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Abstract

Experimental analyses of Shapley-Shubik assignment games revealed that the

core prediction is biased. The competing hypotheses are that subjects either have

interdependent preferences or a limited understanding of outcomes in alternative

matches. To evaluate these hypotheses econometrically, we introduce core con-

cepts with random utility perturbations. The “logit core” converges to a uniform

distribution on the original core as noise disappears. With noise, it captures the

non-uniform distribution of observations inside and outside the core, and con-

trary to regression, it predicts robustly out-of-sample. The logit core thus consti-

tutes a conceptual basis for econometric analyses of assignment problems, and

by capturing the whole distribution of outcomes, it allows us to extract all infor-

mation by maximum likelihood methods. Using this approach, we then show that

the core’s prediction bias results from overstating the subjects’ grasp of outcomes

in alternative matches, while social preferences are only of minor relevance.
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1 Introduction

Consider the “assignment game” originally defined by Koopmans and Beckmann

(1957) and Shapley and Shubik (1972). Firms and workers generate a surplus when

they match. They match one-to-one, i.e. each worker can match with only one firm

and vice versa, and firms and workers can transfer payoffs within matches but not

between matches. The assignment game is canonically solved using the core. This

is particularly convenient, as its core is generally not empty and characterized as the

solution set of a simple linear program (Koopmans and Beckmann, 1957), besides sat-

isfying various technically attractive properties.1 For these reasons, the core solution

of the assignment game has become a standard model of labor markets (Crawford and

Knoer, 1981; Kelso Jr and Crawford, 1982) and other markets for indivisible goods

(Roth, 1985), and overall it is one of the most successful models from cooperative

game theory.

The experimental evidence paints a mixed picture, however. As for assignment

games, Tenbrunsel et al. (1999) and more recently Otto and Bolle (2011) found that

the core actually fits poorly—it is biased systematically and most experimental obser-

vations are not in the core, but near the equal split.2 This is consistent with earlier

evidence on the core in voting games, which after the initial findings of Fiorina and

Plott (1978) and Berl et al. (1976) revealed that the core is a “poor predictor in games

containing a fair alternative” (Eavey and Miller, 1984, p. 570; see also McKelvey and

Ordeshook, 1981). The results are also consistent with a bulk of evidence from experi-

mental analyses of non-cooperative games, which shows that standard game-theoretic

predictions on “competitive behavior” may fit poorly (see for example ultimatum and

dictator games, as surveyed in Camerer, 2003). In non-cooperative games, such devi-

ations are well explained by accounting for interdependent preferences, random utility

perturbations, and non-equilibrium models of reasoning. The purpose of the present

1In addition, the core of assignment games is known to be a polytope with the form of a 45◦-lattice
(Quint, 1991a), it satisfies the CoMa property (Hamers et al., 2002), it has been axiomatized (Toda,
2005) and implemented non-cooperatively (Pérez-Castrillo and Sotomayor, 2002; Halaburda, 2010).
While some of these properties do not generalize to m-sided markets (Quint, 1991b), they tend to
generalize to one-sided matching (Quint, 1996) and multiple-partners games (Sotomayor, 1999).

2There is further experimental research on assignment games that focuses on the efficiency of
matching mechanisms; see Olson and Porter (1994); Nalbantian and Schotter (1995), for mechanisms
with transfers, and Kagel and Roth (2000); Chen and Sönmez (2002, 2006); Pais and Pintér (2008), for
mechanisms without transfers.
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paper is to introduce these extensions into the cooperative concept of the core and to

evaluate the source of its prediction bias revisiting the data of Otto and Bolle (2011).

The main hypotheses are that the bias follows from either interdependence of

preferences (i.e. fairness concerns, as Eavey and Miller, 1984, suggest) or a limited

grasp (or heavy discount) of outcomes in alternative matches (as for example Selten,

1972, suggests). The latter hypothesis loosely relates to the level-k model in non-

cooperative games (Stahl and Wilson, 1995; Camerer et al., 2004; Costa-Gomes et al.,

2009), according to which level-1 players believe the opponents are non-strategic,

level-2 players believe the opponents are level 1, and so on. A cooperative solution

corresponding with level-1 reasoning is the level-1 equal division core (or level-1 core,

for short): Players do not consider payoffs in alternative matches at all and they con-

sider an outcome to be satisfactory (“stable”) if all players’ payoffs are sufficiently

close to the equal split. The next step, the cooperative solution at level 2, is the level-2

equal-division core (which Selten, 1972, called “equal-division core”): Level-2 play-

ers believe that the level-1 solution (the equal split) would result in any alternative

match and consider an outcome to be stable if no pair of players can benefit by form-

ing such an alternative match. In the core, finally, all players have full understanding

of all alternative matches. In an initial analysis of these concepts (Section 3), we find

that the limitation of the level of reasoning explains most the aforementioned system-

atic deviations from the core. Quantitatively, the level-1 core fits best amongst the

considered models, while interdependent preferences appear to be of minor relevance

only.

A fundamental issue in any evaluation of core concepts is that only two statistics

are available: the hit rate and the relative area covered by the core. Selten (1991) pro-

poses to use their difference as a measure for the core’s goodness of fit. Unfortunately,

this measure does not use all information that is available, e.g. it cannot distinguish

between close hits and clear hits or close misses and wide misses, and it does not lend

itself to statistical inference since it is not supported by even asymptotic theory (for

further discussion, see Hey, 1998). To identify the source of the prediction bias, we

therefore introduce a novel concept, the core for players with random utility perturba-

tions. The “logit core” predicts the actual distribution of outcomes and thus allows us

to extract all of the information contained in the data set by maximum likelihood esti-

mation. It relates conceptually to the logit equilibrium (McKelvey and Palfrey, 1995)

and converges to a uniform distribution on the core as noise disappears.
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We show that allowing for random utility perturbations explains the distribution

of observations inside the (level-1) core as well as the occasional occurrence of obser-

vations outside of it. To outline the intuition underlying the logit core concept, intro-

ducing random utility perturbations into the core yields a measure for the “stochastic

stability” of outcomes. Thus, instead of being perfectly stable or unstable, outcomes

inside the core are now “stochastically more stable” than outcomes close to its bound-

ary, which in turn are stochastically more stable than outcomes outside the core. The

experimental observations are distributed largely proportionally to their stochastic sta-

bility.

