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Abstract

In this paper I provide a stopping-time-based solution to a long-term contracting
problem between a risk-neutral principal and a risk-averse agent. The agent faces
a stochastic income stream and cannot commit to the long-term contracting rela-
tionship. To compute the optimal contract, I also design an algorithm that is more
efficient than value-function iteration.

Keywords: Limited commitment, Risk sharing, Stopping time, Value-function
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1. Introduction

The theory of contracting with limited commitment has been applied to study
a wide variety of economic issues, including asset pricing (cf. Kehoe and Levine
(1993), Alvarez and Jermann (2000)), consumption inequality (cf. Krueger and Perri
(2006)), and the welfare effects of a progressive tax (cf. Krueger and Perri (2011)).
The standard approach to solving these contracting problems is to iterate on the
principal’s value function.2 However, value-function iteration (VFI) provides little
general analytical characterization; further, when the discount factor is close to one,
the value function converges slowly, making it computationally inefficient. The main
contribution of this paper is to provide a constructive stopping-time-based procedure
for solving the optimal contract with one-sided commitment. This method fully
reveals the risk sharing dynamics in the contract. Moreover, I design a stopping-
time-based algorithm that is two orders of magnitude faster than value-function
iteration.

1E-mail address: yuzhe-zhang@econmail.tamu.edu.
2Relevant aspects of the agent’s history are first summarized in a single variable, which is

the promised utility to the agent. Then the contracting problem is transformed into a dynamic
programming problem, and recursive techniques are applied to solve the problem (cf. Spear and
Srivastava (1987), Abreu et al. (1990)).
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My model features a risk-neutral fully committed principal and a risk-averse
noncommitted agent, and generalizes Ljungqvist and Sargent (2004, Chapter 19)
along three dimensions. While they assume that the agent’s income is independently
and identically distributed (i.i.d.), the outside option is autarky, and the principal
and the agent discount the future at a common rate, I allow for a Markov-chain
income process, an arbitrary outside option, and different discount rates. The three
generalizations in my model are motivated by the following observations. First, it is
well documented that people experience large and persistent income shocks over the
life cycle. The quantitative features of the income process are poorly approximated
by i.i.d. shocks. Second, agents in a number of long-term relationships have outside
options better than autarky. For instance, in wage contracting between a firm and a
worker, the worker has the option to quit the current job and find a new one. Last, I
allow for different discount rates because when the principal in the model takes the
interpretation of a financial intermediary, his discount factor should be determined
by the interest rate. In a general equilibrium model, the endogenously determined
interest rate is typically lower than the reciprocal of the agent’s discount factor.

In the optimal contract, the agent’s consumption follows a simple recursive rule:
consumption deviates each period from the first-best level by the smallest amount
necessary to bring it above some (state-dependent) minimum level. Because the
recursive rule is relatively easy to verify, my paper focuses on finding the minimum
levels. I first solve a stopping-time optimization problem: the moment when the
participation constraint binds is a stopping time, and the stopping time is chosen
to minimize the agent’s consumption flow before it arrives. Then I guess and verify
that the minimum level is the minimized consumption flow in the above problem.

My characterization of the contract is related to the solutions in Ljungqvist and
Sargent (2004, Section 19.3.3), Krueger and Uhlig (2006, Section 3.5), Thomas and
Worrall (2007, Section 3.2) and Krueger and Perri (2011, Section 4). Similar to
my stopping-time approach, their solutions do not rely on value-function iteration.
However, they assume i.i.d. incomes and rely on the monotonic mapping between
incomes and minimum consumption levels. Broer (2009, 2011) extends the methods
of Krueger and Uhlig (2006) to the Markov case and provides a sufficient condi-
tion under which the mapping between incomes and minimum consumption levels
is monotone. However, his sufficient condition is violated for empirically relevant
income processes such as the one calibrated by Krueger and Perri (2006). By con-
trast, my stopping-time approach does not depend on any particulars of the income
process or the ordering of minimum consumption levels.

Stopping-time approaches have been used in continuous-time models. For in-
stance, in liquidity constraint models in finance, Detemple and Serrat (2003) show
that the optimal consumption portfolio problem of an individual is equivalent to a
stopping-time problem in which wealth is optimally allocated over a random time
period, during which the individual is not constrained. Grochulski and Zhang (2011)
study a contracting problem in which the agent’s income follows a geometric Brown-
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ian motion. Their analysis relies heavily on the fact that the stopping time is gener-
ated by a Brownian motion, hence is of limited value in other contexts. This paper
allows for any Markov-chain income process and is, to the best of my knowledge, the
first that applies stopping-time techniques to a discrete-time limited-commitment
problem.

The recursive rule in this paper is related to a similar rule in two-sided limited-
commitment models (cf. Thomas and Worrall (1988) and Ljungqvist and Sargent
(2004, Chapter 20)). Because neither the principal nor the agent can commit in their
models, both a minimum and a maximum level exist for the agent’s consumption
in each state. Their proof, however, is not constructive; therefore, to obtain these
endogenous minimum and maximum consumption levels, they still need to iterate
on value functions. By contrast, I study only one-sided limited commitment, but I
am able to analytically construct the minimum consumption levels. Thus this paper
solves completely, in the context of one-sided commitment, the fundamental problem
concerning risk sharing dynamics.

This paper is also consistent with the findings in Ray (2002) and Krueger and
Uhlig (2006). When the principal and the agent are equally patient, the agent’s
continuation utility in the long run will be sufficiently high so that the participa-
tion constraint no longer binds. When the principal is more patient, the agent’s
consumption has a downward drift, and the agent’s participation constraint binds
even in the long run. The model then predicts a nontrivial stationary distribution of
consumption.

The rest of the paper is organized as follows. Section 2 describes the model.
Section 3 uses an example to motivate the general result. Section 4 presents the
stopping-time characterization of the optimal contract. In Section 5, I design an
efficient algorithm to compute the minimum consumption levels. This algorithm
does not involve VFI and terminates in finite steps. Section 6 discusses extensions
and limitations of the model. The proofs of all the results in the paper are provided
in an appendix.

2. A Risk Sharing Problem

Consider a risk-neutral principal and a risk-averse agent who engage in long-term
contracting at time 0. Time is discrete and infinite. Preferences of the agent are
represented by the expected utility function

E
[

∑∞

t=0
βtu(ct)

]

,

where ct is the agent’s consumption at time t, β ∈ (0, 1) is his discount factor and E
is the expectation operator. I make the following assumption on the utility function:

Assumption 1. (i) u : R++ → R is twice continuously differentiable, u′ > 0, and
u′′ < 0.
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(ii) u satisfies the Inada conditions, i.e., limc→0 u
′(c) = ∞ and limc→∞ u′(c) = 0.

(iii) u is unbounded below, i.e., limc→0 u(c) = −∞.

Part (iii) in Assumption 1 is only for the simplicity of the exposition; without it,
the analysis in this paper can proceed with minor modifications. Note that I do
not restrict ū ≡ limc→∞ u(c), which can be either finite or infinite. In each period
t, the agent’s income yt is in one of N states, i.e., yt ∈ Y ≡ {ȳ1, ȳ2, ..., ȳN}, where
ȳ1 < ȳ2 < ... < ȳN . The income stream {yt; 0 ≤ t < ∞} is a Markov chain
on a probability space (Ω ≡ Y ∞,F , P ) with transitional probability π(y′|y). The
sample space (Ω,F ) is equipped with a filtration, i.e., an increasing family of σ-fields
{Ft; t ≥ 0}, where Ft ≡ σ(ys; 0 ≤ s ≤ t). Assume π(y′|y) > 0 for all y, y′ ∈ Y so
that every finite-length path occurs with positive probability.

A contract specifies that in each period, the agent contributes his income yt to
the principal, who then returns ct to the agent. The principal has a discount factor
δ ∈ (0, 1) and minimizes the expected discounted cost

E
[

∑∞

t=0
δt(ct − yt)

]

.

The principal is committed to the contract, while the agent is not. In particular,
after the realization of yt in period t, the agent is always free to walk away from the
principal and obtains outside utility U(yt) ∈ R. One commonly used specification
of U(yt) arises for the case of autarky, in which the agent would consume his own
income after leaving the contract and thus

U(yt) = E
[

∑∞

s=t
βs−tu(ys)|yt

]

.

I assume that the outside option is not extremely high, so that long-term contract-
ing is always profitable at any point in time, and thus the principal would design
contracts in which the agent never leaves. In particular, the assumption implies:

Assumption 2. If ū < ∞, then U(ȳi) <
ū

1−β
, for all i = 1, ..., N .

