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analytic form of the distribution of the test statistics. Monte Carlo evidence suggest that our tests have
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1 Introduction

A vast amount of work has been recently focused on drawing inference about unit roots based on dynamic

panel data models (see, Hlouskova and Wagner (2006), for a more recent survey). Since many empirical

panel data studies rely on short panels, of particular interest is testing for a unit root in dynamic panel data

model when the time dimension of the panel, denoted as T , is fixed (finite) and its cross-section, denoted

as N , grows large (see, e.g. Blundell and Bond (1998), Harris and Tzavalis (1999, 2004), Arellano and

Honore (2002) and Binder et al (2005)). These tests have better small-T sample performance, compared to

large-T panel unit root tests (see, e.g., Levin et al (2002)), given that they assume finite T In this paper,

we extend the fixed-T panel data unit roots test statistics of Harris and Tzavalis (1999, 2004) to allow for

a common structural break in the deterministic components of panel data models, namely their individual

effects or linear trends of a known and unknown date. This is done in a generalized dynamic panel data

framework which allows for heterogenous and serially correlated disturbance terms, for all units of the panel.

This assumption makes the tests applicable under quite general panel data generating processes, observed

in reality. The maximum order of serial correlation allowed is a function of T .

The extension of fixed-T panel unit root tests to allow for structural breaks is very useful given evidence

supporting the view that the presence of unit roots in economic time series can be falsely attributed to the

existence of structural breaks in their deterministic components (see, e.g., Perron (2006), for a survey). On

this front, the panel data approach offers an interesting and unique perspective that it is not shared by single

time series tests. The cross-sectional dimension of the panel can provide useful information, which can help

to distinguish the type of shifts (breaks) in the deterministic components of the panel from the effects of

stochastic permanent shocks. As pointed out by Bai (2010), this framework can more accurately trace out

structural break points of the panel data.1 There are a few studies in the literature which suggest fixed-T

panel data unit root tests allowing for a common structural break in the deterministic components of the

panel data model (see, more recently, Karavias and Tzavalis (2012)). These studies however suggest unit

root tests using the simple AR(1), dynamic panel data model as an auxiliary regression model, which may

not be operational in practice due to the assumption of no serial correlation in its disturbance terms. The

main goal of these studies is to pass ideas how to test for unit roots in the presence of structural breaks,

1Detecting procedures of structural breaks for stationary panel data models have been also suggested in the literature by De
Wachter and Tzavalis (2005, 2012).
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considering mainly the case of a known date break point. In addition to the above, there are also studies in

the literature which suggest panel unit root tests allowing for a common structural break, but they assume

that T is large and grows faster than N (see, e.g., Carrion-i-Silvestre et al (2005), Bai and Carrion-i-Silvestre

(2009), and Kim (2011)). These tests are appropriate for large-T panel data sets. Application of these tests

to small-T panel data sets will lead to serious size distortions and critical power reductions of them. As

shown in Karavias and Tzavalis (2012), the existence of a break in the data generating process requires panel

data sets with a quite large time-dimension, T (e.g. T > 150), so as large-T panel unit root tests to have

satisfactory size and power performance in short panels.

The paper suggests panel data unit root test statistics allowing for a structural break in both cases of a

known and an unknown date break. The second category of test statistics relies on a sequential application

of the first, such as that suggested by Zivot and Andrews (1992), Andrews (1993), Perron and Vogelsang

(1998), inter alia), for single time series. The limiting distribution of these test statistics is obtained as

the minimum value of a finite number of correlated variates; T − 2 for the dynamic panel data model

with individual effects and T − 3 for the extension of this model allowing also for individual linear trends.

This distribution is derived analytically, based on recent results of Arellano-Valle and Genton (2008) who

have derived the analytic form of the probability density function of the maximum of absolutely continuous

dependent random variables. The analytic form of this distribution enables us to derive critical values of

our suggested test statistics without having to rely on Monte Carlo analysis. This substantially facilitates

application of the tests in practice and their generalization to the case of serially correlated disturbance

terms.

The paper is organized as follows. In Section 2, we derive the limiting distributions of the test statistics

under the assumption that the disturbance terms of the panel data models considered are white noise

processes. This analysis will helps us to better interpret the limiting distribution of the sequential version

of the test statistics, in the case of an unknown date break. In Section 3, we generalize the test statistics

to allow for serial correlation in the disturbance terms. In Section 4 we extend the tests to allow also for

individual linear trends. In this section, we also show how to carry out the tests when there is a break in

the individual effects of panel data models under the null hypothesis of unit roots. Section 5 conducts a

Monte Carlo simulation study to examine the small sample performance of the tests. Section 6 concludes

the paper. All the mathematical derivations are provided in the Appendix of the paper.
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2 Test statistics and their limiting distribution

In this section, we present panel unit root test statistics under the assumption that the disturbance terms of

the AR(1) panel data model considered are independently, identically normally distributed (NIID). This is

done, first, for the known date break case and, then, for the unknown. Extensions of the tests to the more

general case of serially correlated and heterogenous disturbance terms are made in the next section.

2.1 Known date break

Consider the following AR(1) nonlinear dynamic panel data model:

yit = a
(λ)
it (1− ϕ) + ϕyit−1 + uit, i = 1, 2, .., N , (1)

where ϕ ∈ (−1, 1], a(λ)it = a
(1)
i if t ≤ T0 and a(2)i if t > T0, where T0 denotes the time-point of the sample,

referred to as break-point, where a common break in the individual effects of panel data model (1) αi occurs,

for all cross-section units of the panel i. a
(1)
i and a

(2)
i denote the individual effects of model (1) before and

after the break point T0, respectively. Throughout the paper, we will denote the fraction of the sample that

this break occurs as λ, i.e. λ = T0
T ∈ I =

{
2
T ,

3
T , .....,

T−1
T

}
.

Under the null hypothesis of a unit root (i.e. ϕ = 1), model (1) reduces to the pure random walk

model yit = yit−1 + uit, for all i, while, under the alternative of stationarity (i.e. ϕ < 1), it considers a

common structural break in individual effects ai. The above specification of the null and the alternative

hypotheses is very common in single time series unit root inference procedures allowing for structural breaks

(see, e.g., Zivot and Andrews (1992), Andrews (1993), Perron and Vogelsang (1998). The main focus of

these procedures is to diagnose whether evidence of unit roots can be spuriously attributed to the ignorance

of structural breaks in nuisance parameters of the data generating processes like individual effects ai. The

common break assumption across all units of the panel i can be attributed to a monetary regime shift,

which is common across all economic units, or to a structural economic shock which is independent of the

disturbance terms uit, like a credit crunch or an exchange rate realignment. As aptly noted by Bai (2010),

even if each series of the panel data model has its own break point, the common break assumption across i

is useful in practice not only for its computational simplicity, but also because it allows for estimating the

mean of possibly random break points.
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The AR(1) panel data model (1) can be employed to carry out unit root tests allowing for a structural

break in individual effects a
(λ)
it based on the within groups least squares (LS) estimator of autoregressive

coefficient of ϕ, denoted as ϕ̂(λ). This estimator is also known as least square dummy variable (LSDV)

estimator (see, e.g., Baltagi (1995), inter alia). Under null hypothesis ϕ = 1, it implies:

ϕ̂(λ) − 1 =
[
N∑

i=1

y′i,−1Q
(λ)yi,−1

]−1 [ N∑

i=1

y′i,−1Q
(λ)ui

]
, (2)

where yi = (yi1, ..., yiT )
′ is a (TX1)-dimension vector collecting the time series observations of dependent

variable yit of each cross-section unit of the panel i, yi,−1 = (yi0, ..., yiT−1)
′ is vector yi lagged one period

back, ui = (ui1, ..., uiT ) is a (TX1)-dimension vector of disturbance terms uit and Q
(λ) is the (TXT ) “within”

transformation matrix of the individual series of the panel data model, yit. Let us define X
(λ) ≡

(
e(1), e(2)

)

to be a matrix of deterministic components used by the LSDV estimator to demean the levels of series yit,

for all i, where e(1) and e(2) are (TX1)-column vectors whose elements are defined as follows: e
(1)
t = 1 if

t ≤ T0 and 0 otherwise, and e
(2)
t = 1 if t > T0 and 0 otherwise. Then, matrix Q(λ) will be defined as

Q(λ) = IT −X(λ)(X(λ)′X(λ))−1X(λ)′, where IT is an identity matrix of dimension (TXT ).

Panel data unit root testing procedures based on above LSDV estimator ϕ̂(λ) have the very interesting

property that, under the null hypothesis of ϕ = 1, are invariant (similar) to the initial conditions of the panel

yi0 and, after appropriate specification of matrix X
(λ), to the individual effects of the panel data model, as

will be seen in Section 4. The latter happens if matrix X(λ) also contains broken linear trends. Similarity of

the tests with respect to initial conditions yi0 does not require any mean or covariance stationarity conditions

on the panel data processes yit, as assumed by generalized method of moments (GMM), or conditional and

unconditional maximum likelihood (ML) based panel data unit root inference procedures (see, e.g., Hsiao et

al (2002) and Madsen (2008)). These conditions may be proved restrictive in practice.2 However, ϕ̂(λ) is an

inconsistent (asymptotic biased) estimator of ϕ, due to the within transformation of the data which wipes

off individual effects a
(λ)
it and/or initial conditions yi0 under null hypothesis ϕ = 1. Thus, our suggested

panel unit root test statistics will rely on a correction of estimator ϕ̂(λ) for its inconsistency (asymptotic

bias) (see, e.g., Harris and Tzavalis (1999, 2004)). To derive the limiting distribution of these tests, we make

the following assumption about the sequence of disturbance terms {uit}.

