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Abstract

Bayesian partially identified models have received a growing attention in recent
years in the econometric literature, due to their broad applications in empirical studies.
Classical Bayesian approach in this literature has been assuming a parametric model,
by specifying an ad-hoc parametric likelihood function. However, econometric models
usually only identify a set of moment inequalities, and therefore assuming a known
likelihood function suffers from the risk of misspecification, and may result in incon-
sistent estimations of the identified set. On the other hand, moment-condition based
likelihoods such as the limited information and exponential tilted empirical likelihood,
though guarantee the consistency, lack of probabilistic interpretations. We propose a
semi-parametric Bayesian partially identified model, by placing a nonparametric prior
on the unknown likelihood function. Our approach thus only requires a set of moment
conditions but still possesses a pure Bayesian interpretation. We study the posterior
of the support function, which is essential when the object of interest is the identified
set. The support function also enables us to construct two-sided Bayesian credible sets
(BCS) for the identified set. It is found that, while the BCS of the partially identified
parameter is too narrow from the frequentist point of view, that of the identified set
has asymptotically correct coverage probability in the frequentist sense. Moreover, we
establish the posterior consistency for both the structural parameter and its identified
set. We also develop the posterior concentration theory for the support function, and
prove the semi-parametric Bernstein von Mises theorem. Finally, the proposed method
is applied to analyze a financial asset pricing problem.
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1 Introduction

1.1 Bayesian inference for partially identified models

Partially identified models have been receiving extensive attentions in recent years, due
to their broad applications in econometrics. Partial identification of a structural parameter
arises when the data available and the constraints coming from economic theory only allow
to place the parameter inside a proper subset of the parameter space. Due to the limitation
of the data generating process, the data cannot provide any information within the set where
the structural parameter is partially identified (called identified set).

This paper aims at developing Bayesian inference for partially identified models. A
Bayesian approach may be appealing for several reasons. First, while frequentist approaches
cannot tell anything inside the identified set, the Bayesian approach can. When informa-
tive (subjective) priors are available for the structural parameter, the shape of the posterior
density may be not flat even inside the identified set, providing more information about the
parameter that cannot be told by the data. When no a priori information is available, using
a uniform prior helps us estimate the true identified set. The Bayesian analysis for partially
identified models produces a posterior distribution whose support will asymptotically con-
centrate around the true identified set. Therefore, the asymptotic behavior for the posterior
distribution is different from that of the traditional point identified case, the latter being usu-
ally (asymptotically) normally distributed due to the Bernstein-von Mises theorem. Hence,
the information from the prior is washed away by the data when the structural parameter
is identifiable. A second appealing feature of Bayesian methods arises in situations where
we are interested only in a projection of the identified region, that is, a subset of the struc-
tural parameter. It turns out that projecting a high dimensional identified region to a low
dimensional space using a Bayesian approach is easier than with frequentist approaches be-
cause this simply requires the marginalization of a joint distribution. Third, when the model
incorporates a multidimensional parameter with some components that are identified and
some others that are not, we can learn from the data something also about the non-identified
parameters through the information brought by the identified parameters. Moreover, when
(asymptotic) equivalence between Bayesian credible sets (BCS) and frequentist confidence
sets (FCS) is established, we can take advantage of the fact that BCS are often easier to
construct than FCS thanks to the use of Markov Chain Monte Carlo (MCMC) methods.
Finally, sometimes frequentist inference relies heavily on point identification, and in some
cases achieving the point identification requires stringent assumptions that are hard to ver-
ify. In contrast, a Bayesian procedure nevertheless makes inference based on the posterior,
whose construction does not require point identification. We illustrate this point further in
the following two examples.

Example 1.1 (Functional of nonparametric instrumental regression). In a nonparametric
IV regression model E(y|W ) = E(g(X)|W ) with instrument W (e.g., Hall and Horowitz
2005, Florens and Simoni 2012), suppose we are interested in a functional h(g) of g. The
current literature makes inference about h(g) assuming its point identification. However, the
identification of h(g) relies on a stringent assumption that is hard to verify (see e.g., Severini
and Tripathi 2006 and Santos 2012). Using a Bayesian partial identification approach, in
contrast, we can put a prior on θ = h(g) directly without requiring point identification. The
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deduced posterior of θ nevertheless enables statistical inference. In particular, if point identi-
fication is indeed guaranteed, it can be inferred from the shape of the posterior distribution.
�

Example 1.2 (Quantile regression with endogenous censoring). In the model y = XT θ + ϵ
and Med(ϵ|X) = 0.5, only (I(y < c),min(y, c), X) is observed for some censoring variable c.
In particular, the censoring may arbitrarily depend on y and thus is endogenous. Though a
sufficient condition for the point identification of θ has been given in the literature (e.g., Khan
and Tamer 2009), it is stringent and also hard to verify. In contrast, a Bayesian procedure
nevertheless imposes a prior on θ and makes inference via the posterior distribution. On the
other hand, the posterior can help to check if point identification is indeed guaranteed. �

There are in general two Bayesian approaches for partially identified models currently
developed in the literature. The first one is based on a parametric likelihood function,
which is assumed to be known by econometricians up to a finite dimensional parameter.
This approach has been used frequently in the literature, see e.g., Moon and Schorfheide
(2012), Poirier (1998), Gustafson (2012), Bollinger and Hasselt (2009), Norets and Tang
(2012) among many others. However, econometric models usually only identify a set of
moment inequalities instead of the full likelihood function. Examples are: interval-censored
data, interval instrumental regression, asset pricing (Chernozhukov et al. 2008), incomplete
structural models (Menzel 2011) etc. Assuming a parametric form of the likelihood function
is therefore ad-hoc. Once the likelihood is mis-specified, the posterior can be misleading. The
second approach starts from a set of moment inequalities, and uses a moment-condition-based
likelihood such as the limited information likelihood (Kim 2002) and the exponential tilted
empirical likelihood (Schennach 2005). Further references may be found in Liao and Jiang
(2010), Kitagawa (2012) and Wan (2011). This approach avoids assuming the knowledge of
the true likelihood function. However, it does not have a probabilistic interpretation. The
use of moment-condition-based likelihoods makes this approach quasi-Bayesian, which uses
the Bayesian machinery for inference, see Chernozhukov and Hong (2003).

We propose a pure Bayesian procedure without assuming a parametric form of the true
likelihood function. Instead, we place nonparametric priors on the likelihood and obtain the
marginal posterior distribution for the partially identified parameter as well as the posterior
for the identified set. A similar Bayesian procedure was recently used in Florens and Simoni
(2011). As a result, our procedure is semi-parametric Bayesian that involves both finite and
infinite dimensional parameters. Our approach thus only requires a set of moment conditions
but still possesses a probabilistic interpretation.

Let θ denote the partially identified structural parameter. In addition, we assume that
there is a finite dimensional nuisance parameter ϕ that is point identified by the data gen-
erating process and that characterizes the identified set. In general, there are two ways in
the literature to specify a prior on θ. In the moment-condition-based model, as Kim (2002)
and Liao and Jiang (2010), the prior π(θ) is placed marginally, and does not need to take
into account the partial identification. Hence π(θ) can be supported on the entire parameter
space. In contrast, in the likelihood-based model as considered by Moon and Schorfheide
(2012) and Gustafson (2012), the prior π(θ|ϕ) is placed conditionally on ϕ, and needs to
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incorporate the partial identification structure by assuming it is supported only on the iden-
tified set, the latter being parametrized by ϕ. We further illustrate this difference in a simple
example of interval censoring.

Example 1.3 (Interval censored data). Suppose Y ∈ R is censored between Y1 and Y2.
We are interested in the structural parameter θ = EY , but only Y1 and Y2 are observable.
Let ϕ = (ϕ1, ϕ2)

′ = (E(Y1), E(Y2))
′, then θ is partially identified on Θ(ϕ) = [ϕ1, ϕ2]. The

moment-condition-based approach starts from a moment inequality model E(Y1 − θ) ≤ 0
and E(θ− Y2) ≤ 0, and places a prior π(θ) that is supported on the entire parameter space.
In contrast, the likelihood-based approach places a prior π(θ|ϕ) that is only supported on
[ϕ1, ϕ2]. Therefore, the latter’s prior specification takes into account the fact that Y is
censored in [Y1, Y2], while the first approach does not need so. �

In this paper we specify a conditional prior π(θ|ϕ) for θ given ϕ which incorporates
the partial identification structure as in the likelihood-based approach. Examples of such
priors include the uniform prior, truncated normal prior, and many priors that have bounded
support. Then, the unknown likelihood function is defined for ϕ only, where ϕ is a point-
identified nuisance parameter.

We provide a frequentist validation of our procedure. This means that we admit the
existence of a true value of the structural parameter and the identified set, and prove that
the posterior distribution concentrates asymptotically in a neighborhood of this true value.
This property is known as posterior consistency and is important because it guarantees that,
with a sufficiently large amount of data, we can almost surely recover the truth accurately.
Lack of consistency is particularly undesirable and a Bayesian procedure should not be used
if the corresponding posterior is inconsistent.

1.2 Highlights of our contributions

We highlight three distinguished features of our approach, which also illustrate our main
contributions.

Semi-parametric Bayesian partial identification

We endow the point identified nuisance parameter ϕ with a prior π(ϕ). The true like-
lihood function ln(ϕ) is defined on the support of ϕ. Without assuming any parametric
form for ln(·), we place a nonparametric prior π(ln) on the space of probability density (or
distribution) functions ln. The prior specification is completed by a conditional prior π(θ|ϕ)
which takes into account the partial identification structure. Therefore, the model contains
finite dimensional parameters (θ, ϕ) and an infinite dimensional parameter ln, where (ϕ, ln)
are point-identified nuisance parameters. The marginal posterior of θ is then given by

p(θ|Data) ∝
∫
π(θ|ϕ)π(ϕ)ln(ϕ)π(ln)dϕdln.

Such a semi-parametric posterior requires only a set of moment inequalities, and therefore
is a robust (and pure) Bayesian procedure.
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In partially identified models, inference may be carried out both for the structural pa-
rameter θ and for the identified set. The prior specification π(θ|ϕ) on θ plays a role only for
inference on θ.

We propose two types of priors on the point-identified parameter (ϕ, ln). The first con-
sists of a nonparametric prior on the distribution function of the data generating process,
with the Dirichlet process prior as an important example. Using this prior, the prior π(ϕ)
of the parameter ϕ can be recovered by viewing ϕ as a function of the distribution func-
tion. This prior is appealing when we have no prior information for ϕ. On the contrary,
if there is informative prior information for ϕ, it is more convenient to place an alternative
semi-parametric prior specified as the product of a prior on ϕ and a prior on the underlying
likelihood function ln. This type of prior on ln is usually specified on the space of proba-
bility density functions, and includes the finite mixture of normals and Dirichlet mixture of
normals as examples.

For these prior schemes, we show that asymptotically p(θ|Data) will be supported within
an arbitrarily small neighborhood of the true identified set, which is the notion of pos-
terior consistency under partial identification. Moreover, we construct the posterior for

the identified set, and show that asymptotically it concentrates within a
√

logn
n

Hausdorff-

neighborhood around the true identified set.

Support function

Our setup is similar to that of Moon and Schorfheide (2012) in that the identified set
is completely determined by the identified nuisance parameter ϕ, and hence can be written
as Θ(ϕ). Once the posterior of ϕ is determined, so is that of Θ(ϕ). For a definition of the
prior and posterior of Θ(ϕ) we refer to Florens and Simoni (2011) who define them in terms
of capacity functionals. To make inference on Θ(ϕ) we can take advantage of the fact that
when Θ(ϕ) is closed and convex it is completely characterized by its support function Sϕ(·)
defined as:

Sϕ(p) = sup
θ∈Θ(ϕ)

θTp

where p ∈ S
dim(θ), the unit sphere. Therefore, inference on Θ(ϕ) may be conveniently carried

out through inference on its support function. The posterior distribution of Sϕ(·) is also
determined by that of ϕ. We show that in a general moment inequality model, the support
function has an asymptotic linear representation in a neighborhood of the true value for

ϕ. The posterior of Sϕ(·) is shown to asymptotically concentrate within a
√

logn
n

sup-norm-

neighborhood around the support function of the true identified set. Moreover, we prove the
Bernstein-von Mises theorem, that is, the posterior distribution of the support function is
shown to be asymptotically normal. We also calculate the support function for a number of
interesting examples, including interval censored data, missing data, interval instrumental
regression and asset pricing model.
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Two-sided Bayesian credible sets for the identified set

We construct two types of Bayesian credible sets (BCS), one for the partially identified
parameter θ and the other for the identified set Θ(ϕ). In particular, the BCS for the identified
set is constructed based on the support function and is two-sided, that is, we find sets
Θ(ϕ̂M)−qτ/

√
n and Θ(ϕ̂M)−qτ/

√
n, where ϕ̂M is any consistent estimator of ϕ ( e.g. the posterior

mode of ϕ, see Section 6 for definitions) such that with probability one, P (Θ(ϕ̂M)−qτ/
√
n ⊂

Θ(ϕ) ⊂ Θ(ϕ̂M)qτ/
√
n|Data) = 1 − τ for credible level 1 − τ. It is found that the two-sided

BCS for the identified set have asymptotically correct coverage probability, in the sense that

PDn
(Θ(ϕ̂M)−qτ/

√
n ⊂ Θ(ϕ0) ⊂ Θ(ϕ̂M)qτ/

√
n) ≥ 1− τ + op(1)

where PDn
denotes the sampling probability. Therefore, Θ(ϕ̂M)−qτ/

√
n and Θ(ϕ̂M)−qτ/

√
n can

also be used as frequentist confidence sets for the identified set. The notation of Θ(ϕ̂M)−qτ/
√
n,

Θ(ϕ̂M)qτ/
√
n and qτ are to be formally defined in Section 6. On the other side, we find that

also in the semi-parametric Bayesian model, Moon and Schorfheide (2012)’s conclusion about
the BCS for the partially identified parameter θ still holds. Indeed, the BCS for the partially
identified parameter tends to be smaller than frequentist confidence sets in large samples.