For an initial state y0 and a given level of promised utility U0 ∈
[

U(y0),
ū

1−β

)

, the

principal’s problem is to find a consumption plan {ct; 0 ≤ t < ∞} that minimizes
the cost and satisfies the participation constraints, i.e.,

min
{ct;0≤t<∞}

E
[

∑∞

t=0
δt(ct − yt)

]

(1)

subject to E
[

∑∞

s=t
βs−tu(cs)|Ft

]

− U(yt) ≥ 0, for t ≥ 1, (2)

E
[

∑∞

t=0
βtu(ct)

]

= U0. (3)

Before characterizing the optimal solution to problem (1), I study as a benchmark
the first-best allocation with full commitment (i.e., the optimal solution to (1) where
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the participation constraints (2) are absent). If the first-best allocation exists, then
the first-order condition at the associated consumption levels is u′(ct) = βδ−1u′(ct+1).
Let

f(c) ≡ (u′)−1(β−1δu′(c))

represent what the next period’s consumption would be in the first best if the current
consumption is c. Note that c < f(c) (= or>) if and only if δ < β (= or>). Moreover
limt→∞ f t(c) = ∞ when δ < β and limt→∞ f t(c) = 0 when δ > β.

The following assumption guarantees the existence of the first-best allocation.

Assumption 3. If δ < β and ū = ∞, then
∑∞

t=0 β
tu(f t(c0)) is finite for all c0 > 0,

where f t is the composition of f with itself for t times.

If u = log(·), then this assumption is satisfied, because f t(c0) = βtδ−tc0, and
∑∞

t=0 β
t log(βtδ−tc0) is always finite. In general, this assumption requires some cur-

vature of the utility function, since otherwise, the consumption path f t(c0) may grow
too fast and

∑∞
t=0 β

tu(f t(c0)) may fail to be finite.

Lemma 1. Under Assumption 3, the first-best allocation exists for any promised

utility U0 ∈
(

−∞, ū
1−β

)

.

3. A Motivating Example

To provide economic intuition, I first discuss the properties of the optimal contract
in the simplest case, namely, when δ = β, the outside option is autarky, and the
income stream {yt; t ≥ 0} is a time-varying but deterministic sequence. Such a
sequence can be generated by a deterministic difference equation, hence may be
viewed as a special Markov chain whose transitional probability distribution π(·|yt)
is degenerate. Consider a principal’s problem in which y0 = ȳi and initial promised
utility U0 = U(ȳi), that is,

min
{ct;0≤t<∞}

∑∞

t=0
βt(ct − yt) (4)

subject to
∑∞

s=t
βs−tu(cs)− U(yt) ≥ 0, for t ≥ 1, (5)

∑∞

t=0
βtu(ct) = U(ȳi), (6)

where U(yt) =
∑∞

s=t β
s−tu(ys).

3.1. When Income Is Monotonic

It would be illuminating to first examine two extreme cases, namely, when income
{yt; t ≥ 0} is monotonically decreasing or increasing with t. In the former case, the
first-best allocation u(ct) ≡ (1−β)U(y0), ∀t ≥ 0 satisfies (5) (because U(y0) ≥ U(yt)),
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and thus is the optimal solution to (4). In the latter case, the autarkic allocation
ct ≡ yt, ∀t ≥ 0 is the solution to (4). Consumption is not smooth, so for efficiency,
the principal wants to raise u(ct) and lower u(ct+1) until they are equal. However,
any such attempt would violate the participation constraint at t + 1.

The zero insurance in the latter stands in sharp contrast to the complete insurance
in the former. In the latter case, the agent in any period would like to borrow against
the higher income in future periods, but the principal refuses to lend because such
a loan would trigger a default in the future. In the former case, the principal is
essentially a saving technology with which the agent saves resources from earlier to
later periods to smooth consumption. Note that whenever the agent saves, the Euler
equation is not distorted. This turns out to be a useful observation later on.

3.2. When Income Is Nonmonotonic

In this subsection I heuristically derive a characterization of the optimal alloca-
tion, which sheds light on the general case in Section 4. Assume the existence of
an optimal solution and denote the initial consumption c0 in the optimal solution
by c̄(ȳi). In problem (4), consumption is nondecreasing, and ct−1 < ct if and only
if the participation constraint in t binds.3 If τ ∗i ≥ 1 is the first time when the par-
ticipation constraint binds, then consumption is perfectly smoothed before τ ∗i , i.e.,
ct = c0 = c̄(ȳi) for all t ≤ τ ∗i − 1. I can pin down c̄(ȳi) by the promise-keeping

constraint
∑∞

t=0 β
tu(yt) =

∑τ∗
i
−1

t=0 βtu(c̄(ȳi)) + βτ∗
i U(yτ∗

i
),

c̄(ȳi) = u−1

(

∑τ∗i −1
t=0 βtu(yt)
∑τ∗

i
−1

t=0 βt

)

≥ u−1

(

min
τ≥1

∑τ−1
t=0 β

tu(yt)
∑τ−1

t=0 β
t

)

.

I then argue that

c̄(ȳi) = u−1

(

min
τ≥1

∑τ−1
t=0 β

tu(yt)
∑τ−1

t=0 β
t

)

. (7)

This is certainly correct for the two extreme cases discussed above. When income
is monotonically decreasing, the participation constraint never binds (i.e., τ ∗i = ∞),

which is consistent with (7) because
∑τ−1

t=0
βtu(yt)

∑τ−1

t=0
βt

is monotonically decreasing in τ .

When income is increasing, the participation constraint binds in every period (i.e.,

τ ∗i = 1), which is consistent with (7) because
∑τ−1

t=0
βtu(yt)

∑τ−1

t=0
βt

is increasing in τ .

3Let βtαt be the nonnegative Lagrange multiplier on (5) and φ be the multiplier on (6). The
first-order condition with respect to ct is

1 = u′(ct)(φ + α1 + α2 + ...+ αt).

Hence ct−1 < ct if and only if αt > 0.

6



To see (7) more generally, it remains to show that

c̄(ȳi) ≤ min
τ≥1

u−1

(

∑τ−1
t=0 β

tu(yt)
∑τ−1

t=0 β
t

)

. (8)

Pick τ ′ and τ ′′ such that τ ′ < τ ∗i < τ ′′. The participation constraints at τ ′ and τ ′′

are, respectively,

∑∞

t=τ ′
βtu(ct) ≥

∑∞

t=τ ′
βtu(yt),

∑∞

t=τ ′′
βtu(ct) ≥

∑∞

t=τ ′′
βtu(yt).

It then follows from equation (6) that

∑τ ′−1

t=0
βtu(ct) ≤

∑τ ′−1

t=0
βtu(yt),

∑τ ′′−1

t=0
βtu(ct) ≤

∑τ ′′−1

t=0
βtu(yt).

Since ct = c̄(ȳi) for all t ≤ τ ∗i − 1 and ct > c̄(ȳi) for all t ≥ τ ∗i , then

∑τ ′−1

t=0
βtu(c̄(ȳi)) ≤

∑τ ′−1

t=0
βtu(yt),

∑τ ′′−1

t=0
βtu(c̄(ȳi)) ≤

∑τ ′′−1

t=0
βtu(yt),

which imply inequality (8).
In equation (7), it is relatively easy to understand the perfect smoothing of con-

sumption from 0 to τ − 1, but it may be less clear why we need to find a τ to

minimize
∑τ−1

t=0
βtu(yt)

∑τ−1

t=0
βt

. We can obtain some intuition from the following example.

Suppose y0 > y2 > y1, and ys = y2, ∀s ≥ 2 (see Figure 1). Starting from autarky, the
principal certainly has incentive to smooth consumption in the first two periods by
moving utility from period 0 to 1, since doing this does not violate any participation
constraint and reduces the principal’s cost. To maintain the same promised utility,
the new consumption in the first two periods c̃ satisfies u(c̃)+βu(c̃) = u(y0)+βu(y1),

thus c̃ = u−1
(

u(y0)+βu(y1)
1+β

)

. The next question is: Can the principal provide more

consumption smoothing than this? The answer critically depends on whether c̃ > y2
holds or not. If c̃ > y2 (see Figure 2), then the principal can move utility from
the first two periods to later periods, for the same reason as before. Doing this
lowers the consumption in the first two periods. However, if c̃ ≤ y2 (see Figure 3),
the principal wants to move utility from later periods to the first two periods but
cannot achieve it because of the agent’s default risk. In contrast to Figure 2, con-
sumption smoothing in Figure 3 raises the consumption in the first two periods. To
summarize, whether more consumption smoothing is feasible is indicated by whether
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0 1 2 3 4

y1

y0

Time

Figure 1: Endowments.