The low-level logit cores fit the distribution of observations both qualitatively

and quantitatively, and we show that they fit highly significantly better than two al-

ternative models with noise, namely a random behavior model, where the outcome is

in the core with probability 1− ε and outside of it with probability ε, and a regres-

sion model. Finally, we evaluate the predictive adequacy of the logit core, in order

to eliminate the possibility of overfitting and to show that the logit core fits robustly

(as suggested by e.g. Hey et al., 2010). The analysis reveals that preferences have

significant spiteful components after accounting for random utility and that the most

adequate concept (both descriptively and predictively) merges the level-1 and level-2

equal division cores. Intuitively, subjects bargain rather spitefully (i.e. competitively),

and they are content with a given allocation if it is either close to the equal split (level

1) or if they cannot improve by forming an alternative match with equally split payoffs

(level 2).

Overall, the results show that merging a cooperative solution concept (the core)

with behavioral concepts such as random utility and limited depth of reasoning qualita-

tively and robustly explains the main stylized facts in experimental assignment games.

Thus, the introduced logit core substantially extends the scope of both cooperative

game theory, by opening it toward likelihood-based econometric methods, and behav-

ioral game theory, by showing its applicability to cooperative games.

Section 2 defines assignment games and describes the experimental design. Sec-

tion 3 defines the cores with interdependent preferences and limited levels of reasoning

and briefly discusses their comparative relevance. Section 4 introduces our main con-

ceptual innovation, the logit core. Section 5 evaluates its adequacy econometrically.

Section 6 concludes. The supplementary material contains further robustness checks.
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2 Basic definitions and experimental games

Let W be a finite, non-empty set of “workers” and F be a finite, non-empty set of

“firms.” The productivity of the potential matches (w, f ) ∈ W ×F between workers

and firms is denoted as C ∈ R
W×F
+ , i.e. Cw, f is the value if w and f match. The

allocation of their value Cw, f is to be negotiated between w and f . Players that are

unmatched obtain zero payoff. The outcome of an assignment game is a payoff profile

(xi)i∈W∪F .

The core contains all outcomes where no subset of players can increase their

payoffs by rematching. An outcome (xi) ∈ R
N
+, N = W ∪F , is in the core if (and

only if) it is feasible and xw + x f ≥ Cw, f for all w ∈ W, f ∈ F . All core outcomes

are socially efficient, i.e. they maximize the productivity aggregated over all matches.

Koopmans and Beckmann (1957) and Shapley and Shubik (1972) show that the core

is generally non-empty (in assignment games) and that transfers between matches are

neither made nor required to sustain core allocations.3 Solymosi and Raghavan (2001)

provide necessary and sufficient conditions for the core to be stable in the sense of

von Neumann-Morgenstern, and these conditions will be satisfied in our experimental

games. Driessen (1998) shows that the kernel is included in the core of assignment

games, and Núñez and Rafels (2003) obtain a similar result for the τ-value.

Otto and Bolle (2011) implement the 2× 2 assignment games in a laboratory

experiment, testing the predictive adequacy of the core. Let the set of workers be

denoted as W = {W1,W2} and the set of firms as F = {F1,F2}. The productivi-

ties for all matches in all treatments T 1 . . .T 6 are provided in Table 1. Note that

C1,1 ≤ C1,2 ≤ C2,1 < C2,2 applies in all treatments and that the players may match in

either of two ways. The matching {(W1,F1),(W2,F2)
}

will be called “A-matching,”

and {(W1,F2),(W2,F1)} will be called “B-matching.” In T 1 and T 2, A-matching is

efficient, in T 4 and T 5, B-matching is efficient, and in T 3 and T 6, both matchings are

efficient. In the latter case, the core is degenerate, i.e. it has zero volume in the out-

come space. Otherwise, its volume is positive. For each of these efficiency conditions,

the productivity matrix is either symmetric (C1,2 =C2,1) or asymmetric (C1,2 <C2,1).

Thus, the six treatments yield a 3×2 factorial design to cover all relevant scenarios.

3This is not the case for most alternative solution concepts in assignment games. For example,
nucleolus, Shapley Value, and Stable Sets (the von Neumann-Morgenstern Solution) of the Assignment
Game require the possibility of transfers between matches.
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Figure 1: The experimental data in relation to the core. (Note that if B-matching is
inefficient, then the core predicts A-matching, and vice versa.)
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Table 1: Productivities of matches in the six experimental treatments

T 1 T 2 T 3 T 4 T 5 T 6
C1,1 C1,2

C2,1 C2,2

280 400
400 640

280 280
520 640

280 460
460 640

160 400
520 640

160 460
460 640

280 400
520 640

Note: Cw, f is the productivity of the match (w, f ) ∈ W × F . The pairings in the socially efficient
matching are underlined if unique. In T 3 and T 6, both matchings are efficient.

