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Abstract 

 
The chaos theory assumes that the returns dynamics are not normally 

distributed and more complex approaches have to be used to study these time 

series. In fact, the Fractal Market Hypothesis assumes that the returns 

dynamics are not independent of the investors’ attitudes and represent the 

result of the interaction of traders who, frequently, adopt different investment 

styles. 

The studies proposed in literature try to identify the best approach to define 

the fractal dimension using, in particular, data of highly developed financial 

markets where a more complete set of information is available and the price 

determination mechanism is more efficient. 

A fault found with these approaches is that the results do not allow making 

out if there is a relationship between fractal dimension and market 

characteristics and, besides, it is hard to understand which aspects are more 

relevant in the definition of the fractal market dimension. In fact, previous 

studies analysed market liquidity for a limited number of countries and no 

other aspects related to market transactions have been considered. 

Using a large sample of world stock indexes, I try to identify the main 

market characteristics that influence returns dynamics. This study, carried out 

having recourse to the Rescaled Range Analysis (R/S) approach, shows that 

markets characteristic, like liquidity, type of admissible orders and so on, 

influence the R/S capability to study returns dynamics. 

 

 

1. Introduction 

 

Capital markets are characterized by significant differences in investors’ attitudes and 

expectations that, as a rule, determine strange price dynamics that are unlike those suggested by 

classical linear models
1
. 

Even the simplest model of interaction with heterogeneous traders - chartists versus 

fundamentalists - proposed in literature to explain unexpected dynamics of the stock market
2
 seem 

to fit better if nonlinearity is assumed
3
 and, more generally, the higher the complexity of the system 

being analysed the bigger are the benefits related to nonlinear models. 

                                                 
* Ph.D. in Banking and Finance at the “Tor Vergata” University of Rome.  
1 Westerhoff F.H. (2005), “Heterogenous traders, price volume signals and complex asset price dynamics”, Discrete 

Dynamics in Nature and Society, vol. 1, pp. 19-29. 
2 De Long J.B., Shleifer A., Summers L.H. and Waldman R.J. (1991), “The survival of noise traders in financial 

markets”, Journal of Business, vol. 64, pp. 1-19. 
3 Kaizoji T. (2002), “Speculative price dynamics in a heterogeneous agent model”, Nonlinear dynamics, Psychology 

and Life Science, vol. 6, pp. 217-229. 
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Many stock market studies try to identify the best model to predict future performance, but there 

is not clear evidence of the dominance of one approach with respect to others.
4
 In fact, it has been 

shown that nonlinearity leads to better results with respect to the random walk hypothesis
5
 but the 

choice among different nonlinear approaches is not at all easy and the capability of different 

approaches to achieve good results is affected by the degree of chaotic dynamics that characterizes 

the market. 

International evidence proves the relevance of chaos dynamics to explain the dynamics of the 

most actively traded financial instruments, especially in well-organized markets
6
. Quite a few of 

these works have merely considered a single market and, frequently, paid considerable attention to 

well-developed economies. There are not many works focusing on undeveloped countries
7
 and / or 

comparing different countries
8
 and, therefore, there is no clear evidence of the main reasons for the 

difference in chaos level in different markets. 

This paper analyses the role of the financial market characteristics in the degree of chaotic 

dynamics using the standard approach proposed in literature in order to evaluate stock markets. It 

starts with a brief analysis of the literature dealing with chaos in general, its estimation measures 

and its application to the stock market. (Paragraph 2) The analysis being proposed considers a few 

major stock markets worldwide and tries to verify if differences in the chaos degree may be 

explained based on a number of market characteristics. International evidence shows that the role of 

a few market characteristics is not residual in the selection of the best statistical model to predict 

future dynamics. (Paragraph 3) The conclusions endeavour to evaluate the impact of these results 

on the stock market predicting models and the future prospects for the best model to predict stock 

dynamics in different market scenarios. (Paragraph 4) 

 

2. Chaos theory and stock market 

 

The studies proposed in literature to analyse and predict stock price dynamics assume that, by 

looking at the past, one may collect useful information to understand the price formation 

mechanism. The initial approaches proposed in literature, the so-called technical analyses, assume 

that the price dynamics could be approximated with linear trends and could be analysed using a 

standard mathematical or graphical approach
9
. The high number of factors that are likely to 

influence the stock market dynamics makes this assumption incorrect and calls for the definition of 

more complex approaches that may succeed in studying these multiple relationships
10

. 

The nonlinear models are a heterogeneous set of econometric approaches that allow higher 

predictability levels, but not all the approaches may be easily applied to real data
11

. Deterministic 

chaos represents the best trade-off to establish fixed rules in order to link future dynamics to past 

                                                 
4 Chan K.S. and Tong H. (2001), Chaos: a statistical perspective, Springer-Verlang, New York, pp. 17-28. 
5 Hsieh D.A. (1991), “Chaos and non linear dynamics: applications for financial markets”, Journal of Finance, vol. 46, 

pp. 1839-1877. 
6 Mucley C. (2004), “Empirical asset return distributions: is chaos the culprit”, Applied Economic Letters, vol. 11, pp. 

81-86. 
7 For example, Assaf A. and Cavalcante J. (2005), “Long range dependence in the returns and volatility of the Brazilian 

stock market”,  European Review of Economics and Finance, vol. 4, pp. 1-19. 
8 Huang B.N. and Yang C.W. (1995), The fractal structure in multinational stock returns, Applied Economic Letters, 

vol. 2, pp. 67-71. 
9 Pring M.J. (2002), Analisi tecnica dei mercati finanziari, McGraw Hill Italia, Milano. 
10 Clide W.C. and Osler C.L. (1997), “Charting: chaos theory in disguise?”, Journal of Future Markets, vol. 17, pp. 

489-514. 
11 Schreimber T. (1998), “Interdisciplinary application of nonlinear time series methods”, Physics Reports, vol. 308, pp. 

1-64. 
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results of a time series without imposing excessively simple assumptions
12

. In essence, chaos is a 

nonlinear deterministic process that looks random
13

 because it is the result of an irregular oscillatory 

process influenced by an initial condition and characterized by an irregular periodicity
14

.  

The chaos theory assumes that complex dynamics may be explained if they are considered as a 

combination of more simple trends that are easy to understand:
15

 the higher the number of 

breakdowns, the higher the probability of identifying a few previously known basic profiles
16

. 

Chaotic trends may be studied considering some significant points that represent attractors or 

deflectors for the time series being analysed and the periodicity that exists in the relevant data
17

.  

The next two paragraphs analyse in detail the stock market and try to point out the main 

approaches suggested in literature to evaluate stock dynamics (paragraph 2.1) and evidence of the 

effect of market characteristics on chaotic dynamics (paragraph 2.2). 

2.1 Estimation procedures for chaotic dynamics 

 

The nonlinear dynamics assumption calls for the definition of a few aspects that are required to 

understand the rationality of past trends and to define the expected dynamics. The main 

characteristics may be identified in
18

: 

 

� the type of randomness; 

� the fractal dimension; 

� the duration of the cycle; 

� the relevance of past results. 

