact which can be used to decompose the variance
in a multivariate model. Under normal conditions, the sum of the squared semi-
partials can be subtracted from the overall R2 for the complete OLS regression to
get the value of common variance shared by the independent variables with y.

The squared semipartial coefficient can also be expressed as the gain to the R2

due to the inclusion of the k-th variable, weighted by the portion of unexplained
variance; in formula:

ρ2yx̃k
=

R2
with −R2

without

(1−R2
with

) (N −K − 1)
.

Finally, a correspondence between the correlation coefficient and the R2’s from
either the FWL and the RA regression can be established. In the case of an
univariate model yi = α + βxi + εi the coefficient of determination R2 is defined
as β2σ2

x/σ
2
y and is equal to ρ2yx, i.e., the squared simple correlation coefficient

between y and x. In the same fashion, the R2 from the FWL regression is equal
to the squared partial correlation coefficient, while the R2 from the RA regression
is equal to the squared semipartial correlation coefficient.

It must be noted that Stata includes the official command avplot which puts on a
graph the variable x̃ki against ỹki (the residual of a regression of y on all variables except
the k-th). Though germane in scope and complementary in many walks of statistical
life, reganat is more congruent than avplot with the quantitative interpretation of
a multivariate linear model, since the former permits an appreciation of the original
metrics of yi, while the latter focuses on ỹki, whose metrics is less appealing to the
general reader.

In the causal interpretation of the regression model (Angrist and Pischke 2009, chap.
1), the coefficient β is the size of the effect of a causing variable on a dependent variable,
net of other competing factors. The same logic relies on the concept of ceteris paribus,
i.e., the evaluation of a cause all other factors being equal. While the variable x̃ki is the
statistical counterpart of the causing variable, the variable ỹki is less informative than
the original yi, since it is constrained to have a zero mean.

In applied statistical practice – econometrics, for example (Feyrer et al. 2008) – it is
customary to present, early on in an article, a bidimensional scatterplot of a dependent
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variable against an explanator of interest, even though the plot is potentially misleading
as the variance shared by other potential confounders is not taken into account. Usually,
in later pages, the main explanator is plugged into a set of other explanators to fit a
regression model, but seldom any scatterplot of the main relation of interest is presented.
This is unfortunate, since the valuable graphical information derived from the Frisch-
Waugh-Lovell theorem gets lost. Nonetheless, to be worth the effort, the post estimation
graph must resemble the original relation of interest: this is exactly the context in which
reganat can enrich the visual apparatus available to the applied statistician while saving
the original metrics of the variables involved as much as possible.

5 The command reganat

The estimation command reganat is written for Stata 10.1. It has not been tested on
previous versions of the program.

5.1 Syntax

The command has the following syntax:

reganat depvar varlist
[

if
] [

in
] [

, dis(vars) l(varname) biscat biline reg

nolegend nocovlist fwl semip scheme(graphical scheme)
]

Just like any other standard OLS model, a single dependent variable and an array
of independent variables are required.

By default, when user specifies K covariates, the commands builds a multi-graph
made of K bidimensional subgraphs. In each of them, the x-axis displays the value of
each independent variable net of any correlation with the other variables, while the y-
axis displays the value of the dependent variable. Within each subgraph, the command
displays the scatterplot and the corresponding regression line.

The option disp(vars) restricts the output to the variables in vars and excludes
the rest. Only the specified vars will be graphed; nonetheless, the other regressors will
be used in the background calculations.

The option label(varname) uses varname to label the observations in the scatter-
plot.

The option biscat adds on each subgraph the scatterplot between the dependent
variable and the original regressor under study. The observations are displayed using
a small triangle. Since E(x̃ki) = 0 by construction, while E(xki) is in general different
from zero, the plotting of xki and x̃ki along the same axis requires the variable E(xki)
to be shifted by subtracting its mean.