Experimental logistics, instructions, and basic descriptive statistics are discussed

in Otto and Bolle (2011) and reviewed in the supplementary material.4 The observa-

tions that are most relevant for our purpose are summarized in Figure 1. It plots all

outcomes in relation to the core in the various treatments and illustrates the main styl-

ized facts mentioned above (see also Tenbrunsel et al., 1999). The core predicts poorly,

overall less than 20% of the observations are in the core, inefficient matching can be

observed regularly, and overall observations are more egalitarian than predicted by the

core.5 Two possible explanations for these systematic observations are that subjects

have social preferences and that the stability requirements of the core are too strong

or computationally too complex. This possible sources are investigated in the next

section.

3 Interdependent preferences or limited depth of rea-

soning?

In this section, we introduce the three basic core concepts for players with interde-

pendent preferences based on which we seek to understand whether limited depth of

reasoning or interdependence of preferences is responsible for the biases observed in

Figure 1. We consider preferences that are interdependent in the sense that i’s utility

may depend on all of the entities that he can explicitly observe in the experiment: the

4Briefly, the order of the treatments and the individual allocation to positions was randomized over
the sessions. Every subject was allocated to a worker position three times and to a firm position three
times. No subject interacted with the same co-participant in more than three of the six games. As Otto
and Bolle (2011) verified, there was no indication of reputation building or learning.

5In addition, incomplete matching has been observed in 12% of the games. As Otto and Bolle
(2011) verified, almost all of these incompletions result from last-second rematching of the provisional
partners, i.e. just before the 10-minute time line for the negotiations ended. These incomplete matches
are therefore not intended by the unmatched players and as such unexplainable by concepts such as the
core. In our analysis, we therefore discard these 12% of the observations.
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own payoff, the partner’s payoff, and the partner’s identity. This requires additional

notation. The set of players is N = W ∪ F , and the set of i’s potential partners is

Ni = F ∪{ /0} if i ∈W and Ni =W ∪{ /0} if i ∈ F (“ /0” indicates that i remains single).

The utility of i ∈ N is a function Ui(xi,x j, j) : R2
+×Ni → R.

In order to define the core for such generalized utilities, we have to account for

two new phenomena. On the one hand, the stability of an outcome depends on the

matching that applies, since utilities depend on the matching. Hence, the definition

of “outcome” needs to be extended to also include the matching. Define a matching

m as a function m : N → N ∪{ /0} satisfying, for all i ∈ N, m(i) ∈ Ni and m(i) 6= /0 ⇒

m(m(i)) = i. Let M be the set of all these matchings. The set of outcomes can now be

defined as

X =
{

(x,m) ∈ R
N
+×M | ∀i ∈ N : m(i) = /0 ⇒ xi = 0 and

∀w ∈W : m(w) 6= /0 ⇒ xw + xm(w) ≤Cw,m(w)

}

.

On the other hand, when defining stability under generalized utilities, we need to

explicitly take into account that it may be preferable to be single than to share the

surplus generated by a match in a highly asymmetric way. Being single will usually

not be stable, but it has to be included as an option. To this end, let Cw, /0 = C/0, f = 0

for all w, f denote the productivity of single players, and let U/0 = 0 denote the utility

of the dummy player “ /0” who represents the partner of an unmatched player.

Definition 3.1 (Core). The core is the set of outcomes (x,m) ∈ X such that, for all

i ∈ N, all j ∈ Ni, and all x′ ∈ [0,Ci, j],

Ui(xi,xm(i),m(i))≥Ui(x
′,Ci, j − x′, j) or U j(x j,xm( j),m( j))≥U j(Ci, j − x′,x′, i).

The literature following Selten (1972) has analyzed a solution concept that weak-

ens the stability requirements of the core. Selten’s equal-division core, to which we

will refer as level-2 core, states that an outcome is stable whenever no pair of players

exists who would benefit if they coalesce and share their surplus equally. Thus, the

players consider only a specific alternative outcome rather than all possible alterna-

tives.

Definition 3.2 (Level-2 core). The level-2 core is the set of outcomes (x,m) ∈ X such

8



that, for all i ∈ N, all j ∈ Ni, and x′ =Ci, j/2,

Ui(xi,xm(i),m(i))≥Ui(x
′,Ci, j − x′, j) or U j(x j,xm( j),m( j))≥U j(Ci, j − x′,x′, i).

Otto and Bolle (2011) reduce the rationality requirement even further and say

that an outcome may already be stable if the allocations are sufficiently close to the

equal split in all matches. This level-1 core reflects the idea that players may not try

to predict possible payoff allocations in alternative matches at all, arguably due to the

uncertainty underlying the necessary negotiations.

Definition 3.3 (Level-1 core). Fix γ > 0. The level-1 core is the set of outcomes

(x,m) ∈ X such that for all i ∈ N, Ui(xi,xm(i),m(i))≥Ui(Ci,m(i)/2,Ci,m(i)/2,m(i))− γ.

The level-1 core turned out to be most descriptive concept in Otto and Bolle

(2011). Two potential objections to this result are that Otto and Bolle’s analysis ne-

glected interdependent preferences, while higher-level cores may be more descriptive

if we account for those, and that their result may possibly not be robust to changing

circumstances. In order to examine robustness, we will distinguish descriptive and

predictive adequacy. The descriptive adequacy is determined by fitting the parame-

ters to the whole sample and evaluating their fit on this very sample. The predictive

adequacy is determined by fitting the parameters to the observations from four of the

six treatments, evaluating their fit on the observations from the remaining two treat-

ments, and rotating so that all observations are used exactly once in the evaluation

stage once.6

Since we are also interested in verifying whether the results obtained by maxi-

mizing the likelihood of the logit core, as done below, differ qualitatively from those

obtained by maximizing Selten’s score7 for the core (as proposed in the literature), we

6This approach combines cross validation (Burman, 1989; Zhang, 1993) with non-random holdout
samples (Keane and Wolpin, 2007). Exploring predictive adequacy as a measure of robustness has been
advocated recently by Hey et al. (2010) and Wilcox (2008, 2011), amongst others.