2Furthermore, the performance of the GMM estimator over the LS may detetiorates due to the inacurate estimation of the
weigthing (variance-covariance) matrix. See De Wachter et al (2007) and Han and Phillips (2010).
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Assumption 1: (a1) {ui} constitutes a sequence of independent identically distributed (IID) (TX1)-

dimension vectors with means E(ui) = 0 and variance-autocovariance matrices Γi ≡ E(uiu′i) = σ2uIT < +∞

and nonzero, for all i. (a2) E(uityio) = E
(
uita

(1)
it

)
= E

(
uita

(2)
it

)
= 0 and ∀ i ∈ {1, 2, ..., N}, t ∈ {1, 2, ..., T}.

(a3) E
(
u4it
)
< +∞, E(y4i0) < +∞, E

(
(a
(1)
it )

4
)
< +∞, E

(
(a
(2)
it )

4
)
< +∞ and E

(
y2i0

(
a
(1)
it

)2)
< +∞,

E

(
y2i0

(
a
(2)
it

)2)
< +∞.

Condition (a1) of Assumption 1 enables us to derive under null hypothesis ϕ = 1 the limiting distribution

of a panel data unit root test statistic based on estimator ϕ̂(λ) by applying standard asymptotic theory for

IID processes, while (a2) and (a3) are simple regularity conditions under which the suggested test statistic

can be proved that is consistent under alternative hypothesis ϕ < 1. The following theorem provides the

limiting distribution of such a test statistic, based on estimator ϕ̂(λ) corrected for its bias. For analytic

convenience, this is done under the assumption that disturbance terms uit are also normally distributed, i.e.

uit ∼ NIID(0, σ2u), for all i and t.

Theorem 1 Let uit ∼ NIID(0, σ2u), then, under null hypothesis ϕ = 1 and known λ, we have

Z(λ) ≡ V̂ (λ)−1/2δ̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

δ̂(λ)
− 1
)

d−→ N (0, 1) (3)

as N →∞, where
b̂(λ)

δ̂(λ)
≡ σ̂2utr(Λ

′Q(λ))
1
N

∑N
i=1 y

′

i,−1Q
(λ)yi,−1

(4)

is a consistent estimate of the asymptotic bias of ϕ̂(λ) which, under the null hypothesis, is given as b(λ)

δ(λ)
=

σ2
u
tr(Λ′Q(λ))

σ2
u
tr(Λ′Q(λ)Λ)

, σ̂2u is a consistent estimator of variance σ2u under the null hypothesis, given as σ̂
2
u =

∑
N

i=1∆y
′

i
Ψ(λ)∆yi

Ntr(Ψ(λ))
, where ∆ is the difference operator and Ψ(λ) is a (TXT )-dimension matrix having in its

main diagonal the corresponding elements of matrix Λ′Q(λ), and zeros elsewhere, and V (λ) is a variance

function given as

V (λ) = σ4uF
(λ)′(KT 2 + IT 2)F

(λ), (5)

where F (λ) = vec(Q(λ)Λ−Ψ(λ)′), KT 2 is a (T
2XT 2)-dimension commutation matrix and IT 2 is a (T

2XT 2)-

dimension identity matrix.

The test statistic Z(λ), given by Theorem 1, can be easily implemented to test null hypothesis ϕ = 1 based
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on the tables of the standard normal distribution. Theorem 1 shows that the asymptotic bias of estimator

ϕ̂(λ) stems from the "within" transformation matrix Q(λ), which induces correlation between vectors yi,−1

and ui (see, e.g. Nickel (1981)). Since disturbance terms uit are IID, the correlation between yi,−1 and

ui comes only from the main diagonal elements of the variance-autocovariance matrices of uit, defined by

Assumption 1 as Γi ≡ E(uiu
′

i) = σ2uIT , for all i. The above bias can be estimated by the nonparametric

estimator b̂(λ)

δ̂(λ)
and, thus, it can be subtracted from ϕ̂(λ) − 1 to obtain a test statistic which is normally

distributed and is asymptotically net of nuisance parameter effects. To test null hypothesis ϕ = 1, this test

statistic is based on the off-diagonal elements of the sample moments of variance-autocovariance matrices Γi

which are equal to zero, i.e. E(uituis) = 0 for s 6= t. This can be better seen by writing test statistic Z(λ) as

1√
N

N∑

i=1

u′i(Λ
′Q(λ) −Ψ(λ))ui =

1√
N

N∑

i=1

tr
[
(Λ′Q(λ) −Ψ(λ))uiu′i

]
, (6)

(see Appendix) where (Λ′Q(λ) − Ψ(λ)) is matrix with zeros in its main diagonal due to the subtraction

of matrix Ψ(λ) from Λ′Q(λ), which implies that tr
[
(Λ′Q(λ) −Ψ(λ))E(uiu′i)

]
= 0, for all i.3 Matrix Ψ(λ)

allows us to capture the correlation effects between vectors yi,−1 and ui, which are induced by the "within"

transformation of the data through matrix Q(λ) and generate the bias of LSDV estimator ϕ̂(λ). Subtracting

Ψ(λ) from Λ′Q(λ) enables us to adjust ϕ̂(λ) for this bias. The adjusted LS estimator relies on sample moments

of variance-autocovariance Γi with zero elements, i.e. E(uituis) = 0, for s 6= t. These moments are weighted

by the elements of matrix Λ′Q(λ) −Ψ(λ). They can be consistently estimated under null hypothesis ϕ = 1.

Writing analytically matrix Λ′Q(λ) − Ψ(λ) can be easily seen that the elements of this matrix put more

weights to sample moments of E(uituis), for s 6= t, with s and t defined immediately before break point, T0.

The next theorem establishes the consistency of test statistic Z(λ).

Theorem 2 Under conditions (a1)-(a3) of Assumption 1, it can be proved that

lim
N→+∞

P (Z(λ) < za | Ha) = 1, λ ∈ I, (7)

where za is the critical value of standard normal distribution at significance level a.

3Note that matrix Ψ(λ) is used to estimate σ2u, based on estimator σ̂
2
u =

∑
N

i=1∆y
′

i
Ψ(λ)∆yi

Ntr(Ψ(λ))
where ∆ is the difference operator.
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2.2 Unknown break point

In this section, we relax the assumption that break point T0 is known. We propose a panel data unit root

test statistic which, under the alternative hypothesis of stationarity, assumes that T0 is unknown. As in

single time series literature (see, e.g., Zivot and Andrews (1992) and Perron and Vogelsang (1998)), we will

view the selection of the break point as the outcome of minimizing the standardized test statistic Z(λ), given

by Theorem 1, over all possible break fractions (or break points T0) of the sample, λ, after trimming out the

initial and final parts of the time series observations of the panel data. The minimum value of test statistics

Z(λ), for all λ ∈ I, defined as z ≡ min
λ∈I

Z(λ), will give the least favorable result of null hypothesis ϕ = 1. Let

λ̂min denote the break point at which the minimum value of Z(λ), over all λ ∈ I, is obtained. Then, the null

hypothesis of ϕ = 1 will be rejected if

Z(λ̂min) < cmin, (8)

where cmin denotes the size a left-tail critical value of the limiting distribution of min
λ∈I

Z(λ). The following

theorem enables us to tabulate the critical values of this distribution at any significance (size) level a.

Theorem 3 Let condition (a1) of Assumption 1 hold and uit is normally distributed. Then, under null

hypothesis ϕ = 1 and unknown λ, we have

z ≡ min
λ∈I

Z(λ)
d−→ ζ ≡ min

λ∈I
N(0,Σ) (9)

as N →∞, where Σ ≡ [σλs] is the variance-covariance matrix of the test statistics Z(λ), with elements σλs

given by the following formula:

σλs =
F (λ)′(KT 2 + IT 2)F

(s)

√
F (λ)′(KT 2 + IT 2)F (λ)

√
F (s)′(KT 2 + IT 2)F (s)

, (10)

where λ and s denote two different fractions of the sample that the break can occur.

The result of Theorem 3 implies that critical values of the limiting distribution of the standardized test

statisticmin
λ∈I

Z(λ), denoted cmin, can be obtained from the distribution of the minimum value of a fixed number

of T − 2 correlated normal variables Z(λ) with covariance matrix Σ. Since min{Z( 2T ), Z( 3T )..., Z(T−1T
)} =
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max{−Z( 2T ),−Z( 3T )...,−Z(T−1T
)}, we can use the distribution of the maximum of normal variables −Z(λ) to

calculate critical value cmin for a significance level a, i.e.

P (ζ < cmin) = P (−ζ > −cmin) = a. (11)

The integral function P (ζ > −cmin) = a can be calculated numerically based on the probability density

function (pdf) of −ζ. This density function has been recently derived by Arellano-Valle and Genton (2008),

for the more general case of the maximum of absolutely continuous dependent random variables of elliptically

contoured distributions. For the case of normal random variables, it is given as

fζ (x) =
∑

λ

φ(x;µλ,Σλ,λ)Φ(xeT−3;µ−λ,λ,Σ−λ−λ,λ), x ∈ R, (12)

where eT−3 is a (T −3)-column vector of unities, φ(·) and Φ(·) are the pdf and cdf of the normal distribution

with arguments given as follows:

µ−λ,λ(x) = µ−λ + (x− µλ)Σ−λ,λ(Σλ,λ)−1 and Σ−λ−λ,λ = Σ−λ−λ − Σ−λ,λΣ′−λ,λ(Σλ,λ)−1,

where µ = (µ−λ
...µλ)

′ and Σ =



Σ−λ,−λ Σ−λ,λ

Σλ,−λ Σλ,λ


 are respectively the vector of means and the variance-

autocovariance matrix of the (T − 2)-column vector Z which consists of random variables Z(λ), for λ ∈ I,

partitioned as Z = (Z(−λ)
...Z(λ))

′

, where Z(−λ) is a (T -3)-column vector consisting of the remaining elements

of Z, which exclude Z(λ).