0 1 2 3 4

y2

c̃

Time

Figure 2: More consumption smoothing is feasible.

0 1 2 3 4

y2

c̃

Time

Figure 3: More consumption smoothing is infeasible.
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consumption in the first two periods can be further reduced. By searching for a τ
that minimizes the average consumption from 0 to τ−1, the principal tries to achieve
the most consumption smoothing that is feasible.

After computing c̄(ȳi) for all ȳi, consumption follows the recursive rule:

ct = max{ct−1, c̄(yt)}, t ≥ 1. (9)

To see (9), recall that ct−1 < ct if and only if the participation constraint in t binds.
If it binds, then the continuation utility at t is U(yt) and ct = c̄(yt).

4. A Characterization of the Optimal Contract

Based on the example in Section 3, I characterize the optimal contract as follows.
First, the minimum consumption level c̄(ȳi) is defined by a generalization of equation
(7). The generalization allows τ to be a stopping time, since when income is stochas-
tic, the first time when the participation constraint binds is no longer deterministic.
Then, I show that c̄(ȳi) is the initial consumption when y0 = ȳi and the promised
utility is U(ȳi). Meanwhile, I guess and verify (a generalization of) the recursive rule
in (9).

4.1. The Minimum Consumption Levels

This subsection defines a minimum level of consumption c̄(y) for each income
state y. To do this, I first express the outside option as a discounted sum of flows
(denoted as g). Specifically, I introduce a function g : Y → R by

g(ȳi) = U(ȳi)− β
∑N

j=1
U(ȳj)π(ȳj|ȳi),

which leads to a natural identity

U(ȳi) = E
[

∑∞

t=0
βtg(yt)|y0 = ȳi

]

.

If today’s income is y and the agent receives g(y), then he is indifferent between
defaulting today and tomorrow. If the outside option is autarky, then g(·) = u(·).

A random time τ is a stopping time of the filtration {Ft; t ≥ 0}, if the event
{τ ≤ t} belongs to Ft for every t ≥ 0. For a stopping time τ ≥ 1, let di(τ) be the
solution to

E
[

∑τ−1

t=0
βtu(f t(di(τ)))|y0 = ȳi

]

= U(ȳi)− E [βτU(yτ )|y0 = ȳi] (10)

= E
[

∑τ−1

t=0
βtg(yt)|y0 = ȳi

]

.

Note that Assumption 3 implies that E
[
∑τ−1

t=0 β
tu(f t(c0))|y0 = ȳi

]

is finite for any c0
and any τ ≥ 1. If E

[
∑τ−1

t=0 β
tū|y0 = ȳi

]

> U(ȳi)−E [βτU(yτ)|y0 = ȳi], it follows from
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Assumption 1 (iii) that di(τ) exists, is unique, and is finite; otherwise the solution
does not exist and I simply let di(τ) = ∞. In particular, for the stopping time
τ ≡ ∞, because ū

1−β
> U(ȳi), di(∞) is finite. Note that if the first-best allocation

is delivered from 0 to τ − 1 and the agent’s initial consumption is di(τ), then he is
indifferent between defaulting at 0 and at τ , conditional on y0 = ȳi. The minimum
consumption c̄(ȳi) is defined as

c̄(ȳi) = inf
τ≥1

di(τ), (11)

where the infimum is over all stopping times τ ≥ 1. For notational simplicity, I write
c̄(ȳi), g(ȳi) as c̄i, gi.

Lemma 2. For all i, c̄i is well-defined and finite. If δ ≥ β, then u−1(minj gj) ≤ c̄i ≤
di(∞). If δ < β, then e ≤ c̄i ≤ di(∞), where e satisfies

∞
∑

t=0

βtu(f t(e)) =
minj gj
1− β

.

4.2. Guess and Verify

I guess that the consumption in the optimal contract is updated recursively by

ct = max{f(ct−1), c̄(yt)}, t ≥ 1. (12)

That is, consumption deviates each period from the first-best level by the smallest
amount necessary to bring it above some minimum level. Equation (12) reveals the
dynamics of consumption without using value functions.4

In (12), c0 is set at a value to satisfy equation (3). Since the left side of (3)
is continuous and strictly increasing in c0 (when {ct; t ≥ 1} are all interpreted as
functions of c0), such a value uniquely exists, which I denote by c0(U0, y0). The next
lemma shows that c0(U(ȳi), ȳi) = c̄i (thus c0(U0, ȳi) > c̄i for U0 > U(ȳi)). This and
(12) imply that consumption ct stays weakly above c̄(yt) for all t (including t = 0),
which justifies the name “minimum consumption levels” for c̄(·).

Lemma 3. If y0 = ȳi and c0 = c̄i, then {ct; t ≥ 0} defined in (12) delivers U(ȳi) to
the agent.

It remains to verify that {ct; t ≥ 0} is indeed the optimal contract.

Theorem 1. If y0 = ȳi, U0 ≥ U(ȳi) and c0 = c0(U0, ȳi), then {ct; t ≥ 0} defined in
(12) satisfies participation constraints (2) for all t ≥ 1, and is the optimal solution
to (1).

4It is derived by a number of papers in the literature (cf. Thomas and Worrall (1988, 2007),
Ljungqvist and Sargent (2004), Krueger and Perri (2006, 2011), Broer (2009)).
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4.3. Stationary Distribution of Consumption

In this subsection, I briefly discuss the asymptotic behavior of consumption. If
the agent is more patient than the principal, then the agent’s consumption has a
upward drift and diverges to infinity in the long run. If they are equally patient,
then the first-best consumption path has no drift; consumption stays at maxi c̄i
forever after reaching it the first time. This is consistent with the findings in Ray
(2002), who shows that in environments where the principal and the agent are equally
patient and the agent lacks commitment, the optimal allocation eventually exhibits
a continuation that maximizes the agent’s payoff over all self-enforcing sequences. In
these cases, the long-run consumption either diverges or its distribution is degenerate.

If the principal is more patient, then the agent’s consumption has a downward
drift, and the results in Ray (2002) no longer hold, i.e., the agent’s participation
constraint binds even in the long run. Thus, the model with a more patient prin-
cipal predicts a nontrivial stationary distribution of consumption. The agent’s con-
sumption in the long run is always between mini c̄i and maxi c̄i. Moreover, since
ct = f t−s(c̄(ys)), where s ≤ t is the last period with a binding participation con-
straint, we have

ct ∈ {fn(c̄i) : 0 ≤ n ≤ T, 1 ≤ i ≤ N}.

where T satisfies fT (maxi c̄i) < mini c̄i. That is, T is the maximal number of peri-
ods between two binding participation constraints. Since T is finite, the stationary
distribution of consumption has a finite support. Similar finite-support results are
derived in Krueger and Uhlig (2006, Proposition 17) and Broer (2009, Proposition
1).

5. Computation

Because searching over all stopping times in (11) is computationally prohibitive,
I need an alternative method to calculate the vector c̄ : Y → R++. In this section,
I develop such an algorithm. In the following, I will sketch the main idea, leaving a
detailed explanation to the Appendix.

For a sequence A ≡ {At ⊆ Y ; t ≥ 1} of subsets of Y , let Γ(A) denote the exit
time of A, i.e.,

Γ(A) = min
t
{t ≥ 1 : yt /∈ At}. (13)

The following lemma states that the optimal stopping time in (11) takes the form of
an exit time.

Lemma 4. For all i, c̄i = di(τ
∗
i ) where τ ∗i = Γ(A(c̄i)), A(c̄i) ≡ {At(c̄i); t ≥ 1},

At(c̄i) = {y ∈ Y : c̄(y) ≤ f t(c̄i)}, t ≥ 1.
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To compute c̄(·), I first consider the case of δ = β. Suppose further that the
ordering of c̄i concurs with the ordering of the states. The equation c̄i = di(Γ(A(c̄i)))

in Lemma 4 is V
(i)
i = 0, where

V
(i)
k = E

[

∑Γ(A(c̄i))−1

t=0
βt(u(c̄i)− g(yt))|y0 = ȳk

]

, 1 ≤ k ≤ i.

The vector {V (i)
k ; 1 ≤ k ≤ i} satisfies a linear system of equations

V
(i)
k = u(c̄i)− g(ȳk) + β

∑i

j=1
πkjV

(i)
j , 1 ≤ k ≤ i, (14)

from which u(c̄i) and V
(i)
k , 1 ≤ k ≤ i can be easily obtained.5

Second, consider the case of δ > β. Because f t(c) decreases with t, Lemma 4
states that for any income state ȳi, I could obtain c̄i through a fixed-point iteration,
as long as the collection of states with values of c̄(·) below c̄i is known. This means
that, if I know the ordering of c̄(·), then I can compute c̄(·) from smaller to larger
values. Although the algorithm requires a separate fixed-point iteration for each
income state, it is still faster than value-function iteration because all fixed-point
iterations terminate in finite steps.

