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Abstract 

In the current paper, we study the asymmetric normal-form game between two heterogeneous groups of  populations by 

employing the stochastic replicator dynamics driven by Lévy process. A new game equilibrium, i.e., the game 

equilibrium of  a stochastic differential cooperative game on time, is derived by introducing optimal-stopping technique 

into evolutionary game theory, which combines with the Pareto optimal standard leads us to the existence of  Pareto 

optimal endogenous matching. 
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1. Introduction 

                                                        
1 I am very grateful for helpful comments and suggestions from one anonymous referee. And I wish to thank the anonymous referee 
for the careful reading. Any remaining errors are, of course, my own responsibility. 
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Our purpose of  the paper is to supply a general framework for studying Pareto-optimal endogenous 

matching in any given normal-form game situations with two groups of  heterogeneous populations. 

Firstly, the existence of  the endogenous matching is confirmed. Secondly, the derived endogenous 

matching exhibits the following good properties: Pareto efficiency, individual rationality, and also 

fairness. Furthermore, random matching as an extreme case of  the endogenous matching under 

consideration yields economic-welfare intuitions and implications. Indeed, the present study provides 

conditions under which the well-known random matching is asymptotically Pareto efficient. And in this 

sense, we can further argue that this investigation has illustrated the existence of  Pareto-optimal 

social structure or social network in given game situations. In other words, it is confirmed that there 

exists a matching mechanism such that any given social structure can be led to the Pareto-optimal 

social structure. This hence deepens our understanding of  matching mechanism in game theory.2 

It is convincing to argue that people live in a highly structured3 society (see, Schelling, 1969, 1971; 

Bowles and Gintis, 1998; Pollicott and Weiss, 2001; Zhang, 2004; Pacheco et al., 2006; Pacheco et al., 

2008) consists of  groups rather than individuals, which implies that random matching will not always 

provide us with compelling approximation to reality when we are concerned with the interactions 

among the players. In fact, Ellison (1993) shows that local interaction4 will have very important and 

also different implications in equilibrium selection relative to that of  uniform interaction or random 

matching (e.g., Gilboa and Matsui, 1992). So, given the importance of  non-random matching in 

equilibrium selection, we express the motivation of  the present paper as follows, i.e., can we directly 

prove the existence of  certain non-random matching that is Pareto optimal and also endogenously 

determined in a given game situation? If  we can, what are the conditions we will rely on? In other 

words, the major goal of  the present exploration is not to study any exogenously given matching 

mechanism but to find out the optimal matching mechanism in a given game situation.5  

In two pioneering papers, Kandori et al. (1993) and Young (1993) prove that the trial-and-error 

learning processes of  the players will definitely converge to one particular pure-strategy Nash 

equilibrium, which is named as the long run equilibrium by Kandori et al. and the convention by 

Young. From the perspective of  multiple-equilibrium problem, they provide us with an equilibrium 

                                                        
2 Noting that Haag and Lagunoff  (2006) address the question of  the optimal spatial or neighborhood design when free-rider 
problems are localized, they indeed share the similar basic idea as the current paper. Nevertheless, there are two obvious differences 
between the both. Firstly, they focus on free-rider problems when social spillovers exist, that is, their problem is much more explicit 
than that of  the current study. And hence the present paper supplies us a much more general framework. Secondly, they employ graph 
theory and focus on specific spatial-structure while the current investigation uses evolutionary game theory and optimal stopping 
theory. All in all, our endogenous matching does (to some extent) include the considerations of  the above spatial structure. 
3 For example, it is induced or determined by the following factors: institutional segregation, market division, spatial structure, 
informational distribution, reputation, preference, emotion and motive, and so on. In particular, individuals usually have motives to 
sort themselves into matches with like agents, for example, better-qualified workers match with better jobs, more handsome men 
marry more beautiful women, that is, only “similar” agents match, as is emphasized by assortative-matching theory (see, Shimer and 
Smith, 2000; Atakan, 2006; Hoppe et al., 2009; Eeckhout and Kircher, 2010, and among others). 
4 These local interaction settings share the characteristic that each person interacts with only a subset of  the relevant population. One 
economic intuition of  this aspect is to capture in a simple abstract way a socioeconomic environment in which markets do not exist to 
mediate all of  agents’ choices (see, Bisin et al., 2006). As noticed and stated by Bisin et al. (2006), local interactions represent an 
important aspect of  several socioeconomic phenomena. 
5 That is to say, in an artificial world, we can employ the matching mechanism to lead the players to play the Pareto optimal Nash 
equilibrium regardless of  the enforcement cost. And in this sense, matching mechanism plays the role of  equilibrium selection device. 
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selection device, under which the players are correctly predicted to play a particular Nash equilibrium. 

However, we can also evaluate their contribution from the following viewpoint, i.e., provided a 

particular Nash equilibrium, they prove that there exists a pattern of  learning mechanism that will 

definitely lead the players to play the given Nash equilibrium. To summarize, they confirm the 

existence of  certain type of  learning mechanism, based upon which the players’ behavior will be 

uniquely predicted in the long run. Instead of  emphasizing micro-strategy, we focus on macro-structure 

and it is confirmed that there exists certain macro-structure or social network (e.g., Skyrms and 

Pemantle, 2000; Bala and Goyal, 2000; Galeotti et al., 2006, and among others) under which one 

particular Pareto optimal Nash equilibrium will be definitely played by the players. 

In the paper, we are encouraged to study the asymmetric normal-form games between two 

heterogeneous groups of  populations under the modified framework of  evolutionary game theory. 

Each of  the two groups is assumed to have countably many pure strategies. Hyper-rational 

assumptions (see, Aumann, 1976; Andreoni and Samuelson, 2006) about the players broadly used in 

classical non-cooperative game theory will be dropped in the present model, instead, the players or 

individuals play the game following certain adaptive learning processes arising from the stochastic 

replicator dynamics driven by Lévy processes (for the first time). On the contrary, the strategies 

themselves are supposed to be smart and rational enough to optimize their fitness, which directly 

depends on the stochastic replicator dynamics or the learning processes of  the players, following the 

classical as if methodology from the perspective of  posteriori. And the corresponding control 

variables of  these fitness-optimization problems are chosen to be stochastic stopping times or 

stopping rules, which reasonably reflects the fact that strategies themselves are no longer suitable for 

the roles of  control variables (as in the best-response correspondences of  Nash equilibria) because 

“strategies” of  the players’ strategies will not be well-defined through the traditional approach. 