The above pdf of random variable −ζ, defined as fζ (x), is a mixture of the normal marginal densities

φ(x;µλ,Σλ,λ) corresponding to all possible break fractions of the sample λ. These densities are weighed with

the cdf values of the (T -3)-column vector xeT−3, given as Φ(xeT−3;µ−λ,λ(x),Σ−λ−λ,λ). Intuitively, the pdf

formula given by (12) sums up the probabilities that one random variable −Z(λ) takes its maximum value

x (implying that Z(λ) takes its minimum value), while the remaining variables, collected in vector −Z(−λ),

take values smaller than x.

The consistency of the test given by Theorem 3 follows immediately from Theorem 2, which proves

the consistency of Z(λ) for a known date break. This can be seen by noting that if, under the alternative
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hypothesis of ϕ < 1, test statistic Z(λ) converges to minus infinity, for λ ∈ I, then so does their minimum.

3 The generalization of the test statistics for serially correlated

and heterogenous disturbance terms

The test statistics presented in the previous section can be generalized to allow for serially correlated and

heterogenous disturbance terms uit, for all i. Due to the fixed-T dimension of panel data model (1) and

the allowance for a common structural break in the individual effects α
(λ)
it , the maximum order of serial

correlation, denoted as pmax, which will be considered by the generalized test statistics is a function of the

time-dimension of the panel T . This will be assumed to be the same for both sample intervals before and

after break point T0. Later on, we will give a table of values for pmax which do not depend on the location

of the break, T0. These are very useful for the application of our tests, in practice.

To derive the limiting distribution of test statistics based on estimator ϕ̂(λ) under the above more general

assumptions, we will make the following assumption about the sequence of the disturbance terms {ui}.

Assumption 2: (b1): {ui} constitutes a sequence of independent random vectors of dimension (TX1)

with means E(ui) = 0 and variance-autocovariance matrices E(uiu
′

i) = Γi ≡ [γi,ts], for all i, where γi,ts =

E(uituis) = 0 for s = t + pmax + 1, ..., T and t < s. (b2): The average population covariance matrix

ΓN ≡ 1
N

∑N
i=1 Γi is bounded away from zero in large samples: γ̄N,tt > η

′ for some η′ > 0 and for all N > N0,

for some N0, and for at least one t ∈ {1, ..., T}. (b3): The 4+η-th population moments of∆yi, i = 1, ..., N , are

uniformly bounded. That is, for every real (TX1) vector l such that l′l = 1, we have E(|l′∆yi|4+η) < B <∞,

for some B. (b4): 1
N

N∑

i=1

l′V ar(vec(∆yi∆y
′

i))l > η
′ for some η′ > 0, and for all N > N1, for some N1 and

for every real ( 12T (T + 1)X1) vector l with l
′l = 1. (b5): E(uityio) = E

(
uita

(1)
i

)
= E

(
uita

(2)
i

)
= 0 and ∀

i ∈ {1, 2, ..., N}, t ∈ {1, 2, ..., T}.

Assumption 2 enables us to derive the limiting distribution of a normalized test statistic based on ϕ̂(λ)−1

by employing standard asymptotic theory under more general conditions than those of Assumption 1 (see

White (2000)), which considers the simple case that uit ∼ NIID(0, σ2u), for all i. More specifically, condition

(b1) allows the variance-autocovariance matrices of disturbance terms uit, Γi = E(uiu
′

i), to be heterogenous

across the cross-sectional units of the panel i with a maximum order (degree) of serial correlation pmax less
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than T . The pattern of serial correlation considered by matrices Γi can capture that implied by moving

average (MA) processes of uit, often assumed for many economic series (see, e.g. Schwert (1989)). It can

be also though of as approximating that implied by AR models of uit whose autocorrelation dies out after

pmax.
4 This pattern will enable us to correct LSDV ϕ̂(λ) for its inconsistency due to serial correlation in

uit. This can be done based on moments E(uit−pmax−1uit) which are zero, across t, since disturbance terms

uit−pmax−1 and uit are assumed to be uncorrelated (see, e.g. Kruininger and Tzavalis (2002), De Wachter,

Harris and Tzavalis (2007)).

Condition (b2) qualifies application of a central limit theorem (CLT) to derive the limiting distribution of

a test statistic ϕ̂(λ) − 1 adjusted for the inconsistency of estimator ϕ̂(λ), as N →∞, under the more general

assumptions than condition (b1). More specifically, Condition (b2) along with condition (b4) guarantees

that, the variance and the suggested test statistic will be different than zero. Finally, conditions (b5) and

(b3) constitute weak conditions under which the consistency of the tests can be proved. These two conditions

correspond to conditions (a2) and (a3) of Assumption 1.

Under the conditions of Assumption 2, the next theorem derives the limiting distribution of a normalized

test statistic based on estimator ϕ̂(λ) corrected for its inconsistency under ϕ = 1 and for a known date break

point.

Theorem 4 Let conditions (b1) - (b5) of Assumption 2 hold. Then, under null hypothesis ϕ = 1 and λ

known, we have

Z
(λ)
1 ≡ V̂ (λ)−1/21 δ̂

(λ)
1

√
N

(
ϕ̂(λ) − b̂

(λ)
1

δ̂
(λ)
1

− 1
)

d−→ N (0, 1) (13)

as N →∞, where
b̂
(λ)
1

δ̂
(λ)
1

=
tr(Ψ

(λ)
1 Γ̂N )

1
N

∑N
i=1 y

′

i,−1Q
(λ)yi,−1

(14)

is a consistent estimate of the asymptotic bias of ϕ̂(λ) which, under the null hypothesis, is given as

b
(λ)
1

δ
(λ)
1

=
tr(Λ′Q(λ)ΓN )

tr(Λ′Q(λ)ΛΓN )
, (15)

where matrix Ψ
(λ)
1 is a (TXT )-dimension matrix having in its main diagonal, and its p-lower and p−upper

diagonals of the main diagonal the corresponding elements of matrix Λ′Q(λ), and zero otherwise, Γ̂N=

4 In single time series literature, pmax is assumed to increase with T with an order of o(T 1/2), see Chang and Park (2002).
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1
N

∑N
i=1(∆yi∆y

′

i) is a consistent estimator of population variance-autocovariance matrix ΓN and V
(λ)
1 is a

variance function given as

V
(λ)
1 = F

(λ)′
1 ΘF

(λ)′
1 , (16)

where F
(λ)
1 = vec(Q(λ)Λ − Ψ(λ)′1 ) and Θ = 1

N

∑N

i=1
V ar(vec(uiu

′

i)) is the variance-covariance matrix of

vec(uiu
′

i).

To implement the test statistic given by Theorem 4, Z
(λ)
1 , we need consistent estimates of the variance-

covariance matrix of vector vec(uiu
′

i), defined as Θ. This can be done under null hypothesis ϕ = 1 based on

the following estimator:

Θ̂ =
1

N

N∑

i=1

(vec(∆yi∆y
′

i)vec(∆yi∆y
′

i)
′) . (17)

As Ψ(λ) for Z(λ), matrix Ψ
(λ)
1 plays a crucial role in constructing test statistic Z

(λ)
1 . It adjusts LS estimator

ϕ̂(λ) for its asymptotic bias. This bias now comes from two sources: the "within" transformation of the

data through matrix Q(λ), which has been examined before, and the serial correlation of disturbance terms

uit.
5 Subtracting Ψ

(λ)
1 from Λ′Q(λ) enables to adjust ϕ̂(λ) for the above two sources of bias. The adjusted

LS estimator ϕ̂(λ) enables us to test the null hypothesis of ϕ = 1 based on sample moments of the elements

of variance-autocovariance matrices Γi, for all i, which are mot serially correlated, i.e. E(uituis) = 0, for

s = t+ pmax + 1, ..., T and t < s. These moments are weighted by elements of matrix Λ
′Q(λ) −Ψ(λ)1 . These

assign higher weights to the moments which are immediately before the break point T0 than those which are

away from it. They can be consistently estimated under the null hypothesis through the variance-covariance

estimator Θ̂. The weights that matrix Λ′Q(λ)−Ψ(λ)1 assigns to the above elements of variance-autocovariance

matrices Γi obviously depend on the break point and the maximum order of serial correlation pmax considered

by test statistic Z
(λ)
1 . Based on the specification of this matrix, Table 1 and following relationship

pmax =

[
T

2
− 2
]∗
, (18)

where [.]∗ denotes the greatest integer function, give values of pmax which enable us to implement test statistic

Z
(λ)
1 independently of the location of the break T0, or sample fraction λ. These values are chosen so as the

5Note that, under conditions of Assumption 1, test statistic Z
(λ)
1 becomes identical to Z(λ).
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elements of matrix Λ′Q(λ)−Ψ(λ)1 do not assign weights to zero elements of Γi, which result in a zero value of

variance function V
(λ)
1 . They are useful in choosing the maximum order of serial correlation pmax considered

by test statistic Z
(λ)
1 , in practice, especially when the break is of an unknown date.

Table 1: Maximum order of serial correlation

T 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pmax 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

Note that, in the case that disturbance tests uit are normally distributed, variance function V
(λ)
1 can be

written in a more analytic form as

V
(λ)
1 = F

(λ)′
1 (KT 2 + IT 2)(ΓN ⊗ ΓN )F (λ)1 , (19)

where ⊗ denotes the Kronecker product.6 This form of V
(λ)
1 can be easily calculated by replacing ΓN with

its consistent estimate Γ̂N =
1
N

∑N
i=1(∆yi∆y

′

i).