Complications arise when the ordering of c̄(·) is unknown a priori, and hence needs
to be obtained along with the computation of c̄(·) from smaller to larger values. More
specifically, suppose I have obtained the values of c̄(·) on B, where B is a collection
of income states with smaller values of c̄(·). Lemma 4 allows me to compute c̄i, where
c̄i is the next higher value of c̄(·) (i.e., the minimum of c̄(·) on Bc). The challenge
here is that, because I have not found the values of c̄(·) on Bc yet, I do not know at
which state the next higher value of c̄(·) is achieved. To solve the problem, I compute
an auxiliary vector (c̃(·) in step 2 below) that has the same minimizer as c̄(·) on Bc.
The computation of the auxiliary vector is feasible as it depends only on the known
values of c̄(·) on B.

The following algorithm implements the above idea. Let B denote the set of
states for which c̄ has been found, while Bc denotes the set of states for which c̄ is
still unknown; maxȳi∈B c̄i < minȳi∈Bc c̄i is satisfied throughout the computation. The
algorithm expands B point by point until it terminates at B = Y .

5Using (14), I can easily reproduce the results in Ljungqvist and Sargent (2004, Chapter 19). If
the outside option is autarky and income is i.i.d., then g(·) = u(·) and

0 = V
(i)
i = u(c̄i)− u(ȳi) + β

∑i

j=1
πjV

(i)
j , (15)

V
(i)
k = u(c̄i)− u(ȳk) + β

∑i

j=1
πjV

(i)
j , 1 ≤ k ≤ i− 1. (16)

Subtracting (15) from (16) yields V
(i)
k = u(ȳi) − u(ȳk). Substituting this into (15) yields u(c̄i) =

u(ȳi)− β
∑i

j=1 πj(u(ȳi)− u(ȳj)), which is equation (19.3.25) in Ljungqvist and Sargent (2004).
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Algorithm for the case of δ ≥ β:

• Step 1. This step initializes B as the collection of states at which c̄(·) is
minimized. To do so, set B = {y ∈ Y : g(y) = mini gi} and c̄(y) = u−1(g(y))
for y ∈ B. The Appendix provides a detailed explanation for why {y : c̄(y) =
mini c̄i} = {y : g(y) = mini gi}, as well as explanations for the rest of this
algorithm.

• Step 2. This step computes an auxiliary vector c̃ : Bc → R, such that it has
the same minimizer as c̄(·) on Bc, as follows. For each ȳi ∈ Bc, choose an
initial sequence of sets C0 = {C0

t ; t ≥ 1} where C0
t = B ∪ {ȳi}, ∀t. Compute

x0 = di(Γ(C
0)) and set k = 0.

– Step 2.1 Compute the next iterate: xk+1 = di(Γ(C
k+1)), where Ck+1 =

{Ck+1
t ; t ≥ 1} and Ck+1

t = {y ∈ B : c̄(y) ≤ f t(xk)} for t ≥ 1.

– Step 2.2 Check the stopping criterion: If xk+1 = xk, let c̃i = xk and go to
step 2.3; else go to step 2.1.

– Step 2.3 If c̃i has been obtained for all ȳi ∈ Bc, go to step 3; else compute
c̃ for the next point in Bc.

• Step 3. This step expands B. To do so, replace B by B ∪D, where D ≡ {y ∈
Bc : c̃(y) = minȳi∈Bc c̃i}. Let c̄(y) = c̃(y) for y ∈ D.

• Step 4. This step decides whether to terminate the computation. If B = Y ,
stop; else go to step 2 with the updated B.

Last, consider the case of δ < β. The algorithm is analogous, except that here I
compute c̄(·) from larger to smaller values. That is, the states for which c̄ has been
found, B, are states with larger values of c̄(·) and minȳi∈B c̄i > maxȳi∈Bc c̄i is satisfied
throughout the computation.

Algorithm for the case of δ < β:

• Step 1. This step initializes B as the collection of states at which c̄(·) is
maximized. To do so, set B = {y ∈ Y : U(y) = maxi U(ȳi)} and c̄i = di(∞)
for ȳi ∈ B.

• Step 2. This step computes an auxiliary vector c̃ : Bc → R, such that it
has the same maximizer as c̄(·) on Bc, as follows. For each ȳi ∈ Bc, choose
an initial sequence of sets C0 = {C0

t ; t ≥ 1} where C0
t = Y, ∀t. Compute

x0 = di(Γ(C
0)) = di(∞) and set k = 0.

– Step 2.1 Compute the next iterate: xk+1 = di(Γ(C
k+1)), where Ck+1 =

{Ck+1
t ; t ≥ 1} and Ck+1

t = {y ∈ B : c̄(y) ≤ f t(xk)} ∪ Bc for t ≥ 1.

– Step 2.2 Check the stopping criterion: If xk+1 = xk, let c̃i = xk and go to
step 2.3; else go to step 2.1.

13



– Step 2.3 If c̃i has been obtained for all ȳi ∈ Bc, go to step 3; else compute
c̃ for the next point in Bc.

• Step 3. This step expands B. To do so, replace B by B ∪D, where D ≡ {y ∈
Bc : y = maxȳi∈Bc c̃i}. Let c̄(y) = c̃(y) for y ∈ D.

• Step 4. This step decides whether to terminate the computation. If B = Y ,
stop; else go to step 2 with the updated B.

I test the algorithm in a numerical example below.

5.1. A Numerical Example

I assume that the agent’s utility is log(·), the outside option is autarky, and set
β = 0.9 < δ = 0.94. The income process yt is the sum of a persistent AR(1) process
mt, with persistence ρ and variance σ2

m, and a completely transitory component ǫt
which has mean zero and variance σ2

ǫ . That is,

yt = mt + ǫt,

mt = ρmt−1 + vt.

I employ the Tauchen and Hussey (1991) procedure to discretize the income process.
In the benchmark, I use a two-state Markov chain for mt and a two-state Markov
chain for ǫt. Hence, there are four income levels. The parameter values are ρ = 0.999,
σ2
m = 0.2, and σ2

ǫ = 0.1. I compute the principal’s cost using both the algorithm
in this paper and value-function iteration (VFI).6 I use a Fortran program on a PC
with a 1.83GHz Intel CPU. In the rest of this subsection, I compare the speed of
my algorithm with that of VFI. I then explain why the ordering of c̄(·) is nontrivial.
Finally, I compute the invariant distribution of consumption.

6In VFI, C(ȳi, U) denotes the principal’s cost function given promise U . For each ȳi, I choose a
grid with 20 points as the domain of C(ȳi, ·). The lower bound of the domain is U(ȳi), while the
choice of upper bound is somewhat arbitrary (the results reported here are not sensitive to this
choice). The Bellman equation is

C(ȳi, U) = min
{c,U ′

j
;j=1,...,N}

{

c− ȳi + δ
∑N

j=1
π(ȳj |ȳi)C(ȳj , U

′

j)

}

(17)

subject to U = log(c) + β
∑N

j=1
π(ȳj |ȳi)U

′

j ,

U ′

j ≥ U(ȳj), ∀j.

To solve the right side of the Bellman equation, I use the numerical minimizer BCPOL in the
IMSL Math Library. Iteration terminates when ||TC(y, U)− C(y, U)||∞ ≤ 10−3. In contrast, the
algorithm in this paper terminates in finite steps, and does not need a convergence criterion.
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Table 1: Running times of the two algorithms in seconds.

Parameters Value-function iteration My algorithm
δ = 0.94, |Y | = 4 (Benchmark) 3.9 s 1.0× 10−2 s
δ = 0.98, |Y | = 4 17.3 s 1.0× 10−2 s
δ = 0.94, |Y | = 10 82.3 s 3.0× 10−2 s

5.1.1. Comparison of Algorithms

The first row in Table 1 reports the running times of the two algorithms. It shows
that the algorithm in this paper is two orders of magnitude faster than VFI. There
are three reasons why my algorithm is faster. First, for each state ȳi VFI approx-
imates and computes the cost function on the entire domain [U(ȳi),

ū
1−β

), while I
only compute a single value c̄i. Second, VFI involves an indefinite number of itera-
tions, with the speed of convergence deteriorating as the discount factor approaches
one; in contrast, the iterations in Steps 2.1-2.3 of my algorithm terminate in finite
steps. In this example, it takes 71 iterations for VFI to converge, while the number
of iterations is less than 10 in my algorithm. Third, my algorithm avoids any nu-
merical minimizer, which is expensive in computation time. In contrast, VFI calls a
minimizer at every node within one iteration.