7The “Selten score” (Selten, 1972, 1991) measures the goodness of fit in this case where likelihoods
are not available (they are zero whenever a single observation is not in the core), and where sums
of squared differences are not available as there is not reliable measure for the distance between A-
matching and B-matching. Selten’s score of a solution concept is the difference between (i) the relative
frequency of observations compatible with the concept and (ii) the share of internally Pareto efficient
outcomes compatible with the concept. An outcome (x,m) ∈ X is “internally Pareto efficient” if the
players allocate the whole surplus generated within their matches, i.e. if m(i) 6= /0 and xi+xm(i) =Ci,m(i)

for all i ∈ N.
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Table 2: Selten scores (higher is better) for egoistic and altruistic preferences

# Parameters Descriptive adequacy Predictive adequacy
Ego Altr Egoism Altruism Egoism Altruism

Level-1 Core 1 3 0.575 0.612 0.574 0.586
Level-2 Core 0 2 0.312 0.512 0.312 0.509
Core 0 2 0.122 0.276 0.122 0.253

Note: Level-1 core, level-2 core, and core are defined in Definitions 3.1–3.3; the Selten score
is defined in Footnote 7.

now evaluate the three core variants in terms of Selten’s score, allowing for egoistic

and altruistic interdependent preferences.8 The altruistic utility function is defined as

Ui(xi,x j, j) = xi +αx j +βCi j, where α and β are free parameters and Ci j is the pro-

ductivity (i.e. sum of payoffs) in the other match. In case i is single, i.e. j = /0, the

utility is Ui(0,0, /0) = 0+β ·max{C2,1,C2,2}. The model parameters are estimated by

maximizing Selten’s score jointly over all parameters, using a gradient free algorithm

for the initial approach to the maximum, a Newton method to ensure convergence, and

various starting values to verify globality of the maximum.

The results are summarized in Table 2. The best fitting concepts are the level-

1 core with either egoistic or altruistic preferences and the level-2 core for altruistic

preferences. They each contain approximately 80% of the observations but cover only

20%–30% of the outcome space. Their Selten scores do not differ significantly (in

Wilcoxon-tests of Selten’s scores at the session level, with p = .02) and they all fit

significantly better than all other models (at p < .001). Thus, the bias of the core ob-

served in Figure 1 appears to be primarily due to the limited level of reasoning, i.e.

the limited grasp of possible outcomes in alternative matches, while interdependent

preferences seem to be of minor relevance at best. Further, as the predictive adequacy

reported in Table 2 and the plot in Figure 2 show, the prediction bias is robustly elim-

inated in the level-1 core. In the remaining two sections, we introduce and analyze

random utility cores, in order to account for the fact that the observations are not dis-

tributed uniformly on the level-1 core, that the incompatible ones do not seem to be

uniformly outside of it, and that observations outside of the core occur in the first

place. This will allow us to extract all information contained in the data set and make

likelihood-based inference.
8Further analysis, which is provided in the supplementary material, shows that inequity aversion

and CES utilities do not improve upon linear altruism in this context.
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Figure 2: The level-1 core of players with egoistic preferences (with γ = 100 in all cases)
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4 Explaining the outcome distribution: The logit core

Simple bargaining games

Initially, consider a simple bargaining problem. There are two players negotiating the

allocation of a cake valued C > 0. We define the random utility bargaining problem by

adding a random utility component to the outside option. The distribution of the ran-

dom component is general in the following definition, but it will be logistic in all sub-

sequent applications, i.e. the difference of two i.i.d. extreme-value distributed random

variables. This corresponds closely with the approach taken in non-cooperative game

theory (see e.g. McKelvey and Palfrey, 1995, Goeree and Holt, 1999, Weizsäcker,

2003, Turocy, 2005). Illustrations follow shortly.

Definition 4.1 (Random utility bargaining game). The set of players is N = {1,2},

the set of possible outcomes is X = {x ∈ R
2
+ | x1 + x2 ≤ C} for some C > 0, and the

players’ disagreement payoffs are x1,x2 ∈ [0,C] with x1 + x2 < C. For both i ∈ N,

utilities are ui(x) = xi for all x ∈ X and ũi(x) = xi + εi for the outside option. The

distributions of ε1 and ε2 are continuous, stochastically independent, and characterized

by the cumulative distribution functions F1 and F2, respectively.

In the unperturbed game, an allocation is “stable” if and only if it is individually

rational and Pareto efficient. The core Xc ⊆ X is the set of stable allocations.

XC =
{

x ∈ X | xi ≥ xi ∧ x j ≥ x j ∧ xi + x j =C
}

If utilities are random, stability becomes a stochastic property, as individual rationality

is stochastic. The probability that player i is content with x is Pr(xi ≥ xi + εi), and the

probability that x is individually rational (i.e. that both players are content) is

π(x) = Pr(xi ≥ xi + εi) ·Pr(x j ≥ x j + ε j). (1)

This probability is called the stochastic stability of x, and an outcome x is called

stochastically more stable than x′ if π(x) > π(x′). Figure 3 plots the probabilities

that outcome (x1,x2) is individually rational conditional on Pareto efficiency (i.e. x2 =

C − x1), assuming logistic perturbations. If the utility perturbations εi have logistic

distribution with scale parameter s = 1/λ, then i is content with probability 1/
[

1+
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Figure 3: Stochastic stability in bargaining games for varying precisions λ
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Note: The cake size is C = 400 and the outside options are
(

x1,x2

)

= (120,240). The plotted functions
are Pr(x1 ≥ x1 + ε1 and x2 ≥ x2 + ε2), ε1,ε2 being i.i.d. logistic, as functions of x1 with x2 =C− x1.

exp(λ(xi − xi))
]

.