Note that we consider a fixed data generating process (DGP). The constructed BCS has
asymptotically correct coverage probability for any specific DGP, and the uniformity issue as
in Andrews and Soares (2010) is not considered. In addition, all the results on the identified
set, support function and posterior consistency for θ are valid even when point identification
is actually achieved, that is, when Θ(ϕ) is a singleton.

1.3 Literature review

There is a growing literature on Bayesian partially identified models. Besides those
mentioned above, the list also includes Gelfand and Sahu (1999), Neath and Samaniego
(1997), Epstein and Seo (2011), Stoye (2012), Kline (2011), etc. There is also an extensive
literature from a frequentist point of view. A partial list includes Andrews and Guggenberger
(2009), Andrews and Soares (2010), Beresteanu, Molchanov and Molinari (2010), Bugni
(2010), Canay (2010), Chernozhukov, Hong and Tamer (2007), Chiburis (2009), Imbens and
Manski (2004), Romano and Shaikh (2010), Rosen (2008), Stoye (2010), among others. See
Tamer (2010) for a review.

When the identified set is closed and convex, the support function becomes one of the
useful tools to characterize its properties. Therefore the support function has been recently
introduced to study partially identified models, and the literature on this perspective has
been growing rapidly, see for example, Bontemps, Magnac and Maurin (2012), Beresteanu
and Molinari (2008), Beresteanu et al. (2012), Kaido and Santos (2012), Kaido (2012) and
Chandrasekhar et al. (2012).

1.4 Organization

The paper is organized as follows. Section 2 sets up the model and proposes two types
of prior specification on the underlying likelihood function. Section 3 achieves the posterior
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consistency for the (marginal) posterior distribution of the structural parameter. Section 4
derives the posterior consistency for the identified set and provide the concentration rate.
Section 5 studies the posterior of the support function in moment inequality models. In
particular, the Bernstein von Mises theorem for the support function is proved. Section 6
constructs the Bayesian credible sets for both the structural parameter and its identified set
and looks in detail at the missing data example. Section 7 discusses the case when point
identification is actually achieved. In this case, all the derived results on the identified set
and the support function are still valid. Section 8 applies the support function approach to
a financial asset pricing study. Finally, Section 9 concludes with further discussions. All the
proofs are given in the appendix.

2 General Setup of Bayesian Partially Identified Model

2.1 The Model

Econometric models often involve a finite dimensional structural parameter θ. In many
cases such a structural parameter is only partially identified by the data generating process
on a non-singleton set, which we call identified set. The goal of an econometrician is to make
inference on the partially identified parameter as well as the identified set based on the data.

Along with θ, the model also includes a finite dimensional nuisance parameter ϕ ∈ Φ that
is point identified by the data generating process. Here Φ denotes the parameter space for ϕ.
The point identified parameter often arises naturally as it characterizes the data distribution.
In most of partially identified models, the identified set is also characterized by ϕ, hence we
denote it by Θ(ϕ) to indicate that once ϕ is determined, so is the identified set. Let Θ denote
the parameter space for θ; we assume Θ(ϕ) ⊆ Θ.

We put a prior on (θ, ϕ), which induces a prior on the identified set Θ(ϕ) via ϕ. Due to
the identification feature, for any given ϕ ∈ Φ, the conditional prior π(θ|ϕ) is specified such
that

π(θ ∈ Θ(ϕ)|ϕ) = 1.

Our analysis focuses on the situation where Θ(ϕ) is a closed and convex set for each ϕ.
Therefore Θ(ϕ) can be uniquely characterized by its support function. Let d = dim(θ). For
any fixed ϕ, the support function for Θ(ϕ) is a function Sϕ(·) : Sd → R such that

Sϕ(p) = sup
θ∈Θ(ϕ)

θTp.

where Sd denotes the unit sphere in R
d. The support function plays a central role in convex

analysis since it determines all the characteristics of a convex set. For example, if θ ∈ Θ(ϕ),
then its kth component has bounds θk ∈ [−Sϕ(−ek), Sϕ(ek)], where ek is the kth standard
basis vector (a vector of all zeros, except for a one in the kth position). Also, θ ∈ Θ(ϕ) if
and only if pT θ ≤ Sϕ(p) for all p ∈ S

d.
Characterization and frequentist estimation of the identified set through its support func-

tion has been previously proposed by Bontemps et al. (2011) and Beresteanu et al. (2012)
and also used by Kaido and Santos (2011) among others. It is also one of the essential
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objects for our Bayesian inference. At the best of our knowledge a Bayesian estimation of
the support function of the identified set has not been proposed in the literature so far.

Similar to Θ(ϕ), we put a prior on Sϕ(·) via the prior on ϕ. In this paper we investigate
the asymptotic frequentist properties of the posterior distribution of the support function, as
well as those of θ and of Θ(ϕ), including the posterior concentration rates and the Bernstein
von Mises theorem as in Bickel and Kleijn (2012). In addition, we carry out Bayesian
inferences by constructing two-sided Bayesian credible sets for the identified set Θ(ϕ) based
on the support function.

Before formalizing our Bayesian setup, let us present a few examples that have received
much attention in partially identified econometric models literature.

Example 2.1 (Interval censored data - continued). Let (Y, Y1, Y2) be a 3-dimensional ran-
dom vector such that Y ∈ [Y1, Y2] with probability 1. The random variables Y1 and Y2
are observed while Y is unobservable (see, e.g., Moon and Schorfheide 2012). We denote:
θ = E(Y ) and ϕ = (ϕ1, ϕ2)

′ := (E(Y1), E(Y2))
′. Therefore, we have the following identified

set for θ: Θ(ϕ) = [ϕ1, ϕ2]. The support function for Θ(ϕ) is easy to derive:

Sϕ(1) = ϕ2, Sϕ(−1) = −ϕ1.

�

Example 2.2 (Interval regression model). The regression model with interval censoring has
been studied by, for example, Haile and Tamer (2003), etc. Let (Y, Y1, Y2) be a 3-dimensional
random vector such that Y ∈ [Y1, Y2] with probability 1. The random variables Y1 and Y2
are observed while Y is unobservable. Assume that

Y = XT θ + ϵ

where X is a vector of observable regressors. In addition, assume there is a d-dimensional
vector of nonnegative exogenous variables Z such that E(Zϵ) = 0. Here Z can be either a
vector of instrumental variables when X is endogenous, or a nonnegative transformation of
X when X is exogenous. It follows that

E(ZY1) ≤ E(ZY ) = E(ZXT )θ ≤ E(ZY2). (2.1)

We denote ϕ = (ϕ1, ϕ2, ϕ3) with (ϕT
1 , ϕ

T
3 ) = (E(ZY1)

T , E(ZY2)
T ) and ϕ2 = E(ZXT ). Then

the identified set for θ is given by Θ(ϕ) = {θ ∈ Θ : ϕ1 ≤ ϕ2θ ≤ ϕ3}. Suppose ϕ−1
2 exists. The

support function for Θ(ϕ) is given by (for sgn(x) = I(x > 0)− I(x < 0))1:

Sϕ(p) = pTϕ−1
2

(
ϕ1 + ϕ3

2

)
+ αT

p

(
ϕ3 − ϕ1

2

)
, p ∈ S

d

where αp = ((pTϕ−1
2 )1sgn(p

Tϕ−1
2 )1, ..., (p

Tϕ−1
2 )dsgn(p

Tϕ−1
2 )d)

T .
�

1See Appendix A for detailed derivations of the support function in this example. Similar results but in
a slightly different form are presented in Bontemps et al. (2012).
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Example 2.3 (missing data). Consider a bivariate random vector (Y,M) where M is a
binary random variable which takes the value M = 1 when Y is missing and 0 otherwise.
The parameter of interest is the marginal distribution FY of Y : θ = FY (y). This problem
without the missing-at-random assumption has been extensively studied in the literature,
see for example, Manski and Tamer (2002), Manski (2003), etc. Let F and FM denote
respectively the joint distribution of (Y,M) and marginal distribution of M . Moreover,
FY |M denotes the conditional distribution of Y given M . By the Law of Total Probability:
θ = FY |M(y|M = 0)FM(M = 0) + FY |M(y|M = 1)FM(M = 1). Since FY |M(y|M = 1)
cannot be recovered from the data then the empirical evidence partially identifies θ and θ is
characterized by the following moment restrictions:

F (y,M = 0) ≤ θ ≤ F (y,M = 0) + FM(M = 1).

Here ϕ = (F (y,M = 0), FM(M = 1)) = (ϕ1, ϕ2). The identified set is Θ(ϕ) = [ϕ1, ϕ1 + ϕ2].
and it support function is: Sϕ(1) = ϕ1 + ϕ2, Sϕ(−1) = −ϕ1. �

2.2 Semi-parametric Bayesian Setup

Let F denote the distribution function for the observed data, which is point identified
by the data generating process. In a parametric Bayesian partially identified model as in
Poirier (1998), Gustafson (2005, 2012) and Moon and Schorfheide (2012), F is linked with
a known likelihood function for ϕ. Therefore the model is parametric and one does not put
priors on F . For example, in the interval censored data Example 2.1, if we know that Y1
and Y2 are jointly normal with mean (ϕ1, ϕ2) and a known covariance matrix Σ. Then the
likelihood function is given by

l(ϕ) = (2π det(Σ))−n/2 exp

(
−1

2

n∑

i=1

(Y1i − ϕ1, Y2i − ϕ2)Σ
−1(Y1i − ϕ1, Y2i − ϕ2)

T

)

where {(Y1i, Y2i)}ni=1 is a set of i.i.d. realizations of (Y1, Y2). Then F is the cdf of a bivariate
normal distribution with mean vector ϕ and covariance Σ. The standard Bayesian approach
for a partially identified model (parametric) proceeds by specifying a joint prior distribution
π(θ, ϕ) and obtains the marginal posterior for θ:

p(θ|{(Y1i, Y2i)}ni=1) ∝
∫

Φ

π(θ, ϕ)l(ϕ)dϕ.

However, like for usual point identified models, assuming a known likelihood function may
suffer from a model specification problem, and may lead to very misleading results. Instead,
econometric applications often involve only a set of moment conditions as (2.1). This gives
rise to the so-called moment inequality models, e.g., Chernozhukov, Hong and Tamer (2007),
Bugni (2010), Liao and Jiang (2010), Andrews and Soares (2010), Kaido and Santos (2011),
and many other references therein. A parametric form of the likelihood function and of F is
unavailable in these models, and ad-hoc assumptions that make the model parametric can
result to severe misleading conclusions.
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A much more robust approach is to proceed without assuming a parametric form for the
likelihood function, but put a prior on F instead. This yields to the semi-parametric Bayesian
setup. The statistical model therefore contains three parameters: the structural parameter
of interest θ, a finite dimensional nuisance parameter ϕ which can be point identified by the
DGP, and a nuisance infinite dimensional parameter F which characterizes the distribution
of the data.

A further distinction among the parameters may be done on the basis of identification: the
identified parameters (ϕ, F ), which characterize the sampling distribution of the observable
random variables, and the partially identified parameter θ, which is linked to the sampling
distribution through ϕ. We have to take this difference into account when we construct the
prior distribution for the model parameters. Therefore, the prior distribution is naturally
decomposed into a marginal prior for the identified parameter and a conditional prior for θ
given the identified parameter such that

π(θ ∈ Θ(ϕ)|ϕ) = 1.

We specify a conditional prior distribution for θ given ϕ taking the form

π(θ|ϕ) ∝ Iθ∈Θ(ϕ)g(θ)

where g(·) is some probability density function with respect to the Lebesgue measure and
Iθ∈Θ(ϕ) is the indicator function of Θ(ϕ) which takes the value 1 if θ ∈ Θ(ϕ). By construction
this prior puts all its mass on Θ(ϕ), ∀ϕ ∈ Φ.

Below we describe two possible ways to specify the prior on (ϕ, F ): a fully nonpara-
metric prior and a semi-parametric prior. The first prior scheme consists in placing a fully
nonparametric prior on F which induces a prior on ϕ through a transformation ϕ = ϕ(F ).
When there is more informative prior information for ϕ directly, it is more convenient to
place a prior on (ϕ, η) where η is an infinity-dimensional nuisance parameter (often a density
function) that is independent of ϕ a priori and that characterizes F . The prior on (ϕ, F ) is
then deduced from the prior on (ϕ, η).