The difference between the two algorithms becomes more dramatic in two exper-
iments (see the last two rows of Table 1). In the first experiment, I increase δ from
0.94 to 0.98. It takes more iterations (and more time) for VFI to converge, while the
running time of my algorithm is essentially unchanged. In the second experiment,
I approximate mt by a five-state Markov chain, i.e., the number of income states
increases from four to ten. Both algorithms slow down, but VFI is affected more.
For VFI, not only are there more grid points in the domain, computation at each
point also slows down significantly. With a larger Y , the minimization problem on
the right side of the Bellman equation has more choice variables (see equation (17)).
Consequently, it takes more time for the numerical minimizer to find solutions.

VFI may be fast enough in a simple setting where the optimal contract is com-
puted once. However, when researchers need to compute the optimal contract re-
peatedly, a longer running time is problematic.7 In instances such as this, a faster
algorithm such as the one I develop provides a distinct and important advantage.

7In Krueger and Perri (2006), Krueger and Uhlig (2006), and Broer (2009), the principal’s
discount factor δ (or the market-clearing interest rate) must be endogenously determined so that
aggregate consumption equals aggregate income. In searching for the market-clearing interest rate,
researchers need to compute the optimal contract for a guessed δ and then update guesses. Even if
the computation of one optimal contract takes only a few seconds, when it is repeated many times,
it can slow down the whole computation significantly.
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5.1.2. Ordering of c̄(·)

Because the outside option is autarky, g(y) is equal to u(y) and hence is monotonic
in y. However, the minimum consumption c̄(·) is not, due to the nonmonotonicity of
the autarky value function. (For g(·) and c̄(·) in the case of |Y | = 10, see Figure 4.)
To understand why U(·) is nonmonotonic, consider U(ȳ3) and U(ȳ4): U(ȳ3) > U(ȳ4)
because the income ȳ3 has a larger persistent component but a smaller transitory
component than ȳ4, and the larger persistent component implies a higher autarky
value. There is comovement between c̄(·) and U(·) because a higher outside option
generally requires that more consumption be delivered to the agent. This comove-
ment, however, is not perfect: Figure 5 shows that the ordering of c̄(·) does not
coincide with that of U(·). This makes the ordering of c̄(·) hard to obtain.

5.1.3. Stationary Distribution of Consumption

Because the principal is more patient than the agent in this example, there is
a stationary distribution of long-run consumption, as discussed in subsection 4.3.
Recall that the support of this distribution is {fn(c̄i) : 0 ≤ n ≤ T, 1 ≤ i ≤ N}. That
is, if the last period with a binding participation constraint is in income ȳi, then
ct = fn(c̄i) for some n. Figure 6 shows the stationary distribution of consumption
in the case of N = |Y | = 10. For each i (1 ≤ i ≤ N), consumption levels in
{fn(c̄i) : 0 ≤ n ≤ T} share the same color.

6. Extension and Limitation

The characterization in this paper can be easily extended to allow for a risk-averse
principal and non-Markov income process (or outside option process). For instance,
if outside options depend on calendar time, then we may still use (11) to define the
minimum consumption level, acknowledging that now it may depend on calendar
time.

One limitation of this paper is that my results cannot easily generalize to models
with endogenous outside options. In Kehoe and Perri (2002) and Albuquerque and
Hopenhayn (2004), the agent in the event of default would retain his capital stock,
and thus the autarky value is a function of the endogenous capital. Problems with
endogenous capital (and outside options) should be split into two stages: In the
first stage the principal allocates capital in each period, and in the second stage the
principal delivers consumption subject to the agent’s outside options determined in
the first stage. While my paper addresses only the second stage, the problem in the
first stage is more challenging and deserves further study in the future.

This paper focuses on one-sided commitment, which may be another limitation.
Extending the stopping-time approach to two-sided limited-commitment problems is
difficult, but not impossible. To see the difficulties, suppose τ ∗ is the first time when
either the principal’s or the agent’s participation constraint binds. In a one-sided
limited-commitment problem, the agent’s continuation utility at τ ∗ equals his outside

16



0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

g(y)

u(c̄(y))

y

g(y)

u(c̄(y))

g(y)

u(c̄(y))

g(y)

u(c̄(y))

g(y)

u(c̄(y))

g(y)

u(c̄(y))

g(y)

u(c̄(y))

Figure 4: Ordering of g(y) and u(c̄(y)).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

U(y) in ascending order

c̄(y)

Figure 5: Ordering of c̄(·) does not concur with that of U(·).

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06

0.08

0.1

0.12

Consumption

F
r
e
q
u
e
n
c
y

 

 

Last binding contraint is at income 1

... income 2

... income 3

... income 4

... income 5

... income 6

... income 7

... income 8

... income 9

... income 10

Figure 6: Distribution of consumption.

17



option. This continuation utility is used to infer the agent’s endogenous utility flow
before τ ∗. In a two-sided limited-commitment problem, however, the agent’s utility
flow before τ ∗ cannot be easily inferred: the agent’s continuation utility at τ ∗ is
unknown a priori and must be determined together with the optimal stopping time,
if the principal’s participation constraint binds but the agent’s constraint is slack
at τ ∗. In Grochulski and Zhang (2011, Appendix C), we make significant progress
toward applying the stopping-time approach to this more challenging problem. Our
assumptions of symmetric agents and Brownian motion income processes greatly
simplify the computation of stopping times.
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Appendix

Proof of Lemma 1: First, the first-best allocation exists if and only if
∑∞

t=0 β
tu(f t(c0)) is finite for all c0 > 0. If the first-best allocation exists, then there

is a c∗ > 0, such that
∑∞

t=0 β
tu(f t(c∗)) = U0. The finiteness of

∑∞
t=0 β

tu(f t(c∗)) is
equivalent to the finiteness of

∑∞
t=0 β

tu(f t(c0)) for all c0 > 0. On the converse, if
∑∞

t=0 β
tu(f t(c0)) is finite for all c0 > 0, then limc0→∞

∑∞
t=0 β

tu(f t(c0)) = ū
1−β

and

limc0→0

∑∞
t=0 β

tu(f t(c0)) = −∞. For any U0 <
ū

1−β
, the intermediate value theorem

implies the existence of a c∗ > 0 such that
∑∞

t=0 β
tu(f t(c∗)) = U0.

In the rest of the proof, I verify that
∑∞

t=0 β
tu(f t(c0)) is always finite. If δ ≥ β,

then it follows from u(f t(c0)) ≥ u(c0) + u′(f t(c0))(f
t(c0)− c0) that

u(c0)

1− β
≥

∞
∑

t=0

βtu(f t(c0)) ≥
∞
∑

t=0

βtu(c0) +
∞
∑

t=0

βt

(

δ

β

)t

u′(c0)(f
t(c0)− c0)

=
u(c0)

1− β
−

u′(c0)c0
1− δ

+ u′(c0)
∞
∑

t=0

δtf t(c0) >
u(c0)

1− β
−

u′(c0)c0
1− δ

.

Thus both
∑∞

t=0 β
tu(f t(c0)) and

∑∞
t=0 δ

tf t(c0) are finite. If δ < β and ū < ∞,
then

∑∞
t=0 β

tu(f t(c0)) ∈ [0, ū
1−β

] is finite. If δ < β and ū = ∞, we assume that
∑∞

t=0 β
tu(f t(c0)) is finite in Assumption 3. Q.E.D.