Luckily, noting that the optimal stopping rules are partially determined and completely characterized 

by the learning processes of  the players, the optimal stopping rules as a vector may be exactly one of  

the Nash equilibra, no matter it is mixed-strategy Nash equilibrium or pure-strategy Nash 

equilibrium, of  the original normal-form games. 

Generally speaking, the optimal stopping rules as a vector will not be equal to anyone of  the 

Nash equilibria, that is, there exists certain difference between the both. However, it is confirmed 

that it is just the difference between the optimal stopping rules as a vector and the Pareto optimal 

Nash equilibrium of  the original normal-form game that established our Pareto optimal endogenous 

matching. We, hence, to the best of  our knowledge, enrich the matching rule widely used in 

evolutionary game theory by naturally adding into economic-welfare implications for the first time. 

Moreover, it is shown that the well-known random matching (e.g., Maynard Smith, 1982; 

Fudenberg and Levine, 1993; Ellison, 1994; Okuno-Fujiwara and Postlewaite, 1995; Weibull, 1995; 

Hofbauer and Sigmund, 2003; Benaïm and Weibull, 2003; Aliprantis et al., 2007; Duffie and Sun, 

2007; Takahashi, 2010; Podczeck and Puzzello, 2012, and among others) just represents one special 

and extreme case of  the current endogenous matching and we supply the conditions under which 

the random matching will be asymptotically Pareto efficient. Thus, proving the existence of  Pareto 
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optimal endogenous matching would be regarded as one innovation of  the present paper by noticing 

the above facts. 

In the next section, we will construct the formal model, introduce some basic concepts and 

prove the key theorem of  the present paper. There is a brief  concluding section. All proofs appear in 

the Appendix. 

2. Formulation 

2.1. Set-up and Assumptions 

Let 
1 2I I

A   be the payoff  matrix for row players and 
1 2I I

B   be the payoff  matrix for column players 

with 
1 2I IA  , 

1 2I IB   1 2I I , and 
1I , 

2I 1 . Here, and throughout the current paper, we study the 

replicator dynamics of  
1 2I I  normal-form games between two groups of  populations. Put 

1 1

1 1
( ) ( )

I i

i
M t M t

  , where 1 ( )
i

M t  denotes the number of  strategy-
1i  players at period t . 

Similarly, let 2 2

2 1
( ) ( )

I i

i
N t N t

  , where 2 ( )
i

N t  denotes the number of  strategy- 2i  players at 

period t .  

We let 1 1( ) ( ) ( )i i
X t M t M t , 2 2( ) ( ) ( )i i

Y t N t N t  denote the frequencies of  strategies 
1i  

and 
2i , respectively, with 

1 11, 2,...,i I  and 
2 21, 2,...,i I . Therefore, the average payoffs of  

strategy 
1i  and strategy 

2i  are given by  1, ( )u i Y t 
1

( )T

i
e AY t  and  

22 , ( ) ( )T T

i
u i X t e B X t , 

respectively, with the superscript “T ” denoting transpose, and  11( ) ( ),..., ( ),
i

X t X t X t 1..., ( )
T

I
X t , 

( )Y t   21( ),..., ( ),
i

Y t Y t 2..., ( )
T

I
Y t , and also 

1
(0,...,1,...,0)T

ie  , 
2

(0,...,1,...,0)T

ie  , where the 

1i -th entry and 2i -th entry are ones, respectively, for 1 11, 2,...,i I  and 2 21, 2,...,i I . 

Specifically, in the current paper, we employ the following endogenous matching mechanism by 
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incorporating two vectors, i.e.,  1 1 11,..., ,...,
T

i I I       and 2 2 21( ,..., ,..., )
i I IT          

with 1 1

1 1
0

I i

i



  and 2 2

2 1
0

I i

i



  , into the present model. Now, the generalized average payoffs 

of  strategies 
1i  and 

2i  are rewritten as  1, ( )u i Y t     
1 1 1

( ) ( )T T T

i i ie A Y t e AY t e A      and 

   
22 , ( ) ( )T T

iu i X t e B X t   
2 2

( )T T T T

i ie B X t e B   , respectively, for 1 11, 2,...,i I  and 

2 21, 2,...,i I . In other words,  1, ( )u i Y t    and  2 , ( )u i X t   can be seen as 
1

T

ie A - 

perturbation and 
2

T T

i
e B  -perturbation of   1, ( )u i Y t  and  2 , ( )u i X t , respectively. 

We now denote by  ( ) ( ), ,
i i

W W 

   ( )

0 ( )

i

i

W

t
t



  
 ( ),

i
W   the filtered probability space with 

( )
i

W    ( )

0 ( )

i

i

W

t
t



  
  the ( )

i
W 

 augmented filtration generated by d  dimensional 

standard Brownian motion  ( ),0 ( )
i i

W t t     with ( )
i

W 

  ( )

( )

i

i

W 

 
 ,   ( )

i
W 

  and 

( )
i   a stopping time, to be endogenously determined. Moreover, we define 

  ,
i i

N dt dz     1 1,
i i

N dt dz  ,...,  ,
T

i i

n nN dt dz 

 
   

         1 1 1 1, ,..., ,
T

i i i i i i i i

n n n n
N dt dz dz dt N dt dz dz dt       

   
   ,  

in which  
1

n
i

l
l

N





 

 are independent Poisson random measures with Lévy measures 
i

l




  coming 

from n  independent (one-dimensional) Lévy processes 1 ( )
i

t   
0

1 1 1
0

,
t i i i

z N ds dz     ,…, 

( )
i

n t


   

00
,

t i i i

n n n
z N ds dz  

      with 0     0 , and then the corresponding stochastic basis is 

given by  ( ) ( ), ,
i i

N N 

    ( )

0 ( )

i

i

N

t
t



  

 ( ),
i

N   with ( )
i

N    ( )

0 ( )

i

i

N

t
t



  

  the ( )
i

N 

  

augmented filtration and ( )
i

N   ( )

( )

i

i

N 

 