Below we formally define these two prior specifications. An illustrative example is given
in Section 2.3. Let X denote the observable random variable for which we have n i.i.d.
observations Dn = {Xi}ni=1. Let (X ,Bx, F ) denote a probability space in which X takes
values. Let F denote the set of probability measures on (X ,BX), which is also the parameter
space of F .

2.2.1 Nonparametric prior

Since ϕ is point identified, we assume it can be rewritten as a measurable function of F
as ϕ = ϕ(F ), for instance ϕ = E(X) =

∫
xF (dx). A possible way to construct the prior

distribution consists of specifying a nonparametric prior distribution for F and then deduce
from it the prior distribution for ϕ via ϕ(F ). The Bayesian experiment is

X|F ∼ F, F ∼ π(F ), θ|ϕ = ϕ(F ) ∼ π(θ|ϕ(F ))
The prior distribution π(F ) is a distribution on F . Examples of such a prior include
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Dirichlet process priors (Ferguson (1973)) and Polya tree (Lavine (1992)). The case where
π(F ) is a Dirichlet process prior in partially identified models has been proposed by Florens
and Simoni (2011).

Conditionally on ϕ, the data are completely uninformative about θ: the prior distribution
of θ is revised by the data only through the information brought by the identified parameter
ϕ(F ). Indeed, since ϕ(F ) is identified, it is straightforward to show that the posterior of θ
conditional on ϕ(F ) satisfies

p(θ|ϕ(F ), Dn) = π(θ|ϕ(F )).

(see Poirier (1998), who called the data to be conditionally uninformative for θ given ϕ).
Let p(F |Dn) denote the marginal posterior of F which, by abuse of notation, can be written
p(F |Dn) ∝ π(F )

∏n
i=1 F (Xi). The posterior distribution of ϕ, Θ(ϕ), Sϕ(·) are deduced from

the posterior of F . Then, for any measurable set B ⊂ Θ, the marginal posterior probability
of θ is given by, averaging over F :

P (θ ∈ B|Dn) =

∫

F
P (θ ∈ B|ϕ(F ), Dn)p(F |Dn)dF

=

∫

F
π(θ ∈ B|ϕ(F ))p(F |Dn)dF = E[π(θ ∈ B|ϕ(F ))|Dn] (2.2)

where the conditional expectation is taken with respect to the posterior of F . The corre-
sponding marginal posterior density function of θ will be denoted by p(θ|Dn).

2.2.2 Semi-parametric prior

Alternatively, instead of modeling F nonparametrically, we could reformulate the model
and parameterize the sampling distribution F in terms of a finite-dimensional parameter
ϕ ∈ Φ and a nuisance parameter η ∈ P , where P is an infinite-dimensional measurable
space. Therefore, F = {Fϕ,η;ϕ ∈ Φ, η ∈ P}. When we consider the frequentist properties of
the posterior distribution, we assume there is a fixed true value for F , denoted by F0. Since
both ϕ and F are identified then there exist unique ϕ0 ∈ Φ and η0 ∈ P such that F0 = Fϕ0,η0 ,
where ϕ0 and η0 denote the true values of ϕ and η. Denote by ln(ϕ, η) the model’s likelihood
function.

One of the appealing features of this semi-parametric approach is that it allows us to
impose a prior π(ϕ) directly on the identified parameter ϕ, which is convenient whenever we
have good prior information regarding ϕ. In contrast, a nonparametric prior specification
may be inconvenient to incorporate subjective prior information.

For instance, in the interval censored data example, we can write

Y1 = ϕ1 + u, Y2 = ϕ2 + v

u ∼ f1, v ∼ f2,

where both u and v are random errors with zero mean and unknown density functions
f1 and f2 such that u ∥ v|f1, f2 and the supports of the corresponding distributions of
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Y1, Y2|ϕ1, ϕ2, f1, f2 are disjoint2. Then η = (f1, f2), and the likelihood function is

ln(ϕ, η) =
n∏

i=1

f1(Y1i − ϕ1)f2(Y2i − ϕ2).

We put priors on (ϕ, f1, f2). This is a location-model studied for instance by Ghosal et al.
(1999) and Amewou-Atisso et al. (2003). Examples of priors on density functions f1 and f2
include mixture of Dirichlet process priors, Gaussian process priors, etc.

The joint prior distribution π(θ, ϕ, η) is naturally decomposed as

π(θ, ϕ, η) = π(θ|ϕ)× π(ϕ, η). (2.3)

We place an independent prior on (ϕ, η) as π(ϕ, η) = π(ϕ)π(η). Therefore, the Bayesian
experiment is

X|ϕ, η ∼ Fϕ,η, (ϕ, η) ∼ π(ϕ, η) = π(ϕ)× π(η), θ|ϕ, η ∼ π(θ|ϕ).

The posterior distribution of ϕ has a density function given by

p(ϕ|Dn) ∝
∫

P
π(ϕ, η)ln(ϕ, η)dη. (2.4)

Then the marginal posterior of θ is, for any measurable set B ∈ Θ:

P (θ ∈ B|Dn) ∝
∫

Φ

∫

P
π(θ ∈ B|ϕ)π(ϕ, η)ln(ϕ, η)dηdϕ. (2.5)

Moreover, the corresponding posterior density function is: p(θ|Dn) =
∫
Φ
π(θ|ϕ)p(ϕ|Dn)dϕ.

where p(ϕ|Dn) has been defined in (2.4). The posteriors of Θ(ϕ) and Sϕ(·) are deduced from
that of ϕ. Suppose for example we are interested in whether Θ(ϕ) ∩ A is an empty set for
some A ⊂ Θ, we then look at the posterior probability

P (Θ(ϕ) ∩ A|Dn) =

∫
{ϕ:Θ(ϕ)∩A=∅}

∫
P π(ϕ)π(η)ln(ϕ, η)dηdϕ∫

Φ

∫
P π(ϕ)π(η)ln(ϕ, η)dηdϕ

.

The finite-dimensional posterior distribution of the support function Sϕ(·) is the distribution
P (Sϕ(pi) ∈ Ai, for 1 ≤ i ≤ k), k ∈ N, for every (p1, . . . , pk) such that pi ∈ S

d, i = 1, . . . , k,
and for every product of measurable sets Ai in R.

Example 2.4 (Interval regression model - continued). Consider Example 2.2, where ϕ =

2In order to implement this we have two possibilities. Let [u, u] and [v, v] denote the supports of f1 and
f2 and [ϕ

1
, ϕ1] and [ϕ

2
, ϕ2] denote the supports of ϕ1 and ϕ2, respectively. First, we can specify a conditional

prior π(f1, f2|ϕ1, ϕ2) such that u+ ϕ1 ≤ v + ϕ
2
. A second possibilities is to specify a independent prior on

(f1, f2) and on (ϕ1, ϕ2) such that u ≤ v and ϕ1 ≤ ϕ
2
.
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(ϕ1, ϕ2, ϕ3) = (E(ZY1), E(ZXT ), E(ZY2)). Write

ZY1 = ϕ1 + u1, ZY2 = ϕ3 + u3, vec(ZXT ) = vec(ϕ2) + u2,

where u1, u2 and u3 are correlated and their joint unknown probability density function is
η(u1, u2, u3). The likelihood function is then

ln(ϕ, η) =
n∏

i=1

η(ZiY1i − ϕ1, ZiY2i − ϕ3, vec(ZiX
T
i )− vec(ϕ2)).

�

Many nonparametric priors can be used for π(η) in the location-model of the type of
Example 2.4, where ln(ϕ, η) =

∏n
i=1 η(Xi − ϕ), or of the type of the interval data example.

The next examples show three possible ways for constructing priors π(η) on probability
density functions.

Example 2.5. The finite mixture of normals (e.g., Lindsay and Basak (1993), Ray and
Lindsay (2005)) assumes η to take the form

η(x) =
k∑

i=1

wih(x;µi,Σi)

where h(x;µi,Σi) is the density of a multivariate normal distribution with mean µi and
variance Σi and {wi}ki=1 are unknown weights such that

∑k
i=1wiµi = 0. Then

∫
η(x)xdx =∑k

i=1wi

∫
h(x;µi,Σi)xdx = 0. We impose prior π(η) = π({µl,Σl, wl}kl=1), then

p(ϕ|Dn) ∝
∫

P
π(ϕ)π(η)

n∏

i=1

η(Xi − ϕ)dη

=

∫
π(ϕ)

n∏

i=1

k∑

j=1

wjh(Xi − ϕ;µj,Σj)π({µl,Σl, wl}kl=1)dwjdµjdΣj.

�

Example 2.6. Dirichlet mixture of normals (e.g., Ghosal, Ghosh and Ramamoorthi (1999)
Ghosal and van der Vaart (2001), Amewou-Atisso, et al. (2003)) assumes

η(x) =

∫
h(x− z; 0,Σ)dH(z)

where h(x; 0,Σ) is the density of a multivariate normal distribution with mean zero and
variance Σ and H is a probability distribution such that

∫
zH(z)dz = 0. Then

∫
xη(x)dx =

0. To place a prior on η, we let H have the Dirichlet process prior distribution Dα ≡
D(ν0, Q0) where α is a finite positive measure, ν0 = α(X ) ∈ R+ and Q0 = α/α(X ) is a base
probability on (X ,Bx) such that Q0(x) = 0, ∀x ∈ (X ,Bx). In addition, we place a prior on
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Σ independent of the prior on H. Then

p(ϕ|Dn) ∝
∫
π(ϕ)π(Σ)Dα(H)

n∏

i=1

∫
h(Xi − ϕ− z; 0,Σ)dH(z)dΣdH.

�

Example 2.7. Random Bernstein polynomials (e.g., Walker et al. (2007) and Ghosal (2001))
admits a density function

η(x) =
k∑

j=1

[H(j/k)−H((j − 1)/k)]Be(x; j, k − j + 1),

where Be(x; a, b) stands for the beta density with parameters a, b > 0 and H is a random
distribution function with prior distribution assumed to be a Dirichlet process. Moreover,
the parameter k is also random with a prior distribution independent of the prior on H.
Then p(ϕ|Dn) ∝

∫
π(ϕ)

∏n
i=1 η(Xi − ϕ)π(H)π(k)dHdk. �

Besides, other commonly used priors are wavelet expansions (Rivoirard and Rousseau
(2012)), Polya tree priors (Lavine (1992)), Gaussian process priors (van der Vaart and van
Zanten (2008), Castillo (2008)), etc.

2.3 Interval censored data: an example

For illustration purposes, we consider a simple version of the interval censored data
example 2.1 where Y2 = Y1 + 1 and only Y1 is observable, i.e. Y1 ≡ X in our general
notation. Let ϕ = EY1 and θ = EY , then the identified set is Θ(ϕ) = [ϕ, ϕ + 1]. Let
F denote the marginal distribution of Y1. Then a more formal way to write ϕ should be
ϕ = ϕ(F ) = E(Y1|F ).

Let us specify a Dirichlet process prior for F : π(F ) = Dir(ν0, Q0), where ν0 ∈ R+ and
Q0 is a base probability on (X ,Bx) such that Q0(x) = 0, ∀x ∈ (X ,Bx). By using the
stick-breaking representation (see Sethuraman (1994)), the deduced prior distribution of
the transformation ϕ(F ) is

π(ϕ ∈ A) = P

( ∞∑

j=1

αjξj ∈ A

)
, ∀A ⊂ Φ

where {ξj}j≥1 denote independent drawings from Q0, αj = vj
∏j

l=1(1 − vl) with {vl}l≥1

independent drawings from a Beta distribution Be(1, ν0) and {vl}l≥1 are independent of
{ξj}j≥1. The posterior distribution of F is still a Dirichlet process: p(F |Dn) = Dir(νn, Qn),

with νn = ν0 + n, and Qn = ν0
ν0+n

Q0 +
n

ν0+n
F̂ , where F̂ is the empirical distribution of the

sample (Y11, . . . , Y1n). The posterior distribution of the transformation ϕ(F ) is

P (ϕ ∈ A|Dn) = P

(
ρ

n∑

j=1

βjY1j + (1− ρ)
∞∑

j=1

αjξj ∈ A
∣∣∣Dn

)
, ∀A ⊂ Φ,
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where ρ is drawn from a Beta distribution Be(n, ν0) independently of the other quantities
and (β1, . . . , βn) are drawn from a Dirichlet distribution with parameters (1, . . . , 1) on the
simplex Sn−1 of dimension (n − 1). With the prior π(θ|ϕ) ∝ Iθ∈Θ(ϕ)g(θ), the marginal

posterior density function of θ evaluated at some fixed θ̃ is

p
(
θ̃|Dn

)
∝

∫

F
I
(
θ̃ ∈ [ϕ, ϕ+ 1]

)
g
(
θ̃
)
p(F |Dn)dF

= g
(
θ̃
)
P
(
ϕ(F ) ≤ θ̃ ≤ ϕ(F ) + 1

∣∣∣Dn

)

= g
(
θ̃
)
P

(
θ − 1 ≤ ρ

n∑

j=1

βjY1j + (1− ρ)
∞∑

j=1

αjξj ≤ θ
∣∣∣Dn

)
.