The option biline adds on each subgraph a regression line calculated over the
univariate model in which the dependent variable is regressed only on the regressor
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under study. To distinguish the two regression lines which appear on the same graph,
the one for the univariate model uses a dashed pattern.

The option reg displays the output of the regression command for the complete
model.

The option nolegend prevents the legend to be displayed.

The option nocovlist prevents the list of covariates to be displayed.

The option fwl uses Frisch-Waugh-Lovell formulation in place of RA.

The option semip adds a table with a decomposition of model’s variance.

The option scheme(graphical scheme) can be used to specify the graphical scheme
to be applied to the composite graph. By default, the command uses the sj scheme.

6 An example

Consider the following illustrative example of reganat, without any pretense of estab-
lishing a genuine causality model. Suppose that we are interested in the estimation of
a simple hedonic model for the price of cars as depending on their technical charac-
teristics. In particular, we want to estimate the effect, if any, of a car’s length on its
price.

First, we load the classic auto dataset and regress price on length, obtaining

(Continued on next page)
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. sysuse auto, clear
(1978 Automobile Data)

. regress price length

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 1, 72) = 16.50

Model | 118425867 1 118425867 Prob > F = 0.0001
Residual | 516639529 72 7175549.01 R-squared = 0.1865

-------------+------------------------------ Adj R-squared = 0.1752
Total | 635065396 73 8699525.97 Root MSE = 2678.7

------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
length | 57.20224 14.08047 4.06 0.000 29.13332 85.27115
_cons | -4584.899 2664.437 -1.72 0.090 -9896.357 726.559

------------------------------------------------------------------------------

The estimated β is positive. Then, since other technical characteristics could influence
the selling price, we include mpg (mileage) and weight as additional controls and we get

. regress price length mpg weight

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 3, 70) = 12.98

Model | 226957412 3 75652470.6 Prob > F = 0.0000
Residual | 408107984 70 5830114.06 R-squared = 0.3574

-------------+------------------------------ Adj R-squared = 0.3298
Total | 635065396 73 8699525.97 Root MSE = 2414.6

------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
length | -104.8682 39.72154 -2.64 0.010 -184.0903 -25.64607

mpg | -86.78928 83.94335 -1.03 0.305 -254.209 80.63046
weight | 4.364798 1.167455 3.74 0.000 2.036383 6.693213
_cons | 14542.43 5890.632 2.47 0.016 2793.94 26290.93

------------------------------------------------------------------------------

With this new estimation, the sign of length has become negative. The regression
anatomy theorem states that this last estimate of β for length could be also obtained
in two stages and this is exactly the method deployed by the command.

In the first stage, we regress length on mpg and weight

(Continued on next page)
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. regress length mpg weight

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 2, 71) = 312.22

Model | 32497.5726 2 16248.7863 Prob > F = 0.0000
Residual | 3695.08956 71 52.0435149 R-squared = 0.8979

-------------+------------------------------ Adj R-squared = 0.8950
Total | 36192.6622 73 495.789893 Root MSE = 7.2141

------------------------------------------------------------------------------
length | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | -.3554659 .2472287 -1.44 0.155 -.8484259 .137494

weight | .024967 .0018404 13.57 0.000 .0212973 .0286366
_cons | 120.1162 10.3219 11.64 0.000 99.53492 140.6975

------------------------------------------------------------------------------

from which it becomes clear that length and weight are remarkably correlated. In the
second stage, we get the residual value of length conditional on mpg and weight using
the model just estimated and then regress price on this residual reslength.