 ,   ( )
i

N 

 
 and ( )

i   a stopping time, to be 

endogenously determined. Thus, we are provided with a new stochastic basis  , ,
i i    

 
0 ( )

i

i

t
t



  
 ,

i , where 
i  ( )

i
W 

  ( )
i

N 

 
, 

i  ( )
i

W 

  ( )
i

N  , 
i

t

  ( )
i

W

t



  ( )
i

N

t

 , 
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i  ( )
i

W   ( )
i

N   and 
i   

0 ( )
i

i

t
t



  
  denotes the corresponding filtration satisfying the 

well-known “usual conditions”. Here, and throughout the current paper, 
i  is used to denote the 

expectation operator with respect to (w. r. t.) the probability law 
i  for  1, 2,...,i I   and 

for 1, 2  . Naturally, we have stochastic basis  , ,     
0 ( )t

t




  
 ,   with   I i

i

 


  , 

  I i

i

 


  , 

t

  I i

i t

 


  ,   I i

i

 


  , ( )   ( )

I i

i

 


   ( )

I i

i

 


   if  1  , and 

( )   ( )
I i

i

 


   ( )

I i

i

 


    if  2   with    ,    

0 ( )t
t





  
  denoting the 

corresponding filtration satisfying the usual conditions, and   is used to denote the expectation 

operator w. r. t. the probability law   for 1, 2  . Furthermore, we are led to the following 

probability space  , ,   
0 ( )

,
t t   
   with 2

1


    , 2

1


   , 2

1t t


   , 

2

1


   , 2

1( ) ( )
     with  ,  

0 ( )t t   
   denoting the corresponding 

filtration satisfying the usual conditions, and   is used to denote the expectation operator w. r. t. 

the probability law  . 

We now define the canonical Lebesgue measure   on measure space  ,  B  with 

   0, ,   (0, )  and  B  the Borel sigma-algebra, and also the corresponding 

regular properties about Lebesgue measure are supposed to be fulfilled. Thus, we can define the 

following product measure spaces  i
   ,

i
  B  and  

   , 
  B  with 

corresponding product measures   i  and    , respectively, for  1,2,...,i I   and 

for 1,2  . 

Now, based upon the probability space  , ,
i i   i ,

i  for 1,2  , and following 

Fudenberg and Harris (1992), Cabrales (2000), Imhof  (2005), Benaïm et al (2008), Hofbauer and 

Imhof  (2009), the stochastic replicator dynamics6 of  the two groups of  populations can be 

                                                        
6 Throughout, the stochastic replicator dynamics will help us to construct adaptive learning processes for the players following the 
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respectively given as follows, 

   
1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
0

1 11 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT

i i k k i l l l l

k l

dM t M t e AY t dt t dW t t z N dt dz 
 

 
   

 
   , 

   
2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
0

2 21 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT T

i i k k i l l l l

k l

dN t N t e B X t dt t dW t t z N dt dz 
 

 
   

 
    . 

where 1 ( )
i

M t  is assumed to be  1i

  B adapted, 2 ( )
i

N t  is  2i

  B adapted, ( )Y t  

is also assumed to be  2

  B adapted, ( )X t  is  1

  B adapted, 
1 1

( )
i k

t  and 

 1

1 1 1
,

i

i l l
t z  are  1i

  B progressively measurable, and 
2 2

( )
i k

t  and  2

2 2 2
,

i

i l l
t z  are 2i   

B    progressively measurable, for  1 11, 2,...,i I ,  2 21, 2,...,i I ,  1 11, 2,...,k d ,   

2 21, 2,...,k d ,  1 11, 2,...,l n  and  2 21, 2,...,l n . 

ASSUMPTION 1: Throughout the current paper, both ( )M t  and ( )N t , sufficiently large, are assumed to 

be finite constants. 

Notice from Assumption 1 that the sizes of  the two populations are finite constants, based on 

Itô’s rule one can easily obtain, 

   
1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
0

1 11 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT

i i k k i l l l l

k l

dX t X t e AY t dt t dW t t z N dt dz 
 

 
   

 
    

   1 1 1 1 1 1 1

11
0

( ) ( ) ( ) ( ) , ,
n

i i i i i i iT

iX t e AY t dt t dW t t z N dt dz       , 

   
2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
0

2 21 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT T

i i k k i l l l l

k l

dY t Y t e B X t dt t dW t t z N dt dz 
 

 
   

 
          

   2 2 2 2 2 2 2

22
0

( ) ( ) ( ) ( ) , ,
n

i i i i i i iT T

iY t e B X t dt t dW t t z N dt dz        . 

subject to the initial conditions, i.e., 1 (0) (0,...,0)
i T

W   1i  a.s., 2 (0) (0,...,0)
i T

W   2i  a.s., 

(0)X   1 11(0),..., (0),..., (0)
T

i I
X X X   1 11,..., ,...,

T
i I

x x x  0x  1  a.s., (0)Y   1(0),Y  

                                                                                                                                                                                    
argument of  Gale et al. (1995), Binmore et al. (1995), Börgers and Sarin (1997), Cabrales (2000), and Beggs (2002). Thus, we will take 
indifference between the stochastic replicator dynamics and the adaptive learning processes. 
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2 2..., (0),..., (0)
T

i I
Y Y   2 21,..., ,...,

T
i I

y y y  0y   2  a.s., 1 ( )
i

X t  is assumed to be 

 1i

  B adapted, and 2 ( )
i

Y t  is assumed to be  2i

  B adapted, for  1i  11, 2,..., I  

and  2i  21, 2,..., I . Moreover, with a little abuse of  notations, we put 1 (0)
i  

11(0),i  


1 1 1 1

..., (0),..., (0)
T

i k i d
    

1 1 1 1 11,..., ,...,
T

i i k i d
    1i ,  1 10,

i i
z      1 1

1 1 1 11 10, ,..., 0, ,...,
i i

i i l lz z   

 1

1 1 1
0,

T
i

i n nz        1 1 1

1 1 1 1 1 1 11 1 ,..., ,...,
T

i i i

i i l l i n nz z z     1 1i i
z , 2 (0)

i  
2 2 21(0),..., (0),...,i i k    


2 2

(0)
T

i d
   

2 2 2 2 21,..., ,...,
T

i i k i d
      2i , and  2 20,

i i
z      2 2

2 2 2 21 10, ,..., 0, ,...,
i i

i i l lz z    

 2

2 2 2
0,

T
i

i n nz        2 2 2

2 2 2 2 2 2 21 1 ,..., ,...,
T

i i i

i i l l i n n
z z z       2 2i i

z , for  1i  11, 2,..., I  and  2i  

 21,2,..., I . And also we set the following technical assumption, 

ASSUMPTION 2: The initial conditions 1 (0)
i

X  1ix 0 , 2 (0)
i

Y  2iy 0 , (0)X  x 0  and 

(0)Y  y 0  are all supposed to be deterministic and bounded for  1i  11,2,..., I  and  2i  21,2,..., I . 