This ordering of outcomes generalizes deterministic stability in an intuitive way.

As the precision λ tends to infinity, stochastic stability converges pointwise to the

stability indicator 1x∈XC of the unperturbed game. The stochastically most stable

allocation is generally in the interior of the core of the unperturbed game, and if

perturbations are identically distributed for the players, the stochastically most sta-

ble outcome is the Nash solution. This is easy to see if perturbations are logistic

Fi(r) = 1/
(

1+exp(−λir)
)

for all r ∈R and i ∈ N. In this case, the stochastic stability

π(x) =
(

1+ e−λi(xi−xi)
)−1

∗
(

1+ e−λ j(1−xi−x j)
)−1

is maximized if

1+ eλi(xi−xi)

1+ eλ j(1−xi−x j)
=

λi

λ j
.

If errors are i.i.d. logistic, then λi = λ j and the most stable outcome is the Nash bar-

gaining solution. The following result establishes equivalence between the Nash solu-

tion and the stochastically most stable outcome for a general class of distributions.
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Lemma 4.2. Assume the random utility components of all players are i.i.d. with cumu-

lative density F. If F is symmetric, F(x) = 1−F(−x), and has quasi-concave density,

then the unique maximizer of π(x) is xi = (xi +C− x j)/2 and x j = (x j +C− xi)/2.

Proof. The first-order condition for maxxi
F(xi − xi)∗F(C− xi − x j) yields

f (xi − xi)/ f (C− xi − x j) = F(xi − xi)/F(C− xi − x j).

The claimed solution implies xi − xi =C− xi − x j =: x′ and hence satisfies the condi-

tion. Next, xi + x j <C implies x′ = (C− xi − x j)/2 > 0. The second-order condition

(for the claimed solution to be a maximum) is 2 f ′(x′)F(x′) < 2 f (x′) f (x′). By sym-

metry and quasi-concavity, x′ > 0 implies f ′(x′) ≤ 0; since all other terms are pos-

itive, the condition holds. Finally, consider the case xi − xi 6= x′, and without loss,

assume xi − xi > x′. Hence, C − xi − x j < x′. By symmetry and quasi-concavity,

f (xi − xi) ≤ f (C− xi − x j), and by monotonicity, F(xi − xi) > F(C− xi − x j); hence,

the first-order condition is violated, which proves uniqueness.

Further, outcomes close to the Nash solution are stochastically more stable than

distant outcomes, outcomes in the core are stochastically more stable than outcomes

outside of it, and outcomes close to the core are stochastically more stable than out-

comes distant to the core. These characteristics correspond closely with the intuition

that we wish to capture, and for this reason we define a solution concept where the

probability that outcome x results is proportional to its stochastic stability. Specifi-

cally, the random utility core is the probability density fC ∈ ∆
(

PF(X)
)

on the Pareto

frontier that is proportional to the above measure of stochastic stability.

fC(x) = π(x)/
∫

PF(X)
π
(

x̃
)

dx̃ (2)

As stated, the integration is along the Pareto frontier defined as PF(X) = {x ∈ X | x ≥

x′ ∀x′ ∈ X}. Obviously, Pareto efficiency could be relaxed as well, similar to the

way individual rationality has been relaxed. We abstain from doing so here, as the

subjects in our experiment as well as those in many previous bargaining experiments

manage to allocate the whole cake in almost all cases. The deviations from the core are

therefore not due to Pareto inefficiency. The following establishes a simple axiomatic

foundation of the random utility core in bargaining games.
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Proposition 4.3. For bargaining games (Def. 4.1), the following statements are equiv-

alent.

1. fC satisfies Eq. (2) for π(x) = F1(x1 − x1)∗F2(x2 − x2).

2. fC satisfies the following conditions.

A1 Continuity and Pareto efficiency: fC is the density of a continuous distri-

bution on PF(X).

A2 Proportional stability: fC(x) is proportional to the probability that all

players prefer x to their outside option, i.e. to Pr
(

ui(x)≥ ũi(x) ∀i
)

.

Proof. 2. ⇒ 1.: By the definition of the game, ε1 and ε2 are independent, and thus

Pr
(

ui(x) ≥ ũi(x) ∀i
)

= Pr
(

u1(x) ≥ ũ1(x)
)

·Pr
(

u2(x) ≥ ũ2(x)
)

=: π(x). A2 implies

fC(x) = a ·π(x) for some a > 0. Finally, since fC is a density with support only on the

Pareto frontier (A1), a = 1/
∫

PF(X)π(x)dx. 1.⇒ 2. can be verified easily.

Note that A2 implies independence of irrelevant alternatives (IIA), i.e. fC(x
′|X′) ·

fC(x|X
′′)= fC(x

′|X′′) · fC(x|X
′) for all x,x′ ∈X′ and all measurable X′⊆X′′⊆ PF(X).

Assignment games

Assignment games generalize bargaining games by endogenizing the outside options.

For each player, every feasible partner other than his current one represents an outside

option, while the values of these outside options depend on the payoff allocations

negotiated in their matches. The more my prospective partners in their current matches

make, the less the outside options are worth to me. Aside from taking these changes

into account, the above definition of the random utility core generalizes immediately.

In particular, we maintain the assumption that the utilities of the outside options are

random (e.g. logistic in the logit core).