 

The first analysis considers the time series noise and attempts to verify whether it may be 

considered a classical “white noise” or a “chaotic noise”
19

. The test adopted to analyse this aspect is 

the Brock, Dechert and Scheinkman test (BDS), which tries to ascertain whether a time series may 

be considered random or it presents a hidden structure
20

. Mathematically:  

 

( ) ( ) ( )[ ] ( )εσεεε Tn

n

TTnnT CCTW ,,1, /−=  

 

where the statistic represents a ratio between the spread of error terms with respect to the 

normality assumption ( ) ( )( )n

TTn CC εε ,1, −  and the asymptotic standard error ( )( )εσ Tn,

21
. A zero 

                                                 
12 Peitgen H.O., Jurgens H. and Saupe D. (2004), Chaos and fractals. New frontiers of science”, Springer-Verlag, pp. 

61-124. 
13 Hsieh D.A. (1991), “Chaos and nonlinear dynamics: application to financial markets”, Journal of Finance, vol. 46, 

pp. 1839-1877. 
14 Brown C. (1995), Chaos and catastrophe theories, SAGE publications, Thousand Oaks, pp. 8-21. 
15 Devaney R.L. (1990), Caos e frattali, Addison-Wesley Published Company, Milano, pp. 149-171. 
16 For a review of applications in science, see Mandelbrot B.B. (1987), Gli oggetti Frattali, Giulio Einaudi editore, 

Milano. 
17 Arnold V.I. (1992), Catastrophe theory, Springer-Verlag, Berlin, pp. 14-19. 
18 Eckman J.P. (1985), “Ergodic theory of chaos dynamics and strange attractors”, Review of Modern Physics, vol. 57, 

pp. 617-656. 
19 Liu T., Granger C.W.J. and Heller W.P. (1992), “Using the correlation exponent to decide whether an economic 

series is chaotic”, Journal of Applied Econometrics, vol. 7, pp. 525-539. 
20 Brock W., Dechert W. and Scheinkman J. (1987), A test for independence based correlation dimension, University of 

Wisconsin working paper, Madison. 
21 Olmeda I. and Perez J. (1995), “Non linear dynamics and chaos in the Spanish stock market”, Investigaciones 

Economicas, vol. 19, pp. 217-248. 
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value of the statistic is obtained only when the time series’ error ( )( )εTnC ,  is IID and in all the other 

scenarios it is possible (not necessary) to identify chaos dynamics
22

.  

The fractal dimension represents the number of basis elements (fractals) necessary to define an 

object that is similar to the trend being analysed
23

 and, mathematically, it represents the number of 

degrees of freedom necessary to define a polynomial function that fits correctly the real dynamics
24

. 

The higher the complexity of the time series being analysed, the higher the estimated fractal 

dimension
25

. 

In nonlinear models, the role of long-term dependence may not be considered by studying the 

simple covariance or autocovariance and more complex approaches have to be used
26

. One of the 

most commonly used approaches is the rescaled range analysis (R/S analysis) that tries to check the 

role of past dynamics considering the maximum and minimum range with respect to the standard 

deviation
27

. In formulas:
 28
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∞→
=  

 

where the value of H is estimated considering an approximately infinite horizon ( )n  and the 

results of an autoregressive estimate of the role of past results ( )RS . The RS factor is estimated 

considering residuals of a standard linear model using this formula: 

 

( ) ( )[ ]
( ) ( )( ) ( ) ( )( )

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
−

−
= ∑∑

∑ =
<<

=
<<

=

τ

τ

τ

τ
1

0

1

0

1

minmax
1

1

t

T

t

TT

t

txEtxtxEtx

txEtx
T

RS  

 

where the R/S measure is constructed considering the maximum spread observed in the period 

( ) ( )( ) ( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
− ∑∑

=
<<

=
<<

τ

τ

τ

τ
1

0

1

0 minmax
t

T

t

T txEtxtxEtx  with respect to the classical standard 

deviation measure ( ) ( )( )⎟
⎠

⎞
⎜
⎝

⎛
−∑

=

τ

1t

txEtx . The index varies from zero to one and measures the role of 

past performance in predicting future dynamics.
29

 

                                                 
22 Hsieh D.A. (1991), “Chaos and nonlinear dynamics: applications to financial markets”, Journal of Finance, vol. 46, 

pp. 1839-1877. 
23 Falconer K. (1990), Fractal geometry. Mathematical foundations and applications, John Wiley and Sons, Chichester, 

pp. 25-68. 
24 Kugiumtzis D., Lillekjendlie B. and Christophersen N. (1995), Chaotic time series. Part 1: Estimation of some 

invariant properties in state space, University of Oslo working paper.  
25 Greenside H.S., Wolf A. Swift J. and Pignataro T. (1982), “Impracticability of a box counting algorithm for 

calculating the dimensionality of strange attractors”, Physical Review A, vol. 25, pp. 3453-3456. 
26 McCauley J.L. (1994), Chaos, dynamics and fractals. An algorithmic approach to deterministic chaos, Cambridge 

University Press, Cambridge, pp. 41-84. 
27 Mouck T. (1998), “Capital markets research and real world complexity: the emerging challenge of chaos theory”, 

Accounting, Organizations and Society, vol. 23, pp. 189-215. 
28 Sadique S. and Silvapulle P. (2001), “Long term memory in stock market returns: international evidence”, 

International Journal of Finance and Economics, vol. 6, pp. 59-67. 
29 Los C.A. (2004), Measuring the degree of financial market efficiency, Kent State University working paper. 
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The approach being proposed represents a simplified approach to evaluate the degree of chaotic 

dynamics but, even if some adjustments were proposed in literature
30

, there is no clear evidence of 

the higher forecasting capability of these new approaches
31

.   

One of the major applications of this approach is related to the possibility of using this statistic 

also to study the length of cycles that are relevant to a market. This approach assumes the 

possibility of defining the reversal point considering the point to be the ratio between R/S estimated 

for different time periods and the number of observations and looking for the period when the 

natural growing trend of the ratio is interrupted.
32

 In formulas: 

 

if ( )n

RS
H n

n
ln

= < ( )1ln

1

1 −
= −

−
n

RS
H n

n    market cycle duration = n 

 

Results obtained by this test are strictly influenced by the variability of the time series and may 

call for the definition of a threshold to differentiate wrong signals from inversions. 

The relevance of nonlinear trends with respect to randomness is assessed by studying the 

relevance of previous history on the results. The long-term dependence is considered by comparing 

the results achieved with the results obtained by the same statistics estimated on the scrambled 

series. The scrambled series is constructed using a random criterion that allows defining a new time 

series that is very different from the original time series.
33

 After estimating these two time series, 

the relevance of the fractal dimension is higher if the results achieved are worse for the scrambled 

series than for the original time series.
34

 

All these approaches work on a series of error estimates that could be obtained using different 

filtering criteria. This characteristic allows applying these models to different scenarios but implies 

that the results are strictly influenced by the type of data used and by the criteria adopted in filtering 

the time series.
35

 

 

2.2 The relationship between market characteristics and stock price dynamics 

 

Stock market transactions are characterized by irregular dynamics in prices and volumes that may 

not be predicted by standard linear forecasting methods
36

. In fact, trends identified by different 

linear models are not stable over time
37

 and a significant increase or decrease in volatility causes the 

uselessness of previously estimated models
38

. 

                                                 
30 Lo A.W. (1991), “Long term memory in stock market prices”, Econometrics, vol. 5, pp. 1279-1313. 
31 Willinger W. , Taqqu M.S. and Teverovsky V. (1999), Stock market prices and long range dependence, Finance and 

Stochastics, vol. 3, pp. 1-13. 
32 Hurst H.E. (1991), “The long term storage capacity of reservoirs”, Transactions of the American Society of Civil 

Engineers, vol. 116, pp. 770-799. 
33 Peters E. (1996), Chaos and order in the capital markets. A new view of cycles, prices and market volatility, John 

Wiley and Sons, Chichester, pp. 83-105. 
34 Scheinkman J.A. and LeBaron B. (1989), “Nonlinear dynamics in stock returns”, Journal of Business, vol. 62, pp. 