Furthermore, 1 0
i   1i  a.s., 2 0

i   2i  a.s.,  1

1 1 1
,

i

i l l
t z  1

1
1

i

l
     1i  a.e., and 

 2

2 2 2
,

i

i l l
t z  2

2
1

i

l
     2i  a.e., for  1

1

i

l
 0 , 2

2

i

l
 0  and for  1i  11,2,..., I ; 

2i  21,2,..., I ; 

1l  11,2,...,n  and 
2l  21,2,...,n . 

2.2. Stochastic Differential Cooperative Game on Time 

Now, as in the model of  Nowak et al (2004), and Imhof  and Nowak (2006), we define the following 

generalized expected discounted fitness functions, 

      1 1 1

1 1

2

( , ), ( ) exp 1 ( )
i i i T

i s y i
f t Y t t w w e A Y t        

  , 

      2 2 2

2 2

1

( , ), ( ) exp 1 ( )
i i i T T

i s x i
f t X t t w w e B X t        
      . 

with 1i , 2i  0,1  ( 1i  1, 2, 1..., I ; 
2i  1,2, 2..., I ) denoting the discounted factors, 1iw , 2iw  
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 0,1  ( 1i  1, 2, 1..., I ; 2i  1,2, 2..., I ) the parameters that measure the contributions of  the 

matrix payoffs of  the game to the fitness of  the corresponding strategies, and 2

( , )s y , 1

( , )s x  

representing the expectation operators w. r. t. the complete probability law 2 , 1  with depending 

on initial conditions ( , )s y      2
0,1

I
 and ( , )s x      1

0,1
I

, respectively. Thus, the 

problem, after technically modifying the above generalized expected discounted fitness functions, 

facing us can be expressed as follows, 

PROBLEM 1 (Stochastic Differential Cooperative Game on Time): We need to demonstrate that there 

exist two vectors of   stopping times ( )    1 11 ( ),..., ( ),..., ( )
T

i I       and ( )    

 2 21 ( ),..., ( ),..., ( )
T

i I         with    such that, 

  1 1

1
( ), ( )

i i

if Y      

     1 1 1 1 1

1
1

( , )
( )

sup exp ( ) 1 ( )
i

i i i i iT

s y i
w w e A Y

 
     



        
  , 

     1 1 1 1 1

1( , ) exp ( ) 1 ( )
i i i i iT

s y i
w w e A Y              

  . 

And simultaneously, 

  2 2

2
( ), ( )i i

i
f X        

     2 2 2 2 2

2
2

( , )
( )

sup exp ( ) 1 ( )
i

i i i i iT T

s x i
w w e B X

 
     



        

       , 

     2 2 2 2 2

2( , ) exp ( ) 1 ( )
i i i i iT T

s x i
w w e B X              

       . 

with 1 1( ) ( )i k      (  1 1i k ,
1i ,

1k  11,2,..., I )  a.s., 2 2( ) ( )i k       (  2 2i k , 
2i , 

2k  21,2,..., I )  a.s., 
( , )s y  and 

( , )s x standing for the expectation operators depending on 

initial conditions or information ( , )s y  and ( , )s x , respectively. 

REMARK 2.1: By applying Girsanov Theorem under comparatively weak conditions, the game 

between different strategies will become a fair-game after the martingale-payoffs being incorporated 

into the game. In this sense, we argue that the corresponding endogenous matching is fair. Moreover, 
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it is easily seen that the endogenous matching fulfills Pareto efficiency as well as individual rationality 

(from the viewpoint of  strategies). 

DEFINITION 1 (Pareto Optimal Endogenous Matching and Induced Nash Equilibrium): The solution, if  

it exists, to Problem 1 defines a game equilibrium, denoted 

  1 11( , ) ( , ),..., ( , ),..., ( , ) ,
T

i I
x y x y x y x y           

 1( , ) ( , ),y x y x       2 2..., ( , ),..., ( , )
T

i I
y x y x     . 

with 1 1

1

( , ) 1
I i

i
x y     and 2 2

2

( , ) 1
I i

i
y x     , induced by stochastic group evolution and 

rational individual choice corresponding to very general normal form game situations. Suppose that 

we are provided with a Pareto optimal Nash equilibrium denoted by  1 11ˆ ˆ ˆ ˆ( ,..., ,..., ) ,
i I T

x x x x  

2 21ˆ ˆ ˆ ˆ( ,..., ,..., )
i I T

y y y y  with 1 1

1

ˆ 1
I i

i
x   and 2 2

2

ˆ 1
I i

i
y   in the original normal form game, 

then we arrive at the Pareto optimal endogenous matching by solving the following equations, i.e., 

ˆ( , )x y x    and ˆ( , )y x y   , and we represent the corresponding Pareto optimal endogenous 

matching by ( , )   . Moreover, we call the Pareto optimal Nash equilibrium ˆ ˆ( , )x y  induced Nash 

equilibrium (in some sense) in the current game situations. 