Definition 4.4 (Random utility assignment game). For each outcome (x,m) ∈ X, the

utility of i ∈ N is ui(x,m) = Ui(xi,xm(i),m(i)). The utility of the blocking coalition

(i, j), j 6= m(i), with wages (xi,x j) ∈ R
2
+ is ũi(xi, j) = Ui(xi,x j, j)+ εi, j, and the util-

ity of the outside option is ui(xi, /0) = Ui(0,0, /0) + εi, /0. The distributions of εi, j are

continuous and stochastically independent over all i ∈ N and j ∈ Ni.
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As before, we define stochastic stability as the probability that the allocation is

stable, i.e. that no pair of players can rematch profitably. In the random utility assign-

ment game, the stochastic stability of outcome (x,m) therefore is

π(x,m) = Pr
(

∀i ∈ N,∀ j ∈ Ni,∀x′ ∈ [0,Ci, j] :

ui(x,m)≥ ũi(x
′, j) or u j(x,m)≥ ũ j(Ci, j − x′, i)

)

, (3)

and exploiting all independence assumptions in Def. 4.4, it simplifies to

π(x,m) = ∏
i∈N

∏
j∈Ni

∫
R

∫
R

fi, j(εi, j) f j,i(ε j,i) 1
{

∀x′ ∈ [0,Ci, j] :

Ui(xi,xm(i),m(i))≥Ui(x
′,Ci, j − x′, j)+ εi, j or

Ui(x j,xm( j),m( j))≥U j(Ci, j − x′,x′, i)+ ε j,i

}

dεi, jdε j,i. (4)

Intuitively, at the beginning of the assignment game, the utility perturbations (εi, j)

are drawn. One may think of εi, j as a measure of the “chemistry” between i and j

(in the eyes of i). The players then play the assignment game and evaluate possible

allocations by comparing them to the outside options plus the utility perturbations.

The stochastic stability is the ex-ante probability that a given allocation will be stable.

The random utility core is again defined as the density of continuous distribution

on the Pareto frontier. We assume that players are able to match completely and to

allocate the whole surplus generated in their respective match.9 Let IPF(X′) denote

the set of such allocations within X′ ⊆ X and let M∗ ⊂ M denote the set of complete

matchings. Now, using Xm = {x ∈ R
n | (x,m) ∈ X}, the random utility core is

fC(x,m) = π(x,m)/ ∑
m∈M∗

∫
IPF(Xm)

π
(

x̃,m
)

dx̃. (5)

Clearly, the random utility core converges pointwise to the uniform distribution on the

core if the utility variances approach zero. The assumption that stochastic stability

and outcome density are proportional is particularly simple and it turns out to fit our

data well (see below). Alternative assumptions may prove appropriate in alternative

9That is, we assume that outcomes satisfy internal Pareto efficiency as defined in Fn. 7. These
assumptions can be relaxed straightforwardly, but they reflect the basic observations made in the exper-
iment. In turn, we do not assume “external Pareto efficiency” (i.e. social efficiency), which seems too
strong in light of the above observations.
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classes of games.

Proposition 4.5. For any assignment game, the following statements are equivalent.

1. fC is the random utility core defined in Eqs. (3) and (5).

2. fC satisfies the following conditions.

A1 Continuity and internal Pareto efficiency: fC is the density of a continuous

distribution on the set outcomes satisfying internal Pareto efficiency.

A2 Proportional stability: fC(x,m) is proportional to the stochastic stability

π(x,m).

Proof. The proof is very similar to that of Prop. 4.3 and therefore skipped.

Finally, the stochastic stabilities of level-1 and level-2 cores follow straightfor-

wardly. The level-1 core with random utility has the stochastic stability

π(x,m) = Pr
(

∀i ∈ N : ui(x,m)> ũi(Ci,m(i)/2,m(i))
)

, (6)

and the level-2 core has the stochastic stability

π(x,m) = Pr
(

∀i ∈ N,∀ j ∈ Ni,x
′ =Ci, j/2 :

ũi(x
′, j)≤ ui(x,m) or ũ j(Ci, j − x′, j)≤ u j(x,m)

)

. (7)

5 Econometric evaluation of the logit core

In this section, we evaluate both descriptive and predictive adequacy of the logit core

revisiting the data of Otto and Bolle (2011). As above, descriptive adequacy measures

the goodness of fit to the whole sample after fitting the parameters to the whole sam-

ple, and predictive adequacy measures the goodness of fit out of sample, after fitting

parameters to a subset of treatments, evaluating the predictions on the remaining treat-

ments, and rotating such that all treatments are used once. We consider the logit core

in all three variants (level-1 core, level-2 core, core) and contrast it with regression

models and random behavior cores for further robustness checking. In all cases, the

likelihood is maximized jointly over all parameters by first gradient-free and second
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Newton methods, and a variety of starting values is used to verify globality of the max-

imum. Table 3 lists absolute values of the log-likelihoods for all models and Figure 4

illustrates the fit of the best-fitting model.10

As for the logit cores, see Table 3a, the level-1 core for egoistic preferences and

the level-2 core for altruistic preferences do not differ significantly (p > 0.1) and the

latter fits significantly better than all other concepts (p < 0.1).11 The difference be-

tween descriptive and predictive adequacy is insignificant for these concepts, i.e. the

result is robust and not due to overfitting. This confirms that subjects do not consider

all possible outcomes in alternative matches when they evaluate their current situation.