The alternative semi-parametric prior can be formulated as follows. Define u = Y1 −
ϕ1, and assume u has a continuous density f . The likelihood is thus given by ln(ϕ, f) =∏n

i=1 f(Yi−ϕ). We place any parametric prior π(ϕ) on ϕ and a Dirichlet mixture of normals
prior on f , which assumes f(u) =

∫
h(u − z; 0, σ2)dH(z) where H is a probability measure

that has a Dirichlet process prior Dα and σ2 is a variance parameter for the normal mixtures
that has an inverse Gamma prior (see Example 2.6 for details). We then obtain the posterior

p(ϕ|Dn) ∝
∫
π(ϕ)π(σ2)Dα(H)

n∏

i=1

∫
h(Yi − ϕ− z; 0, σ2)dH(z)dσ2dH.

The marginal posterior density function of θ evaluated at some fixed θ̃ is

p(θ̃|Dn) ∝ g(θ̃)P (θ̃ − 1 < ϕ < θ̃|Dn).

3 Posterior Consistency for θ

In Bayesian analysis, one starts with a prior knowledge (sometimes uninformative) on
the parameter and updates it according to the marginal posterior given the data. In classical
point identified parametric and semi-parametric models, under mild assumptions the poste-
rior is asymptotically normal due to the Bernstein von Mises theorem and hence its shape
is not affected anymore asymptotically by the prior specification. In contrast, the shape of
the posterior of a partially identified parameter still relies upon its prior distribution (see
Poirier (1998)) even asymptotically. Only the support of the prior distribution of θ (given
ϕ) is revised after data are observed and eventually converges towards the true identified
set asymptotically. This corresponds to frequentist consistency of the posterior for partially
identified parameters and is due to the fact that the point-identified parameter ϕ completely
characterizes the support.

We assume there is a true value of ϕ, denoted by ϕ0, which induces a true identified set
Θ(ϕ0) and a true F , denoted by F0. Our goal is to achieve the frequentist posterior consis-
tency for the partially identified parameter: that is, for any ϵ > 0 there exists a τ ∈ (0, 1]
such that
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P (θ ∈ Θ(ϕ0)
ϵ|Dn) →p 1 and P (θ ∈ Θ(ϕ0)

−ϵ|Dn) →p (1− τ)

where

Θ(ϕ)ϵ = {θ ∈ Θ : d(θ,Θ(ϕ)) ≤ ϵ} (3.1)

is the ϵ-envelope of Θ(ϕ) and

Θ(ϕ)−ϵ = {θ ∈ Θ(ϕ) : d(θ,Θ\Θ(ϕ)) ≥ ϵ} (3.2)

is the ϵ-contraction of Θ(ϕ) with Θ\Θ(ϕ) = {θ ∈ Θ; θ /∈ Θ(ϕ)} and d(θ,Θ(ϕ)) = infx∈Θ(ϕ) ∥θ−
x∥, see e.g. Molchanov (2005) and Chernozhukov, Hong and Tamer (2007). Thus, poste-
rior (or frequentist) consistency for a partially identified parameter means that the pos-
terior distribution of θ puts all its mass on a set whose boundaries belongs to the set
{θ ∈ Θ; d(θ; ∂Θ(ϕ0)) ≤ ϵ} where ∂Θ(ϕ0) denotes the boundary of Θ(ϕ0). Posterior con-
sistency is one of the benchmarks of a Bayesian procedure under consideration, which en-
sures that with a sufficiently large amount of data, it is nearly possible to discover the
truth identified set. Therefore lack of consistency is extremely undesirable. Liao and Jiang
(2010, 2011) studies the posterior consistency for partially identified models, however, with
a pseudo likelihood function whose probabilistic interpretation is still in question3. More
recently, Kitagawa (2011) considered the posterior consistency for Θ(ϕ) in terms of the pos-
terior lower probability when the parametric form of the likelihood is known.

We recall that the conditional prior on θ (given ϕ) is specified as

π(θ|ϕ) ∝ g(θ)Iθ∈Θ(ϕ) (3.3)

for some g(θ). In the special case where θ is point identified, then {θ} = Θ(ϕ) becomes a
function of ϕ, whose prior is completely determined by that of ϕ instead of by (3.3).

In this section we focus on the frequentist consistency of the marginal posterior of θ
(marginalized with respect to the posterior of ϕ). We will investigate the posterior concen-
tration rate of Θ(ϕ) and Sϕ(·) in subsequent sections. For a measurable set B ⊂ Θ, the
marginal posterior probability is given by (2.2):

p(θ ∈ B|Dn) =

∫

F
π(θ ∈ B|ϕ(F ))p(F |Dn)dF

when the prior on ϕ is induced by the nonparametric prior specified on F , and by (2.5):

p(θ ∈ B|Dn) =

∫

Φ

π(θ ∈ B|ϕ)p(ϕ|Dn)dϕ

when the prior on ϕ is specified through a semi-parametric prior as described in section
2.2.2. Recall that F and ϕ are point-identified and frequentist asymptotic properties of the
marginal posterior of θ rely on frequentist asymptotic properties of the posterior of F and
ϕ. Therefore, we assume that the priors π(F ) and π(ϕ) specified for F and ϕ are such that
the corresponding posterior distributions are consistent:

3See Schennach (2005) for discussions of probabilistic interpretations of pseudo likelihood functions.
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Assumption 3.1. At least one of the following holds:

(i). The measurable function ϕ : F → Φ is continuous and the prior π(F ) is such that the
posterior p(F |Dn) satisfies:

∫

F
m(F )p(F |Dn)dF →p

∫

F
m(F )δF0(dF )

for any bounded and continuous function m(·) on F where δ is the Dirac function, and
F0 is the true distribution function of X;

(ii). the prior π(ϕ) is such that the posterior p(ϕ|Dn) satisfies:

∫

Φ

m(ϕ)p(ϕ|Dn)dϕ→p

∫

Φ

m(ϕ)δϕ0(dϕ)

for any bounded and continuous function m(·) on Φ.

Assumptions 3.1 (i) and (ii) correspond to the nonparametric and semi-parametric prior,
respectively and are verified by many nonparametric and semi-parametric priors. Exam-
ples are: Dirichlet process priors, Polya Tree process priors, Gaussian process priors, etc.
We refer to Ghosh and Ramamoorthi (2003) for examples and sufficient conditions for
posterior consistency. For instance, when π(F ) is the Dirichlet process prior, the sec-
ond part of Assumption 3.1 (i) was proved in Ghosh and Ramamoorthi (2003, Theorem
3.2.7). The condition that ϕ(F ) is continuous in F is verified in many examples rele-
vant for applications. For instance, in example 2.1, ϕ(F ) = E(Y |F ) and in example 2.2,
ϕ(F ) = (E(ZY1|F ), E(ZXT |F ), E(ZY2|F )), which are all linear functionals of F .

Assumption 3.2. For any ϵ > 0 there are measurable sets A1, A2 ⊂ Φ such that
0 < π(ϕ ∈ Ai) ≤ 1, i = 1, 2 and
(i) for all ϕ ∈ A1, Θ(ϕ0)

ϵ ∩Θ(ϕ) ̸= ∅; for all ϕ /∈ A1, Θ(ϕ0)
ϵ ∩Θ(ϕ) = ∅,

(ii) for all ϕ ∈ A2, Θ(ϕ0)
−ϵ ∩Θ(ϕ) ̸= ∅; for all ϕ /∈ A2, Θ(ϕ0)

−ϵ ∩Θ(ϕ) = ∅.

This assumption allows us to prove the posterior consistency without assuming the prior
π(θ|ϕ) to be a continuous function of ϕ, and therefore priors like Iϕ1<θ<ϕ2 in the interval
censoring data example are allowed. Under this assumption and if the conditional prior
π(θ|ϕ) is a regular conditional distribution, the conditional prior probability of the ϵ-envelope
(and of the ϵ-contraction) of the identified set can be approximated by a continuous function,
i.e., there is a sequence of bounded and continuous functions hm(ϕ) such that (see lemma
C.1 in the appendix) almost surely in ϕ:

π(θ ∈ Θ(ϕ0)
ϵ|ϕ) = lim

m→∞
hm(ϕ).

A similar approximation holds for the conditional prior of the ϵ-contraction π(θ ∈ Θ(ϕ0)
−ϵ|ϕ).

Assumption 3.2 is satisfied as long as the identified set Θ(ϕ) is compact and the prior of ϕ
is spread over a large support of the parameter space.
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Assumption 3.3. For any ϵ > 0, and ϕ ∈ Φ, π(θ ∈ Θ(ϕ)−ϵ|ϕ) < 1.

This is an assumption on the prior for θ, which means the identified set should be sharp
with respect to the prior information. Roughly speaking, the support of the prior should
not be a proper subset of any ϵ-contraction of the identified set Θ(ϕ). If otherwise the
prior information restricts θ to be inside a strict subset of Θ(ϕ) so that Assumption 3.3 is
violated, then that prior information should be taken into account and we should shrink
Θ(ϕ) to a sharper set. In the special case when θ is point identified (Θ(ϕ) is a singleton),
the ϵ-contraction is empty and thus π(θ ∈ Θ(ϕ)−ϵ|ϕ) = 0.

The following theorem gives the posterior consistency for partially identified parameters.

Theorem 3.1. Let π(θ|ϕ) be a regular conditional distribution. Under assumptions 3.1-3.3,
for any ϵ > 0, there is τ ∈ (0, 1] such that

P (θ ∈ Θ(ϕ0)
ϵ|Dn) →p 1 and P (θ ∈ Θ(ϕ0)

−ϵ|Dn) →p (1− τ).

4 Posterior consistency for Θ(ϕ)

Let ϕ0 be the true value of ϕ, which corresponds to the true identified set Θ(ϕ0). The
estimation accuracy of the identified set is often measured, in the literature, by the Hausdorff
distance. Specifically, for a point a and a set A, let d(a,A) = infx∈A ∥a − x∥, where ∥ · ∥
denotes the Euclidean norm. The Hausdorff distance between sets A and B is defined as

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
= max

{
sup
a∈A

inf
b∈B

∥a− b∥, sup
b∈B

inf
a∈A

∥b− a∥
}
.

It follows immediately that dH(A,B) = dH(B,A) and when both A and B are compact,
dH(A,B) = 0 if and only if A = B. This section aims at deriving the rate rn = o(1) such
that for some constant C > 0,

P (dH(Θ(ϕ),Θ(ϕ0)) < Crn|Dn) →p 1.

The above result is based upon the posterior concentration rate for ϕ – in the sense that
rn is the same as the concentration rate for ϕ – as well as some continuity condition on
dH(Θ(ϕ),Θ(ϕ0)) with respect to ϕ.

In a semi-parametric Bayesian model where ϕ is point identified and either a nonpara-
metric or a semi-parametric prior is placed, the posterior of ϕ achieves a near-parametric
concentration rate under proper conditions on the prior. Since our goal is to study the pos-
terior of Θ(ϕ) and θ instead of ϕ, we state a high level assumption on the posterior of ϕ as
follows instead of deriving it from more general conditions. More formal derivations of this
assumption will be presented in appendix B.

Assumption 4.1. The marginal posterior of ϕ is such that

P (∥ϕ− ϕ0∥ ≤ Cn−1/2(log n)1/2|Dn) →p 1.
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This assumption is imposed for both kinds of priors described in Section 2, and is a
standard result in semi-nonparametric Bayesian literature. If we place a nonparametric
prior on F as described in Section 2.2.1, this assumption becomes

P (∥ϕ(F )− ϕ(F0)∥ ≤ Cn−1/2(log n)1/2|Dn) →p 1.

Primitive conditions for the validity of this case can be found in a recent work by Rivoirard
and Rousseau (2012). On the other hand, if we parametrize the model in F = {Fϕ,η :
ϕ ∈ Φ, η ∈ P} as described in Section 2.2.2, with η being an infinite-dimensional nuisance
parameter, a sufficient condition for Assumption 4.1 is found in both Bickel and Kleijn
(2012) and the appendix of this paper.

Instead of assuming continuity of dH(Θ(ϕ),Θ(ϕ0)) with respect to ϕ, which is sufficient
in order to get the concentration rate of Θ(ϕ), we place less demanding assumption that still
allow us to get the concentration rate. With this aim, we consider a more specific partially
identified model: the moment inequality model, which assumes that θ satisfies k moment
restrictions:

Ψ(θ, ϕ) ≤ 0, Ψ(θ, ϕ) = (Ψ1(θ, ϕ), ...,Ψk(θ, ϕ))
T (4.1)

where Ψ : Θ×Φ → R
k is a known function of (θ, ϕ). The model depends on the data X via

the point identified parameter ϕ. In the moment inequality model, the identified set can be
characterized as:

Θ(ϕ) = {θ ∈ Θ : Ψ(θ, ϕ) ≤ 0}. (4.2)

Since most of the partially identified models can be characterized as moment inequality mod-
els, model (4.1)-(4.3) has received extensive attention in the partially identified literature.