REMARK 2.2: Specifically, it is worth noting that there exists intrinsic relationship between the 

endogenous matching and the broadly applied random matching (see, Ellison, 1994; Weibull, 1995; 

Aliprantis et al., 2007; Duffie and Sun, 2007; Takahashi, 2010, and among others). Notice that the 

present endogenous matching could be naturally (to some extent and in some sense) viewed as 

certain perturbation of  the perfect world with well-mixed population, random matching indeed 

represents a special case of  the endogenous matching studied in the paper. In other words, if  we 

suppose that individuals or players play the game in a perfect world rather than a structured society, 

random-matching hypothesis is quite appropriate and also random matching itself  would be regarded 

as endogenously determined, i.e., determined by the corresponding game environment. Generally 

speaking, and to the best of  our knowledge, random matching is just employed as an exogenous 

matching mechanism which does not imply any welfare standard (or implied by any welfare standard) 

in existing studies (e.g., Ellison, 1994; Weibull, 1995; Hofbauer and Sigmund, 2003; Benaïm and 

Weibull, 2003; and Takahashi, 2010, and among others). Nevertheless, as an extreme case of  the 

endogenous matching studied here, random matching itself  indeed yields economic-welfare 

intuitions and implications. For example, if  we can establish that 
0lim ˆ( , )x y x    and 

0
ˆlim ( , )y x y  

   , we can definitely call the corresponding random matching asymptotically Pareto 
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efficient (or Pareto optimal). As is well known, people live in a structured society and thus random 

matching only works as certain limit of  the endogenous matching. And random matching will be 

supplied with much richer economic intuitions and implications as long as it is studied in a way 

intimately related to the present endogenous matching. All in all, game rule is implied by the society 

structure7 in some sense and meanwhile the society structure rather implies certain economic- 

welfare implication, so our study of  endogenous matching indeed deepens existing studies of  

matching theory. 

2.3. Existence of  Pareto Optimal Endogenous Matching 

To do this, we now define  ( ) , ( )Z t s t X t   for  t    with (0)Z  ( , )s x      10,1
I

, 

and  ( ) , ( )Z t s t Y t  for  t    with (0)Z  ( , )s y      20,1
I

. And also we let, 

( , )f s x   1 1 1
( , ),..., ( , ),..., ( , )i I

T
f f f

x x x
s x s x s x

  

  

  
,  

 
1 1 1

1 1

1( ) ,
l l l

x x z  ...    1 1 1 1

1 1 1 1 1 1
, ,...,

T
i i I I

i l l I l l
x z x z  ,  

( , )f s y   1 2 2
( , ),..., ( , ),..., ( , )i I

T
f f f

y y y
s y s y s y

  

  
, 

And, 

2l
 ( )y       2 2 2 2

2 2 2 2 2 2 2 2

1 1

1 ,..., ,...,
T

i i I I

l l i l l I l ly z y z y z     . 

Then the characteristic operators of  ( )Z t  and ( )Z t  can be respectively given by (and ,   is 

used to denote the scalar product), 

     
1 1

1 1 1 1

1 1 1

1 1

2
2

2
1 1

1
( , ) ( , ) ( , ) ( , )

2 ( )

I I
T

i i i iT

i i i
i i

f f f
f s x s x x e Ay s x x s x

s x x
 

 

  
  
   
    

    
1 1

1 1

1 1 1 1
0

1 11 1

, ( ) ( , ) ( , ), ( )
I n

k k

l l l l

k l

f s x x f s x f s x x dz  
 

         , 

 f   1 12 I
C

 . 

And, 

                                                        
7 It should include both spatial structure and division structure of  any given mature market. 
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2 2

2 2 2 2

2 2 2

2 2

2
2

2
1 1

1
( , ) ( , ) ( , ) ( , )

2 ( )

I I
T

i i i iT T

i i i
i i

f f f
f s y s y y e B x s y y s y

s y y
 

 

  
  
       

    
2 2

2 2

2 2 2 2
0

2 21 1

, ( ) ( , ) ( , ), ( )
I n

k k

l l l l

k l

f s y y f s y f s y y dz  
 

        , 

 f   2 12 I
C

 . 

Furthermore, we let 1 1

1

1

11

I i

i
x 


 , then 1

11
I

x    with 10 1   by noting that 1 1

1 1

I i

i
x

 1 . 

Let 1 1

1

2

21

I i

i
x 


 , then we can get 1 1

1 2

I
x      with 2 10 1    . Inductively, we let 

1 1 1

11

( 2)

21

I I i

Ii
x  


 , then we have 1 1( 3)3 I I

x x
  

1 13 2I I    with 0 
1 2I  

1 3I   ...  1 1  ; 

let 1 1 1

11

( 1)

11

I I i

Ii
x  


 , i.e., 1

x
1 1I  , then we get 2

x  1 1( 2)I I
x

  
1 2I  1 1I   with 0 

1 1I    

1 2I  
1 3I   ...  1 1  . And without loss of  any generality, we put 0 1  . Then we obtain, 

     
1

2 2 2 2 1 2 1 1 1 1 1 2

1

1

2 1 2 2 2 1

3

, ( )
I

T T T T

i i i i I i i I i I i i

i

u i x e B x b b x b b e B        


          . 

Similarly, notice that 2 2

2 1

I i

i
y

 1  and let 2 2

2

1

11

I i

i
y 


  , then we have 2I

y  11    with 0   

1 1 . Let 2 2

2

2

21

I i

i
y 


  , then we see that 2 1

1 2

I
y       with 0  2 1 1    . Inductively, let 

2 2 2

22

( 2)

21

I I i

Ii
y  


  , then we have 2 2( 3)3 I I

y y
  

2 3I
 


2 2I
    with 0 

2 2I
 
 

2 3I
 
  ...   

1 1  ; let 2 2 2

22

( 1)

11

I I i

Ii
y  


  , i.e., 1

y
2 1I

   , then it follows that 2
y  2 2( 2)I I

y
  

2 2I
 


2 1I
    

with 0 
2 1I

  
2 2I

 
 

2 3I
 
  ...  1 1 . And we, without loss of  any generality, put 0 1  . Then 

we get, 

     
2

1 1 1 1 2 1 2 2 2 2 2 1

2

1

1 1 2 2 2 1

3

, ( )
I

T T

i i i i I i i I i I i i

i

u i y e A y a a y a a e A        


             . 

Therefore, the discounted fitness functions in Problem 1 can be rewritten as, 

   1

1

1, exp
i

if s y s   
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2

1 1

1 1 1 2 1 2 2 2 2 2 1

2

1

1 2 2 2 1

3

1
I

i i T

i i i I i i I i I i i

i

w w a a y a a e A      


            
   

    , 

                                                          1i  1, 2, 1..., I . 

