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Abstract

In this article we propose an extension of the classical Black—Scholes
option in a multidimensional setup. The underlying financial asset is a
basket of equity stocks on which a general European type option pay—off
is considered. Using the distributional Fourier transform, we derive a
general formal solution and provide a sufficient condition to construct the
former explicitly in a fairly rich set of functions. Finally, we develop two
derivative options, which are given in closed—form: the first option can be
expressed as a linear combination of the classical call/put options, while
the second one is a new option with multidimensional underlying, nameley
a x2—option.

Keywords: Black-Scholes model, pricing equation, linear constant coefficients PDE, distri-

butional Fourier transform, plain vanilla option, x2—option.
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1 Introduction

In this article we adopt the arbitrage argument introduced in the seminal paper
[1] with the aim to provide a general solution to the pricing equation of any
European option written on a basket of stocks, whose dynamics is described by
a multidimensional version of the original Black—Scholes model. The solution
is obtained through the exponentiation of the operator defining the partial dif-
ferential equation (PDE) involved in pricing, yielding the convolution operator
G which produces the option price when applied to the pay—off function. We
identify a very large family of functions, or regular distributions, that establishes
the set of admissible pay—offs which grant numerical or closed form solutions
to the problem of derivative pricing and the design of the replicating portfolio.
We note that this family could be slightly enlarged considering singular distri-
butions, but we do not further discuss this point in the present paper.
Depending on the form of the payout, the correlation structure of the random
sources enters into the pricing formula affecting the value. We finally provide
two closed form examples where, in the first one, the dimensionality of the
problem might be disregarded and the solutions turn out to be the linear com-
bination of individual plain vanilla options. In the second example we develop
a novel European option, the yZ—option, on a basket of equity stocks.

The work is organized as follows. In section 2 we recall the multidimensional
Black—Scholes model and set the pricing equation for any derivative written on
the equity basket as a consequence of the arbitrage argument. In section 3 we
derive the general solution for the pricing equation in a suitable functional space.
In section 4 we discuss two applications, through which closed form solutions
are found. In section 5 we draw the conclusions.

2 Multidimensional Black-Scholes model

2.1 Model Setup

In this work we follow [1] in modeling the stock prices. The market price dy-
namics of a single equity stock value is modeled with the following stochastic
differential equation (SDE)

dSt:St(/,Ldt+UdBt), (].)

where y and o are real constants representing the trend and the volatility of the
stock price S. The stochastic process B, 7 € [0,T], is the canonical Brownian
motion observed from time 0 to time 7. The equation (1), referred as the
Black—Scholes model', is the geometric Brownian motion and in financial terms

IFrom a statistical perspective, the estimation of the coefficient yu for a dividend—stripped
stock is very difficult, yielding non significantly different from zero parameters on high-
frequency data sample of a large basket. Other remarks about (1) confined to short-term
horizons, consist in the well documented volatility clustering phenomenon and a slight asym-
metry in the empirical price distributions (cfr. [3], [2]), which are not reproduced by the
conditional probability distributions generated by the SDE.



it states that the continuous time compounding law is subject to a Gaussian
random noise which affects the growth rate.
When considering an equity stock basket as the derivative reference underlying,
the equation (1) has to take into account the interaction among the elements of
the set of investment opportunities. Therefore, we choose to model the market
price dynamics of the stocks with the multidimensional Black—Scholes model
that is defined as

{as/ = s{(uyat 4 oyawiyy @)

Jj=1,....n

where Wj, j = 1,...,n are the correlated Brownian motions starting at ¢ =
0, with Bg = 0 a.s., Vj. The correlated random sources are assumed to be
generated by the equation W; = @ - B; with @ square, full rank and such that
Q = [Vai) “".Uand A =U.U', A > 0. By construction, Q-Q’ is the correlation
matrix of the growth rate of the basket components and d [W#, W/ = p¥dt.
The full rank assumption could be dropped without major modifications.

2.2 Replicating portfolio

In order to price the European option on the joint value of the basket compo-
nents described in (2), which matures at time T' € R and 1 ~1 year, we exploit
the arbitrage argument as it has been presented in [1] and later formalized in
[5], [6]. This approach allows to write explicitly the partial differential equation
whose solution yields the price of the sought financial derivative as a parame-
terized function of the equity prices.