Test statistic Z
(λ)
1 can be easily extended to the case of an unknown break point date, which requires a

sequential application of it. Define this test statistic as z1 ≡ min
λ∈I

Z
(λ)
1 . Following analogous steps to those

for sequential test statistic z, it can be proved that the limiting distribution of z1 is given as

z1 ≡ min
λ∈I

Z
(λ)
1

d−→ ζ1 ≡ min
λ∈I

N(0,Σ1), (20)

N → ∞, where Σ1 ≡ [σ1,λs] is the variance-covariance matrix of the test statistics Z
(λ)
1 whose elements,

defined as σ1,λs, are given by the following formula:

σ1,λs =
F
(λ)′
1 ΘF

(s)
1√

F
(λ)′
1 ΘF

(λ)
1

√
F
(s)′
1 ΘF

(s)
1

. (21)

Critical values of the distribution of random variable ζ1, denoted as fζ1(x1) where x1 ∈ R, can be calculated

by replacing the values of σλs in pdf formula (12) with those of σ1,λs, given by (21). This also requires to

6This can be easily seen using standard results of the variance of a quadratic form for normally distributed variates (see e.g.
Schott(1996)), which imply

V ar[vec(uiu
′

i)] = V ar(ui ⊗ ui) = (IT2 +KT2 )(ΓN ⊗ ΓN ).
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obtain consistent estimates of variance-covariance matrix Θ, in the first step.

4 Extension of the tests to the case of deterministic trends

In this Section, we will extend the tests presented in the previous section to allow for individual linear

trends in the panel data generating processes, referred to as incidental trends. We will consider two cases of

AR(1) panel data models with linear trends. In the first case, we will assume that these trends are present

only under the alternative hypothesis of stationarity (see, e.g., Karavias and Tzavalis (2012), and Zivot and

Andews (1992) for single time series), while in the second that they are present under the null hypothesis of

ϕ = 1 either (see, e.g., Kim (2011). The first of the above cases is more appropriate in distinguishing between

nonstationary panel data series which exhibit persistent random deviations from linear trends, implied by

the presence of individual effects under ϕ = 1, and stationary panel data series allowing for broken individual

linear trends under ϕ < 1. The second case is more suitable when considering more explosive panel data

series under ϕ = 1, which can exhibit both deterministic and random persistent shifts from their linear

trends.

4.1 Broken trends under the alternative hypothesis of stationarity

Consider the following extension of the nonlinear AR(1) model (1):

yit = α
(λ)
it (1− ϕ) + ϕβi + β

(λ)
it (1− ϕ)t+ ϕyit−1 + uit, i = 1, ..., N (22)

where α
(λ)
it are defined by equation (1) and β

(λ)
it = β

(1)
i if t ≤ T0 and β(2)i if t > T0. Under null hypothesis

ϕ = 1, βi constitute individual effects of the panel data model, which capture linear trends in the level of

series yit, for all i. Under alternative hypothesis ϕ < 1, βi are defined as βi = β
(1)
i if t ≤ T0 and β

(2)
i if

t > T0. That is, they constitute the slope coefficients of individual linear trends t, for all i.

Let us define matrix X
(λ)
∗ = (e(1), e(2), τ (1), τ (2)), where τ (1) and τ (2) are (TX1)-column vectors whose

elements are given as τ
(1)
t = t if t ≤ T0, and zero otherwise, and τ

(2)
t = t if t > T0, and zero otherwise.

Then, the "within" transformation matrix now will be written as Q
(λ)
∗ = IT −X(λ)

∗ (X
(λ)′
∗ X

(λ)
∗ )−1X

(λ)′
∗ and

the LSDV estimator, denoted as ϕ̂
(λ)
∗ , can be written under null hypothesis ϕ = 1 as follows:

14



ϕ̂
(λ)
∗ − 1 =

[
N∑

i=1

y′i,−1Q
(λ)
∗ yi,−1

]−1 [ N∑

i=1

y′i,−1Q
(λ)
∗ ui

]
. (23)

Following analogous steps to those for the derivation of test statistics Z(λ) and Z
(λ)
1 , inference about unit roots

can be conducted based on estimator ϕ̂
(λ)
∗ adjusted for its inconsistency. Under conditions of Assumption 2,

this inconsistency is given as

b
(λ)
2

δ
(λ)
2

=
tr(Λ′Q

(λ)
∗ ΓN )

tr(Λ′Q
(λ)
∗ ΛΓN )

(24)

(see Appendix, proof of Theorem 5). However, in contrast to the case of model (1), the average pop-

ulation variance-autocovariance matrix ΓN can not be consistently estimated based on estimator Γ̂N =

1
N

∑N
i=1(∆yi∆y

′

i), due to the presence of individual effects βi under null hypothesis ϕ = 1. It can be easily

seen that, under ϕ = 1, ∆yi = ui + βie, where e is a (TX1)-vector of unities, and thus

1

N

N∑

i=1

E(∆yi∆y
′

i) = ΓN + β
2
NJT , (25)

where JT is a T × T matrix of ones and β2N = 1
N

∑N
i=1E((βi)

2). The last relationship clearly shows that

in order to provide consistent estimates of matrix ΓN based on estimator Γ̂N =
1
N

∑N
i=1(∆yi∆y

′

i), we need

to substitute out the average of squared individual effects β2N entering this estimator. This can be done

with the help of a (TXT )-dimension selection matrix M , defined as follows: M has elements mts = 0 if

γts 6= 0 and mts = 1 if γts = 0. That is, the elements of M correspond to those of matrix ΓN + β
2
NJT (or

1
N

∑N
i=1E(∆yi∆y

′

i) which contain only β
2
N . Based on matrix M , which implies since tr(MΓN ) = 0, we can

derive a consistent estimator of β2N under null hypothesis ϕ = 1, given as

1

tr(MJT )N

N∑

i=1

∆y′iM∆yi
p−→ β2N , (26)

where "
p−→ ” signifies convergence in probability. Given this estimator, we can derive a consistent estimator

of the inconsistency of the LSDV estimator ϕ̂
(λ)
∗ for model (22), defined as

b
(λ)
2

δ
(λ)
2

, as

b̂
(λ)
2

δ̂
(λ)
2

=
tr(Ψ

(λ)
2 Γ̂N )

1
N

∑N
i=1 y

′

i,−1Q
(λ)
∗ yi,−1

, (27)
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where Ψ
(λ)
2 = Ψ

(λ)
1∗ +

tr(Λ′Q(λ)
∗
M)

trace(MJT )
M (see Appendix, proof of Theorem 5), Ψ

(λ)
1∗ is a (TXT )-dimension matrix

having in its main diagonal, and its p-lower and p−upper diagonals of the main diagonal the corresponding

elements of matrix Λ′Q
(λ)
∗ , and zero otherwise. It can be easily seen that tr(Ψ

(λ)
2 Γ̂N ) constitutes a consistent

estimator of b̂
(λ)
2 , since tr(Ψ

(λ)
2 (ΓN + β

(1)
N JT )) = tr(Ψ

(λ)
2 ΓN ).

Having derived a consistent estimator of the asymptotic bias of LS estimator ϕ̂
(λ)
∗ under null hypothesis

ϕ = 1 net of the individual effects βi, next we derive the limiting distribution of a normalized test statistic

based on this estimator adjusted for its inconsistency. This is done after trimming out two time series

observations from the end of the sample, i.e. λ = T0
T ∈ I∗ =

{
2
T ,

2
T , .....,

T−2
T

}
, due to the presence of

individual effects and linear trends under alternative hypothesis of ϕ = 1. To derive this limiting distribution

and to prove the consistency of the suggest test statistic, we rely the following assumption.

Assumption 3: Let all conditions of Assumption 2 hold and we also have: E(uitβi) = 0, ∀ i ∈

{1, 2, ..., N}, t ∈ {1, 2, ..., T}, E(a(λ)it β
(λ)
it ) = 0, ∀ i ∈ {1, 2, ..., N}.

Theorem 5 Let the sequence {yi,t} be generated according to model (22) and conditions (b1)-(b4) of As-

sumption 2 hold. Then, under the null hypothesis ϕ = 1 and λ known, we have

Z
(λ)
2 ≡ V̂ (λ)−0.52 δ̂

(λ)
2

√
N

(
ϕ̂
(λ)
∗ − 1− b̂

(λ)
2

δ̂
(λ)
2

)
d−→ N (0, 1) , (28)

as N →∞, where V (λ)2 = F
(λ)′
2 ΘF

(λ)
2 , Θ is defined in Theorem 4, and F

(λ)
2 = vec(Q

(λ)
∗ Λ−Ψ(λ)′2 ).

Apart from the initial conditions of the panel yi0, the test statistic given by Theorem 5, defined Z
(λ)
2 , is

similar under null hypothesis ϕ = 1 to individual effects of the panel βi, due to the allowance of broken trends

in the "within" transformation matrix, Q
(λ)
∗ . To test the null hypothesis of unit roots, test statistic Z

(λ)
2 relies

on the same moments to those assumed by statistic Z
(λ)
1 , namely E(uituis) = 0, for s = t + pmax + 1, ..., T

and t < s. These moments now are weighted by elements of matrix Λ′Q
(λ)
∗ − Ψ(λ)2 , where matrix Ψ

(λ)
2 is

appropriately adjusted to wipe off the effects of nuisance parameters βi on the limiting distribution of the

test statistic. The maximum order of serial correlation of variance-autocovariance matrices Γi assumed by

test statistic Z
(λ)
2 is the same to that assumed by test statistic Z

(λ)
1 .