The observation that level-1 and level-2 cores fit the data similarly well is surprising,

however. The experiment had been designed to distinguish explicitly between these

possibilities. In all treatments, we can distinguish “strong” and “weak” players, based

on payoffs from their respective outside options (the alternative match). Thus, either

the alternative match is strategically relevant, in which case the level-2 core should fit

better than the level-1 core, or income equality is of primary relevance, in which case

the level-1 core should fit better. Since both concepts fit similarly, we infer that indeed

both motives are of strategic relevance and affect “stability” of outcomes.12

In order to investigate this hypothesis more conclusively, consider the following

mixed-level core nesting both level-1 and level-2 cores. Its stochastic stability index is

the weighted mean of the stochastic stabilities π1 in the level-1 logit core for egoistic

preferences and π2 in the level-2 logit core for altruistic preferences (which are the

best-fitting concepts out of sample), with weights µ ∈ [0,1].

πmix(x,m) = (1−µ) ·π1(x,m)+µ ·π2(x,m) (8)

The level-1 core obtains for µ = 0, the level-2 core obtains for µ = 1, and other values

of µ yield mixtures of these concepts. Table 3b reports the parameter estimates and Ta-

10The supplementary material contains all parameter estimates, the results of likelihood-ratio tests
(nested and non-nested Vuong tests) conducted to verify significance of differences in goodness of fit,
and analyses of alternative models with (amongst others) inequity averse players.

11The Vuong (1989) tests for nested/non-nested models (as appropriate) are done using non-
parametric tests at the session level. That is, with ( fs)

28
s=1 and (gs)

28
s=1 denoting the log-likelihoods of

two competing models in the 28 independent sessions, we evaluate the null hypothesis H0 : ln( fi/gi)= 0
using Wilcoxon signed-rank tests. All test results are provided as supplementary material.

12Note that this is not a matter of social preferences, as we explicitly tested for inequity aversion, as
reported in the supplementary material, which did not improve the goodness of fit.
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Table 3: Goodness of fit: Overview of all models

(a) Goodness-of-fit |LL| of the random utility (logit) cores

# Parameters Descriptive adequacy Predictive adequacy
Ego Altr Egoism Altruism Egoism Altruism

Level-1 logit core 1 3 3003.89 2987.35 3007.54 3013.29
Level-2 logit core 1 3 3156.63 2979.29 3157.7 2992.64
Logit core 1 3 3157.26 2998.09 3160.67 3013.57
Mixed-level logit core 3 5 2982.87 2945.37 2986.07 2956.98

(b) Parameter estimates of the mixed-level logit core with altruism

λ1 λ2 α β µ LL

13.5567
(1.4161)

32.8933
(3.6258)

−0.489
(0.053)

−0.2537
(0.0537)

0.0294
(0.0084)

−2945.37

Note: λ1 and λ2 are the precision parameters of the level-1 and level-2 components (resp.) of the
mixed core defined in Eq. (8), α,β are the altruism coefficients, and µ is the mixture weight. The
standard errors are obtained from the information matrix.

(c) Goodness-of-fit |LL| of the random behavior cores

# Parameters Descriptive adequacy Predictive adequacy
Ego Altr Egoism Altruism Egoism Altruism

Level-1 core 1 3 3085.07 3057.39 3085.70 3068.21
Level-2 core 1 3 3225.18 3106.25 3225.79 3330.29
Core 1 3 3253.32 3191.34 3255.17 3208.04

(d) Goodness-of-fit of the regression models

#Pars Descriptive |LL| Predictive |LL|

Regression on treatment parameters

Restricted coefficients 14 2971.60 3052.92
Unrestricted coefficients 24 2964.04 3038.54
Regression on theoretically relevant parameters

Restricted coefficients 7 3006.40 3015.56
Unrestricted coefficients 11 2979.82 3120.54

Note: The “treatment parameters” are the three productivities C1,1, C1,2, C2,1 that are not con-
stant across treatments, and the “theoretically relevant parameters” are the efficiency difference be-
tween A- and B-matching, i.e. the difference (C1,1 +C2,2)− (C1,2 +C2,1) and the symmetric indica-
tor IC1,2=C2,1 . In the models with “restricted coefficients”, the regression coefficients are equal across
A and B matching, in those with “unrestricted coefficients”, this restriction is lifted. For example,
under the “Regression on treatment parameters” model, the probability of A-matching is Pr(A) =
1/
(

1+ exp(−I0 − p0,C1,1C1,1 − p0,C1,2C1,2 − p0,C2,1C2,1)
)

, wages of workers i ∈ {1,2} are distributed
as f (wi) = Pr(A) · f (wi|A)+(1−Pr(A)) · f (wi|B), with wi|M ∼ N

(

Ii|M + pi|M,C1,1
C1,1 + pi|M,C1,2

C1,2 +

pi|M,C2,1
C2,1,σ

2
i|M

)

and support
[

0,wi|M

]

, using (w1|A,w2|A,w1|B,w2|B) = (C1,1,C2,2,C1,2,C2,1). The
other models are defined correspondingly (details are provided in the supplementary material).

19



Figure 4: Contour plots of the relative stochastic stabilities for the mixed-level logit core with altruistic preferences. The iso-lines
connect outcomes with the same stochastic stability and hence the same predicted density. Outcomes along the the outmost line
(at “0.1”) have 10% of the stochastic stability (and density) of the stochastically most stable outcome in the respective game.
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ble 3a reports descriptive and predictive adequacy. It shows that the mixed-level core

allowing for interdependent preferences (i.e. spite) improves the goodness of fit sub-

stantially, by at least 30 log-likelihood points in relation to all other models, and as we

verified in Vuong tests, these differences are highly significant (p < .01) in all cases.

Although the spite coefficients are highly significant, too, even the mixed-level core

with egoistic preferences improves on all other models. We therefore conclude that

the subjects’ main criterion for stability is equality of incomes within matches, while

the potential payoff from the alternative match and the interdependence of preferences

are of secondary, but significant relevance.