We find useful to perform the change of variable th = log (i—g) , and to express
0

the derivative’s price in terms of the growth factors of the basket components
f(X1, ..., X™) rather then their price. Eventually the pricing formula can be
converted into the S dependent function h = f o X.

Let II be the portfolio made of a short position in the derivative f and exposed
to the n stocks {SJ }j_l ‘

=1,...,n

n
M=> A;S—f = dll=3,A;dS; —df,
j=1
where A;S; is the cash amount invested in the equity stock j at time t. Recur-
sively applying Ito’s rule and setting A; = OSJ—J we are able to generate an asset
that is free from stochastic variations. In a frictionless world this artificial asset
would grow at the risk—free rate r > 0. Therefore, set dII = rIld¢ and let 9; be
the partial derivative with respect to z; and 0; be the partial derivative with
respect to time, we obtain the evolutionary partial differential equation (PDE)

Of =rf =3, (r=a3/2)05f — 530, Xhpik0jords.f,

which is called the pricing equation.
Finally, we reverse the time axes and set ¢ = T —t, actually turning the terminal



pay—off condition into the Cauchy problem. We write the pricing equation in
the following compact form

Opf =-D(0x)- f
(3)
f|£=0 =g

where we define the polynomial operator D (0x) = r—>_, a;0;—1/23. >, pjkojakﬁfk,
with a; = (r — o/2). The function g: X € R" — g(X) € R represents the pre-
scribed pay—off profile.

3 Deriving the general solution

The objective of this section is to construct a general solution of (3) that al-
lows us to price and hedge any basket derivative of the European type, whose
underlying dynamics is represented by (2). The solution of the pricing equation
depends on the specific initial value problem, which in financial terms is rep-
resented by the final (in the reversed time) pay—off of the basket option. As
a result, the option formula is the image of the terminal pay—off through the
bounded operator (6). Conditions upon the set of admissible terminal value
functions arise naturally during the process of solving the main equation, thus
for the sake of developing applications we will take the set of admissible initial
conditions as large as possible. As previously remarked, it is possible to enlarge
this set introducing the class of pseudo—functions.

We set up our study in the context of the theory of distributions, exploiting
the properties of these mathematical objects to identify and characterize the
space of solutions. Hence, when not explicitly noted, the definitions and results
must be taken in the distributional sense. In this work, the following notation is
used, cfr. [10]. We will refer to the distributional Fourier transform % (u) = @
and the functional spaces D* the space of distributions, S* the space of tempered
distributions, £* the space of distributions with compact support and Z* :=
Z (D*). We will also refer to the space of functions of rapid descent S, the
space of infinitely smooth functions £ := C* and the space of locally summable
and absolutely summable functions, respectively ... and .#'. An index ¢ is
conventionally appended to the symbol of the space to indicate that the support
of its elements belongs to R”™ x T, where T := [0, 00). When the f € ¢4 does not
depend on time, the index ¢ is dropped and supp f C R™.

3.1 Solving the PDE

We search for a weak solution in the space of distributions Df, the dual of
D;. The solution strategy consists in constructing a cut—off of the pay—off
function and then extending the solution in the limit. While doing so, we must
consider the peculiarity of the problem with respect to the time parameter
dependency. Therefore we will distinguish the two cases, where ¢t € (0, T



and ¢ = 0. The situation when 7' — +o0 is not particularly interesting in
the financial perspective because we always fix a (finite) settlement date for
the option. We notice that in order for the equation to have a solution, the
derivative’s profile at maturity as a function g: R™ — R must lie in a suitable

subspace of D*. Let & = {ef”‘”&”z} be a parametric family of functions
aER
of rapid descent, that is .# C S.
We assume that the initial value function g is in %} and is such that
ghe ', Yhex.

A condition for the last statement to be verified, is that ¢ has an appropriate
behavior at infinity. Let &7 be

oS = {g € Zr.i9€e0 (||xH*ae”"””2) , a> n}

It is understood that if g € & = gh € £, Yh € # by Lebesgue’s domi-
nated convergence. Therefore, within the described setup, we are in the position
to solve the prototype equation.