Finally, note that test statistic Z
(λ)
2 can be extended to the case of an unknown date break point, following

an analogous procedure to that assumed for sequential tests statistics z and z1, defined by equations (9) and
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(20), respectively. This version of the test statistic is defined as z2 ≡ min
λ∈I∗

Z
(λ)
2 . Its limiting distribution is

given as

z2 ≡ min
λ∈I∗

Z
(λ)
2

d−→ ζ2 ≡ min
λ∈I∗

N(0,Σ2), (29)

as N →∞, where Σ2 ≡ [σ2,λs] is the variance-covariance matrix of test statistics Z(λ)2 whose elements σ2,λs

are given by the following formula: σ2,λs =
F
(λ)′
2 ΘF

(s)
2√

F
(λ)′
2 ΘF

(λ)
2

√
F
(s)′
2 ΘF

(s)
2

. Critical values of the distribution of ζ2

can be derived based on pdf fζ(x), given by (12), following analogous steps to those for test statistic z1.

4.2 Broken trends under the null hypothesis of unit roots

To allow for a common break in the individual effects of the panel data model under the null hypothesis of

ϕ = 1, consider the following extension of AR(1) model (1):

yit = α
(λ)
it (1− ϕ) + ϕβ

(λ)
it + β

(λ)
it (1− ϕ)t+ ϕyit−1 + uit, i = 1, ..., N (30)

Using vector notation, this model implies that, under hypothesis ϕ = 1, the first-difference of vector yi is

given as ∆yi = β
(1)
i e(1)+β

(2)
i e(2)+ui. As for model (22), this means that estimator Γ̂N =

1
N

∑N
i=1(∆yi∆y

′

i)

will not lead to consistent estimates of the average population variance-autocovariance matrix ΓN , due to

the presence of individual effects β
(1)
i and β

(2)
i . These imply

1

N

N∑

i=1

E(∆yi∆y
′

i) = β
(1)
N e(1)e(1)′ + β

(2)
N e(2)e(2)′ + ΓN , (31)

where J1 = e(1)e(1)′ and J2 = e(2)e(2)′. The allowance of a break in incidental parameters βi under null

hypothesis ϕ = 1 requires estimation of squared individual effects β
(1)
N and β

(2)
N in order to obtain consistent

estimates of matrix ΓN , net of these effects. To this end, we will adopt an analogous procedure to that

following in the previous subsection, based on selection matrixM . We will define two (TXT )-dimension block

diagonal selection matrices M (1) and M (2), which select square individual effects β
(1)
N and β

(2)
N , respectively.

The elements of matrixM (1) are defined as m
(1)
ts = 0 if γts 6= 0, and m

(1)
ts = 1 if γts = 0. That is, matrixM

(1)

selects the elements of matrix β
(1)
N e(1)e(1)′ + β

(2)
N e(2)e(2)′ + ΓN consisting only of effects β

(1)
N , for t, s ≤ T0.

For t or s > T0, all elements of M
(1) are set to m

(1)
ts = 0. On the other hand, the elements of matrix M (2)

are defined as m
(2)
ts = 0 if γts 6= 0, and m2ts = 1 if γts = 0. Thus, M (2) selects the elements of matrix
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β
(1)
N e(1)e(1)′ + β

(2)
N e(2)e(2)′ +ΓN consisting only of effects β

(2)
N , for t, s > T0. For t or s ≤ T0, all the elements

of M (2) are set to m
(2)
ts = 0.

Based on the above definitions of matrices M (1) and M (2), we can obtain the following two consistent

estimators of β
(1)
N and β

(2)
N :

1

tr(M (1)J1)N

N∑

i=1

∆y′iM
(1)∆yi

p−→ β
(1)
N and

1

tr(M (2)J2)N

N∑

i=1

∆y′iM
(2)∆yi

p−→ β
(2)
N , (32)

respectively, since tr(M (j)ΓN ) = 0 for j = 1, 2 and tr(M
(j)Jr) = 0 for j, r = 1, 2 and j 6= r. These estimators

can be employed to obtain consistent estimates of matrix ΓN , which are net of square individual effects β
(1)
N

and β
(2)
N . Then, a consistent estimator of the bias of the LSDV estimator ϕ̂

(λ)
∗ for model (30), defined as

b
(λ)
3

δ
(λ)
3

, can be obtained as

b̂
(λ)
3

δ̂
(λ)
3

=
tr(Ψ

(λ)
3 Γ̂N )

1
N

∑N
i=1 y

′

i,−1Q
(λ)
∗ yi,−1

, (33)

where Ψ
(λ)
3 = Ψ

(λ)
1∗ +

tr(Λ′Q(λ)
∗
M(1))

trace(M(1)J1)
M (1) +

tr(Λ′Q(λ)
∗
M(2))

trace(M(2)J2)
M (2). Adjusting ϕ̂

(λ)
∗ by the above estimator of its

bias will lead to a panel unit root test statistic whose limiting distribution is be net of squared individual

effects β
(1)
N and β

(2)
N , under null hypothesis ϕ = 1. In the next theorem, we derive the limiting distribution of

this test statistic under the assumption of a known date break. If break point T0 is unknown, then this test

statistic will rely on a consistent estimate of T0, in a first step. This can be done based on the first differences

of the individual panel data series yit under null hypothesis ϕ = 1, i.e. ∆yi = β
(1)
i e(1) + β

(2)
i e(2) + ui. As

shown by Bai (2010), this estimator provides consistent estimates of T0, which converges at o(
√
N) rate.

Theorem 6 Let the sequence {yi,t} be generated according to model (30) and conditions (b1)-(b4) of As-

sumption 2 hold. Then, under the null hypothesis ϕ = 1 and λ known, we have

Z
(λ)
3 ≡ V̂ (λ)−0.53 δ̂

(λ)
3

√
N

(
ϕ̂
(λ)
∗ − 1− b̂

(λ)
3

δ̂
(λ)
3

)
d−→ N (0, 1) , (34)

as N →∞, where

V
(λ)
3 = F

(λ)′
3 ΘF

(λ)
3 (35)

and F
(λ)
3 = vec(Q

(λ)
∗ Λ−Ψ(λ)′3 ). The proof of the theorem is given in the appendix.
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As Z
(λ)
2 , the test statistic given by Theorem 6, Z

(λ)
3 , is similar under null hypothesis ϕ = 1 to individual

effects β
(1)
i and β

(2)
i , due to the inclusion of broken trends in the "within" transformation matrix Q

(λ)
∗ . Due

to the presence of a break under ϕ = 1, the maximum order of serial correlation of the disturbance terms

uit, pmax, allowed by statistic Z
(λ)
3 is not given by Table 1. This is given as7

pmax =





T
2 − 3, if T is even and T0 =

T
2

min{T0 − 2, T − T0 − 2} in all other cases of T or T0

(36)

Based on conditions of Assumption 3, it can be proved that test statistic Z
(λ)
3 is consistent, following

analogous steps to those for the proof of the consistency of test statistic Z
(λ)
2 . The test is also consistent, if

the break point is unknown and is estimated, in the first step, based on the procedure mentioned above.

5 Simulation Results

In this section, we conduct a Monte Carlo study to investigate the small sample performance of the test

statistics suggested in the previous sections. For reasons of space, in our study, we consider only the case

that the break date is unknown.8 We consider experiments of different sample sizes of N and T , i.e.

N = {50, 100, 200} and T = {6, 10, 15}, while the fractions of sample that the break occurs are given by

the following set: λ = {0.25, 0.5, 0.75}. These value of λ are chosen to facilitate implementation of the

test statistics. For all experiments, we conduct 10000 iterations. In each iteration, we assume that the

data generating processes are given by models (1) and (22), respectively, where disturbance terms uit follow

a MA(1) process, i.e. uit = εit + θεit−1, with εit˜NIID(0, 1), for all i and t, and θ = {−0.5, 0.0, 0.5}.

The values of the nuisance parameters of the simulated models, namely the individual effects or the slope

coefficients of individual linear trends are assumed that they are driven from the following distributions:

α
(1)
i ∼ U(−0.5, 0), α(2)i ∼ U(0, 0.5), βi ∼ U(0, 0.05), β

(1)
i ∼ U(0, 0.025), β

(2)
i ∼ U(0.025, 0.05), where U(·)

stands for the uniform distribution, and and yi0 = 0, for all i .

7Again, pmax is chosen so as variance function V
(λ)
3 is different than zero. If T is even, then pmax=min{T0− 2, T −T0− 2},

with the exception the case that T0 =
T
2
where pmax=

T
2
− 3. Consider the following examples. First, T = 10 and T0 = 3, then

we have that pmax = min{T0−2, T −T0−2} = min{1, 5} = 1. If T0 =
T
2
= 5, then pmax becomes pmax =

T
2
−3 = 2. Note that,

instead of the above, if we used the results of (18) to determine pmax, implying pmax = min{T0−2, T −T0−2} = min{3, 3} = 3,

then Z
(λ)
3 could not be applied since V

(λ)
3 = 0. If T = 15, then pmax becomes pmax=min{T0 − 2, T − T0 − 2}. For T0 = 7, this

becomes pmax = min{5, 6} = 5.
8The results of the test statistics allowing for a known date break point are analogous. These are available upon request.
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The small magnitude of individual effects α
(j)
i or slope coefficients β

(j)
i assumed above correspond to

evidence found in the empirical literature about them, see e.g. Hall and Mairesse (2005). The small mag-

nitude of these effects makes our tests hard to distinguish null hypothesis of ϕ = 1 from its alternative of

stationarity. For all simulation experiments, we assume that the order of serial correlation p is set to p = 1.

This means that, for θ = 0, we assume an order of serial correlation which is higher than the correct order.