Assumption 4.2. The parameter space Θ× Φ is compact.

Assumption 4.3. {Ψ(θ, ·) : θ ∈ Θ} is Lipschitz equi-continuous on Φ, that is, for some
K > 0, ∀ϕ1, ϕ2 ∈ Φ,

sup
θ∈Θ

∥Ψ(θ, ϕ1)−Ψ(θ, ϕ2)∥ ≤ K∥ϕ1 − ϕ2∥.

Given the compactness of Θ, this assumption is satisfied by many interesting examples
of moment inequality models.

Assumption 4.4. There exists a closed neighborhood U(ϕ0) of ϕ0, such that for any an =
O(1), and any ϕ ∈ U(ϕ0), there exists Cϕ > 0 that might depend on ϕ,

inf
θ:d(θ,Θ(ϕ))≥Cφan

max
i≤k

Ψi(θ, ϕ) > an.

Intuitively, when θ is bounded away from Θ(ϕ) (up to a rate an), at least one of the mo-
ment inequalities is violated, which means maxi≤k Ψi(θ, ϕ) > 0. This assumption quantifies
how much maxi≤k Ψi(θ, ϕ) will depart from zero. This is a sufficient condition for the partial
identification condition in Chernozhukov, Hong and Tamer (2007). If we define

Q(θ, ϕ) = ∥max(Ψ(θ, ϕ), 0)∥ =

[
k∑

i=1

(max(Ψi(θ, ϕ), 0))
2

]1/2
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thenQ(θ, ϕ) = 0 if and only if θ ∈ Θ(ϕ). The partial identification condition in Chernozhukov
et al. (2007, Condition (4.5)) assumes that there exists K > 0 so that for all θ,

Q(θ, ϕ) ≥ Kd(θ,Θ(ϕ)), (4.3)

which says Q should be bounded below by a number proportional to the distance from the
identified set if θ is bounded away from the identified set. Assumption 4.4 is a sufficient
condition for (4.3).

Example 4.1 (Interval censored data - continued). In the interval censoring data example,
Ψ(θ, ϕ) = (θ − ϕ2, ϕ1 − θ)T , for any ϕ = (ϕ1, ϕ2) and ϕ̃ = (ϕ̃1, ϕ̃2), ∥Ψ(θ, ϕ) − Ψ(θ, ϕ̃)∥ =
∥ϕ− ϕ̃∥. This verifies Assumption 4.3. Moreover, for any θ such that d(θ,Θ(ϕ)) ≥ an, either
θ ≤ ϕ1 − an or θ ≥ ϕ2 + an. If θ ≤ ϕ1 − an, then Ψ2(θ, ϕ) = ϕ1 − θ ≥ an; if θ ≥ ϕ2 + an, then
Ψ1(θ, ϕ) = θ − ϕ2 ≥ an. This verifies Assumption 4.4. �

The following theorem shows the concentration rate for the identified set.

Theorem 4.1. Under Assumptions 4.1-4.4, for some C > 0,

P (dH(Θ(ϕ),Θ(ϕ0)) > Cn−1/2(log n)1/2|Dn) →p 0.

Remark 4.1. The above result holds for both nonparametric prior ϕ(F ) and semi-parametric
prior (ϕ, η) as described in Section 2. The concentration rate is nearly parametric: n−1/2(log n)1/2.
The term

√
log n arises commonly in the posterior concentration rate literature. The poste-

rior probability in the theorem is now converging to zero, instead of only being smaller than
an arbitrarily small constant. Same rate of convergence in the frequentist perspective has
been achieved by Chernozhukov et al. (2007), Beresteanu and Molinari (2008), Kaido and
Santos (2011), among others.

Remark 4.2. Recently Kitagawa (2012) obtained the posterior consistency for Θ(ϕ): for
any ϵ > 0,

lim
n→∞

P (dH(Θ(ϕ),Θ(ϕ0)) > ϵ|Dn) = 0

for almost every sampling sequence of Dn. This result was obtained for the case where θ is a
scalar whose identified set Θ(ϕ) is a connected interval and dH(Θ(ϕ),Θ(ϕ0)) is assumed to
be a continuous map of ϕ. In multi-dimensional cases where Θ(ϕ) is a more general convex
set, however, verifying the continuity of dH(Θ(ϕ),Θ(ϕ0)) is much more technically involved,
due to the challenge of computing the Hausdorff distance in multi-dimensional minifolds. In
contrast, our Lipschitz equi-continuity condition in Assumption 4.3 is much easier to verify
in specific examples, as it depends on the moment conditions directly.

5 Bayesian Inference of Support Function

This section develops Bayesian inference for the support function Sϕ(p) of the identified
set Θ(ϕ) in the moment inequality model (4.1)-(4.3). Bayesian inference for the support
function has two main interests. First, it provides an alternative way to perform estimation
of the identified set Θ(ϕ). Second, it allows us to construct a two-sided BCS for Θ(ϕ) in the
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next section. In this section, we first develop an asymptotically valid linearization in ϕ of the
support function. Based on this result we show that posterior consistency can be achieved
and prove the Bernstein von Mises theorem for the support function.

5.1 Moment Inequality Model

Our analysis focuses on identified sets which are closed and convex. These sets are com-
pletely determined by their support functions, and efficient estimation of support functions
may lead to optimality of estimation and inference of the identified set. As a result, much
of the new development in the partially identified literature focuses on the support function,
e.g., Kaido and Santos (2011), Kaido (2012), Beresteanu and Molinari (2008), Bontemps,
Magnac and Maurin (2012).

In the moment inequality model, Θ(ϕ) := {θ ∈ Θ; Ψ(θ, ϕ) ≤ 0}, where Ψ(θ, ϕ) is given
in (4.1) and each component of Ψ(θ, ϕ) is a convex function of θ for every ϕ ∈ Φ as stated
in the next assumption.

Assumption 5.1. Ψ(θ, ϕ) is continuous in (θ, ϕ) and convex in θ for every ϕ ∈ Φ.

Let us consider the support function Sϕ(·) : Sd → R of the identified set Θ(ϕ). We restrict
its domain to the unit sphere S

d in R
d since Sϕ(p) is positively homogeneous in p. Under

assumption 5.1 the support function is the optimal value of an ordinary convex program:

Sϕ(p) = sup
θ∈Θ

{pT θ; Ψ(θ, ϕ) ≤ 0}

and therefore it also admits a Lagrangian representation (see Rockafellar, chapter 28):

Sϕ(p) = sup
θ∈Θ

{pT θ − λ(p, ϕ)TΨ(θ, ϕ)}, (5.1)

where λ(p, ϕ) : Sd × R
dφ → R

k
+ is a k-vector of Lagrange multipliers. Note that dϕ is the

dimension of ϕ.
We denote by ΨS(θ, ϕ0) the kS-subvector containing the constraints that are strictly

convex functions of θ and by ΨL(θ, ϕ0) the kL constraints that are linear in θ. Obviously,
kS+kL = k. The corresponding Lagrange multipliers are denoted by λS(p, ϕ0) and λL(p, ϕ0),
respectively, for p ∈ S

d. Moreover, define Ξ(p, ϕ) = argmaxθ∈Θ{pT θ; Ψ(θ, ϕ) ≤ 0} as the
support set of Θ(ϕ). Then, by definition,

pT θ = Sϕ(p), ∀θ ∈ Ξ(p, ϕ).

We also denote by ∇ϕΨ(θ, ϕ) the k × dϕ matrix of partial derivatives of Ψ with respect to
ϕ. Let B(ϕ0, δ) = {ϕ ∈ Φ; ∥ϕ− ϕ0∥ ≤ δ} denote a closed ball centered at ϕ0 with radius δ.
For every ϕ ∈ B(ϕ0, rn) and θ ∈ Θ(ϕ), we denote by Act(θ, ϕ) := {i; Ψi(θ, ϕ) = 0} the set
of the inequality active constraint indices and by dA(θ, ϕ) the number of its elements. For
every i ∈ Act(θ, ϕ), ∇θΨi(θ, ϕ) denotes the d-vector of partial derivatives of Ψi with respect
to θ. We assume the following:

Assumption 5.2. The true value ϕ0 is in the interior of Φ, and Θ is convex and compact.
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Assumption 5.3. There is some δ > 0 such that for all ϕ ∈ B(ϕ0, δ), we have:
(i) the k × dϕ matrix ∇ϕΨ(θ, ϕ) exists and is continuous in (θ, ϕ);
(ii) the set Θ(ϕ) is non empty;
(iii) there exists a θ ∈ Θ such that Ψ(θ, ϕ) < 0;
(iv) Θ(ϕ) ⊂ int(Θ) where int(Θ) denotes the interior of Θ;
(v) for every i ∈ Act(θ, ϕ0), with θ ∈ Θ(ϕ0), the vector ∇θΨi(θ, ϕ) exists and is continuous
in (θ, ϕ) ∈ Θ×B(ϕ0, δ).

Assumption 5.3 (iii) implies assumption 5.3 (ii). However, we prefer to keep both condi-
tions since in order to establish some technical results we only need condition (ii) which is
weaker.

The next assumption concerns the inequality active constraints. In particular, assumption
5.4 (i) may be restrictive in the one dimensional case (i.e. d = 1) but is easily verified in
the cases with d > 1. For instance, in example 2.1 this assumption is not verified in the
degenerate case where ϕ1 = ϕ2. Assumption 5.4 (ii) says that the active inequality constraint
gradients ∇θΨi(θ, ϕ0) are linear independent. This assumption guarantees that a θ which
solves the optimization problem (5.1) with ϕ = ϕ0 satisfies the Kuhn-Tucker conditions.
Alternative assumptions that are weaker than assumption 5.4 (ii) could be used, but the
advantage of assumption 5.4 (ii) is that it is easy to check.

Assumption 5.4. (i) dA(θ, ϕ0) ≤ d for every θ ∈ Θ(ϕ0) where dA(θ, ϕ0) is the number of
active constraints;

(ii) the gradient vectors {∇θΨi(θ, ϕ)}i∈Act(θ,ϕ0), are linearly independent ∀θ ∈ Θ(ϕ0).

The following assumption is sufficient for the differentiability of the support function at
ϕ0:

Assumption 5.5. At least one of the following holds:

(i) For the ball B(ϕ0, δ) in Assumption 5.3, for every (p, ϕ) ∈ S
d × B(ϕ0, δ), Ξ(p, ϕ) is a

singleton;

(ii) There are linear constraints in Ψ(θ, ϕ0), which are also separable in θ, that is, ΨL(θ, ϕ0) =
A1θ + A2(ϕ0) for some function A2 : Φ → R

kL (not necessarily linear) and some
(kL × d)-matrix A1.

Assumption 5.5 is particularly important for the linearization of the support function
that we develop in section 5.2. In fact, if one of the two parts of Assumption 5.5 holds then
the support function is differentiable for every (p, ϕ) ∈ S

d × B(ϕ0, δ) and we have a closed
form for its derivative.

The last set of assumptions that we introduce will be used to prove the Bernstein von
Mises theorem for Sϕ(·) and allows to strengthen the result of theorem 5.1 below. The first
three assumptions are (local) Lipschitz equi-continuity assumptions.

Assumption 5.6. For the ball B(ϕ0, δ) in assumption 5.3, for some K1, K2, K3 > 0 and
∀ϕ1, ϕ2 ∈ B(ϕ0, δ):
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(i) supp∈Sd ∥λ(p, ϕ1)− λ(p, ϕ2)∥ ≤ K1∥ϕ1 − ϕ2∥;

(ii) supθ∈Θ ∥∇ϕΨ(θ, ϕ1)−∇ϕΨ(θ, ϕ2)∥ ≤ K2∥ϕ1 − ϕ2∥;

(iii) ∥∇ϕΨ(θ1, ϕ0)−∇ϕΨ(θ2, ϕ0)∥ ≤ K3∥θ1 − θ2∥, for every θ1, θ2 ∈ Θ;

(iv) If Ξ(p, ϕ0) is a singleton ∀p ∈ W for some compact subset W ⊆ S
d then there exists a

ε = O(δ) such that Ξ(p, ϕ1) ⊆ Ξε(p, ϕ0).