Proposition 3.1. Let g€ & and P(§) =6+ a-£+12E- Q- & with € C" a
polynomial such that Q@ > 0 and V = /Q. The solution f € D; of the equation

Of =P(O0x)-f
(4)
flizo=9
is the f such that )
f=(Gxg)e" (5)
where G is the Gaussian function
Q= |V\/2777T’tjle—%||)?||2 6)
and X = (V')™1 - [X +Lal.
Proof. See the appendix. O

We further notice that equation (4) admits a steady state behavior when
d < 0 implying f to converge to the zero distribution when we let ¢ — +oo.

3.2 Derivative Pricing

Finally, we are in the position to solve the pricing equation (3) for the derivative
(T —t,S). The main step of the procedure consists in converting the initial
pay—off, whenever expressed in price levels, into the performance dependent
functions g (X), by means of the transformation S = SpeX. In order to apply
3.1 and obtain a derivative price, which is computationally more handy, we need
further to reverse the time direction and set t = T'—t. We can easily formulate
the solution to the pricing problem, considering the symbolic transformation
f=hotoS. Therefore, let g € &7



Corollary 3.1. The price of the derivative f (¢, X) written on the performance
of the basket {S;},_, ., which pays out g(X) at maturity T, that is t =0, is
the f such that

Ln

f=(Gxg)e (7)
Proof. This is a straightforward application of the proposition (3.1). O

The corollary 3.1 allows to construct numerical and /or closed—form solutions
for any derivative written on the reference basket. Provided that the statistical
measure is given by the SDE (2), the price of any derivative on the performance
of the basket components can be seen as a functional of the terminal pay—off
g (X7), by the formula (7). If necessary, the pricing equation might be converted
back to the h = foto X.



4 Applications

In the following sections we develop two applications which provide closed —form
solutions. In the first one, it is evident how the pay—off function might impact
the formula in terms of the joint performance of the basket components, even-
tually clearing off the correlation structure of the underlying items. The second
application is a novel multidimensional option.

4.1 Classical basket option

In the first application, the specific form of p will allow to partition the solution
of the equation (4) into particularly simple integrals that can be solved with
the method of sections, cfr. [9]. In this case, the multivariate Black—Scholes
formula turns out to be a linear combination of classic equity options.

Let us assume that the option pays out a linear combination of the excess
return on a unitary value dependent on a coefficient a, that is

SI—Sfet, S > Ser
p=>_¢i{ 0 Sjee < 87 < Sjet 8)
j Sle - 87, ST < Slem@

where ¢; € R are multipliers. Equation (8) implies that on each single
terminal condition, the option pays out the absolute excess variation if the
underlying price exceeds +a log—return on each settled initial value. Seen from
another point of view, on each underlying the option pays—out the absolute
variation with respect to the boundary strikes Kf = Sjeta.
Applying the operator (6) to the initial condition g = po .S, we formally obtain
the option price. Then, each convolution can be decomposed into integrals of
flats orthogonal to each j** axes, that is

f=eT"5 055 {fQ;r (€% —e*) Gy +

(9)
+ Joo Ge+ Jo- (€7 —e™) Gf}
J J
where Q;“, Q9, Q5 are, respectively, the sectors of the Euclidean space ¢/ -
X>a,—a<el-X<a,el-X < —aand ¢l is the j** canonical vector.
After some algebra, the following closed form solution is obtained

f=3;6;8 {e"F (an;) —e " F (wy;) + (10)

+ e_”_“F(ng) — eij(Osz)}

the functions F'(-) being the cumulative distribution function of a standard
normal variable. The parameters o and w are, respectively



—a+X;+(r+o2/2)E a+X;+(r+o2/2)E
e e s
J J
o anjf(r702/2)f o 7a7Xj7(r702./2)f
a2‘7 - a']‘\/t: : W2J - Jj\/; ’

and, in the usual Black—Scholes notation

S,
X; zlogs—j-
J . Ea ?I:
Spe :Kj

The formula (10) is a combination of call and put single-stock options, each of
which has been written on the Gth stock and paying out unitary excess returns
with respect to the strikes Sje® and Sfe™“.