This experiment will show if the performance of our tests critically reduces when a higher order of serial

correlation is assumed, which may happen in practice.

The results of our Monte Carlo analysis for test statistics z1 and z2, corresponding to models (1) and

(22), are summarized in Tables 2(a)-(c) and 3(a)-(c), respectively. Table 4.presents results for test statistic

Z
(λ)
3 , which is based on model (30) considering a break in individual effects βi under the null hypothesis. To

implement Z
(λ)
3 , the break point T0 is treated as known and it is estimated, in a first step. Note that this

table reports results for λ = 0.5 and T = {10, 15}, since for these cases of T and λ we can assume maximum

order serial correlation pmax = 1, according to equation (36). The above all tables present values of the size

and power of statistics z1, z2 and Z
(λ)
3 , for θ ∈ {0.5,−0.5, 0.0}. The size of the test statistics is calculated

for ϕ = 1.00, while the power for ϕ ∈ {0.95, 0.90}. Note that, in all experiments, the power is calculated at

the nominal 5% significance level of the distribution of the tests.

The results of Tables 2(a)-(c), 3(a)-(c) and 4 indicate that the test statistics examined, namely z1, z2

and Z
(λ)
3 , have size which is close to the nominal level 5% considered. This is true for all combinations of

N and T considered. The size performance of all three test statistics is close to its nominal level. This is

true even if the MA parameter θ takes a large negative value, i.e. θ = −0.5. Note that, for this case of

θ, single time series unit root tests are critically oversized (see, e.g., Schwert (1989)). The size of the test

statistics improves as N increases relative to T . This can be attributed to the fact that, as N increases

relative to T , variance-covariance matrix Θ is more precisely estimated by estimator Θ̂. The above results

hold independently on the break fraction of the sample λ. As a final note that the size of al the test statistics

does not deteriorate, if a higher order of serial correlation p = 1 is assumed than the true order, for θ = 0.

This result qualifies application of them in cases where a higher than the correct order p of serial correlation

of the disturbance terms uit is assumed in practice, i.e. p = {2, 3}, which may be considered as very high

for short panels.9

9This has been confirmed by our Monte Carlo simulation analysis. These results are not reported for reasons of space. They
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Regarding the power of the test statistics, the results of the tables indicate that, as was expected, the

test statistic that has the highest power among all of them is that which corresponds to model (1), i.e. z1,

which allows for individual effects under the alternative hypothesis of stationarity. For models (22) and (30),

where linear trends are considered either under alternative or null hypotheses, respectively, the power of the

test statistics (i.e., z2 and Z
(λ)
3 ) substantially reduces. This is feature of both single time series and panel

data unit root tests allowing for linear trends. As is well known in the literature, the second category of

tests have better power performance than the first (see, e.g., Harris and Tzavalis (2004), or Hluskova and

Wagner (2006)). However, between test statistics z2 and Z
(λ)
3 , it is found that the first has clearly better

power than the second. This is true for all cases of T and N considered. The less power of statistic Z
(λ)
3

than z2 may be attributed to the fact that this test statistic relies on estimation of the break point under

ϕ = 1. Despite the fact that the break point is estimated very accurately under the null hypothesis, Z
(λ)
3

depends on the nuisance parameters of the sample distribution of the estimator of the break point T0, which

may lead to a reduction of its power. Finally, note that, in contrast to the size, the power of all three test

statistics examined increases faster with T rather than N . Consistently with the theory, the power of the

test statistics increases also as the value of ϕ moves away from unity.

6 Conclusion

This paper suggests panel unit root test statistics which allow for a common structural break in the individual

effects or linear trends of dynamic panel data models. Common breaks in panel data can arise in cases of

a credit crunch, an oil price shock or a change in tax policy among others. The suggested test statistics

assume that the time-dimension of the panel T is fixed (or finite), while the cross-section N grows large.

Thus, they are appropriate for short panel applications, where T is smaller than N . Since they are based

on the least squares dummy variable (LSDV) estimator of the autoregressive coefficient of the dynamic

panel data model with individual effects and/or linear trends, the suggested test statistics are invariant to

the initial conditions of the panel or the individual effects under the null hypothesis of unit roots. This

property of the tests does not restrict their application to panel data where conditions of mean or covariance

stationarity of the initial conditions or individual effects are required. To allow for serial correlation, the

are available upon request.
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tests rely on the LSDV estimator which is also corrected for its inconsistency due to a high order serial

correlation in the disturbance terms. This is done based on moments of the disturbance terms which are not

serially correlated.

The paper derives the limiting distributions of the test statistics. When the break is unknown, it shows

that the limiting distribution of the tests is calculated as the minimum of a fixed number of correlated

normals. This distribution is given, analytically, as a mixture of normals. Knowledge of the analytic

form of the limiting distribution of the tests considerably facilitates calculation of critical values for the

implementation of the tests in practice. To examine the small sample size and power performance of the

test statistics, the paper conducts a Monte Carlo study. This is done for the case that the break is of an

unknown date. The results of this exercise indicate that when there is no break under the null, the tests

have the correct nominal size and power which is bigger than their size. The size and power performance of

the test statistics does not depend on the fraction of the sample that the break occurs. As was expected, the

power of the tests is higher for the dynamic panel data models which consider individual effects rather than

for the model which also allows for individual linear trends. For all cases, the power is found to increase as

N and T increases.

7 Appendix

In this appendix, we provide proofs of the theorems presented in the main text of the paper.

Proof of Theorem 1: To derive the limiting distribution of the test statistic of the theorem, we will

proceed into stages. We first show that the LSDV estimator ϕ̂(λ) is inconsistent, as N → ∞. Then, will

construct a normalized statistic based on ϕ̂(λ) corrected for its inconsistency (asymptotic bias) and derive

its limiting distribution under the null hypothesis of ϕ = 1, as N →∞.

Decompose the vector yi,−1 for model (1) under hypothesis ϕ = 1 as

yi,−1 = eyi0 + Λui, (37)

where the matrix Λ is is a (TXT ) matrix defined as Λr,c = 1, if r > c and 0 otherwise.
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Premultiplying (37) with matrix Q(λ) yields

Q(λ)yi,−1 = Q
(λ)Λui, (38)

since Q(λ)e = (0, 0, ..., 0)′. Substituting (38) into (2) yields

ϕ̂(λ) − 1 =
1
N

∑N
i=1 y

′

i,−1Q
(λ)ui

1
N

∑N
i=1 y

′

i,−1Q
(λ)yi,−1

=
1
N

∑N
i=1 u

′

iΛ
′Q(λ)ui

1
N

∑N
i=1 u

′

iΛ
′Q(λ)Λui

. (39)

By Kitchin’s Weak Law of Large Numbers (KWLLN), we have

1

N

N∑

i=1

u′iΛ
′Q(λ)ui

p−→ b(λ) = σ2utr(Λ
′Q(λ)) and

1

N

N∑

i=1

u′iΛ
′Q(λ)Λui

p−→ δ(λ) = σ2utr(Λ
′Q(λ)Λ), (40)

where "
p−→" signifies convergence in probability. Using the last results, the yet non standardized statistic

Z(λ) can be written by (39) as

√
Nδ̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

δ̂(λ)

)
=

√
Nδ̂(λ)

(
1
N

∑N
i=1 y

′

i,−1Q
(λ)ui

δ̂(λ)
− σ̂

2
utr(Λ

′Q(λ))

δ̂(λ)

)

=
√
N

(
1

N

N∑

i=1

y′i,−1Q
(λ)ui − tr(Λ′Q(λ))

∑N
i=1∆y

′

iΨ
(λ)∆yi

Ntr(Ψ(λ))

)
. (41)

Since, under the null hypothesis ϕ = 1, we have ui = ∆yi, (l41) can be written as follows:

√
Nδ̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

δ̂(λ)

)

=
√
N

(
1

N

N∑

i=1

u′iΛ
′Q(λ)ui −

tr(Λ′Q(λ))

tr(Ψ(λ))

1

N

N∑

i=1

u′iΨ
(λ)ui

)

=
1√
N

N∑

i=1

u′i(Λ
′Q(λ) −Ψ(λ))ui =

1√
N

N∑

i=1

tr
[
(Λ′Q(λ) −Ψ(λ))uiu′i

]
(42)

=
1√
N

N∑

i=1

W
(λ)
i ,
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where W
(λ)
i constitute random variables with mean

E(W
(λ)
i ) = E[u′i(Λ

′Q(λ) −Ψ(λ))ui] = tr[(Λ′Q(λ) −Ψ(λ))E(uiu′i)]

= σ2utr(Λ
′Q(λ) −Ψ(λ)) = 0, for all i,

since tr(Λ′Q(λ)) = tr(Ψ(λ)) (or tr(Λ′Q(λ) −Ψ(λ)) = 0), and variance

V ar(W
(λ)
i ) = V ar(u′i(Λ

′Q(λ) −Ψ(λ))ui) = V ar[F (λ)′vec(uiu′i)] =

= F (λ)V ar[vec(uiu
′

i)]F
(λ)′, for all i.

The results of Theorem 1 follows by applying Lindeberg-Levy central limit theorem (CLT) to the sequence

of IID random variables W
(λ)
i . Following standard linear algebra results (see e.g. Schott(1997), variance

V ar[vec(uiu
′

i)] can be analytically written as V ar[vec(uiu
′

i)] = V ar(ui ⊗ ui) = σ4u(IT 2 + KT 2), where ⊗

denotes the Kroenecker product.

Proof of Theorem 2: Assume that the break point T0 is known. Define vector w = (1, ϕ, ϕ
2, ..., ϕT−1)′

and matrix

Ω =




0 . . . . . 0

1 0 .

ϕ 1 . .

ϕ2 ϕ . . .