311-337. 
35 Connelly T.J. (1996), “Chaos theory and the financial markets”, Journal of Financial Planning, pp. 26-30. 
36 Day R.H. (1993), “Complex economic dynamics: obvious in history, generic in theory, elusive in data”, in Pesaran 

N.H. and Potter S.M., Nonlinear dynamics, chaos and econometrics, John Wiley and Sons, Chichester. 
37 Henry O.T. (2002), “long memory in stock returns: some international evidence”, Applied Financial Economics, vol. 

12, pp. 725-729. 
38 LeBaron B. (1993), “Forecast improvements using volatility index”, in Pesaran N.H. and Potter S.M., Nonlinear 

dynamics, chaos and econometrics, John Wiley and Sons, Chichester. 
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The lack of predictability of stock market returns demonstrated by classical linear methodologies 

led to the development of studies that tried to demonstrate the randomness of stock markets
39

.  

Random approaches are not useful to predict market dynamics and better results may be obtained if 

the analyst assumes that there is an underlying relationship in the stock price historical trends that 

cannot be analysed using such simple models as linear approaches
40

. 

The hypothesis that history is not relevant to predict future stock price dynamics cannot be correct 

since all the investors define their investment strategy based results obtained in the past. Even if 

there are differences in the information available
41

 and/or it may be assumed that response functions 

to the same information are different for each investor
42

, it may be useful to define models to 

predict future performance. 

The usefulness of the approach being proposed is linked to a few market characteristics that are 

likely to influence the impact of investors’ choices on stock market dynamics. The main aspects 

identified in literature as a significant explanation of chaos dynamics are: 

 

� asymmetric transaction costs; 

� type of orders; 

� type of investors; 

� transactions volume. 

 

All the factors that are likely to influence the net results obtained by investors may affect the 

market price dynamics and/or volume of transactions
43

. The portfolio optimization process is more 

complex for the trade off between transaction costs and volume / opportunity of trading
44

 and, as a 

rule, high transaction costs determine a lower frequency of portfolio re-balances and a lower 

volume of transactions
45

. 

Market price dynamics are influenced by investors’ choices and constraints in the 

implementation of the strategies being adopted
46

. All the world markets are electronically based but 

differences may be identified in the type of orders that may be used
47

. Different types of admitted 

orders may influence price dynamics because the effectiveness of a few trading strategies is related 

to the possibility of defining limits to the validity of buying and/or selling orders and to the 

presence/absence of liquidity providers
48

. The opportunity to define time or price-related conditions 

                                                 
39 Fama E. (1970), “Efficient capital markets: A review of the theory and empirical works”, Journal of Finance, vol. 25, 

383-417. 
40 Brock W.A., Hsieh D.A. and LeBaron B. (1993), Nonlinear dynamics, chaos and instability: statistical theory and 

economic evidence, MIT Press, Cambridge, pp. 82-129. 
41 Broze L., Gourieroux C. and Szafarz A. (1990), “Speculative bubbles and exchange of information on the market of a 

storable good”, in Barnett W.A., Geweke J. and Shell K., Economic complexity: chaos, sunspots, bubbles and 

nonlinearity, Cambridge University Press, New York. 
42 Brock  W.A.  and Cars H.H. (1998), “Heterogeneous beliefs and routes to chaos in a simple asset pricing model”, 

Journal of Economic Dynamics and Control, vol. 22, pp. 1235-1274. 
43 Pesaran N.H. and Potter S.M. (1992), “Nonlinear dynamics, chaos and econometrics: an introduction”, Journal of 

Applied Econometrics, vol. 7, pp. 51-57. 
44 Davis M.H.A. and Norman A.R. (1990), “Portfolio selection with transaction costs”, Mathematics of Operation 

research, vol. 15, pp. 676-713. 
45 Costantinides G.M. (1986), “Capital market equilibrium with transaction costs”, Journal of Political Economy, vol. 

94, pp. 842-862. 
46 Cunningam L.A. (2000), From random walks to chaotic crashes; the linear genealogy and the efficient capital 

market hypothesis, Boston College of Law working paper. 
47 Banfi A. (2004), I mercati e gli strumenti finanziari. Disciplina e organizzazione della borsa, ISEDI, Torino, pp. 259-

295. 
48 Seppi D.J. (1997), “Liquidity provisions with limit orders and specialists”, Review of Financial Studies, vol. 10, pp. 

103-150. 
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for the transactions reduces the impact of randomness on the stock price dynamics
49

 and causes 

different market dynamics
50

 because investors can select in which scenario the order will be 

executed. Markets where this possibility is offered are characterized by a partial independence of 

investors’ strategies from short-term variations
51

 and the trends observed seem to be significantly 

independent by noise and substantially related to investors’ strategies and expectations
52

. The 

decision to define a few conditions for the execution of orders allow making price dynamics 

independent of a transitory lack of demand or supply for each type of stock and ensuring that the 

price dynamics reflects in an improved manner the long term expectations of investors.
53

 

The role of institutional investors in the market could be relevant because these traders are 

usually more capable of identifying investment opportunities and defining the best type of order that 

allows them to achieve the best results.
54

 This advantage with respect to individual investors is 

related to the experience that allows them to predict future dynamics and to reduce the risk exposure 

that characterizes stock investments.
55

 Considering the institutional investors, a special role is 

played by dealers and/or market makers, traders that are likely to influence the variability of price in 

each day of trading and to reduce the market risk.
56

 Markets with liquidity providers are usually 

characterized by a more stationary price envelope
57

 or, more generally, by a hidden trend that is 

clearer than in other markets.
58

 

Stock price dynamics are influenced by the number of investors that actively trade in the market 

and a significant variability in the number of investors could influence the proximity of the trading 

price to the fundamental value
59

. In fact, markets characterized by a low number of traders and/or 

transactions achieve equilibriums that could be significantly different from the optimal scenario 

based on the stocks’ fundamental value and price dynamics for this type of market could be difficult 

to forecast. The non-linearity of the stock price dynamics is influenced by the number of 

transactions relative to each stock.
60

 Therefore, with reference to each time period being considered, 

it may be ascertained that a higher (lower) level of transactions implies a lower (higher) capability 

of the linear model to explain the market dynamics
61

. 

                                                 
49 Iori G., Daniels M.G., Famer J.D., Gillemot L., Krishnamurty S. and Smith E. (2003), “An analysis of price impact 

function in order driven markets”, Phisica A, vol. 324, pp. 146-151. 
50 Famer J.D. and Joshi S. (2002), “The price dynamics of common trading strategies”, Journal of Economic Behaviour 

and Organization, vol. 49, pp. 149-171. 
51 Tyurin K. (2003), High frequency principal components and evolution of liquidity in a limit order market, Indiana 

University working paper, Bloomington. 
52 Maslow S. (2000), “Simple model of limit order driven market”, Phisica A, vol. 278, pp. 571-578. 
53 Lillo F. and Farmer J.D. (2004), “The long memory effect of the efficient market”, Studies in nonlinear Dynamics 

and Econometrics, vol. 8, pp. 1-32. 
54 Linnainmaa J. (2005), The limit order effect, UCLA working paper, Los Angeles. 
55 Seru A., Shumway T. and Stoffman N. (2005), Learning by trading, Stephen Ross School of Business working paper, 