We show in the following example that Assumptions 5.1-5.6 are easily satisfied

Example 5.1 (Interval censored data - continued). The setup is the same as in Example 2.1.
Assumption 5.2 is verified if Y1 and Y2 are two random variables with finite first moments
ϕ0,1 and ϕ0,2, respectively. Moreover, Ψ(θ, ϕ) = (ϕ1 − θ, θ − ϕ2)

T , ϕ = (ϕ1, ϕ2)
T ,

∇ϕΨ(θ, ϕ) =

(
1 0
0 −1

)

so that Assumptions 5.1, 5.2 and 5.3 (i)-(ii) are trivially satisfied. Assumption 5.3 (iii) holds
for every θ inside (ϕ1, ϕ2); Assumption 5.3 (iv) is satisfied if ϕ1 and ϕ2 are bounded. To see
that Assumptions 5.3 (v) and 5.4 are satisfied note that ∀θ < ϕ0,1 we have Act(θ, ϕ0) =
{1}, ∀θ > ϕ0,2 we have Act(θ, ϕ0) = {2} while ∀θ ∈ [ϕ0,1, ϕ0,2] we have Act(θ, ϕ0) = ∅.
Assumption 5.5 (i) and (ii) are both satisfied since the support set takes the values Ξ(1, ϕ) =
ϕ2 and Ξ(−1, ϕ) = −ϕ1 and the constraints in Ψ(θ, ϕ0) are both linear with A1 = (−1, 1)T

and A2(ϕ0) = ∇ϕΨ(θ, ϕ0)ϕ0.
In order to verify assumption 5.6, we use the largest eigenvalue as the matrix norm. The

eigenvalues of ∇ϕΨ(θ, ϕ) are {1,−1} for every θ and ϕ. Hence, assumptions 5.6 (ii)-(iii) are
verified. The lagrange multiplier is λ(p, ϕ) = (−pI(p < 0), pI(p ≥ 0))T so that assumption
5.6 (i) is satisfied since the norm is equal to 0. Finally, the support set Ξ(p, ϕ) = ϕ1I(p <
0) + ϕ2I(p ≥ 0) is a singleton for every ϕ ∈ B(ϕ0, δ) and Ξ(p, ϕ0)

ε = {θ ∈ Θ; ∥θ − θ∗∥ ≤ ε}
where θ∗ = Ξ(p, ϕ0) = ϕ0,1I(p < 0) + ϕ0,2I(p ≥ 0). Therefore, ∥Ξ(p, ϕ) − θ∗∥ ≤ δ and
assumption 5.6 (iv) holds with ε = δ. �

5.2 Asymptotic Analysis

The support function of a closed and convex set is in general non-differentiable in p
but it admits directional derivatives, see e.g. Milgrom and Segal (2002). Luckily, when
assumption 5.5 holds the derivative of the support function exists. We exploit this fact to
derive an expansion in ϕ of the support function. This allows us to establish a Bernstein-von
Mises type result for the posterior distribution of the support function.

The next theorem states that the support function can be locally approximated (asymp-
totically) by a linear function of ϕ1, ϕ2 ∈ B(ϕ0, rn) for rn = o(1) a bounded sequence de-
pending on the sample size n. The expansion is stochastic when ϕ is interpreted as a random
variable associated with the posterior distribution P (·|Dn).

Theorem 5.1. Let θ∗(p) : Sd → Θ be a Borel measurable mapping satisfying θ∗(p) ∈ Ξ(p, ϕ0)
for all p ∈ S

d. If assumptions 5.1-5.5 hold with δ = rn for some rn = o(1), then there
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is a N such that for every n ≥ N there exist: (i) a real function f(ϕ1, ϕ2) defined for
every ϕ1, ϕ2 ∈ B(ϕ0, rn) and (ii) a function λ(p, ϕ0) : Sd × R

dφ → R
k
+ such that for every

ϕ1, ϕ2 ∈ B(ϕ0, rn):

sup
p∈Sd

∣∣(Sϕ1(p)− Sϕ2(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)[ϕ1 − ϕ2]

∣∣ = f(ϕ1, ϕ2)

and f(ϕ1,ϕ2)
∥ϕ1−ϕ2∥ → 0 uniformly in ϕ1, ϕ2 ∈ B(ϕ0, rn) as n→ ∞.

We remark that the functions λ and θ∗ do not depend on the specific choice of ϕ1 and
ϕ2 inside B(ϕ0, rn), but only on p and the true value ϕ0. With the approximation given in
the theorem we are now ready to state posterior consistency (with concentration rate) and
asymptotic normality of the posterior distribution of Sϕ(p). In the next theorems we will set
rn = (log n)1/2n−1/2 when n is sufficiently large.

Theorem 5.2. Under assumption 4.1 and the assumptions of Theorem 5.1 with rn =√
(log n)/n, for some C > 0,

P (sup
p∈Sd

|Sϕ(p)− Sϕ0(p)| < C(log n)1/2n−1/2|Dn) →p 1. (5.2)

Remark 5.1. Notice that dH(Θ(ϕ),Θ(ϕ0)) = supp∈Sd |Sϕ(p) − Sϕ0(p)|. Therefore, (5.2) is
another statement of Theorem 4.1. However, they are obtained by different proof strategies.
In particular, Theorem 5.2 is obtained as a byproduct of the Bernstein-von Mises theorem
stated in theorem 5.3 below and is based on the asymptotic local expansion of the support
function as in theorem 5.1. As will be shown below, this expansion also yields the Bernstein
von Mises theorem of the support function, that is, the posterior of the support function is
asymptotically normal.

We now state a Bernstein-von Mises (BvM) theorem for the support function. This
theorem is valid under the assumption that a Bernstein-von Mises (BvM) theorem holds for
the posterior distribution of the finite-dimensional identified parameter ϕ. We denote by
∥ · ∥TV the total variation distance, that is, for two probability measures P and Q,

∥P −Q∥TV := sup
B

|P (B)−Q(B)|

where B is an element of the σ-algebra on which P and Q are defined.

Assumption 5.7. Let P√
n(ϕ−ϕ0)|Dn

denote the posterior distribution of
√
n(ϕ − ϕ0). We

assume
∥P√

n(ϕ−ϕ0)|Dn
−Ndφ(∆̃n,ϕ0 , Ĩ

−1
ϕ0

)∥TV →p 0

where Ndφ denotes the dϕ-dimensional normal distribution, ∆̃n,ϕ0 := n−1/2
∑n

i=1 Ĩ
−1
ϕ0
l̃ϕ0(Xi),

l̃ϕ0 is the semi-parametric efficient score function of the model and Ĩϕ0 denotes the semi-
parametric efficient information matrix.

For primitive conditions for the validity of this assumption in semi-parametric models
we refer to Bickel and Kleijn (2012) and Rivoirard and Rousseau (2012). Despite of the
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notation, remark that l̃ϕ0 and Ĩϕ0 also depend either on the true η0 or on the true F0 – de-
pending whether the model has been re-parameterized or not. The semi-parametric efficient
score function and the semi-parametric efficient information contribute to the stochastic
local asymptotic normality (LAN) expansion of the integrated likelihood, which is necessary
in order to get the BvM result in assumption 5.7. A precise definition of l̃ϕ0 and Ĩϕ0 may be
found in van der Vaart (2002) (Definition 2.15).

Theorem 5.3. If the assumptions of Theorem 5.1 and assumption 5.6 hold with δ = rn =√
(log n)/n, under assumption 5.7:

∥P√
n sup

p∈Sd
(Sφ(p)−Sφ0

(p))|Dn
−N (∆̄n,ϕ0 , Ī

−1
ϕ0

)∥TV →p 0

where ∆̄n,ϕ0 = λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)∆̃n,ϕ0 and

Ī−1
ϕ0

= λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)Ĩ

−1
ϕ0

∇ϕΨ(θ∗(p), ϕ0)
Tλ(p, ϕ0).

The asymptotic mean and covariance matrix may be easily estimated by replacing ϕ0 by any
consistent estimator ϕ̂ of ϕ0. So that θ∗(p) will be replaced by an element θ̂∗(p) ∈ Ξ(p, ϕ̂) and
an estimate of λ(p, ϕ0) will be obtained by solving – eventually numerically – the ordinary
convex program in (5.1) with ϕ0 replaced by ϕ̂.

Remark 5.2. The posterior asymptotic variance of the support function Ī−1
ϕ0

is the same as
that of the frequentist estimator obtained by Kaido and Santos (2012, Theorem 3.2), and
both are derived based on a linear expansion of the support function. On one hand, the
linear expansion of Theorem 5.1 is obtained from expanding Ψ(θ∗(p), ϕ)− Ψ(θ∗(θ), ϕ0) in a
neighborhood of ϕ0. This gives the asymptotic variance ∇ϕΨ(θ∗(p), ϕ0)Ĩ

−1
ϕ0

∇ϕΨ(θ∗(p), ϕ0)
T ,

which is semi-parametric efficient for estimating Ψ(θ∗(p), ϕ0) as guaranteed by the Bernstein
von Mises theorem proved by Bickel and Kleijn (2012). On the other hand, Kaido and Santos
(2012)’s frequentist estimator of the support function has a linear representation in terms of

Ψ̂(θ∗(p)) − Ψ(θ∗(θ), ϕ0), where Ψ̂(θ∗(p)) is a sample analog of Ψ(θ∗(θ), ϕ0) and is therefore
semi-parametric efficient. This implies that the asymptotic variances of the support function
from both Bayesian and frequentist approaches are the same.

The asymptotic normality of the posterior of Sϕ(p) also implies that the posterior coverage
and the coverage under the limiting normal of our two-sided BCS for the identified set – that
we construct in the next section – are the same.

6 Bayesian Credible Sets

In this section we focus on two kinds of credible sets: credible sets for θ and credible sets
for the identified set Θ(ϕ).
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6.1 Credible set for θ

Bayesian inference on θ can be carried out through finite-sample Bayesian credible sets
(BCS). A BCS is a set BCS(τ) such that

P (θ ∈ BCS(τ)|Dn) = 1− τ (6.1)

at level 1− τ , for τ ∈ (0, 1). Apparently such a definition is not unique. One of the popular
choice of the credible set is the highest-probability-density (HPD) set, which has been widely
used in empirical studies and also used in the Bayesian partially identified literature e.g.,
Moon and Schorfheide (2012) and Norets and Tang (2012).

The BCS then can be compared with the frequentist confidence set (FCS). Let PDn
(.) de-

note the probability measure based on the sampling distribution, where (θ, ϕ, η) = (θ0, ϕ0, η0)
or (θ, F ) = (θ0, F0). A frequentist confidence set FCS(τ) for θ0 satisfies

lim
n→∞

inf
ϕ∈Φ

inf
θ0∈Θ(ϕ)

PDn
(θ0 ∈ FCS(τ)) ≥ 1− τ.

There have been various procedures proposed in the frequentist literature to construct
FCS(τ) that satisfies the above inequality. One of the key properties of these proposed
FCS is that they are based on some consistent estimator ϕ̂ of ϕ0, and Θ(ϕ̂) ⊂ FCS(τ). Moon
and Schorfheide (2012) compared HPD with FCS and showed that in a parametric Bayesian
model with known likelihood, for any τ > 0, P (θ ∈ HPD(τ), θ /∈ FCS(τ)|Dn) = op(1), that
is, the FCS is too large to do Bayesian inference. Under the more robust semi-parametric
Bayesian setup, the frequntist confidence set is also “too big” from the Bayesian point of
view, shown by Theorem 6.1 below.

The following assumption is needed.

Assumption 6.1. (i) The frequentist FCS(τ) is such that, there is ϕ̂ with ∥ϕ̂− ϕ0∥ = op(1)

satisfying Θ(ϕ̂) ⊂ FCS(τ).
(ii) sup(θ,ϕ)∈Θ×Φ π(θ|ϕ) <∞.

Many frequentist FCS’s satisfy condition (i), see, e.g., Imbens and Manski (2004), Cher-
nozhukov, Hong and Tamer (2007), Rosen (2008), Andrews and Soares (2010), etc. Condition
(ii) is easy to verify since Θ× Φ is compact. Examples of π(θ|ϕ) include: the uniform prior
with density

π(θ|ϕ) = µ(Θ(ϕ))−1Iθ∈Θ(ϕ),

where µ(·) denotes the Lebesgue measure; and the truncated normal prior with density

π(θ|ϕ) =
[∫

Θ(ϕ)

h(x;λ,Σ)dx

]−1

h(θ;λ,Σ)Iθ∈Θ(ϕ),

where h(x;λ,Σ) is the density function of multinormal N(λ,Σ).

Theorem 6.1. Under Assumptions 4.1, the assumptions of theorem 5.1 with rn =
√
(log n)/n,

and 6.1, for any τ > 0,
(i)

P (θ /∈ FCS(τ)|Dn) = op(1),
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(ii)
P (θ ∈ FCS(τ), θ /∈ BCS(τ)|Dn) →p τ.

Remark 6.1. Theorem 6.1 (i) shows that the posterior probability that θ lies inside the
frequentist confidence set is arbitrarily close to one, as n→ ∞. This indicates that the FCS
is too big to do insightful statistical inference from the Bayesian point of view. On the other
hand, (ii) demonstrates that with a nonnegligible probability, FCS is strictly larger than
BCS. Therefore, FCS is conservative from a Bayesian perspective.

Remark 6.2. Similar results have been shown by Moon and Schorfheide (2012) when HPD
is used as the Bayesian credible set. The result presented here, besides allowing a semi-
parametric likelihood function, is more general. Our proof for part (i) is slightly different
from the proof in Moon and Schorfheide (2012, Corollary 1), in that we rely on the continuity
of d(Θ(ϕ),Θ(ϕ0)) with respect to ϕ, and is achieved through an asymptotic expansion of the
support function. The proof for part (ii) follows the same argument of Moon and Schorfheide
(2012)’s.