Proof of Lemma 2: The definition of c̄i in (11) implies that c̄i ≤ di(∞).
To prove the lower bound when δ ≥ β, first note that u−1(minj gj) is well defined
because minj gj < ū. It suffices to prove that di(τ) ≥ u−1(minj gj) for all τ . Suppose
di(τ) < u−1(minj gj) for some τ , then it follows from c ≥ f t(c), ∀t that the left side of
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(10) is strictly below the right side, which is a contradiction. Thus u−1(minj gj) ≤ c̄i.
It remains to prove the lower bound when δ < β. Letting d̃i(τ) be the solution to

E
[

∑τ−1

t=0
βtu(f t(d̃i(τ)))|y0 = ȳi

]

= E

[

∑τ−1

t=0
βtmin

j
gj|y0 = ȳi

]

,

it follows that di(τ) ≥ d̃i(τ) and

∑∞

t=0
Ptu(f

t(d̃i(τ))) = min
j

gj ,

where Pt =
βt Pr(t≤τ−1)∑

∞

s=0 β
s Pr(s≤τ−1)

. By Abel’s partial summation formula,

∑∞

t=0
Ptu(f

t(d̃i(τ)))−
∑∞

t=0
(1− β)βtu(f t(d̃i(τ)))

=
∑∞

t=0

(

∑t

s=0
Ps −

∑t

s=0
(1− β)βs

)(

u(f t(d̃i(τ)))− u(f t+1(d̃i(τ)))
)

=
∑∞

t=0

(∑t

s=0 β
s Pr(s ≤ τ − 1)

∑∞
s=0 β

s Pr(s ≤ τ − 1)
−

∑t

s=0 β
s

∑∞
s=0 β

s

)

(

u(f t(d̃i(τ)))− u(f t+1(d̃i(τ)))
)

≤ 0,

where the inequality holds because Pr(s ≤ τ−1) is nonincreasing in s,
∑t

s=0 β
s Pr(s≤τ−1)

∑
∞

s=0 β
s Pr(s≤τ−1)

≥
∑t

s=0 β
s

∑
∞

s=0 β
s and u(f t(d̃i(τ))) < u(f t+1(d̃i(τ))). It follows that

min
j

gj =
∑∞

t=0
Ptu(f

t(d̃i(τ))) ≤
∑∞

t=0
(1− β)βtu(f t(d̃i(τ))).

Therefore, e ≤ d̃i(τ) ≤ di(τ) and since τ can be any stopping time, e ≤ c̄i. Q.E.D.
Before proving Lemma 3, I first prove Lemma A.1 and Lemma 4 below as in-

termediate steps. Lemma A.1 and Lemma 4 discuss the properties of the optimal
stopping time in (11). Let τ ≥ 1 be a stopping time and visualize the collection of
nodes before the stopping time τ as a tree. Let ys ≡ (y0, y1, ..., ys) be a finite-length
history such that s ≥ 1 and y0 = ȳi. If τ(ys) > s, then the collection of nodes
that start with ys and end before τ represents a subtree. Suppose for the moment
β = δ and f(c) = c. Then u(di(τ)) is the average of the utility flow g(·) in the whole
tree (see (10)); while u(c̄(ys)) is a lower bound for the average of the utility flow
g(·) within the subtree, because c̄(ys) is the infimum by definition. If c̄(ys) is above
di(τ), it implies that the average flow in the subtree exceeds the average flow in the
whole tree; thus the subtree is consumption-enhancing in the tree, and modifying τ
so that it stops at s (conditional on ys) rather than proceeds further will lower di(τ).
If β 6= δ, then the condition for a consumption-enhancing subtree shall be modified
to be c̄(ys) > f s(di(τ)). Lemma A.1 proves this intuition and Lemma 4 extends the
intuition to show that the optimal stopping time is achieved when all consumption-
enhancing subtrees are removed. To formally present Lemma A.1, recall Ω = Y ∞

and let X(ys) ≡ {ω ∈ Ω : ωt = yt, 0 ≤ t ≤ s} denote the set of paths starting with
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ys. Note that τ(ys) > s (or = s) is equivalent to τ(ω) > s (or = s) for all ω ∈ X(ys)
because τ is a stopping time. Let τ ′ denote the modified τ that stops earlier on
X(ys), that is

τ ′(ω) =

{

τ, if ω /∈ X(ys),

s, if ω ∈ X(ys).

Lemma A.1. (i) If di(τ) < ∞, τ(ω) > s for ω ∈ X(ys), and c̄(ys) > f s(di(τ)),
then di(τ

′) < di(τ).

(ii) Suppose τ(ω) = s for ω ∈ X(ys) and di(τ) ≤ M , where M is a scalar. If
c̄(ys) < f s(M), ys = ȳj, χ ≥ 1 is a stopping time such that dj(χ) < f s(M),
and τ ′′ is

τ ′′(ω) =

{

τ, if ω /∈ X(ys),

s+ χ(ωs, ωs+1, ...), if ω ∈ X(ys),

where (ωs, ωs+1, ...) is the tail of ω starting from period s, then di(τ
′′) < M . In

particular, if di(τ) = M and c̄j < f s(di(τ)), then di(τ
′′) < di(τ).

Proof of Lemma A.1:

(i) Note that

E
[

∑τ−1

t=0
βtg(yt)

]

= E
[

∑τ−1

t=0
βtu(f t(di(τ)))

]

= E
[

∑τ−1

t=0
βtu(f t(di(τ)))1[X(ys)]c

]

+ E
[

∑s−1

t=0
βtu(f t(di(τ)))1X(ys)

]

+E
[

∑τ−1

t=s
βtu(f t(di(τ)))1X(ys)

]

= E

[

∑τ ′−1

t=0
βtu(f t(di(τ)))

]

+ E
[

∑τ−1

t=s
βtu(f t(di(τ)))1X(ys)

]

. (18)

It follows from c̄(ys) > f s(di(τ)) that

E
[

∑τ−1

t=s
βtu(f t(di(τ)))1X(ys)

]

< E
[

∑τ−1

t=s
βtu(f t−s(c̄(ys)))1X(ys)

]

≤ E
[

∑τ−1

t=s
βtg(yt)1X(ys)

]

. (19)

Subtracting (19) from (18) yields

E

[

∑τ ′−1

t=0
βtu(f t(di(τ)))

]

> E

[

∑τ ′−1

t=0
βtg(yt)

]

,

which implies that di(τ) > di(τ
′).

(ii) The proof is analogous to that of part (i) and thus omitted.
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Q.E.D.
Proof of Lemma 4: If δ < β, then At(c) is nondecreasing in t and At(c) = Y

for sufficiently large t; while if δ > β, then At(c) is nonincreasing in t and At(c) = ∅
for sufficiently large t.

First it is possible to pick a sufficiently small ǫ > 0 such that At(c̄i) = At(c̄i + ǫ)
for all t. To see this, note that for each t, At(c̄i) = At(c̄i + ǫ) for sufficiently small
ǫ > 0. The uniformity in t when δ = β is because At(c̄i) is independent of t. The
uniformity in t when δ 6= β follows from the fact that At(c̄i) differs from At(c̄i + ǫ)
only finitely many times, because either both At(c̄i) and At(c̄i + ǫ) are ∅ or both are
Y when t is large.

Second I find a stopping time S such that di(S) ≤ c̄i + ǫ and S ≥ τ ∗i . Pick a
stopping time S1 ≥ 1 such that di(S1) < c̄i + ǫ. If S1 ≥ τ ∗i , then the process is
done; otherwise, {S1 < τ ∗i } = ∪∞

t=1{S1 = t, τ ∗i > t} 6= ∅. Letting t1 be the smallest
t such that {S1 = t, τ ∗i > t} 6= ∅, it follows from t1 < τ ∗i that ωt1 < f t1(c̄i + ǫ)
for all ω ∈ {S1 = t1, τ

∗
i > t1}. Since the number of distinct finite-length histories

(y0, y1, ..., yt1) in {S1 = t1, τ
∗
i > t1} is finite, apply Lemma A.1 (ii) and append S1

(history by history) finitely many times on the set {S1 = t1, τ
∗
i > t1} to obtain a

stopping time S2, such that

di(S2) < c̄i + ǫ.

S1 < S2 on {S1 = t1, τ
∗
i > t1} implies that {S2 = t1, τ

∗
i > t1} = ∅, i.e., if t2 is

the smallest t such that {S2 = t, τ ∗i > t} 6= ∅, then t2 > t1. In general, as long
as {Sn < τ ∗i } is not empty, Sn can be appended (history by history) on the set
{Sn = tn, τ

∗
i > tn} to obtain a stopping time Sn+1, such that

di(Sn+1) < c̄i + ǫ, (20)

where tn is the smallest t such that {Sn = t, τ ∗i > t} 6= ∅. If S = limn Sn, then it
follows from (20) and limn tn = ∞ that di(S) ≤ c̄i + ǫ and S ≥ τ ∗i .

Third, since c̄(yτ∗
i
) > f τ∗

i (c̄i+ǫ) ≥ f τ∗
i (di(S)), Lemma A.1 (i) states that removing

all consumption-enhancing subtrees from τ ∗i to S lowers di(S), that is

di(τ
∗
i ) < di(S) ≤ c̄i + ǫ.

This implies that c̄i = di(τ
∗
i ), because ǫ can be arbitrarily small. Q.E.D.

Proof of Lemma 3: Because Lemma 4 states that f t(c̄i) ≥ c̄(yt) for 0 ≤ t ≤
τ ∗i − 1, {ct; t ≥ 0} defined in (12) with c0 = c̄i satisfies ct = f t(c̄i), for 0 ≤ t ≤ τ ∗i − 1.