Ann Arbor. 
56 Zanotti G. (2006), “Organizzazione e struttura dei mercati mobiliari” in Fabrizi P.L., Economia del mercato 

mobiliare,  Egea, Milano. 
57 Grossman S.J. and Miller M.H. (1988), “Liquidity and market structure”, Journal of Finance, vol. 43, pp. 617-633. 
58 Bouchaud J.P., Gefen Y., Potters M. and Wyart M. (2004), “Fluctuations and response in financial markets: the subtle 

nature of random price change”, Quantitative Finance, vol. 4, pp. 176-190. 
59 Cass D. and Shell K. (1983), “Do sunspots matters?”, Journal of Political Economy, vol. 91, pp. 193-207. 
60 Antoniou A., Ergul N. and Holmes P. (1997), “Market efficiency, thin trading and nonlinear behavior. Evidence from 

an emerging country”, European Financial Management, vol. 3, pp. 175-190 
61 Hinich M.I. and Patterson D.M. (1990), “Evidence of nonlinearity in the trade-by-trade stock market return 

generating process”, in Barnett W.A., Geweke J. and Shell K., Economic complexity: chaos, sunspots, bubbles and 

nonlinearity, Cambridge University Press, New York. 
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4. The impact of stock market characteristics on chaos theory: empirical evidence 

4.1 The sample 

 

The aim of this paper is to study the market efficiency of each country; hence, it stands to reason 

that the chaos theory principles and methodologies apply directly to the stock market indexes.
62

 In 

fact, the alternative of considering each stock listed in each stock market could produce results that 

are strictly affected by the criteria adopted in the selection of stocks. 

The analysis being proposed tries to inspect some of the main world markets and to study markets 

that present significant differences in market characteristics. The sample is constructed considering 

indexes characterized by the availability of data for a sufficient time period to be useful in analyzing 

chaos dynamics and, based on results presented in literature
63

, the indexes considered are those for 

which data has been available for not less than ten years.
64

 (Graph 1) 

 

Graph 1 

 

Sample description 

 

 = Stock market analysed 

 

The sample is constructed considering almost one index - the most representative - for each 

country, with a total of fifty indexes. The data are collected daily for a ten-year time period (1996-

2005) using the DataStream database. 

 

                                                 
62 Pandey V., Kohers T. and Kohers G. (1998), “Deterministic non linearity in the stock returns of major European 

equity markets in the United States, Financial Review, vol. 33, pp. 45-64. 
63 Jaditz T. and Sayers C. (1993), “Is chaos generic in economic data?”, International Journal of Bifurcations and 

Chaos, vol. 3, pp. 745-755. 
64 The list of indexes selected for each country is shown in the appendix. 
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4.2 The characteristics of world stock markets 

 

The relevance of the previously evidenced variables may only be tested by defining rules that 

allow collecting data for all or a relevant percentage of the countries being considered. All the 

assumptions made afterwards represent a simplification of the approach, but they may be 

considered the best solution based on the data available for the analysis. 

The transaction cost at an aggregate level may only be considered in part, because a quote is 

characterized by a fixed transaction cost that is independent of the type of stock considered and the 

bid-ask spread that is typical for each stock
65

. Hence, the decision to consider only the mean 

transaction costs applied to the transaction during the time period being considered. 

The trading mechanism may be examined considering market statements and the possibility to 

define different type of orders. The adoption of an international comparison of strategies in different 

markets requires the definition of a standard classification that may be applied to all the markets. 

The choice is to define the most general one that discriminate orders only on the basis of the type of 

constraint imposed: time, quantity and price. 

The relative importance of institutional investors with respect to individuals may hardly be 

evaluated by comparing the number and/or volume of trades because the activism of these investors 

is strictly related to available information and expectations, and no data about these aspects is on 

hand. The only unquestionable datum that may be used to evaluate the potential role of institutional 

investors is the presence or absence of dealers or market makers established by law. 

The study of liquidity considers a standard proxy like the number of trades in the period being 

analysed. More in detail, the suggested approach studies daily trades and, considering the high 

variability of volumes related to market anomalies
66

, tries to define a classification of stock markets 

breaking them down in four categories based on the mean amount of trades for all the periods being 

considered.
67

  

The table below summarizes the selected characteristics with respect to the countries considered 

in the analysis. (Table 1) 

                                                 
65 Atkins A.B. and Dyl E.A. (1990), “Price reversal, bid ask spreads and market efficiency”, Journal of Financial and 

Quantitative Analysis, vol. 25, pp. 535-547. 
66 Chordia T., Roll R. and Subrahmayam A. (2001), “Market liquidity and trading activity”, Journal of Finance, vol. 56, 

pp. 501-530. 
67 The high heterogeneity of the sample causes the uselessness of a non arbitrary approach to define a threshold with 

respect to the distribution of the number of trades. 
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Table 1 

 

Main characteristics of the markets being considered 

 
Type of orders  

Price limited orders Time limited orders Quantity limited orders 

Dealers and/or market makers Mean percentage of transaction costs* Mean daily number of 

trades 
Argentina  � � � 5 - 25000-50000 

Australia  5 5 5 5 0.02% 25000- 50000 

Austria  5 5 5 5 - More  than 100000 

Belgium  5 5 5 5 - 25000- 50000 

Brazil  5 � 5 5 - 25000- 50000 

Canada  5 5 5 5 0.02% More  than 100000 

Czech Republic  5 5 5 5 - 25000- 50000 

Chile  5 5 � � - Lower than 25000 

China  � � � 5 - 25000- 50000 

Egypt � � � � - Lower than 25000 

Finland  5 5 5 5 0.02% 50000-100000 

France  5 5 5 5 - 25000- 50000 

Germany  5 5 � 5 - 25000- 50000 

Hong Kong  5 � � 5 0.02% Lower than 25000 

Holland 5 5 5 5 - 25000- 50000 

Iceland � � � � 0.02% 25000- 50000 

Ireland  5 5 5 5 0.02% Lower than 25000 

Israel  5 � � 5 - Lower than 25000 

Italy  5 5 5 5 - 50000-100000 

Jamaica  5 5 5 5 - Lower than 25000 

Japan  5 5 5 5 0.01% More than 100000 

Jordan  � � � � 0.05% Lower than 25000 

Kenya � � � � - Lower than 25000 

Korea � � � � - Lower than 25000 

Malaysia 5 � 5 � 0.06% Lower than 25000 
Mauritius � � � � 1.25% Lower than 25000 
Mexico  5 5 � � - Lower than 25000 

Morocco 5 5 � � - Lower than 25000 

New Zealand  5 5 5 5 - More than 100000 

Pakistan � 5 5 � - Lower than 25000 

Peru  5 5 5 � 0.08% Lower than 25000 

Poland  5 5 5 5 - Lower than 25000 

Portugal  5 5 5 5 0.03% Lower than 25000 

Singapore  � � � 5 0.05% Lower than 25000 
Slovakia 5 5 5 5 0.08% Lower than 25000 
Spain  5 5 5 5 0.20% 25000-50000 

Sri Lanka 5 5 � � 0.02% Lower than 25000 

Sweden  5 5 5 5 - Lower than 25000 

Switzerland  5 5 5 5 - Lower than 25000 

Thailand  5 � � � 0.02% Lower than 25000 

Hungary 5 5 5 5 0.03% 25000- 50000 

UK 5 5 5 5 0.03% More  than 100000 

USA  5 5 5 5 0.04% More  than 100000 

Venezuela � � � � - Lower than 25000 

 

Notes: * Fees  presented in the table are the mean fees applied to individual investors 

Source: author’s elaboration of official market data
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Even if the aggregation of all order types in only three macro categories reduces the variability 

among the countries, the analysis of the sample allows singling out differences because only 51% of 

the markets present a complete set of orders. A simple data analysis shows that there is no 

predominant solution and so it is possible to verify if different choices in type of orders admitted 

impact on stock price dynamics. 