Comparing these results with those obtained by maximizing the Selten score in

Section 3, two observations are noteworthy. On the one hand, the mixed-level core,

which is the unambiguously best-fitting model here, cannot be defined without intro-

ducing the notion of stochastic stability. Thus, the logit core substantially extends

the range of models that can be considered. On the other hand, between the models

considered above, the ranking of the three best models actually inverted, toward (1)

Level-2 Altruism, (2) Level-1 Egoism, and (3) Level-1 Altruism, with the difference

between (1) and (3) even being significant. This follows from using all information

contained in the distribution of outcomes, such as the distance from an outside ob-

servation to the core, and in particular by smoothening the transition between close

misses and close hits. In addition, of course, the maximum likelihood estimates allow

for straightforward computation of standard errors as well as model evaluation based

on likelihood-ratio tests and information criteria.

Figure 4 shows that the mixed-level core also fits qualitatively. Its Cox-Snell

pseudo-R2 is R̃2 = 0.9239,13 which confirms the positive visual impression of the

plots. The estimated utility parameters are α = −0.49 and β = −0.25 (Table 3b),

which confirms that players are spiteful when evaluating alternative outcomes. This

indicates competitive bargaining and thus seems to be reasonable.

Finally, we conduct two robustness checks to verify the results. On the one hand,

the logit core was defined to capture the distribution of the observations inside the

core, as central observations are more frequent than borderline observations, as well

as the distribution outside the core, as borderline observations are more frequent than

13The Cox-Snell pseudo-R2 is R̃2 = 1 − (L(Baseline)/L(Model))2/N with L being the likelihood
function and the Baseline model being the model predicting uniform randomization. Its log-likelihood
is −3276.27 and the number of observations is N = 257.
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distant observations. To verify this implication, define a random behavior core with

uniform noise as follows: Outcomes are distributed either uniformly inside the core,

with probability 1/(1+ ε), or uniformly outside the core, with probability ε/(1+ ε).

As ε tends to zero, this random behavior core converges uniformly to the uniform

distribution on the core, as does the logit core as noise disappears, and it has the same

number of parameters. The only difference is the specification of noise. Its definition

applies to level-1 and level-2 cores straightforwardly. Table 3c reports the descriptive

and predictive adequacy of all six (basic) variants. It shows that random behavior

cores fit uniformly worse than their respective logit core counterparts, and all of these

differences are highly significant. In addition to Figure 4 and pseudo-R2 reported

above, this confirms that the continuous stochastic stability implied by the logit core

fits the outcome distribution well.

On the other hand, the core is a strategic model, and to verify whether this is a

fruitful approach toward analyzing negotiation outcomes in the first place, let us now

examine non-strategic and reduced-form regression models. As shown above, subjects

evaluate outcomes primarily by their difference to the equal split, which suggests that

regression models may fit indeed. We investigate this hypothesis on four alternative

regression models, in order to be able to address this issue conclusively. Similarly

to the logit cores, all regression models must predict the probabilities of A and B

matching as well as the distribution of wages w1,w2. The first two models are standard

and regress these variables on the treatment parameters C1,1, C1,2, C2,1 (note that C2,2

is held constant in all treatments). The other two models represent the prediction of

the best fitting structural model, the mixed-level core, in reduced form. They use the

same information, namely the efficiency gain in A-matching, the symmetry indicator

IC1,2=C2,1 , and the values of the outside options in each form of matching. For each

class of models, we distinguish a parsimonious “restricted” form, where the wage

coefficients are constant across A and B matching, and an “unrestricted” form where

coefficients are flexible (for further information, see the note to Table 3d).

The goodness-of-fit measures for all models are listed in Table 3d. Three of the

four regression models improve upon the level-k logit cores in-sample, which confirms

that the basic distribution can be fit using regression. However, these three models

overfit drastically and their predictive adequacy is poor—they are significantly worse

than all random utility models allowing for altruistic preferences. Thus, the in-sample

fit merely stems from their vastly extended parameter spaces and is overfit. It does
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not allow for reliable inference. The single regression model that avoids overfitting

is the regression on “strategically relevant parameters” with “restricted coefficients”,

which has poor descriptive and predictive adequacy, however. Thus, we conclude that

the strategic solution concept “logit core” is substantially more adequate in predicting

(laboratory) assignment outcomes than at least such “standard” regression models.

6 Conclusion

This paper has analyzed cooperative assignment games with the intention of under-

standing the sources of the prediction bias implied by the core. The competing hy-

potheses were that subjects have interdependent preferences or limited depth of rea-

soning. In order to fully capture the distribution of observations, and to extract all

information contained therein, we extended the core concept to allow for random util-

ity perturbations—an approach that proved descriptive in many previous experiments

on decision theory and non-cooperative game theory. We found that the logit core in-

deed fits the distribution of outcomes and that subjects deviate from the core primarily

due to a severely limited grasp (or due to severe discounting) of possible outcomes in

alternative matches. Stable outcomes tend to be close to the equal split, as the “level-1

core” is the main component of the identified model, while alternative matches tend

to matter only under the simplified assumption that the equal split will obtain there,

and interdependence of preferences is significant but of minor relevance. The identi-

fied model nests level-1 and level-2 cores and fits both qualitatively and quantitatively,

notably without overfitting.

Both interdependence of preferences and random utility perturbations are novel

in analyses of cooperative games. Their adequacy in the present analysis and their

widespread use in non-cooperative game theory suggest that further research is war-

ranted. Besides further analyses of random-utility concepts in cooperative bargaining

games, further research may also investigate values of games with random utility, and

perhaps most interestingly, it may evaluate the descriptive and predictive adequacies

of cooperative and non-cooperative models in comparative studies. This may help to

map out their respective fields of application and to define new concepts modeling the

key insights from both branches.
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