Then construct a nondecreasing sequence of stopping times {χn; 1 ≤ n < ∞} as
follows. Let χ1 = τ ∗i and it follows from ct = f t(c̄i), 0 ≤ t ≤ τ ∗i − 1 and Lemma 4
that

E
[

∑χ1−1

t=0
βtu(ct)|y0 = ȳi

]

= E
[

∑χ1−1

t=0
βtu(f t(c̄i))|y0 = ȳi

]

= E
[

∑χ1−1

t=0
βtu(f t(di(χ1)))|y0 = ȳi

]

= E
[

∑χ1−1

t=0
βtg(yt)|y0 = ȳi

]

. (21)

21



Let χ2 be χ1 appended by a stopping time τ ∗yτ∗
i

(yτ∗
i
, yτ∗

i
+1, ...), that is, χ2(y) =

τ ∗i (y) + τ ∗yτ∗
i

(yτ∗
i
, yτ∗

i
+1, ...), for y ∈ Ω.8 Since f τ∗

i (c̄i) < c̄(yτ∗
i
), cτ∗

i
= c̄(yτ∗

i
). It follows

again from Lemma 4 that ct = f t−τ∗i (c̄(yτ∗
i
)) for χ1 ≤ t ≤ χ2 − 1. Hence

E

[

χ2−1
∑

t=χ1

βtu(ct)|yχ1

]

= E

[

χ2−1
∑

t=χ1

βtu(f t−χ1(c̄(yτ∗
i
)))|yχ1

]

= E

[

χ2−1
∑

t=χ1

βtg(yt)|yχ1

]

. (22)

Combining (21) and (22) yields

E
[

∑χ2−1

t=0
βtu(ct)|y0 = ȳi

]

= E
[

∑χ2−1

t=0
βtg(yt)|y0 = ȳi

]

.

Inductively, letting χn+1 be χn appended by a stopping time τ ∗yχn
(yχn

, yχn+1, ...),
i.e., χn+1(y) = χn(y) + τ ∗yχn

(yχn
, yχn+1, ...), I have that

E
[

∑χn+1−1

t=0
βtu(ct)|y0 = ȳi

]

= E
[

∑χn+1−1

t=0
βtg(yt)|y0 = ȳi

]

.

Since χn < χn+1 whenever χn is finite, this implies that limn→∞ χn = ∞ almost
surely. Note that {

∑χn−1
t=0 βtu(ct); 1 ≤ n < ∞} is a sequence of uniformly bounded

random variables, because when δ ≥ β, mini c̄i ≤ ct ≤ maxi c̄i is bounded and when
δ < β,

∑χn−1

t=0
βt|u(ct)| ≤

∑χn−1

t=0
βt|u(c0)|+

∑χn−1

t=0
βt(u(ct)− u(c0))

≤
|u(c0)|

1− β
+
∑∞

t=0
βt(u(ct)− u(c0)) < ∞,

where the last inequality follows from Assumption 3.
Taking limit n → ∞ and applying bounded convergence theorem yield

E

[

∞
∑

t=0

βtu(ct)|y0 = ȳi

]

= lim
n→∞

E

[

χn−1
∑

t=0

βtu(ct)|y0 = ȳi

]

= E

[

∞
∑

t=0

βtg(yt)|y0 = ȳi

]

= U(ȳi).

Q.E.D.
Proof of Theorem 1: To verify the participation constraint (2) at any period

t, note that the continuation utility is delivered by consumption {cs; s ≥ t} which
follows the recursive formula (12), while U(yt) can be delivered by a consumption
plan which starts with c̄(yt) and follows the same recursive formula, according to
Lemma 3. Hence it follows from ct ≥ c̄(yt) that the participation constraint (2) is
satisfied.

8If χ1 = ∞, simply let χ2 = χ1 = ∞.
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As to the optimality of {ct; t ≥ 0}, note that the problem has a linear objective
function and a convex feasibility set. For this convex optimization problem, Kuhn-
Tucker conditions are sufficient for the optimality of {ct; t ≥ 0}. The principal’s
Lagrangian is

E

∞
∑

t=0

δt

[

−(ct − yt) + αt

[

E

[

∞
∑

s=t

βs−tu(cs)|Ft

]

− U(yt)

]]

+ φ

[

E

[

∞
∑

t=0

βtu(ct)

]

− U0

]

,

where {αt; t ≥ 1} is a stochastic process of nonnegative Lagrangian multipliers on
the participation constraint (2) and φ is the strictly positive multiplier on the initial
promise-keeping constraint (3). I shall construct Lagrange multipliers and then verify
the sufficient Kuhn-Tucker conditions. Construct αt =

1
u′(ct)

− 1
u′(f(ct−1))

and φ = 1
u′(c0)

.

From ct ≥ f(ct−1), it follows that all the multipliers are nonnegative. The first-order
condition with respect to ct is

δt =
[

βtφ+ βt−1δα1 + βt−2δ2α2 + ...+ δtαt

]

u′(ct),

which holds because βt−sδs

u′(cs)
= βt−s−1δs+1

u′(f(cs))
for s ≤ t. The complementary slackness

condition for αt is

αt

[

E
[

∑∞

s=t
βs−tu(cs)|Ft

]

− U(yt)
]

= 0,

which holds because Lemma 3 implies that E [
∑∞

s=t β
s−tu(cs)|Ft]−U(yt) = 0, when

αt > 0 (i.e., ct = c̄(yt) > f(ct−1)). Q.E.D.
To show the validity of the algorithm, the following Lemma A.2 is needed.

Lemma A.2. (i) If δ < β and c > c̄i, then c > di(Γ(A(c))), where A(c) =
{At(c); t ≥ 1}, At(c) = {y ∈ Y : c̄(y) ≤ f t(c)} and Γ is the exit time in
(13).

(ii) If δ > β and c > c̄i, then c > di(Γ(F (c))), where F (c) = {Ft(c); t ≥ 1},
Ft(c) = {y ∈ Y : c̄(y) ≤ f t(c), c̄(y) < c̄i} and Γ is the exit time in (13).

Proof of Lemma A.2:

(i) First note that c > di(Γ(A(c))) is equivalent to

h(c) ≡ E

[

∑Γ(A(c))−1

t=0
βtu(f t(c))|y0 = ȳi

]

−E

[

∑Γ(A(c))−1

t=0
βtg(yt)|y0 = ȳi

]

> 0. (23)

To prove (23), it is sufficient to show that h(c) is strictly increasing in c,
since Lemma 4 implies h(c̄i) = 0. For each t, At(c) is a nondecreasing upper
hemicontinuous correspondence in c, and there exists a T , such that At(c) = Y
for all t ≥ T and c ≥ c̄i. If c < c′ and A(c) = A(c′), then Γ(A(c)) = Γ(A(c′))
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and h(c) < h(c′) because u(f t(c)) < u(f t(c′)). In other words, h(c) is strictly
increasing and continuous when A(c) is flat in c. To finish the proof, I show that
h(c) is continuous, even if A(c) is discontinuous at some c∗ (i.e., there exists a
t, such that Ãt ≡ limc↑c∗ At(c) ( At(c

∗)). To prove this, pick ȳj ∈ At(c
∗)\Ãt.

Because c̄j = f t(c∗), it follows from Lemma 4 that

E

[

∑Γ(A(c∗))−1

s=t
βsu(f s(c∗))|yt = ȳj

]

= E

[

∑Γ(A(c∗))−1

s=t
βsu(f s−t(c̄j))|yt = ȳj

]

= E

[

∑Γ(A(c∗))−1

s=t
βsg(ys)|yt = ȳj

]

.

This implies that

lim
c↑c∗

h(c) = E

[

∑Γ(Ã)−1

t=0
βtu(f t(c∗))|y0 = ȳi

]

− E

[

∑Γ(Ã)−1

t=0
βtg(yt)|y0 = ȳi

]

= E

[

∑Γ(A(c∗))−1

t=0
βtu(f t(c∗))|y0 = ȳi

]

−E

[

∑Γ(A(c∗))−1

t=0
βtg(yt)|y0 = ȳi

]

= h(c∗),

where Ã = {Ãt; t ≥ 1}. Therefore, h(c) is continuous at any c. Because
h(c) is strictly increasing at continuous points of A(c), and the number of
discontinuous points of A(c) is finite, h(c) is strictly increasing in c.

(ii) The proof is analogous to that of part (i) and thus omitted.

Q.E.D.
Explanation of algorithm (δ ≥ β):

• Step 1.