It can be noticed that the equation (10), because of the particular form of
g, is independent of the correlation structure of the stochastic processes that
describe the dynamics of the underlings. The final formula results in a linear
combination of straddle—like options each of which is paying unitary value with
respect to the in—the—money interval that is determined by the a coefficient.
Inside the hypercube that encloses the origin in the X space, the option pay—out
is 0, whereas outside this neighborhood the option pays out a combination of
linearly increasing returns in any direction.

In figure 1 we plot the shape of the function (10) in the X space, with 2 stocks,
a=0.03,06=02r=002and T —t=1.5,1, 0.5 and 0.0001.

4.2 The y?’—option

With the second application we develop a new option on an equity basket whose
dynamics is described by the multivariate Black—Scholes model. Exploiting a
result based on the geometrical properties of the underlying probability distri-
butions and the peculiar design of the pay—off function, we are able to provide a
closed—form solution for the pricing equation. To simplify the procedure we fix
the derivative price with respect to the performance of the basket components.

Let A = PAP’ be the time unitary covariance matrix of the process W,
where P and A contain respectively the eigenvectors and eigenvalues of the
symmetric positive definite matrix A. Define the elliptic neighborhood of the
point x* as

&= {x ER™: 2P <1, 2= [m} P'(m—x*)}.

In figure 2 we show the set & with n = 2, 7 = 0.5, the point z* = (+10%, +10%)
and the covariance matrix

4 [ 004 0.02
| 002 004



which corresponds to the correlation coefficient p = 0.5 and yearly volatilities
o5 =20%, j =1,2.

Now, we search for the price in ¢ of the derivative &* paying out the value g(X)
if at the expiration time 7" the stochastic growth vector X; = log (5t/s,) lies in
&. The pay—off profile function g (X) is defined such that

K [es(1=1=17) _q , TEE
g(x) = (11)
0, zeR"\&

where K is the option notional value and the coefficient ¢ > 0. In fig. 3 we
see the pay—off option value, with ¢ = 0.4 and K = 1. The sought option
delivers a progressively increasing payment as much as the basket components
performance is closer to z* at maturity. The set of points where this payment is
not null coincides with the elliptic neighborhood of x*, oriented by the angles of
the eigenvectors frame and scaled by the eigenvalues parameters. At maturity,
outside the set & the option is worth nothing.

The price f (¢, X) of the derivative &2* follows from the application of the
operator (Gre™"") (%) to the pay—off profile function g. Hence, we can finally
state

Proposition 4.1. The price of the derivative &* written on the performance
of the basket {S; }j:1 _,, which pays out g (X) at maturity T, is the f such that

f= [a%e(t(l*ano)Fxg (02) — Fxf (01) Ke 7(T—1) (12)

1

with the parameters o = (1 + %)_ , 01 = 0y = D ko = |In||* and the

T o
densities x> = x* (n,k1), X2 = x? (n, K2), with k1 = ko and ky = ary. The
vector n is a function of the relative portfolio performance

o~ 7]

1
P'[X —a* + (T —t) (r. — § diagA)]

Proof. See the appendix. O

where F is the cumulative distribution function of the non—central x? (n, k)
with n degrees of freedom and non centrality parameter x. In fig. 4 we plot
the shape of the function (12) in the X space, with 2 stocks, a = 0.03, o = 0.2,
r=0.02and T'—¢ = 0.5, 0.3, 0.1 and 0.001. We remark that the option return
at maturity depends on the possibility that the performance vector point would
fall within the elliptic neighborhood of x*. As any other option, the price of
the x?—option is related to the probability that the reference event happens in
T — t years. This probability can be easily calculated. In fact, the probability
of X, belonging to the &—neighborhood of z* is

10



1 2
=3 lul
]P){Xteg‘Xo}: due\/gn :FX2 (0)7 (13)

[|u—vac||* <o

-1
with x* (n, 8[12), 0 = 7/¢ and the point ¢ = [VA7| P’ (a* + } tdiagA)
resulting from the change of variable in (13). If we set, for instance, t = 1 then
F = 0.179 is the probability of the option &* being in—the—money in one year.
Eventually, the option function transform into monetary value the probability
content of the Euclidean space mapping the performance of the array of the
basket components.