The resulting sample considers markets with different degrees of stability related to the presence 

or absence of market makers and by different degrees of liquidity. In fact, the available data allows 

ascertaining that over 35% of the markets have no market maker and, even if it is clear that some of 

the markets being considered are very small, the big markets are highly heterogeneous with respect 

to the degree of activism of the investors. 

Transaction costs data are more difficult to collect since the decision to delegate to the market the 

definition of the proper price may have a negative impact on the ability to monitor correctly the 

amount of the fee applied to market participants. 

With reference to all the data taken into consideration, this allows ascertaining the existence of 

differences among the countries being considered that permit to analyse whether these 

characteristics may influence the degree of chaotic dynamics of each type of market. 

 

4.3 The model 

 

Markets dynamics are studied considering the stock index value and estimating the daily returns 

using the standard logarithmic approach. In formulas 

 

⎟
⎠
⎞

⎜
⎝
⎛=

−1

ln
tj

tj
tj I

I
r  

 

where tj I  represents the stock market index considered for the country j. 

The analysis of the chaotic degree considers likely methods of estimation of the hidden basic 

linear function and tries to verify whether there are results independent of the methodology used 

and/or methodologies that are better suited. The role of past forecast results in forecasting is 

evaluated considering very simple approaches that could replicate results obtainable by standard 

technical analysis tools: moving average and trends. The selected econometric models are:
 68

 

 

� ( ) ntntt rrcnARr −− +++== φφ ...11  

� ( ) mtntit cmMAr −− +++== εψεψ ...1  

� ( ) mtntintntt rrcmnARMAr −−−− ++++++== εψεψφφ ......, 111  

  

The first approach represents the more simple proxy for the noise traders’ strategy because it 

assumes that there is a direct and proportional response of traders to each variation in a stock 

index ( )iti r −φ .
69

 The impact of each variation is related to the number of lags ( )n considered in the 

models. 

The Moving Average (MA) approach assumes that the responses are not related to the latest 

variations but represent the result of the study of the time series dynamics on a longer time 

                                                 
68 Hamilton J.D. (1995), Econometria delle serie storiche, Monduzzi Editore, Bologna, pp. 51-87. 
69 Beja and Goldman (1980), “On the dynamic of prices in disequilibrium”, Journal of Finance, vol. 35, pp. 235-248. 
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period ( )n . The first coefficients represent the sensitiveness to new data and the number of means 

considered represents an estimate of the degree of smoothing time series variations. 

ARIMA models are the most generic approaches used as filter and represent a combination of AR 

and MA models. These models could be considered useful to predict strategies adopted by more 

sophisticated technical analysts that are able to consider signals offered by different technical 

indicators. 

The high heterogeneity of the sample does not allow getting to the identification of a model suited 

for all the markets being considered. Hence, the lag that permits to get to the best result for each 

market has to be estimated. The decision to use more than one model to estimate hidden trends 

leads to results that are partially independent of the assumption made in the construction of the 

hidden model.  

All the previously suggested tests about the type of randomness and all the statistics related to the 

degree of chaotic dynamics need to be estimated with reference to all the filters being proposed and 

for all the de-trend time series being considered. The cycle lengths identified with the Hurst index 

are only estimated in respect of the time series showing chaotic dynamics. 

 

4.4 Results 

 

The analysis of the degree of randomness of the series filtered with different criteria is conducted 

for all the filters proposed above and the results obtained permit to reject the hypothesis of a 

random dynamics also for all the proposed criteria. The results that have been obtained show that, 

as a rule, residuals are not identically distributed for a large majority of filters and, in respect of a 

few countries, this relationship may be verified independently of the selected filter.
70

 (Table 2) 

 

 

                                                 
70 The table only shows the results of the worst criteria that may be adopted to construct residual series. Results 

obtained with other lag and/or time periods are better than those shown in the table and will be available on request. 
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Table 2 

 

Hurst index and Scrambled Hurst  

 

BDS BDS 

Countries 
AR (n) 

worst filter 

MA (n) 

worst filter 

ARIMA (n) 

worst filter 

Countries 
AR (n) 

worst filter 

MA (n) 

worst filter 

ARIMA (n) 

worst filter 

Argentina  9.87** 26.32*** 9.23*** Kenya 23.46*** 25.52*** 26.22*** 

Australia  8.41** 24.71*** 8.54*** Korea 6.49** 26.14*** 6.30** 

Austria  8.38** 25.23*** 8.49*** Malaysia 16.70*** 20.68*** 0.16 

Belgium  12.24*** 22.89*** 12.19*** Mauritius 8.07** 26.92*** 8.85** 

Brazil  12.93*** 26.24*** 12.34*** Mexico  9.30** 24.28*** 9.07** 

Canada  9.30** 24.28*** 9.07** Morocco 19.20*** 23.79*** 18.83*** 

Czech Republic  8.19** 24.73*** 8.25** New Zealand  9.39** 24.82*** 9.10** 

Chile  12.22*** 16.72*** 12.45*** Pakistan 15.26*** 25.92*** 15.36*** 

China  11.06*** 28.34*** 10.97*** Peru  9.48** 23.86*** 9.79** 

Egypt 15.18*** 20.51*** 14.82*** Poland  11.31*** 26.70*** 11.04*** 

Finland  12.69*** 24.75*** 12.12*** Portugal  -9.95** -0.21 -11.09*** 

France  9.20*** 27.02*** 8.92** Singapore  14.35*** 25.18*** 14.16*** 

Germany  11.43*** 28.01*** 11.47*** Slovakia 6.74** 26.75*** 6.63** 

Hong Kong  14.91*** 24.95*** -1.02 Spain  10.11** 27.97*** 10.15*** 

Holland 13.73*** 28.00*** 13.39*** Sri Lanka 20.24*** 21.76*** 19.57*** 

Iceland 12.52*** 24.17*** 12.39*** Sweden  11.15*** 24.80*** 11.06** 

Ireland  8.41** 26.25*** 8.35*** Switzerland  13.86*** 27.15*** 13.96*** 

Israel  3.76* 24.77*** 3.58* Thailand  22.75*** 26.13*** 26.38*** 

Italy  11.31*** 26.70*** 11.04*** Hungary 12.74*** 26.27*** 13.39*** 

Jamaica  -1.06 25.13*** -1.07 UK 12.05*** 26.47*** -0.21 

Japan  -0.03 25.52*** -0.04 USA  7.15** 26.52*** 7.22** 

Jordan  9.81** 21.52*** 9.88** Venezuela 13.26*** 22.77*** 13.19*** 

 

Notes:     *    Statistically significant at 90% 

               **   Statistically significant at 95% 

               *** Statistically significant at 99% 

 

 

The analysis of randomness in error time shows that there are quite a few scenarios where the 

chaos dynamics is likely to explain some of the errors relative to the standard linear model. The 

degree of chaotic dimension is analyzed looking for the best specification of the three models being 

proposed and comparing the results with the scrambled one. (Table 3) 

The markets being considered seem to point to the presence of chaotic dynamics because results 

obtained through the AR filter and the ARIMA filter identify a hurst index higher than the random 

scenario (H=0.5) and bigger than the scrambled one in over 65% of the countries.  