   2

2

1, exp i

if s x s    

            
1

2 2

2 2 2 1 2 1 1 1 1 1 2

1

1

1 2 2 2 1

3

1
I

i i T T

i i i I i i I i I i i

i

w w b b x b b e B      


            
   

   , 

                                                           2i  1, 2, 2..., I . (1) 

with 0 
2 1I  

2 2I 
 

2 3I 
  ...  1 0 1   and 0 

1 1I  
1 2I  

1 3I   ...  1  0 1 . And 

inspection of  the fitness functions given in (1) reveals that one can just define  1( ) , ( )Z t s t X t   

for  t    with (0)Z   1,s x     0,1 , and  1( ) , ( )Z t s t Y t  for  t    with 

(0)Z   1,s y     0,1 . And hence the corresponding characteristic operators of  ( )Z t  and 

( )Z t  are respectively given by, 

       1 1 1 1

1 1
, , ,Tf f

f s x s x x e Ay s x
s x

 
 
 

       
2

2
1 1 1 1

1 2

1
,

2 ( )

T f
x s x

x
  





 

           
1

1
1 1 1 1 1 1

0
1

1 1 1 1 1 1 1 1 1

1 1

1

, , ,
n

f

l l l l l lx
l

f s x x z f s x x z s x dz  




   



  , 

 f   2 2
C  . 

And, 

       1 1 1 1

1 1
, , ,T Tf f

f s y s y y e B x s y
s y

 
 
 

      
2

2
1 1 1 1

1 2

1
,

2 ( )

T f
y s y

y
  




   

           
2

1
2 2 2 2 2 2

0
2

1 1 1 1 1 1 1 1 1

1 1

1

, , ,
n

f

l l l l l ly
l

f s y y z f s y y z s y dz  




       

 f   2 2
C  . 
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Therefore, based upon the above assumptions and specifications, the following theorem is 

derived, 

THEOREM 1: There exists a unique solution to Problem 1 under very weak conditions, and accordingly the 

existence of  the Pareto optimal endogenous matching is confirmed provided that in the original normal-form game we 

are given a Pareto optimal Nash equilibrium  ˆ ˆ,x y , which is given in Definition 1. 

PROOF: See Appendix A. ▌ 

REMARK 2.3: It is especially worth noting that Theorem 1 not only shows the existence of  the 

Pareto optimal endogenous matching and induced Nash equilibrium given by Definition 1 but also 

provides us with the explicit time length needed so that the Pareto optimal endogenous matching and 

also the induced Nash equilibrium can be achieved by decentralized players. Moreover, it is also 

worth emphasizing that our conclusion holds true for any Pareto optimal strategy combination of  very 

general normal-form games although we have only considered Pareto optimal Nash equilibrium in 

Theorem 1. For instance, (cooperation, cooperation) is a Pareto-optimal strategy combination in PD 

games although it is generally not Nash equilibrium at all. Obviously, our endogenous matching rule 

can lead us to cooperation in PD games. 

3. Conclusion 

In this study, the players follow certain adaptive learning processes while the strategies themselves are 

assumed to be rational by applying the classical as if methodology. Based upon this methodology, it is 

argued that optimal stopping theory is very useful in establishing the game equilibrium. The major 

innovations can be summarized as follows. Firstly, we provide a very general framework for studying 

endogenous matching, and those explicit matching mechanisms developed by Haag and Lagunoff  

(2006), and Bisin et al. (2006) can be regarded as special realizations of  the present model. Secondly, 

the well-known random matching (e.g., Gilboa and Matsui, 1992; Ellison, 1994; Weibull, 1995; 

Aliprantis et al., 2007; Duffie and Sun, 2007; Takahashi, 2010; Podczeck and Puzzello, 2012, and 

among others), as an extreme case of  the endogenous matching under consideration, yields 

economic-welfare intuitions and implications, and the present study provides conditions under which 

the random matching is asymptotically Pareto efficient. Thirdly, our study shows a reasonable approach to 

combine optimal stopping theory and evolutionary game theory, thereby throwing new insights into 

the classical evolutionary game theory (see, Weibull, 1995; Hofbauer and Sigmund, 2003; Benaïm and 

Weibull, 2003, and among others). Last but not least, noting that certain matching mechanism 

implies certain macro-social structure, the present study thus reveals a general existence of  the 

Pareto-optimal social structure in any given normal-form game situations. In particular, one can 
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interpret this result from the following viewpoint, i.e., if  the purpose of  institutional segmentation 

(or segregation) (e.g., Schelling, 1969, 1971; Bowles and Gintis, 1998) is to improve people’s welfare 

in the same community, then we confirm that there exists an optimal level of  segmentation so that the 

welfare of  the entire community is maximized. 

The current paper can be naturally extended in the following ways: first, asymmetric 

information can be introduced into the present model to capture much more economic implications, 

for instance, one can explore the value of  information with respect to the endogenous matching; 

second, the classical stochastic differential cooperative game can be explored based upon the present 

framework; third, specific mechanism, say, reputation mechanism (for example, see, Anderson and 

Smith, 2010) or searching mechanism (e.g., Eeckhout and Kircher, 2010, and references therein), can 

be incorporated into the model to support any other pattern of  endogenous matching; forth, our 

approach can be easily extended to include multiple priors (see, Riedel, 2009, for instance) and also 

to explore the evolutionary equilibria on graphs (see, Ohtsuki et al., 2007, and among others). 

References 

Aliprantis C D, Camera G, Puzzello D (2007). A Random Matching Theory. Games and Economic 

Behavior 59, 1-16. 

 

Anderson A, Smith L (2010). Dynamic Matching and Evolving Reputations. Review of  Economic Studies 

77, 3-29. 

 

Andreoni J, Samuelson L (2006). Building Rational Cooperation. Journal of  Economic Theory 127, 117 

-154. 

 

Atakan A E (2006). Assortative Matching with Explicit Search Costs. Econometrica 74, 667-680. 

 

Aumann R (1976). Agreeing to Disagree. The Annals of  Statistics 4, 1236-1239. 

 

Bala V, Goyal S (2000). A Noncooperative Model of  Network Formation. Econometrica 68, 1181 

-1229. 