6.2 Two-sided credible set for Θ(ϕ)

We now construct an asymptotic valid BCS for Θ(ϕ). We are aiming at constructing
two-sided credible sets A1 and A2 such that

P (A1 ⊂ Θ(ϕ) ⊂ A2|Dn) ≥ 1− τ

with probability approaching one. The one-sided set A2 is easy to obtain. As suggested in
an earlier circulated version of Moon and Schorfheide (2012) and Norets and Tang (2012),
suppose BCSϕ(τ) is a 1− τ Bayesian credible set of ϕ, then it is easy to show that

P


Θ(ϕ) ⊂

∪

x∈BCSφ(τ)

Θ(x)

∣∣∣∣∣∣
Dn


 = 1− τ

for every sampling sequence Dn. However, it is difficult to extend the idea of using the BCS
of ϕ to construct the two-sided sets, more specifically, to construct the lower set A1. In this
section, we apply a new idea, with the help of the support function for such a task. To our
best knowledge, this is the first in the literature that constructs the two-sided BCS for Θ(ϕ).

To illustrate why support function can help, for Θ(ϕ), recall its ϵ-envelope as Θ(ϕ)ϵ =
{θ ∈ Θ : d(θ,Θ(ϕ)) ≤ ϵ}, and ϵ-contraction as Θ(ϕ)−ϵ = {θ ∈ Θ(ϕ) : d(θ,Θ\Θ(ϕ)) ≥ ϵ}
where ϵ ≥ 0 and Θ\Θ(ϕ) = {θ ∈ Θ : θ /∈ Θ(ϕ)} as in (3.1) and (3.2). If Θ(ϕ1), Θ(ϕ2)

ϵ and
Θ(ϕ3)

−ϵ are convex, for some ϕ1, ϕ2 and ϕ3 ∈ Φ, then we have:

Θ(ϕ1) ⊂ Θ(ϕ2)
ϵ if and only if sup

∥p∥=1

(Sϕ1(p)− Sϕ2(p)) ≤ ϵ.

and
Θ(ϕ3)

−ϵ ⊂ Θ(ϕ1) if and only if sup
∥p∥=1

(Sϕ3(p)− Sϕ1(p)) ≤ ϵ.
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Let ϕ̂M be the posterior mode, that is, ϕ̂M = argmax p(ϕ|Dn). Then for any cn ≥ 0,

P (Θ(ϕ̂M)−cn ⊂ Θ(ϕ) ⊂ Θ(ϕ̂M)cn|Dn) = P ( sup
∥p∥=1

|SΘ(ϕ)(p)− SΘ(ϕ̂M )(p)| ≤ cn|Dn).

Note that the right hand side of the above equation depends on the posterior of the support
function. The posterior mode is only an example, we point out that any consistent estimator
could be used to construct the two-sided credible region. Let qτ be the 1− τ quantile of the
posterior of

J(ϕ) =
√
n sup

∥p∥=1

|Sϕ(p)− Sϕ̂M
(p)|

so that

P

(
J(ϕ) ≤ qτ

∣∣∣∣Dn

)
= 1− τ. (6.2)

The posterior of J(ϕ) is determined by that of ϕ. Hence qτ can be simulated from the MCMC
draws of p(θ|Dn). Immediately, we have the following theorem:

Theorem 6.2. Suppose for any τ ∈ (0, 1), qτ is defined as in (6.2), then for every sampling
sequence Dn,

P (Θ(ϕ̂M)−qτ/
√
n ⊂ Θ(ϕ) ⊂ Θ(ϕ̂M)qτ/

√
n|Dn) = 1− τ.

Remark 6.3. It is straightforward to construct the one-sided BCS for Θ(ϕ) using the de-
scribed procedure. For example, let q̃τ and q̂τ be such that P (sup∥p∥=1(Sϕ(p) − Sϕ̂M

(p)) ≤
q̃τ |Dn) = 1 − τ , and P (sup∥p∥=1(Sϕ̂M

(p) − Sϕ(p)) ≤ q̂τ |Dn) = 1 − τ , then P (Θ(ϕ) ⊂
Θ(ϕ̂M)q̃τ/

√
n|Dn) = 1 − τ and P (Θ(ϕ̂M)−q̂τ/

√
n ⊂ Θ(ϕ)|Dn) = 1 − τ for every sampling

sequence Dn.

6.3 Frequentist coverage probability of BCS for Θ(ϕ)

As we have shown in theorem 6.1, the BCS for θ does not have a correct frequentist
coverage when θ is partially identified, since the BCS tends to be a subset of the interior of
FCS. Gustafson (2012) showed that from a frequentist point of view, there is always a region
of the identified set which Bayesian credible interval fails to cover.

In contrast, the constructed two-sided BCS for the identified set has desired frequentist
properties. Recently, Kitagawa (2012) constructed a one-sided credible set that also has a
correct frequentist probability when Θ(ϕ) is an one dimensional interval for a scalar. The
frequentist coverage probability for a more general multi-dimensional BCS have been largely
unknown in the literature before. Our two-sided BCS is constructed based on the support
function, for which the Bernstein von Mises Theorem holds (see Theorem 5.3) in the moment
inequality model, which implies that the frequentist coverage probability is asymptotically
correct. We show this in theorem 6.3 below.

The analysis relies on the following assumption, which requires the asymptotic normality
of the posterior mode of ϕ (or of the consistent estimation used to construct the BCS).
The asymptotic normality of posteriors modes has been long realized, and holds under mild
conditions.
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Assumption 6.2. The posterior mode ϕ̂M is such that

√
n(ϕ̂M − ϕ0) →d N(0, Ĩ−1

ϕ0
)

where Ĩϕ0 denotes the semi-parametric efficient information matrix as in Assumption 5.7.

Theorem 6.3. Consider the moment inequality model in (4.1). If assumptions 5.1-5.6
hold with δ = rn =

√
(log n)/n then the constructed two-sided Bayesian credible set has

asymptotically correct frequentist coverage probability, that is,

PDn
(Θ(ϕ̂M)−qτ/

√
n ⊂ Θ(ϕ0) ⊂ Θ(ϕ̂M)qτ/

√
n) ≥ 1− τ + op(1).

4

Similarly we can show that the one-sided BCS’s as constructed in Remark 6.3 also have
asymptotically correct coverage probabilities. For example, for q̃τ such that P (sup∥p∥=1(Sϕ(p)−
Sϕ̂M

(p)) ≤ q̃τ |Dn) = 1− τ , then

PDn
(Θ(ϕ0) ⊂ Θ(ϕ̂M)q̃τ/

√
n) ≥ 1− τ + op(1). (6.3)

Remark 6.4. Our BCS is constructed based on the support function, whose frequentist
coverage probability is guaranteed by the Bernsten von Mises theorem of the support func-
tion, proved in Theorem 5.3. Since the normal distribution is also the limiting distribution
for efficient frequentist inference about the support function (see Kaido and Santos 2011),
our two-sided BCS can be interpreted as asymptotically efficient confidence region for the
identified set.5

We can also use Θ(ϕ̂M)q̃τ/
√
n as the frequentist confidence set for θ, which then will have

asymptotically correct frequentist coverage probability. The result is stated as following:

Corollary 6.1. Under the assumptions of Theorem 6.3,

inf
θ∈Θ(ϕ0)

PDn
(θ ∈ Θ(ϕ̂M)q̃τ/

√
n) ≥ 1− τ + op(1).

6.4 Missing data: an example

We illustrate our method using a missing data example, which was discussed thoroughly
by Manski (2004). For simplicity of exposition, we present the simplest version. Let Y
be a binary variable, indicating whether a treatment is succesful (Y = 1) or not (Y = 0).
However, Y is observed subject to missing. We write M = 0 if Y is missing, and M = 1
otherwise. Hence we in fact observe (M,MY ). The parameter of interest is θ = P (Y = 1),
the probability of success. Moreover, we denote the identified parameters

ϕ1 = P (M = 1), ϕ2 = P (Y = 1|M = 1).

4The result presented here is understood as: There is a random sequence ∆(Dn) that depends on Dn

such that ∆(Dn) = op(1), and for any sampling sequence Dn, we have PDn
(Θ(ϕ̂M )−qτ/

√
n ⊂ Θ(ϕ0) ⊂

Θ(ϕ̂M )qτ/
√
n) ≥ 1− τ +∆(Dn). Similar interpretation applies to (6.3) and Corollary 6.1.

5The asymptotic efficiency based on the support function is achieved by Kaido and Santos (2011, Theorem
5.4).
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Let ϕ0 = (ϕ10, ϕ20) be the true values of ϕ = (ϕ1, ϕ2) respectively. Then without further
assumption on P (Y = 1|M = 0), θ0 is only partially identified on Θ(ϕ0) where Θ(ϕ) =
[ϕ1ϕ2, ϕ1ϕ2 + 1− ϕ1]. The support function is easy to calculate, which is

Sϕ(1) = ϕ1ϕ2 + 1− ϕ1 Sϕ(−1) = −ϕ1ϕ2.

Suppose we observe i.i.d. data {(Mi, YiMi)}i≤n, and find that
∑n

i=1Mi = n1 and
∑n

i=1 YiMi =
n2, the number of nonmissing observations and observed success respective. In this example,
the true likelihood function L(ϕ) ∝ ϕn1

1 (1− ϕ1)
n−n1ϕn2

2 (1− ϕ2)
n1−n2 is known.

We place independent Beta priors Beta(α1, β1) and Beta(α2, β2) on (ϕ1, ϕ2). The uniform
distribution is a special case of Beta prior. Then the posterior of (ϕ1, ϕ2) is a product of
Beta(α1+n1, β1+n−n1) and Beta(α2+n2, β2+n1−n2). If in addition, we have subjective
prior information on θ and place a prior π(θ|ϕ) supported on Θ(ϕ), then by integrating out
ϕ, we immediately obtain the marginal posterior of θ.

We now present the BCS for Θ(ϕ) obtained by using the support function of Θ(ϕ). First,
by taking the derivative of p(ϕ|Dn), we obtain the posterior mode: ϕ̂1M = (n1+α1−1)/(n+
α1 + β1 − 2), and ϕ̂2M = (n2 + α2 − 1)/(n1 + α2 + β2 − 2). Then

J(ϕ) =
√
nmax

{
|ϕ1ϕ2 − ϕ1 − ϕ̂1M ϕ̂2M + ϕ̂1M |, |ϕ1ϕ2 − ϕ̂1M ϕ̂2M |

}
.

Let qτ be the 1−τ quantile of the posterior of J(ϕ), which can be obtained by simulating from
the Beta distributions. The lower and upper 1− τ level BCS’s for Θ(ϕ) are Θ(ϕ̂M)−qτ/

√
n ⊂

Θ(ϕ) ⊂ Θ(ϕ̂M)qτ/
√
n where

Θ(ϕ̂M)−qτ/
√
n = [ϕ̂1M ϕ̂2M + qτ/

√
n, ϕ̂1M ϕ̂2M + 1− ϕ̂1M − qτ/

√
n],

Θ(ϕ̂M)qτ/
√
n = [ϕ̂1M ϕ̂2M − qτ/

√
n, ϕ̂1M ϕ̂2M + 1− ϕ̂1M + qτ/

√
n],

which are also two-sided asymptotic 1− τ frequentist confidence intervals of the true Θ(ϕ0).
Here we present a simple simulated example, where the true ϕ0 = (0.7, 0.5). This implies

the true identified interval to be [0.35, 0.65] and about thirty percent of the simulated data
are “missing”. Suppose we had no prior knowlege about the true ϕ0, and place a uniform
prior on it. Thus α1 = α2 = β1 = β2 = 1. In addition, B = 1, 000 posterior draws {ϕi}Bi=1 are
sampled from p(ϕ1, ϕ2|Dn) ∼Beta(n1+1, n−n1+1)×Beta(n2+1, 1+n1−n2). Then, for each
of them compute J(ϕi) and set q0.05 as the 95% upper quantile of {J(ϕi)}Bi=1 to obtain the
critical value of BCS and construct the two-sided BCS for the identified set. Each simulation
is repeated for 1000 times to calculate the coverage frequency of the true identified interval.
See Table 1 for the results.

7 From Partial Identification to Point Identification

We have been focusing on partially identified models. However, results derived for the
identified set and the support function are still valid when point identification is achieved.
This is important because in many cases it is possible that we actually have point identi-
fication and, in that event, Θ(ϕ) degenerates to a singleton. For example, in the interval
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Table 1: Frequentist coverage probability of the true identified interval

n Lower Upper TwoSided
50 0.967 0.954 0.927
100 0.975 0.971 0.954
500 0.976 0.974 0.953

Lower, Upper and Two sided represent the frequencies of the events Θ(ϕ̂M )−qτ/
√
n ⊂ Θ(ϕ0),

Θ(ϕ0) ⊂ Θ(ϕ̂M )qτ/
√
n, and Θ(ϕ̂M )−qτ/

√
n ⊂ Θ(ϕ0) ⊂ Θ(ϕ̂M )qτ/

√
n over 1000 replicates.

censored model, it is possible that EY1 = EY2, in which case θ = EY is point identified.
When point identification is indeed achieved, the one-sided coverage Θ(ϕ) ⊂ Θ(ϕ̂M)qτ/

√
n

and Θ(ϕ̂M)−qτ/
√
n ⊂ Θ(ϕ0) in Theorems 6.2 and 6.3, and the asymptotic normality for the

posterior of the support function of Theorem 5.3 still hold because they are generally guar-
anteed by the semi-parametric Bernstein-von Mises theorem for ϕ when Θ(ϕ) is a singleton
(e.g., Rivoirard and Rousseau 2012, Bickel and Kleijn 2011). Theorem 4.1 is also guaranteed
by the concentration theory for the posterior of ϕ (Assumption 4.1), which then implies the
posterior consistency of the support function, and the same concentration rate as Theorem
5.2.