.  
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Table 3 

 

Hurst index and Scrambled Hurst  

 

AR (n) best filter MA (n) best filter ARIMA (n) best filter 

 

Hurst 
Hurst 

scrambled 
Hurst 

Hurst 

scrambled 
Hurst 

Hurst 

scrambled 

Argentina  0.56 0.33 0.12 0.43 0.56 0.45 

Australia  0.46 0.46 0.10 0.39 0.51 0.48 

Austria  0.55 0.43 0.03 0.40 0.55 0.47 

Belgium  0.54 0.47 0.10 0.46 0.54 0.48 

Brazil  0.46 0.38 0.09 0.42 0.46 0.42 

Canada  0.46 0.40 0.02 0.49 0.45 0.45 

Czech Republic  0.55 0.35 0.15 0.47 0.54 0.46 

Chile  0.53 0.45 0.21 0.42 0.53 0.45 

China  0.50 0.38 0.02 0.42 0.49 0.46 

Egypt 0.60 0.45 0.16 0.43 0.59 0.44 

Finland  0.55 0.42 0.08 0.46 0.54 0.41 

France  0.54 0.39 0.09 0.48 0.54 0.43 

Germany  0.51 0.43 0.01 0.49 0.52 0.38 

Hong Kong  0.40 0.42 0.17 0.53 0.53 0.49 

Holland 0.53 0.44 0.09 0.42 0.55 0.40 

Iceland 0.61 0.39 0.23 0.50 0.60 0.45 

Ireland  0.54 0.49 0.05 0.47 0.49 0.46 

Israel  0.49 0.34 0.18 0.47 0.51 0.44 

Italy  0.51 0.36 0.01 0.49 0.50 0.45 

Jamaica  0.49 0.45 -0.21 0.39 0.49 0.40 

Japan  0.48 0.47 -0.07 0.52 0.49 0.49 

Jordan  0.64 0.43 0.02 0.36 0.64 0.49 

Kenya 0.61 0.40 0.45 0.51 0.60 0.47 

Korea 0.55 0.37 0.16 0.43 0.55 0.38 

Malaysia 0.51 0.51 0.42 0.51 0.49 0.50 

Mauritius 0.60 0.44 0.20 0.41 0.57 0.39 

Mexico  0.46 0.41 0.02 0.42 0.45 0.46 

Morocco 0.58 0.36 0.13 0.46 0.56 0.49 

New Zealand  0.48 0.48 0.16 0.45 0.45 0.48 

Pakistan 0.53 0.43 0.04 0.47 0.49 0.41 

Peru  0.56 0.41 0.16 0.40 0.56 0.39 

Poland  0.49 0.41 0.01 0.37 0.50 0.39 

Portugal  1.00 0.45 0.48 0.51 0.98 0.49 

Singapore  0.53 0.37 0.18 0.42 0.53 0.40 

Slovakia 0.61 0.41 0.19 0.48 0.61 0.47 

Spain  0.53 0.49 0.11 0.51 0.52 0.40 

Sri Lanka 0.55 0.38 0.36 0.47 0.53 0.38 

Sweden  0.53 0.44 0.03 0.41 0.54 0.40 

Switzerland  0.51 0.41 0.09 0.45 0.52 0.46 

Thailand  0.67 0.45 0.52 0.48 0.67 0.44 

Hungary 0.55 0.49 0.12 0.47 0.52 0.34 

UK 0.50 0.39 0.02 0.43 0.54 0.42 

USA  0.47 0.48 -0.05 0.34 0.48 0.43 

Venezuela 0.59 0.42 0.31 0.48 0.55 0.44 
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More in detail, the markets exhibiting more chaotic characteristics show high order type 

heterogeneity (more than 65% of these markets seem chaotic) and, in more than a half percentage of 

cases, chaotic markets are characterized by the presence of a market maker. The degree of chaotic 

dynamics is also clearer for markets with lower trade volumes, but there seems to be no relationship 

with the amount of the transaction costs. (Graph 2) 

 

Graph 2 

 

Market characteristics and degree of chaotic dynamics 
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Looking only at the indexes showing chaotic patterns for almost one of the criteria being 

proposed, it becomes possible to study the mean duration of the cycles that characterize these 

markets and to look for other relationships between market characteristics and chaos dynamics. 

(Table 4) 
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Table 4 

 

Market cycle estimated with hurst exponent 

 

AR (n) MA (n) ARIMA (n)  

Country 

Mean Max Min Mean Max Min Mean Max Min 

Argentina  16 274 832 16 22 768 1 0 0 

Australia  247 960 32 246 1088 32 274 1472 16 

Austria  309 1280 54 309 1280 32 6 256 1 

Belgium  213 768 16 213 768 32 54 512 1 

Chile  163 1152 16 245 1152 32 163 1024 16 

Czech Republic  225 960 6 247 960 22 17 768 1 

Egypt  353 1280 22 353 1280 32 1 2 1 

Finland  154 1024 16 225 1024 32 14 1280 1 

France  225 768 54 274 832 32 13 1088 1 

Germany  113 448 6 131 768 32 2 71 1 

Holland  165 768 16 190 768 16 2 116 1 

Hong Kong  68 214 16 123 262 32 47 1035 1 

Hungary  122 640 32 122 640 32 3 358 1 

Iceland  326 1600 32 247 1280 32 190 1152 12 

Ireland  189 768 6 189 768 16 4 114 1 

Israel  161 448 16 181 640 16 12 1088 1 

Italy  155 320 16 189 640 16 5 418 1 

Jordan  309 1216 48 412 1088 128 7 422 1 

Kenya  247 1024 6 326 1248 128 190 512 16 

Korea  97 224 32 97 256 32 60 1280 1 

Mauritius  412 640 96 392 1152 128 24 576 1 

Morocco  353 1664 16 238 512 16 16 416 1 

Pakistan  618 1472 198 618 1472 198 7 272 1 

Peru  154 288 64 154 384 64 353 1280 32 

Portugal  823 1280 550 80 1280 16 22 1280 1 

Singapore  81 192 16 101 230 32 13 1280 1 

Slovakia  443 1664 48 274 1920 30 11 1280 1 

Spain  206 768 32 274 1024 54 18 768 1 

Sri Lanka  274 832 16 353 896 32 247 832 32 

Sweden  142 448 32 189 768 32 189 768 32 

Switzerland  274 768 64 309 768 64 7 800 1 

Thailand  225 768 54 247 768 54 4 232 1 

UK  131 640 32 122 640 32 122 640 32 

Venezuela  412 1344 32 494 1344 64 274 768 16 
 

Note: All data are expressed in number of days before the reversion 

 

Cycles estimated with more complex models (ARIMA) vary more frequently during the period 

analysed with respect to all the countries being considered. A comparison of the cycles of different 

countries clearly suggests that the liquidity not only affects the degree of chaos but also the type of 

cyclicality. In fact, as a rule, highly liquid markets have a higher frequency of reversion. This could 

be considered a direct consequence of the high number of investors that interact in the market. 
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5. Conclusions 

 

An international comparison shows that the forecasting methods are likely to be significantly 

influenced by the characteristics of the market being analysed and the interpretation of the results of 

by each forecasting process could be re-thought based on the evidence suggested in this paper. 

In fact, the differences identified in the degree of nonlinearity for different market structures 

clearly point to the impossibility of assuming that a single methodology is best, irrespective of the 

market being analysed. In fact, the different degree of nonlinearity implies a different length of the 

cycles that are relevant for all the forecasting methodologies and are likely to affect to a significant 

extent the results. 

The next step of the analysis could be the search of the best technique to predict the future 

performance of stock markets that are homogenous in respect of one or more variables identified in 

this paper.
71

 The recourse to more complex approaches, like e-GARCH
72

, could prove useful for 

future developments as they allow studying not only day or monthly dynamics but also the impact 

of chaos on strategies adopted by investors looking to intraday data.
73

 

Another future development of the analysis could be identified in the analysis of chaotic dynamics 

in the trend of individual stocks.
74

 This different approach could be useful because the degree of 

chaotic dynamics is not necessarily independent of firm characteristics
75

 and it could be interesting 

to analyse which are the main characteristics of stocks that demonstrates a more chaotic dynamic.
76

 

The results obtained from a comparison of different markets could be useful to analyse stock 

markets, even if the world markets tend to achieve a high level of integration. A few differences, 

like the mean volume of trades and the relative incidence of institutional investors
77

, are not likely 

to disappear with the finalization of the integration process. Hence, it could prove useful to replicate 

the analysis considering new market characteristics that allow discriminating among different stock 

markets. 