 

Beggs A (2002). Stochastic Evolution with Slow Learning. Economic Theory 19, 379-405. 

 

Benaïm M, Weibull J W (2003). Deterministic Approximation of  Stochastic Evolution in Games. 

Econometrica 71, 873-903. 



 

 16

 

Benaïm M, Hofbauer J, Sandholm W H (2008). Robust Permanence and Impermanence for the 

Stochastic Replicator Dynamic. Journal of  Biological Dynamics 2, 180-195. 

 

Binmore K, Samuelson L, Vaughan R (1995). Musical Chairs: Modeling Noisy Evolution. Games and 

Economic Behavior 11, 1-35. 

 

Bisin A, Horst U, Özgür O (2006). Rational Expectations Equilibria of  Economies with Local 

Interactions. Journal of  Economic Theory 127, 74 -116. 

 

Bowles S, Gintis H (1998). The Moral Economy of  Communities: Structured Populations and the 

Evolution of  Pro-Social Norms. Evolution and Human Behavior 19, 3-25. 

 

Börgers T, Sarin R (1997). Learning Through Reinforcement and Replicator Dynamics. Journal of  

Economic Theory 77, 1-14. 

 

Cabrales A (2000). Stochastic Replicator Dynamics. International Economic Review 41, 451-481. 

 

Duffie D, Sun Y (2007). Existence of  Independent Random Matching. Annals of  Applied Probability 

17, 386-419. 

 

Eeckhout J, Kircher P (2010). Sorting and Decentralized Price Competition. Econometrica 78, 539-574. 

 

Ellison G (1993). Learning, Local Interaction, and Coordination. Econometrica 61, 1047- 1071. 

 

Ellison G (1994). Cooperation in the Prisoner's Dilemma with Anonymous Random Matching. 

Review of  Economic Studies 61, 567-588. 

 

Fudenberg D, Levine D K (1993). Steady State Learning and Nash Equilibrium. Econometrica 61, 

547-573. 

 

Fudenberg D, Harris C (1992). Evolutionary Dynamics with Aggregate Shocks. Journal of  Economic 

Theory 57, 420-441. 

 

Gale J, Binmore K, Samuelson L (1995). Learning to be Imperfect: The Ultimatum Game. Games and 

Economic Behavior 8, 56-90. 

 

Galeotti A, Goyal S, Kamphorst J (2006). Network Formation with Heterogeneous Players. Games 

and Economic Behavior 54, 353-372. 



 

 17

 

Gilboa I, Matsui A (1992). A Model of  Random Matching. Journal of  Mathematical Economics 21, 185- 

197. 

 

Haag M, Lagunoff  R (2006). Social Norms, Local Interaction, and Neighborhood Planning. 

International Economic Review 47, 265-296. 

 

Hofbauer J, Sigmund K (2003). Evolutionary Game Dynamics. Bulletin of  the American Mathematical 

Society 40, 479-519. 

 

Hofbauer J, Imhof L (2009). Time Averages, Recurrence and Transience in the Stochastic Replicator 

Dynamics. Annals of Applied Probability 19, 1347-1368. 

 

Hoppe H C, Moldovanu B, Sela A (2009). The Theory of  Assortative Matching Based on Costly 

Signals. Review of  Economic Studies 76, 253-281. 

 

Imhof  L A (2005). The Long-Run Behavior of  the Stochastic Replicator Dynamics. Annals of  Applied 

Probability 15, 1019-1045. 

 

Imhof  L A, Nowak M A (2006). Evolutionary Game Dynamics in a Wright-Fisher Process. Journal of  

Mathematical Biology 52, 667-681. 

 

Kandori M, Mailath G, Rob R (1993). Learning, Mutation, and Long-run Equilibria in Games. 

Econometrica 61, 29-56. 

 

Maynard Smith J (1982). Evolution and the Theory of Games. New York: Cambridge University Press. 

 

Nowak M A, Sasaki A, Taylor C, Fudenberg D (2004). Emergence of  Cooperation and Evolutionary 

Stability in Finite Populations. Nature 428, 646-650. 

 

Ohtsuki H, Pacheco J M, Nowak M A (2007). Evolutionary Graph Theory: Breaking the Symmetry 

between Interaction and Replacement. Journal of  Theoretical Biology 246, 681-694. 

 

Okuno-Fujiwara M, Postlewaite A (1995). Social Norms and Random Matching Games. Games and 

Economic Behavior 9, 79–109. 

 

Pacheco J M, Traulsen A, Ohtsuki H, Nowak M A (2008). Repeated Games and Direct Reciprocity 

under Active Linking. Journal of  Theoretical Biology 250, 723–731. 

 



 

 18

Pacheco J M, Traulsen A, Nowak M A (2006). Co-Evolution of  Strategy and Structure in Complex 

Networks with Dynamical Linking. Physical Review Letters 97, 258103. 

 

Podczeck K, Puzzello D (2012). Independent Random Matching. Economic Theory 50, 1-29. 

 

Pollicott M, Weiss H (2001). The Dynamics of  Schelling-Type Segregation Models and a Nonlinear 

Graph Laplacian Variational Problem. Advances in Applied Mathematics 27, 17-40. 

 

Øksendal B, Sulem A (2005). Applied Stochastic Control of  Jump Diffusions. Berlin: Springer-Verlag. 

 

Riedel F (2009). Optimal Stopping with Multiple Priors. Econometrica 77, 857-908. 

 

Schelling T (1969). Models of  Segregation. American Economic Review 59, 488-493. 

 

Schelling T (1971). Dynamic Models of  Segregation. Journal of  Mathematical Sociology 1, 143-186. 

 

Shimer R, Smith L (2000). Assortative Matching and Search. Econometrica 68, 343-369. 

 

Skyrms B, Pemantle R (2000). A Dynamic Model of  Social Network Formation. Proceedings of  the 

National Academy of  Sciences of  the United States of  America 97, 9340-9346. 

 

Takahashi S (2010). Community Enforcement when Players Observe Partners’ Past Play. Journal of  

Economic Theory 145, 42-62. 

 

Weibull J (1995). Evolutionary Game Theory. Cambridge, MA: The MIT Press. 

 

Young P (1993). The Evolution of  Conventions. Econometrica 61, 57-84. 