5 Conclusions

In this paper we have described an approach to construct the solution to the
problem of pricing an European option in the multidimensional Black—Scholes
model. The option price is not only a local solution, but it is extended to the
complete price / performance space R™. The solution takes the form of a func-
tional on a range of functions with an appropriate behavior at the infinity. This
space of function is the set of admissible pay—offs of the option at the maturity
time. We provide a sufficient condition to identify this set /. We argue that
this space can be enlarged considering the Cauchy principal value. This comple-
tion has been discarded in this work, whose intention has been the development
of a method of solution for a specific kind of financial applications. This method
provides a week solution, which justifies the exploitation of numerical techniques
to construct any price function that cannot be obtained in closed form.

In the final section, we have constructed two applications, which deliver a
closed—form output. In the first exercise, we are prompted to a case where
the correlation structure did not enter the pricing function, where the final bas-
ket option formula is the result of the linear combination of plain vanilla call /
put options on each single underlying. This result is consequent upon the spe-
cific formulation of the pay—out function. In the second example, the typical
situation arises where the return profile of the basket option at the expiration
time requires the treatment of the option pricing as a joint problem on the set of
the underlying. While elaborating the exercise, we are able to obtain the pric-
ing formula using a result concerning the probability content of regions of R"
under normal distribution. The pricing function is indicated as the x?—option
because it involves the non—central x? cumulative distribution function in the
determination of the option value. Under this paradigm, several other options
that engage probability content of regions of the Euclidean space might be easily
obtained.
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Appendix

Proof of Proposition 3.1. Let f € Df, we have Zx (0.f) = 0,f = P (i€) f,
possibly f; € Z*. The multidimensional polynomial P € &, hence the partial
F —transform of the (4) is a parameterized ordinary differential equation, whose
solution is the product of the initial value times the exponential F = P (&),
We will consider the f as the limit of the sequence of local solutions obtained
substituting the initial condition g € &/ with its cut—off ¢ = x, g, where
is the indicator function of the open ball By(s) =: K C R™. Clearly, ¥ € %}

loc

and g% — g as s — oo. By the Cauchy—Schwarz inequality we get also, VK
[ a) <l il @l < oo, Yae {787}

which implies that the function £ 3 §%: R® — C is of bounded variation, i.e.
g% € £NS*. Hence, plugging the .# —transform of the initial condition into the
solution of the parameterized ODE, we get

fr=Fg" (14)

Notice that F' € & and F; € £ENS*, Vit € T. More specifically, if we split the
interval T into two subsets, we see that as 2 > 0 then F' € S, Vt € (0, T] and
taking the lim; ,o+ FF=1€ ENS™.

Because §¥ is a function of bounded variation and F|; is, generically, in £ NS*,
Vt € T, we see that their product Fg% = fX € £& ¢ D*. Taking the inverse
transform of both sides, we get fX = ﬂ;l (FgK) = (G*gK) e, The latter
convolution is well defined, because g% € ZL_ C £ and G € S;. As we let

loc

s — oo and g% — g we obtain fX — f and the convergence is in .Z*, Vt € (0, T,
because G € O (e~ 171" and g € @. Whereas t — 07 we have G converging

to dx, the identity element with respect to the convolution operation. This
completes the proof.
O

Proof of Proposition 4.1. The solution is obtained applying the operator (6) to
the final pay—off (11) and then manipulating the equations in order to achive
integrals as in (13). These type of integrals can be solved with a geometrical
argument or through the application of the method of sections, cfr. [9]. O

13
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Figure 1: 2D classic Black-Scholes option price with time to maturity ¢ = 1.5,
1, 0.5 and 0.0001.
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Figure 2: T—neighborhood of z* with 7 = 0.5 and covariance matrix A and
n=2.
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Figure 4: y?—option prices at different time to maturity.
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