– I show that {y : c̄(y) = mini c̄i} = {y : g(y) = mini gi} and mini c̄i =
u−1(mini gi).

– To prove {y : c̄(y) = mini c̄i} ⊇ {y : g(y) = mini gi}, suppose g(ȳj) =
mini gi for some j. The definition of c̄j implies that c̄j ≤ di(1) = u−1(gj).
It follows from u−1(gj) = u−1(mini gi) ≤ c̄i, ∀i (see Lemma 2) that c̄j =
u−1(gj) and c̄j ≤ c̄i, ∀i. Hence c̄j = mini c̄i = u−1(mini gi).

– To prove {y : c̄(y) = mini c̄i} ⊆ {y : g(y) = mini gi}, suppose c̄n =
mini c̄i = u−1(mini gi) for some n. Since c̄n = dn(τ

∗
n) and f t(c̄n) ≤ c̄n =

u−1(mini gi), equation (10) implies

E

[

∑τ∗n−1

t=0
βtg(yt)|y0 = ȳn

]

= E

[

∑τ∗n−1

t=0
βtu(f t(c̄n))|y0 = ȳn

]

≤ E

[

∑τ∗n−1

t=0
βtmin

i
gi|y0 = ȳn

]

,

which implies that gn = g(y0) = mini gi. Hence ȳn ∈ {y : g(y) = mini gi}.
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• Step 2. I discuss only the case of δ > β, as the case of δ = β is analogous.

– Goal: Compute a vector c̃ : Bc → R, such that c̃i = di(Γ(C)) for ȳi ∈ Bc,
where C = {Ct; t ≥ 1} and Ct = {y ∈ B : c̄(y) ≤ f t(c̃i)} for t ≥ 1.

– As described in the algorithm, I compute c̃ by iteration. If δ > β, the
definition of Ck+1 and Lemma A.1 (i) imply that xk ≥ xk+1, which then
implies that Ck+1

t ⊇ Ck+2
t , ∀t. It follows from induction that xk decreases

and Ck shrinks in k.

– Here I show that the iteration of xk finishes in finite steps. If T is such
that fT (di(∞)) < u−1(mini gi), then Ct(x) = {y ∈ B : c̄(y) ≤ f t(x)} = ∅
for all t ≥ T and x ≤ di(∞), which implies that there are only finitely
many sequences of subsets Ck. Hence there exists a finite k∗ at which
Ck∗+1 = Ck∗ , and xk∗+1 = di(Γ(C

k∗+1)) = di(Γ(C
k∗)) = xk∗ .

• Step 3.

– I show that c̃(·) and c̄(·) have the same minimizer on Bc, i.e., D ≡ {y ∈
Bc : c̃(y) = maxȳi∈Bc c̃i} = {y ∈ Bc : c̄(y) = minȳi∈Bc c̄i}, and the two
minimums are identical.

– c̄i ≤ c̃i follows from the definition of c̃i in step 2 and c̄i ≤ di(τ) for all τ .
Therefore minȳi∈Bc c̄i ≤ minȳi∈Bc c̃i.

– To show minȳi∈Bc c̄i ≥ minȳi∈Bc c̃i, suppose c̄j = minȳi∈Bc c̄i for some j.
Since Ct(c̃j) = {y ∈ B : c̄(y) ≤ f t(c̃j)} = {y ∈ Y : c̄(y) ≤ f t(c̃j), c̄(y) <
c̄j} ≡ Ft(c̃j) for all t, it follows from c̃j = dj(Γ(C(c̃j))) = dj(Γ(F (c̃j)))
and Lemma A.2 (ii) that c̃j > c̄j is impossible. Therefore, c̃j = c̄j and
minȳi∈Bc c̄i ≥ minȳi∈Bc c̃i.

– To prove that {y ∈ Bc : c̄(y) = minȳi∈Bc c̄i} = {y ∈ Bc : c̃(y) =
minȳi∈Bc c̃i}, note that if c̄m > minȳi∈Bc c̄i = minȳi∈Bc c̃i for some m, then
c̃m ≥ c̄m > minȳi∈Bc c̃i.

– Note that maxȳi∈B c̄i < minȳi∈Bc c̄i is maintained after B is replaced by
B ∪D.

Explanation of algorithm (δ < β):

• Step 1.

– I show that {y : c̄(y) = maxi c̄i} = {y : U(y) = maxi U(ȳi)}.

– To prove {y : c̄(y) = maxi c̄i} ⊇ {y : U(y) = maxi U(ȳi)}, suppose
U(ȳj) = maxi U(ȳi) for some j. Hence dj(∞) = maxi di(∞) and c̄i ≤
di(∞) ≤ dj(∞) for all i. It follows from dj(∞) < f t(dj(∞)) that At(dj(∞)) =
Y for all t ≥ 1, where At(c) = {y ∈ Y : c̄(y) ≤ f t(c)}. Therefore
Γ(A(dj(∞))) ≡ ∞ and dj(∞) = dj(Γ(A(dj(∞)))). Then Lemma A.2 (i)
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implies that c̄j = dj(∞) and thus c̄j = maxi c̄i. Therefore {y : c̄(y) =
maxi c̄i} ⊇ {y : U(y) = maxi U(ȳi)}.

– To prove {y : c̄(y) = maxi c̄i} ⊆ {y : U(y) = maxi U(ȳi)}, suppose
c̄m = maxi c̄i = c̄j for some m. Then Lemma 2 implies that dm(∞) ≥
c̄m = dj(∞) = maxi di(∞). Therefore, U(ȳm) = maxi U(ȳi).

• Step 2.

– Goal: Compute a vector c̃ : Bc → R, such that c̃i = di(Γ(C)) for ȳi ∈ Bc,
where C = {Ct; t ≥ 1} and Ct = {y ∈ B : c̄(y) ≤ f t(c̃i)} ∪ Bc for t ≥ 1.

– As described in the algorithm, I compute c̃ by iteration. The definition of
Ck+1 and Lemma A.1 (i) imply that xk ≥ xk+1, which then implies that
Ck+1 contains Ck+2. It follows from induction that xk decreases and Ck

shrinks in k.

– The iteration of xk finishes in finite steps. Recall that e is a lower bound
for c̄ in Lemma 2. If T is such that fT (e) > maxi di(∞), then Ct(x) ≡
{y ∈ B : c̄(y) ≤ f t(x)} ∪ Bc = Y for all t ≥ T and x ≥ e, which implies
that there are only finitely many sequences of subsets Ck. Hence there
exists a finite k∗ at which Ck∗+1 = Ck∗ , and xk∗+1 = di(Γ(C

k∗+1)) =
di(Γ(C

k∗)) = xk∗ .

• Step 3.

– I show that c̃(·) and c̄(·) have the same maximizer on Bc, i.e., D ≡ {y ∈
Bc : c̃(y) = maxȳi∈Bc c̃i} = {y ∈ Bc : c̄(y) = maxȳi∈Bc c̄i}, and the two
maximums are identical.

– c̄i ≤ c̃i follows from the definition of c̃i in step 2 and c̄i ≤ di(τ) for all τ .
Therefore minȳi∈Bc c̄i ≤ minȳi∈Bc c̃i.

– To prove maxȳi∈Bc c̄i ≥ maxȳi∈Bc c̃i, I prove two things. First, if c̄j =
maxȳi∈Bc c̄i for some j, then c̃j = c̄j. Since Ct(c̃j) = {y ∈ B : c̄(y) ≤
f t(c̃j)} ∪ Bc = {y ∈ Y : c̄(y) ≤ f t(c̃j)} ≡ At(c̃j), it follows from c̃j =
dj(Γ(C(c̃j))) and Lemma A.2 (i) that c̃j > c̄j is impossible, therefore,
c̃j = c̄j. Second, if c̄m < c̄j = maxȳi∈Bc c̄i for some m, then c̃m < c̄j . By
contradiction, suppose c̃m ≥ c̄j = maxȳi∈Bc c̄i, then Ct(c̃m) = {y ∈ B :
c̄(y) ≤ f t(c̃m)} ∪ Bc = {y ∈ Y : c̄(y) ≤ f t(c̃m)} ≡ At(c̃m). Therefore,
c̃m = dm(Γ(C(c̃m))) = dm(Γ(A(c̃m))) and Lemma A.2 (i) imply that c̃m =
c̄m, which contradicts c̃m ≥ c̄j > c̄m.

– It follows from above that {y ∈ Bc : c̄(y) = maxȳi∈Bc c̄i} = {y ∈ Bc :
c̃(y) = maxȳi∈Bc c̃i}.

– Note that minȳi∈B c̄i > maxȳi∈Bc c̄i is maintained after B is replaced by
B ∪D.
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