 

Zhang J (2004). A Dynamic Model of  Residential Segregation. Journal of  Mathematical Sociology 28, 147 

-170. 

Appendix 

A. Proof  of  Theorem 1 

 

We proceed the proof  as follows. In Step 1, we derive the optimal stopping rules (and also the 
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corresponding supporting conditions) for strategies 1i , 1 11, 2,...,i I ; in Step 2, we similarly 

establish the optimal stopping rules for strategies 
2i , 

2 21, 2,...,i I ; and in Step 3, we show (by 

solving a group of  equations) that strategies 
1i , 

1 11, 2,...,i I , can cooperate to the same optimal 

stopping rule given the optimal stopping rule of  strategies 2i , 2 21, 2,...,i I , and vice versa. About 

the optimal stopping theory used here, one can refer to Øksendal and Sulem (2005) for much more 

details. 

 

STEP 1: For strategy 
1i ,  1 11, 2,...,i I . Notice that, 

   1 1

1

1, exp
i i

i
f s y s     
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Hence, we have, 
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.  (A.1) 

And it is natural to guess that the continuation region 1iD  has the following form, 

    1
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where, 
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.              (A.2) 

Notice that the generator of  ( )Z t  is given by, 
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for  
1

1,i s y   2 2
C  . If  we try a function 

1i
  of  the following form, 
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Therefore, if  we assume that, 
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with this value of  1i  we put, 
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for some constant 1 0
i

C  , to be determined. We, without loss of  any generality, guess that the value 

function is 1
C  at 
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1 1

iy y
  and this leads us to the following “high contact” conditions, 
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Combining the above equations shows that, 
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And this gives, 
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Hence, by (A.4), (A.5) and (A.6), we can define, 
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which holds by (A.2). Secondly, to prove, 
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Then with our chosen values of  1iC  and 1i , we see that    1 1
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short proof. 
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It is easy to see that the proof  is quite similar to that of  case 1.1, so we take it omitted. 
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   2 2

2

1, expi i

if s x s       

   
1

2 2

2 2 2 1 2 1 1 1 1 1 2

1

1

1 2 2 2 1

3

1
I

i i T T

i i i I i i I i I i i

i

w w b b x b b e B      


            
   

    

     2 2

2 2

1

1 1 2exp 0i iT

i ix e Ay s w b b      

   2 2

2 2

1

1 1 2

i iT

i ie Ay w b b x     

   
1

2 2 2 2

2 1 2 1 1 1 1 1 2

1

2 2 1

3

1
I

i i i i T T

i I i i I i I i i

i

w w b b e B        


 
      

 
    . 

 



 

 24

Case 2.1: 
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Hence, 
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Then, we have, 
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So it is natural to guess that the continuation region 2iD  has the following form, 
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Notice that the generator of  ( )Z t  is given by, 
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Consequently, if  we suppose that, 
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Thus, it is easily seen that there exists 2 1
i   such that, 
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with this value of  2i  we put, 

 
 

   

2
2

2

2

1
2 2

2 2

2 2 2 1 2 1 1 1 1 1 2 2

1

1 1 1

1

1 1 1

1 2 2 2 1

3

,0

,

1 , 1

i
i

i

is

i

Ii
i is T T

i i i I i i I i I i i i

i

e C x x x

s x

e w w b b x b b e B x x






   

 

 
   



                  
    










  
 

in which 2 0
i

C   is some constant that remains to be determined. If  we require that 
2i

  is 

continuous at 
2
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ix x
  we get the following equation, 
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If  we require that 
2i

  is differentiable at 
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ix x
  we get the additional equation, 

   
2

2 2 2

2 2 2

1
1

1 2

i

i i i

i i iC x w b b



  

   .                                            (A.12) 

So, combining equation (A.11) and equation (A.12) yields, 
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And this produces, 
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Then, by applying equation (A.10), equation (A.13) and equation (A.14), we are in the position to 

prove that      
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which holds by (A.8). Secondly, to show that, 

     
12

2 2 2

2 2 2 1 2 1 1 1 1 1 2

1

1 1

1 2 2 2 1

3

1
i I

i i i T T

i i i I i i I i I i i

i

C x w w b b x b b e B


      


 
        

 


    , 

for 
2

1 10 ix x
   . Define 

 2 1i
x   

2

2 21 1
i

i i
C x w


 

    

   
1

2

2 2 2 1 2 1 1 1 1 1 2

1

1

1 2 2 2 1

3

I
i T T

i i i I i i I i I i i

i

w b b x b b e B      


 
      

 
  . 

Then with our chosen values of  2iC  and 2i , we see that    2 2
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given 2 1
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   . And hence the desired 

result is established. 
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We take the proof  of  case 2.2, which is quite similar to that of  case 2.1, omitted. 

 

STEP 3: The existence of  the Pareto optimal endogenous matching. 

It follows from the requirements of  Problem 1 that 1 1
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which implies that, 

    .                                                              (A.15) 

where “ ” denotes Moore-Penrose generalized inverse. 

Similarly, we obtain 1 1
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Consequently, we obtain, 
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which leads us to the following equation, 
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where “ ” stands for the Moore-Penrose generalized inverse. 

Consequently, by equations in (A.16) and (A.15), we get 
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equilibrium, denoted by 
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I i

i
x y     and 2 2

2

( , ) 1
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i
y x     , but noting that this game equilibrium may not be 

the Pareto optimal equilibrium of  the original normal form games thanks to the stochastic factors, 

and this is why we need to choose appropriate values of    and   such that the original Pareto 

optimal Nash equilibrium  ˆ ˆ,x y  will be definitely chosen by the players. 

To summarize, we get the following theorem, 

THEOREM 1’: If  we are provided that the following inequalities hold, that is, 1

1

iT T
e B x   in (A.3) and 

2

1

iTe Ay    in (A.9), then Problem 1 is solved as long as we have      in (A.15) and       in 

(A.16). That is to say, the existence of  the Pareto optimal endogenous matching is confirmed just via putting 

ˆ( , )x y x    and ˆ( , )y x y   , in which  ˆ ˆ,x y  is the given Pareto optimal Nash equilibrium in the 

corresponding normal form games. 

Therefore, Theorem 1 is established thanks to Theorem 1’. ▌ 