. . . . .

. . 1 0 .

ϕT−2 ϕT−3 . . ϕ 1 0




Under null hypothesis ϕ = 1, we have Ω = Λ. Based on the above definitions of w and Ω, vector yi,−1

can be written as

yi,−1 = wyi0 +ΩX
(λ)γ

(λ)
i +Ωui, (43)

where d
(λ)
i = (a

(1)
i (1− ϕ), a(2)i (1− ϕ))′. Using last expression of yi,−1, test statistic Z(λ) can be written
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under alternative hypothesis ϕ < 1 as follows:

Z(λ) =
√
NV̂ (λ)−1/2δ̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

δ̂(λ)

)

=
√
NV̂ (λ)−1/2δ̂(λ)

(
ϕ+

1
N

∑N
i=1 y

′

i,−1Q
(λ)ui

1
N

∑N
i=1 y

′

i,−1Q
(λ)yi,−1

− 1− σ̂2utr(Λ
′Q(λ))

1
N

∑N
i=1 y

′

i,−1Q
(λ)yi,−1

)

=
√
NV̂ (λ)−1/2δ̂(λ)(ϕ− 1) +

√
NV̂ (λ)−1/2

(
1

N

N∑

i=1

y′i,−1Q
(λ)ui − σ̂2utr(Λ′Q(λ))

)
(44)

=
{√
NV̂ (λ)−1/2δ̂(λ)(ϕ− 1)

}

(I)

+

{
V̂ (λ)−1/2

1√
N

N∑

i=1

(y′i,−1Q
(λ)ui −∆y′iΨ(λ)∆yi)

}

(II)

.

Next, we will show that summand (I) diverges to −∞ and summand (II) is bounded in probability.

These two results imply that, as N →∞, test statistic Z(λ) converges to −∞, which proves its consistency.

To prove the above results, we will use the following identities:

ui = yi − ϕyi−1 −X(λ)d
(λ)
i (45)

and

∆yi = ui + (ϕ− 1)yi−1 +X(λ)d
(λ)
i , (46)

which hold under alternative hypothesis ϕ < 1.

To prove that summand (I), defined by (44), diverges to −∞, it is sufficient to show that p lim δ̂(λ)

is Op(1) and positive, and p lim σ̂
2
u = Op(1) and nonzero. The last result implies that variance function

V̂ (λ) = σ̂4uF
(λ)′(KT 2 + IT 2)F

(λ) is bounded in probability. Using equations (43), (45) and (46), it can be

seen that δ̂(λ) is Op(1) as follows:

δ̂(λ) =
1

N

N∑

i=1

y′i,−1Q
(λ)yi,−1 =

1

N

N∑

i=1

(wyi0 +ΩX
(λ)d

(λ)
i +Ωui)

′Q(λ)(wyi0 +ΩX
(λ)d

(λ)
i +Ωui) (47)

=
1

N

N∑

i=1

(y2i0w
′Q(λ)w + yi0w

′Q(λ)ΩX(λ)d
(λ)
i + yi0wQ

(λ)Ωui + ...+ u
′

iΩ
′Q(λ)Ωui

p−→ E(y2i0)w
′Q(λ)w + tr(X(λ)′Ω′Q(λ)ΩX(λ)Σd) + σ

2
utr(Ω

′Q(λ)Ω) = Op(1),

where Σd = E(d
(λ)
i d

(λ)′
i ). The last result holds by condition a3 of Assumption 1. All quantities involved in
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the above limit are positive, since they are either variances or quadratic forms. Based on condition a3 of

Assumption 1, we can also show that the following result also holds:

σ̂2u =
1

tr(Ψ(λ))

1

N

N∑

i=1

∆y′iΨ
(λ)∆yi (48)

=
1

tr(Ψ(λ))

1

N

N∑

i=1

(ui + (ϕ− 1)yi−1 +X(λ)d
(λ)
i )′Ψ(λ)(ui + (ϕ− 1)yi−1 +X(λ)d

(λ)
i )

= Op(1).

This limit is a nonzero quantity, since σ2u > 0. The remaining terms entered into this limit are zero or

positive quantities.

To prove that summand (II) is bounded in probability note that, by Assumption 1, we have

1√
N

N∑

i=1

(y′i,−1Q
(λ)ui −∆y′iΨ(λ)∆yi) = Op(1). (49)

See also proof of Theorem 1.

Proof of Theorem 3: The proof of this theorem follows as an extension of Theorem 1, by applying

the continuous mapping theorem to the joint limiting distribution of standardized test statistic Z(λ), for all

λ ∈ I. The elements of the covariance matrix between random variables Z(λ) and Z(µ), for all λ 6= µ, can

be derived by writing

Z(λ)Z(µ) =
√
N

(
δ̂(λ)√
V (λ)

)(
ϕ̂− 1− b̂(λ)

δ̂(λ)

)
√
N

(
δ̂(µ)√
V (µ)

)(
ϕ̂− 1− b̂(µ)

δ̂(µ)

)

=
δ̂(λ)δ̂(µ)√
V (λ)

√
V (µ)

N
( 1N
∑N

i=1W
(λ)
i )( 1N

∑N
i=1W

(µ)
i )

δ̂(λ)δ̂(µ)

=
1√

V (λ)
√
V (µ)

1

N

N∑

i=1

W
(λ)
i

N∑

i=1

W
(µ)
i . (50)

By the definition of W
(λ)
i (see (42)) and assumption of cross-section independence between W

(λ)
i and

W
(m)
j , for i 6= j, we have E(W (λ)

i W
(µ)
j ) = 0, for i 6= j. Based on this result, we can show that

p lim
N→∞

1

N

N∑

i=1

W
(λ)
i

N∑

i=1

W
(µ)
i = p lim

N→∞

1

N

N∑

i=1

W
(λ)
i W

(µ)
i = E(W

(λ)
i W

(µ)
i ). (51)
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E(W
(λ)
i W

(µ)
i ) can be analytically derived as

E(W
(λ)
i W

(µ)
i ) = E[u′i(Λ

′Q(λ) −Ψ(λ))uiu′i(Λ′Q(µ) −Ψ(µ))ui]

= E[F (λ)′vec(uiu
′

i)vec(uiu
′

i)
′F (µ)]

= F (λ)′E[vec(uiu
′

i)vec(uiu
′

i)
′]F (µ)

= F (λ)′E[vec(uiu
′

i)vec(uiu
′

i)
′]F (µ), (52)

or

E(W
(λ)
i W

(µ)
i ) = σ4uF

(λ)′[(IT 2 +KT 2) + vec(IT )vec(IT )
′]F (µ), (53)

using the following result:

E[vec(uiu
′

i)vec(uiu
′

i)
′] = V ar(ui ⊗ ui) + E(vec(uiu′i))E(vec(uiu′i))′ (54)

= σ4u[(IT 2 +KT 2) + vec(IT )vec(IT )
′].

Based on (53), it can be shown that the probability limit of (50) is given as

E(Z(λ)Z(µ)) (55)

=
F (λ)′σ4u[(IT 2 +KT 2) + vec(IT )vec(IT )

′]F (µ)√
F (λ)′σ4u[(IT 2 +KT 2 + vec(IT )vec(IT )′]F (λ)

√
F (µ)′σ4u[(IT 2 +KT 2) + vec(IT )vec(IT )′]F (µ)

=
F (λ)′(IT 2 +KT 2)F

(µ)

√
F (λ)′(IT 2 +KT 2)F (λ)

√
F (µ)′(IT 2 +KT 2)F (µ)

,

where the result of the last row follows directly from F (λ)′vec(IT )vec(IT )
′ = 0.

Proof of Theorem 4: The theorem can be proved following analogous steps to those for the proof of

Theorem 1.

Proof of Theorem 5: The theorem can be proved following analogous steps to those for the proof of
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Theorem 1 and using the following results:

1

N

N∑

i=1

u′iΛ
′Q(λ)ui

p→ tr(Λ′Q(λ)ΓN ) and
1

N

N∑

i=1

u′iΛ
′Q(λ)Λui →p tr(Λ′Q(λ)ΛΓN ). (56)

Based on the definition of matrix Ψ
(λ)
1 and conditions (b1) and (b2) of Assumption 2, it can be easily seen

that

E(W
(λ)
i ) = tr((Λ′Q(λ) −Ψ(λ)1 )ΓN ) = 0, for all i. (57)

Proof of Theorem 6: It can be proved following analogous steps to those followed for the proof of

Theorem 1. Under null hypothesis ϕ = 1, vector yi,−1 can be decomposed as

yi,−1 = yi0e+ Λeβi + Λui. (58)

Multiplying both sides of the last relationship by Q
(λ)
∗ yields

Q
(λ)
∗ yi,−1 = Q

(λ)
∗ Λui, (59)

since Q
(λ)
∗ e = 0 and Q

(λ)
∗ Λe = 0. Also, note that, under ϕ = 1, the following relationships hold:

∆yi = ui + eβi (60)

and

Q
(λ)
∗ ∆yi = Q

(λ)
∗ ui and Q

(λ)
∗ Λ∆yi = Q

(λ)
∗ Λui. (61)

Using (61), the numerator and denominator of ϕ̂
(λ)
∗ − 1 become

y′i,−1Q
(λ)
∗ ui = u

′

iΛ
′Q

(λ)
∗ ui = ∆y

′

iΛ
′Q

(λ)
∗ ∆yi and (62)

y′i,−1Q
(λ)
∗ yi,−1 = u

′

iΛ
′Q

(λ)
∗ Λui = ∆y

′

iΛ
′Q

(λ)
∗ Λ∆yi, (63)

respectively. By Kitchin’s LLN, it can be shown that the inconsistency of estimator ϕ̂
(λ)
∗ is given as
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ϕ̂
(λ)
∗ − 1 =

∑N
i=1 y

′

i,−1Q
(λ)
∗ ui

∑N
i=1 y

′

i,−1Q
(λ)
∗ yi,−1

p→ b
(λ)
2

δ
(λ)
2

=
tr(Λ′Q

(λ)
∗ ΓN )

tr(Λ′Q
(λ)
∗ ΛΓN )

. (64)

The last result holds because, as N → +∞, we have

1

N

N∑

i=1

y′i,−1Q
(λ)
∗ ui − tr(Λ′Q(λ)∗ (ΓN + β

2
NJT ))

p→ 0, where β2N =
1

N

n∑

i=1

E((βi)
2), (65)

or
1

N

N∑

i=1

y′i,−1Q
(λ)
∗ ui − tr(Λ′Q(λ)∗ ΓN )

p→ 0,

since tr(Λ′Q
(λ)
∗ JT ) = 0, and

1

N

N∑

i=1

y′i,−1Q
(λ)
∗ yi,−1 − tr(Λ′Q(λ)∗ Λ(ΓN + β

2
NJT ))

p→ 0, (66)

since tr(Λ′Q
(λ)
∗ ΛJT ) = 0.