                                                 
71 For a review of different methodologies proposed in literature, see Kugiumtzis D., Lillekjendlie B. and 

Christophersen N. (1995), Chaotic time series. Part I1: system identification and prediction, University of Oslo 

working paper. 
72 Abhyankar A., Copeland L.S. and Wong W. (1995), “Non linear dynamics in real time equity market indexes: 

evidence from the United Kingdom”, Economic Journal, vol. 105, pp. 864-880. 
73 Bayracatar E., Poor V.H. and Sircar K.R. (2003), Estimating the fractal dimension of the S&P 500 using Wavelet 

analysis, Princeton University working paper. 
74 Barkoulas J.T. and Baum C.F. (1996), Long term dependence in stock returns, Boston College working papers in 

Economics n° 314, Boston. 
75 Skarandzinski D.A. (2003), The non linear behavior of stock prices: the impact of firm size, seasonality and trading 

frequency, Virginia Polytechnic Institute working paper. 
76 Hiemstra C. and Jones J.D. (1997), “Another look at long memory in common stock returns”, Journal of Empirical 

Finance, vol. 4, pp. 373-401. 
77 Sewell S.P., Stansell S.R., Lee I. and Below S.D. (1996), “Using chaos measures to examine international capital 

market integration”, Applied Financial Economics, vol. 6, pp. 91-101. 



 

18 

  

 

References 

 

 
Abhyankar A., Copeland L.S. and Wong W. (1995), “Non linear dynamics in real time equity 

market indices: evidence from the United Kingdom”, Economic Journal, vol. 105, pp. 864-880. 
Antoniou A., Ergul N. and Holmes P. (1997), “Market efficiency, thin trading and nonlinear 

behavior. Evidence from an emerging country”, European Financial Management, vol. 3, pp. 175-

190 
Arnold V.I. (1992), Catastrophe theory, Springer-Verlag, Berlin, pp. 14-19. 
Assaf A. and Cavalcante J. (2005), “Long range dependence in the returns and volatility of the 

Brazilian stock market”,  European Review of Economic and Finance, vol. 4, pp. 1-19 

Atkins A.B. and Dyl E.A. (1990), “Price reversal, bid ask spreads and market efficiency”, Journal of 

Financial and Quantitative Analysis, vol. 25, pp. 535-547. 
Banfi A. (2004), I mercati e gli strumenti finanziari. Disciplina e organizzazione della borsa, ISEDI, 

Torino, pp. 259-295. 
Barkoulas J.T. and Baum C.F. (1996), Long term dependence in stock returns, Boston College 

working papers in Economics n°314, Boston. 
Bayracatar E., Poor V.H. And Sircar K.R. (2003), Estimating the fractal dimension of the S&P 

500 using Wavelet analysis, Princeton University working paper 

Beja e Goldman (1980), “On the dynamic of prices in disequilibrium”, Journal of Finance, vol. 

35, pp. 235-248 
Bouchaud J.P., Gefen Y., Potters M. and Wyart M. (2004), “Fluctuations and response in financial 

markets: the subtle nature of random price change”, Quantitative Finance, vol. 4, pp. 176-190. 
Brock  W.A.  and Cars H.H. (1998), “Heterogeneous beliefs and routes to chaos in a simple asset 

pricing model”, Journal of Economic Dynamics and Control, vol. 22, pp. 1235-1274. 
Brock W.A., Dechert W. and Scheinkman J. (1987), A test for independence based correlation 

dimension, University of Wisconsin working paper, Madison. 
Brock W.A., Hsieh D.A. and LeBaron B. (1993), Nonlinear dynamics, chaos and instability: 

statistical theory and economic evidence, MIT press, Cambrige, pp. 82-129. 
Brown C. (1995), Chaos and catastrophe theories, SAGE publications, Thousand Oaks, pp. 8-21. 
Broze L., Gourieroux C. and Szafarz A. (1990), “Speculative bubbles and exchange of information 

on the market of a storable good”, in Barnett W.A., Geweke J. and Shell K., Economic complexity: 

chaos, sunspots, bubbles and nonlinearity, Cambridge University Press, New York. 
Cass D. and Shell K. (1983), “Do sunspots matters?”, Journal of Political Economy, vol. 91, pp. 



 

19 

  

 

193-207. 
Chan K.S. and Tong H. (2001), Chaos: a statistical perspective, Springer-Verlang, New York, pp. 

17-28. 
Chordia T., Roll R. and Subrahmayam A. (2001), “Market liquidity and trading activity”, Journal 

of Finance, vol. 56, pp. 501-530. 
Clide W.C.  and Osler C.L. (1997), “Charting: chaos theory in disguise?”, Journal of Future 

Markets, vol. 17, pp. 489-514. 
Connelly T.J. (1996), “Chaos theory and the financial markets”, Journal of Financial Planning, ,pp. 

26-30 
Costantinides G.M. (1986), “Capital market equilibrium with transaction costs”, Journal of Political 

Economy, vol. 94, pp. 842-862. 
Cunningam L.A. (2000), From random walks to chaotic crashes; the linear genealogy and the 

efficient capital market hypothesis, Boston College of Law working paper. 
Davis M.H.A. and Norman A.R. (1990), “Portfolio selection with transaction  costs”, Mathematics 

of Operation Research, vol. 15, pp. 676-713. 
Day R.H. (1993), “Complex economic dynamics: obvious in history, generic in theory, elusive in 

data”, in Pesaran N.H. and Potter S.M., Nonlinear dynamics, chaos and econometrics, John Wiley 

and Sons, Chichester. 
De Long J.B., Shleifer A., Summers L.H. e Waldman R.J. (1991), “The survival of noise traders in 

financial markets”, Journal of Business, vol. 64, pp. 1-19 
Devaney R.L. (1990), Caos e frattali, Addison-Wesley Published Company, Milano, pp. 149-171. 
Eckman J.P. (1985), “Ergodic theory of chaos dynamics and strange attractors”, Review of Modern 

Physics, vol. 57, pp. 617-656. 
Falconer K. (1990), Fractal geometry. Mathematical foundations and applications, John Wiley and 

Sons, Chichester, pp. 25-68. 
Fama E. (1970), “Efficient Capital markets: A review of the theory and empirical works”, Journal of 

Finance, vol. 25, 383-417. 
Famer J.D. and Joshi S. (2002), “The price dynamics of common trading strategies”, Journal of 

Economic Behaviour and Organization, vol. 49, pp. 149-171. 
Greenside H.S., Wolf A. Swift J. and Pignataro T. (1982), “Impracticability of a box counting  

algorithm for calculating the dimensionality of strange attractors”, Physical Review A, vol. 25, pp. 

3453-3456. 
Grossman S.J. and Miller M.H. (1988), “Liquidity and market structure”, Journal of Finance, vol. 



 

20 

  

 

43, pp. 617-633. 
Hamilton J.D. (1995), Econometria delle serie storiche, Monduzzi Editore, Bologna, pp. 51-87. 
Henry O.T. (2002), “Long memory in stock returns: some international evidence”, Applied Financial 

Economics, vol. 12, pp. 725-729. 
Hiemstra C. and Jones J.D. (1997), “Another look at long memory in common stock returns”, 

Journal of Empirical Finance, vol. 4, pp. 373-401. 