. predict reslengthr, r

. regress price reslength

Source | SS df MS Number of obs = 74
-------------+------------------------------ F( 1, 72) = 4.92

Model | 40636131.6 1 40636131.6 Prob > F = 0.0297
Residual | 594429265 72 8255962.01 R-squared = 0.0640

-------------+------------------------------ Adj R-squared = 0.0510
Total | 635065396 73 8699525.97 Root MSE = 2873.3

------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
reslengthr | -104.8682 47.26845 -2.22 0.030 -199.0961 -10.64024

_cons | 6165.257 334.0165 18.46 0.000 5499.407 6831.107
------------------------------------------------------------------------------

The value of the β from this bivariate regression coincides with that obtained from
the multivariate model, although the standard errors are not equal because of different
degrees of freedom used in the calculation.

The command reganat uses the decomposability of the regression anatomy theorem
to plot the relation between price and length on a bi-dimensional cartesian graph,
even though the model we are actually using is multivariate. Actually, the command
plots price and reslength using the command

. reganat price length mpg weight, dis(length)

Regression Anatomy
------------------------------------------------------------------------------
Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length



12 Regression Anatomy, Revealed

which produces the graph of fig. (1). The graph displays the variable length after
partialling out the influence of mpg and weight. Remarkably, this variable now assumes
also negative values, which it did not happen in the original data. This happens because
residuals have zero expected value by construction; accordingly, the original data have
been scaled to have zero mean in order to be displayed on the x-axis together with
residuals.

It is instructive to compare graphically the model obtained using the bivariate model
and the multivariate model adding the options biscat and biline.

. reganat price length mpg weight, dis(length) biscat biline

Regression Anatomy
------------------------------------------------------------------------------
Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length

This command produces the graph of fig. (2). The graph also displays, for both models,
the numerical value of β and its standard error at 95% in parentheses. Furthermore,
on the same line, the command displays the squared semipartial correlation coefficient.
The calculation is obtained using Stata’s built-in command pcorr command.

The other variables of the model can also be plotted on the graph to check whether
the inclusion of additional controls does influence their effect on the dependent variable.

. reganat price length mpg weight, dis(length weight) biscat biline

Regression Anatomy
------------------------------------------------------------------------------
Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length weight

This produces the composite graph of fig. (3). The inclusion of additional controls
also affects the β for weight: in the bivariate model its value is less than half as much
as in the multivariate model, as it is clear from the observation of the different slopes
in the right panel.

The command is also useful to decompose the model’s variance, in order to get an
idea of both the idiosyncratic and the joint contribution of the independent variables.
Using the option semip, we get an additional table with partial correlations, semipartial
correlations, squared partial correlations, squared semipartial correlations, the relevant
significance values, plus some summary statistics. The results are obtained using Stata’s
built-in command pcorr command.

. reganat price length mpg weight, dis(length) semip

Regression Anatomy
------------------------------------------------------------------------------
Dependent variable ...... : price
Independent variables ... : length mpg weight
Plotting ................ : length
(obs=74)
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Partial and semipartial correlations of price with

Partial Semipartial Partial Semipartial Significance
Variable | Corr. Corr. Corr.^2 Corr.^2 Value

------------+-----------------------------------------------------------------
length | -0.3009 -0.2530 0.0906 0.0640 0.0102

mpg | -0.1226 -0.0991 0.0150 0.0098 0.3047
weight | 0.4080 0.3582 0.1664 0.1283 0.0004

Model´s variance decomposition Value Perc.
------------------------------------------------------------------------------
Variance explained by the X´s individually 0.2021 0.5656
Variance common to X´s 0.1553 0.4344
------------------------------------------------------------------------------
Variance explained by the model (R-squared) 0.3574

The final table decomposes the model’s variance: the vector of the three variables
length, mpg and weight explains 35.74% of price. This explained variance can be
broken into the idiosyncratic contribution of each variable (6.4% + 0.98% + 12.83% =
20.21%) and the common variance (15.53%). In conclusion, around 57% of the model’s
explained variance can be attributed to the specific contribution of the independent
variables, while these same variables share around 43% of price’s explained variance.
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Figure 1: Regression anatomy.
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Figure 2: Regression anatomy: original and transformed data.
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Figure 3: Regression anatomy. Composite graph.