The remaining of the proof follows the same steps with those of the proof of Theorem 1. That is, subtract

the consistent estimator of
b
(λ)
2

δ
(λ)
2

, given by (33), from ϕ̂
(λ)
∗ − 1 and, then, apply standard asymptotic theory.
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Table 2(a): Size and power of z1 ≡ minZ(λ)1 , for θ = 0.50

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

λ = 0.25

ϕ = 1.00 0.059 0.062 0.065 0.053 0.056 0.063 0.056 0.053 0.053

ϕ = 0.95 0.211 0.236 0.222 0.332 0.360 0.295 0.514 0.572 0.461

ϕ = 0.90 0.445 0.449 0.328 0.714 0.699 0.504 0.945 0.934 0.759

λ = 0.50

ϕ = 1.00 0.060 0.064 0.065 0.053 0.055 0.063 0.052 0.050 0.058

ϕ = 0.95 0.215 0.241 0.223 0.321 0.359 0.297 0.512 0.587 0.462

ϕ = 0.90 0.452 0.440 0.330 0.712 0.698 0.505 0.947 0.935 0.766

λ = 0.75

ϕ = 1.00 0.060 0.060 0.065 0.052 0.054 0.065 0.051 0.050 0.054

ϕ = 0.95 0.214 0.245 0.213 0.324 0.365 0.293 0.528 0.585 0.465

ϕ = 0.90 0.463 0.452 0.342 0.711 0.703 0.500 0.942 0.934 0.760
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Table 2(b): Size and power of z1 ≡ minZ(λ)1 , for θ = −0.50

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

λ = 0.25

ϕ = 1.00 0.059 0.064 0.076 0.054 0.060 0.066 0.057 0.053 0.065

ϕ = 0.95 0.076 0.075 0.078 0.079 0.074 0.068 0.090 0.079 0.071

ϕ = 0.90 0.083 0.076 0.078 0.092 0.075 0.075 0.109 0.083 0.078

λ = 0.50

ϕ = 1.00 0.057 0.064 0.072 0.056 0.061 0.066 0.051 0.053 0.069

ϕ = 0.95 0.082 0.070 0.073 0.074 0.072 0.068 0.087 0.079 0.071

ϕ = 0.90 0.083 0.073 0.079 0.093 0.079 0.072 0.116 0.082 0.073

λ = 0.75

ϕ = 1.00 0.059 0.064 0.073 0.056 0.061 0.065 0.051 0.057 0.069

ϕ = 0.95 0.076 0.069 0.077 0.074 0.070 0.073 0.088 0.078 0.071

ϕ = 0.90 0.083 0.074 0.076 0.093 0.078 0.074 0.116 0.086 0.078
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Table 2(c): Size and power of z1 ≡ minZ(λ)1 , for θ = 0.00

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

λ = 0.25

ϕ = 1.00 0.057 0.061 0.076 0.051 0.058 0.063 0.060 0.052 0.064

ϕ = 0.95 0.140 0.169 0.167 0.184 0.225 0.217 0.282 0.355 0.307

ϕ = 0.90 0.234 0.258 0.228 0.365 0.393 0.322 0.575 0.629 0.488

λ = 0.50

ϕ = 1.00 0.056 0.060 0.076 0.054 0.058 0.063 0.053 0.052 0.064

ϕ = 0.95 0.139 0.159 0.165 0.182 0.224 0.216 0.291 0.357 0.311

ϕ = 0.90 0.235 0.246 0.232 0.365 0.395 0.326 0.592 0.632 0.490

λ = 0.75

ϕ = 1.00 0.057 0.060 0.070 0.053 0.059 0.069 0.049 0.052 0.064

ϕ = 0.95 0.144 0.161 0.165 0.192 0.229 0.211 0.280 0.357 0.312

ϕ = 0.90 0.234 0.248 0.230 0.362 0.401 0.326 0.589 0.635 0.495
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Table 3(a): Size and power of z2 ≡ minZ(λ)2 , for θ = 0.50

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

λ = 0.25

ϕ = 1.00 0.058 0.084 0.093 0.051 0.071 0.072 0.048 0.060 0.068

ϕ = 0.95 0.056 0.085 0.117 0.055 0.083 0.106 0.056 0.081 0.118

ϕ = 0.90 0.057 0.111 0.207 0.056 0.129 0.259 0.058 0.153 0.358

λ = 0.50

ϕ = 1.00 0.060 0.078 0.093 0.054 0.072 0.072 0.051 0.060 0.068

ϕ = 0.95 0.055 0.090 0.117 0.054 0.084 0.106 0.054 0.081 0.120

ϕ = 0.90 0.062 0.120 0.205 0.058 0.125 0.254 0.057 0.154 0.350

λ = 0.75

ϕ = 1.00 0.033 0.077 0.093 0.052 0.069 0.071 0.052 0.060 0.067

ϕ = 0.95 0.058 0.091 0.117 0.054 0.083 0.105 0.053 0.081 0.116

ϕ = 0.90 0.059 0.118 0.205 0.057 0.127 0.256 0.052 0.152 0.349
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Table 3(b): Size and power of z2 ≡ minZ(λ)2 , for θ = −0.50

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

λ = 0.25

ϕ = 1.00 0.055 0.061 0.073 0.051 0.057 0.066 0.050 0.055 0.064

ϕ = 0.95 0.057 0.075 0.102 0.052 0.080 0.109 0.052 0.090 0.135

ϕ = 0.90 0.053 0.092 0.131 0.050 0.113 0.162 0.051 0.148 0.220

λ = 0.50

ϕ = 1.00 0.053 0.061 0.076 0.051 0.058 0.066 0.050 0.055 0.064

ϕ = 0.95 0.050 0.073 0.104 0.052 0.080 0.107 0.052 0.086 0.133

ϕ = 0.90 0.055 0.093 0.131 0.051 0.105 0.153 0.051 0.131 0.195

λ = 0.75

ϕ = 1.00 0.053 0.065 0.076 0.051 0.063 0.066 0.050 0.058 0.064

ϕ = 0.95 0.052 0.074 0.103 0.053 0.085 0.108 0.051 0.086 0.132

ϕ = 0.90 0.055 0.088 0.132 0.050 0.101 0.154 0.052 0.136 0.202
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Table 3(c): Size and power of z2 ≡ minZ(λ)2 , for θ = 0

N 50 50 50 100 100 100 200 200 200

T 6 10 15 6 10 15 6 10 15

λ = 0.25

ϕ = 1.00 0.056 0.076 0.089 0.051 0.066 0.075 0.051 0.064 0.070

ϕ = 0.95 0.050 0.079 0.117 0.051 0.079 0.123 0.049 0.083 0.128

ϕ = 0.90 0.054 0.103 0.184 0.053 0.119 0.231 0.055 0.141 0.322

λ = 0.50

ϕ = 1.00 0.055 0.068 0.089 0.052 0.064 0.075 0.051 0.063 0.068

ϕ = 0.95 0.051 0.082 0.118 0.049 0.078 0.122 0.050 0.086 0.125

ϕ = 0.90 0.055 0.107 0.181 0.058 0.111 0.226 0.050 0.145 0.309

λ = 0.75

ϕ = 1.00 0.053 0.076 0.091 0.055 0.061 0.075 0.051 0.064 0.069

ϕ = 0.95 0.051 0.078 0.114 0.052 0.078 0.107 0.052 0.082 0.123

ϕ = 0.90 0.055 0.107 0.189 0.050 0.110 0.229 0.059 0.137 0.306
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Table 4: Size and power of Z
(λ)
3 , when λ = 0.50 and T0 estimated.

N 50 50 100 100 200 200

T 10 15 10 15 10 15

θ = 0.50

ϕ = 1.00 0.054 0.062 0.053 0.052 0.058 0.061

ϕ = 0.95 0.055 0.050 0.052 0.060 0.049 0.061

ϕ = 0.90 0.062 0.076 0.063 0.090 0.062 0.100

θ = −0.50

ϕ = 1.00 0.044 0.051 0.046 0.048 0.048 0.055

ϕ = 0.95 0.051 0.056 0.050 0.061 0.055 0.061

ϕ = 0.90 0.045 0.063 0.055 0.077 0.061 0.080

θ = 0.00

ϕ = 1.00 0.050 0.055 0.052 0.050 0.054 0.062

ϕ = 0.95 0.049 0.056 0.054 0.072 0.055 0.068

ϕ = 0.90 0.065 0.079 0.063 0.098 0.071 0.112
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