Hinich M.I. and Patterson D.M. (1990), “Evidence of nonlinearity in the trade-by-trade stock 

market return generating process”, in Barnett W.A., Geweke J. and Shell K., Economic complexity: 

chaos, sunspots, bubbles and nonlinearity, Cambridge University Press, New York. 
Hsieh D.A. (1991), “Chaos and non linear dynamics: applications for financial markets”, Journal of 

Finance, vol. 46, pp. 1839-1877. 
Huang  B.N. andYang C.W. (1995), The fractal structure in multinational stock returns, Applied 

Economic Letters, vol. 2, pp. 67-71. 
Hurst H.E. (1991), “The long term storage capacity of reservoirs”, Transactions of the American 

Society of Civil Engineers, vol. 116, pp. 770-799. 
Iori G., Daniels M.G., Famer J.D., Gillemot L., Krishnamurty S. e Smith E. (2003), “An analysis 

of price impact function in order driven markets”, Phisica A, vol. 324, pp. 146-151. 
Jaditz T. and Sayers C. (1993), “Is chaos generic in economic data?”, International Journal of 

Bifurcations and Chaos, vol. 3, pp. 745-755. 
Kaizoji T. (2002), “Speculative price dynamics in a heterogeneous agent model”, Nonlinear 

dynamics, Psychology and Life Science, vol. 6, pp. 217-229. 
Kugiumtzis D., Lillekjendlie B. and Christophersen N. (1995), Chaotic time series. Part 1: 

Estimation of some invariant properties in state space, University of Oslo working paper.  
Kugiumtzis D., Lillekjendlie B. and Christophersen N. (1995), Chaotic time series. Part I1: system 

identification and prediction, University of Oslo working paper. 
LeBaron B. (1993), “Forecast improvements using volatility index” , in Pesaran N.H. and Potter 

S.M., Nonlinear dynamics, chaos and econometrics, John Wiley and Sons, Chichester. 
Lillo F. and Farmer J.D. (2004), “The long memory effect of the efficient market”, Studies in 

nonlinear Dynamics and Econometrics, vol. 8, pp. 1-32. 
Linnainmaa J. (2005), The limit order effect, UCLA working paper, Los Angeles. 
Liu T., Granger C.W.J. and Heller W.P. (1992), “Using the correlation exponent to decide whether 

an economic series is chaotic”, Journal of Applied Econometrics, vol. 7, pp. S25-S39. 
Lo A.W. (1991), “Long term memory in stock market prices”, Econometrics, vol. 5, pp. 1279-1313. 



 

21 

  

 

Los C.A. (2004), Measuring the degree of financial market efficiency, Kent state University working 

paper. 
Mandelbrot B.B. (1987), Gli oggetti Frattali, Giulio Einaudi editore, Milano. 

Maslow S. (2000), “Simple model of limit order driven market”, Phisica A, vol. 278, pp. 571-578. 

McCauley J.L. (1994), Chaos, dynamics and fractals. An algorithmic approach to deterministic 

chaos, Cambridge University Press, Cambridge, pp. 41-84. 
Mouck T. (1998), “Capital markets research and real world complexity: the emerging challenge of 

chaos theory”, Accounting, Organizations and Society, vol. 23, pp. 189-215. 
Mucley C. (2004), “Empirical asset return distributions: is chaos the culprit”, Applied Economic 

Letters, vol. 11, pp. 81-86. 
Olmeda I. and Perez J. (1995), “Non linear dynamics and chaos in the Spanish stock market”, 

Investigaciones Economicas, vol. 19, pp.217-248. 
Pandey V., Kohers T. and Kohers G. (1998), “Deterministic non linearity in the stock returns of 

major European equity markets in the United States, Financial Review, vol. 33, pp. 45-64. 
Peitgen H.O., Jurgens H. and Saupe D. (2004), Chaos and fractals. New frontiers of science, 

Springer-Verlag, pp. 61-124. 
Pesaran N.H. and Potter S.M. (1992), “Nonlinear dynamics, chaos and econometrics: an 

introduction”, Journal of Applied Econometrics, vol. 7, pp. S1-S7. 
Peters E. (1996), Chaos and order in the capital markets. A new view of cycles, prices and market 

volatility, John Wiley and Sons Chichester, pp. 83-105. 
Pring M.J. (2002), Analisi tecnica dei mercati finanziari, McGraw Hill Italia, Milano. 
Sadique S. and Silvapulle P. (2001), “Long term memory in stock market returns: international 

evidence”, International Journal of Finance and Economics, vol. 6, pp. 59-67. 
Scheinkman J.A. and LeBaron B. (1989), “Nonlinear dynamics in stock returns”, Journal of 

Business, vol. 62, pp. 311-337. 
Schreimber T. (1998), “Interdisciplinary application of nonlinear time series methods”, Phisics 

Reports, vol. 308, pp. 1-64. 
Seppi D.J. (1997), “Liquidity provisions with limit orders and specialists”, Review of Financial 

Studies, vol. 10, pp. 103-150. 
Seru A., Shumway T. and Stoffman N. (2005), Learning by trading, Stephen Ross School of 

Business working paper, Ann Arbor. 
Sewell S.P., Stansell S.R. Lee I. and Below S.D. (1996), “Using chaos measures to examine 

international capital market integration”, Applied Financial Economics, vol. 6, pp. 91-101. 



 

22 

  

 

Skarandzinski D.A. (2003), The non linear behavior of stock prices: the impact of firm size, 

seasonality and trading frequency, Virginia Polytechnic Institute working paper. 
Tyurin K. (2003), High frequency principal components and evolution of liquidity in a limit order 

market, Indiana University working paper, Bloomington. 
Westerhoff F.H. (2005), “Heterogenous traders, price volume signals and complex asset price 

dynamics”, Discrete Dynamics in Nature and Society, vol. 1, pp. 19-29. 
Willinger W., Taqqu M.S. and Teverovsky V. (1999), “Stock market prices and long range 

dependence”, Finance and Stochastics, vol. 3, pp. 1-13. 
Zanotti G. (2006), “Organizzazione e struttura dei mercati mobiliari” in Fabrizi P.L., Economia del 

mercato mobiliare,  Egea, Milano. 

 



 

23 

  

 

Appendix 

 

Table A 1 

 

Index selected for each country analysed 

 

 

Paese Index 

Argentina  MERVAL 

Austria  AUSTRIA TRADED INDEX 

Belgium  BELMID 

Brazil  BOVESPA 

Canada  S&P/TSX COMPOSITE INDEX 

Czech Republic  PX GLOBAL INDEX 

Chile  IGPA 

Croatia  CROBEX 

Denmark  OMX Copenhagen 

Estonia  OMX TALLIN 

Europe  DJSTOCK 50 

Finland  OMX Helsinki 

France  CAC 40 

Germany  DAX 

Greece  ATHEX ALL SHARE 

Holland  AMSTERDAM SE ALL SHARES 

Hungary  BUX 

Iceland  ICEX ALL SHARES 

Ireland  ISEQ 

Italy  MIB30 

Italy  S&P MIB 

Jamaica  S&P/IFCF M JAMAICA 

Lithuania  NOMURA 

Luxembourg  LUXX 

Mexico  IPC 

Norway  OBX UTBYTTEJUSTERT 

Peru DS Market 

Poland WARSAW GENERAL INDEX 

Portugal  PSI GENERAL 

Romania  BET 

Russia  RTS INTERFAX COMPOSITE 

Slovakia  SAX 16 

Spain  IBEX 35 

Sweden  OMX Stockholm 

Switzerland  SWISS index 

Turkey  ISE National all shares 

USA  S&P 500 

Venezuela  VENEZUELA SE General 
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