When θ is identified, {θ} = Θ(ϕ) = f(ϕ), which is a function of ϕ, and Sϕ(p) = pT θ.
Thus the posterior of θ is the same as the posterior of Θ(ϕ), which is completely determined
by that of ϕ under “smoothness” conditions on Ψ. As a result, Theorem 3.1 is still valid
because it is implied by Theorem 4.1, which also comes straightforward from the posterior
consistency of ϕ if f(·) is continuous at ϕ0. Theorem 6.1, however, does not hold anymore
because when θ is point identified, its BCS and FCS are asymptotically identical due to
the Bernstein-von Mises theorem. As a result, the BCS for θ will have a correct frequentist
coverage probability asymptotically.

8 Financial Asset Pricing

8.1 The model

Asset pricing models state that the equilibrium price P i
t of a financial asset i is equal to

P i
t = E[Mt+1P

i
t+1|It], i = 1, . . . , N

where P i
t+1 denotes the price of asset i at the period (t+ 1), Mt+1 is the stochastic discount

factor (SDF hereafter) and It denotes the information set at time t. In vectorial form this
rewrites as

ι = E[Mt+1Rt+1|It]

where ι is the N -dimensional vector of ones and Rt+1 is the N -dimensional vector of gross
asset returns at time (t + 1): Rt+1 = (r1,t+1, . . . , rN,t+1)

′ with ri,t+1 = P i
t+1/P

i
t . This model

can be reinterpreted as a model of the SDF and may be used to detect the SDFs that are
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compatible with asset return data. Hansen and Jagannathan (1991) have obtained a lower
bound on the volatility of SDFs that could be compatible with a given SDF-mean value and
a given set of asset return data. Therefore, the set of SDFs Mt+1 that can price existing
assets generally form a proper set.

Letm and Σ denote, respectively, the vector of unconditional mean returns and covariance
matrix of returns of the N risky assets, that is, m = E(Rt+1)

′ and Σ = E(Rt+1 −m)(Rt+1 −
m)′. Denote µ = E(Mt+1) and σ

2 = V ar(Mt+1). We assume thatm, Σ, µ and σ2 do not vary
with t. Hansen and Jagannathan (1991) show that the minimum variance σ2

ϕ(µ) achievable
by a SDF with mean µ and compatible with the observed (m,Σ) is given by

σ2
ϕ(µ) = (ι− µm)′Σ−1(ι− µm) =: ϕ1µ

2 − 2ϕ2µ+ ϕ3

with ϕ1 = m′Σ−1m, ϕ2 = m′Σ−1ι, ϕ3 = ι′Σ−1ι. (8.1)

Therefore, an SDF correctly prices an asset only if, for given (m,Σ), its mean µ and variance
σ2 are such that σ2 ≥ σ2

ϕ(µ). An SDF’s mean and variance (µ, σ2) are said to be admissible
if they satisfy this inequality and we define the set of admissible SDF’s means and standard
deviations as

Θ(ϕ) =
{
(µ, σ2) ∈ Θ; σ2

ϕ(µ)− σ2 ≤ 0
}

(8.2)

where ϕ = (ϕ1, ϕ2, ϕ3)
′ and Θ ⊂ R+ × R+ is a compact set that we can choose based for

instance on some prior knowledge. Usually, we can fix upper bounds µ̄ > 0 and σ̄ > 0 as big
as we want and take Θ = [0, µ̄]× [0, σ̄2]. In practice, µ̄ and σ̄ must be chosen sufficiently large
such that Θ(ϕ) is non-empty. Making inference on Θ(ϕ) allows to check whether a family of
SDF (and then a given utility function) prices a financial asset correctly or not. Frequentist
inference for this set is carried on in Chernozhukov, Kocatulum and Menzel (2012).

We develop a Bayesian approach. By using our previous notation we define θ = (µ, σ2)
and

Ψ(θ, ϕ) = ϕ1µ
2 − 2ϕ2µ+ ϕ3 − σ2.

8.2 Support function

In this case k = 1 and Ψ(θ, ϕ) is convex in θ. More precisely, Ψ(θ, ϕ) is linear in σ2 and
strictly convex in µ (because Σ positive definite implies that ϕ1 > 0). Thus assumption 5.1
is verified. Assumption 5.3 (i) is also trivially satisfied. Moreover, Θ(ϕ) is empty when σ̄2 <
ϕ1µ̄

2−2ϕ2µ̄+ϕ3 for µ ∈ [0, µ̄]. This happens in three cases: either (I) for ϕ2
2−ϕ1ϕ3−ϕ1σ̄

2 < 0

or (II) for ϕ2
2−ϕ1ϕ3−ϕ1σ̄

2 > 0 such that µ̄ < ϕ2

ϕ1
± ϕ2

2−ϕ1ϕ3−ϕ1σ̄2

ϕ1
or (III) for ϕ2

2−ϕ1ϕ3−ϕ1σ̄
2 > 0

such that ϕ2

ϕ1
± ϕ2

2−ϕ1ϕ3−ϕ1σ̄2

ϕ1
< 0. Therefore, assumption 5.3 (ii) is verified for every ϕ such

that (I), (II) and (III) do not hold. This is easily possible by taking µ̄ sufficiently large and
σ̄2 not too large. Assumptions 5.3 (iii)-(v) and 5.4 are also satisfied.

In this example we can make inference on the support function of Θ(ϕ) without requiring
that assumption 5.5 (ii) hold. In fact, assumption 5.5 (i) holds for every ϕ ∈ Φ and for every
p ∈ S

2 except for p = (1, 0), p = (−1, 0) and p = (0, 1). For these values of p, however, it
is easy to show that the support function is differentiable at ϕ0 without assumption 5.5, see
appendix A.2. Assumption 5.6 (ii) is trivially satisfied since ||∇ϕΨ(θ, ϕ1)−∇ϕΨ(θ, ϕ2)|| = 0,
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assumption 5.6 (iii) is satisfied with K = 1 and Assumption 5.6 (iv) is true due to the
continuity of Ψ(θ, ·) in ϕ. Assumption 5.6 (i) must be checked case by case (that is, for every
region of values of p) since λ(p, ϕ) takes a different expression in each case, see appendix
A.2.

Under assumption 5.1 we can rewrite

Ξ(p, ϕ) = argmax
θ∈Θ

{
pT θ; Ψ(θ, ϕ) ≤ 0

}

= argmax
θ∈Θ

{
p1µ+ p2σ

2 − λ(p, ϕ)(ϕ1µ
2 − 2ϕ2µ+ ϕ3 − σ2)

}

= arg max
0≤µ<µ̄, 0<σ2<σ̄2

{
p1µ+ p2σ

2 − λ(p, ϕ)(ϕ1µ
2 − 2ϕ2µ+ ϕ3 − σ2)

}

where p = (p1, p2), λ2 > 0 and λ3 > 0. The support function and Ξ(p, ϕ) have an explicit
expression, but is very long and complicated. We present it in Appendix A.2.

8.3 Dirichlet process prior

Let F denote a probability distribution. The Bayesian model is Rt|F ∼ F and ψ =
(m,Σ) = ψ(F ), where

ψ1(F ) =

∫
rF (dr), ψ2(F ) =

∫
rrTF (dr)−

∫
rF (dr)

∫
rF (dr)T .

Let us impose a Dirichlet process prior for F , with parameter v0 and base probability measure
F0 on R

N . By Sethuraman (1994)’s decomposition, the Dirichet process prior induces a
prior for ψ as: m =

∑∞
j=1 αjξj, and Σ =

∑∞
j=1 αjξjξ

T
j −∑∞

i=1 αiξi
∑∞

j=1 αjξ
T
j where ξj are

independently sampled from F0; αj = uj
∏j

l=1(1 − ul) with {ui}ni=1 drawn from Beta(1, v0).
These priors then induce a prior for ϕ. The posterior distribution for (m,Σ) can be calculated
explicitly:

Σ|Dn ∼ (1− γ)
∞∑

j=1

αjξjξ
T
j + γ

n∑

t=1

βtRtR
n
t

−
(
(1− γ)

∞∑

j=1

αjξj + γ

n∑

t=1

βtRt

)(
(1− γ)

∞∑

j=1

αjξj + γ

n∑

t=1

βtRt

)T

,

m|Dn ∼ (1− γ)
∞∑

j=1

αjξj + γ
n∑

t=1

βtRt, γ ∼ Beta(T, v0), {βj}nj=1 ∼ Dir(1, ..., 1).

We can then simulate the posterior for ϕ based on the distributions of Σ|Dn, m|Dn and (8.1).

8.4 Simulation

We present a simple simulated example. The returns Rt are assumed to follow a 2-factor
model: Rt = Λft + ut + 2ι, where Λ is a N × 2 matrix of factor loadings. The error terms
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{uit}i≤N,t≤n are both cross sectionally and serially independent, and are uniform U[−2, 2].
Besides, the components of Λ are standard normal, and the factors are also uniform U[−2, 2].
The true m = ERt = 2ι, Σ = ΛΛ′ + IN . It is noted that in our DGP, the true likelihood is
not Gaussian.

We set N = 5, n = 200. When calculate the posteriors, the DGP’s distributions and
the factor model structure are treated unknown, and we apply the nonparametric Dirich-
let Process prior on the CDF of Rt − m, with parameter v0 = 3, and based measure
F0 = N(0, 1). We use a uniform prior for (σ2, µ), and obtain the posterior distributions
for (m,Σ, ϕ1, ϕ2, ϕ3, σ

2, µ). More concretely, the prior is assumed to be:

π(σ2, µ|ϕ) = π(σ2|ϕ, µ)π(µ); σ2|ϕ, µ ∼ U [σ2
ϕ(µ), σ̄

2], µ ∼ U [0, µ̄],

where µ and ϕ are a priori independent. We draw 1,000 times from the posterior of (ϕ, σ2, µ).
Each time we first draw (m,Σ) from their marginal posterior distributions, based on which
obtain the posterior draw of ϕ from (8.1). In addition, draw µ uniformly from [0, µ̄], and
finally σ2 uniformly from [σ2

ϕ(µ), σ̄
2], where σ2

ϕ(µ) is calculated based on the drawn ϕ and µ.

The posterior mean (ϕ̄1, ϕ̄2, ϕ̄3) of ϕ is calculated, based on which we calculate an estimate
of the boundary of the identified set (we set µ̄ = 1.4 and σ̄2 = 6):

A1 = {µ ∈ [0, µ̄], σ2 ∈ [0, σ̄2] : σ2 = ϕ̄1µ
2 − 2ϕ̄2µ+ ϕ̄3}.

In addition, we estimate the support function Sϕ(p) using either the posterior mean ϕ = ϕ̄

or the posterior mode ϕ = ϕ̂M . The theoretical marginal posterior for ϕ is hard to compute.
Thus to calculate the posterior mode, we first estimate the marginal posterior density for ϕi

using kernel smoothing based on the draws {ϕi}1,000i=1 . The posterior mode ϕ̂M is then given
by the values that maximizes the estimated marginal density. The support function Sϕ(p)
takes value for p21 + p22 = 1. In Figure 1, we plot the posterior estimates of the support
function for two cases: p2 ∈ [0, 1], p1 =

√
1− p22, and p2 ∈ [−1, 0], p1 = −

√
1− p22.

Figure 1: Posterior estimates of support function. Left panel is for p2 ∈ [0, 1], p1 =
√

1− p22;

right panel is for p2 ∈ [−1, 0], p1 = −
√
1− p22
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Using the approximate posterior model, we calculate the 95% posterior quantile qτ for
J(ϕ), based on which we construct the BCS Θ(ϕ̂M)qτ/

√
n for the identified set. The boundary
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of Θ(ϕ̂M)qτ/
√
n is given by

A2 =
{
µ ∈ [0, µ̄], σ2 ∈ [0, σ̄2] : inf

z

√
|z − µ|2 + |σ2

ϕ̂M
(z)− σ2|2 = qτ/

√
n
}
.

In Figure 2, we plot the posterior draws of (µ, σ2), A1, A2 and the boundary of the true
identified set.

Figure 2: 1,000 posterior draws of (µ, σ2). Solid line is the boundary of the true identified
set; dashed line represents the estimated boundary using the posterior mean; dotted line
gives the 95% BCS.
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9 Conclusion

We propose a semi-parametric Bayesian procedure for inference about partially identified
models. Bayesian approaches are appealing in many aspects. Classical Bayesian approach
in this literature has been assuming a parametric model, by specifying an ad-hoc parametric
likelihood function. However, econometric models usually only identify a set of moment
inequalities, and therefore assuming a known likelihood function suffers from the risk of mis-
specification, and may result in inconsistent estimations of the identified set. On the other
hand, moment-condition based likelihoods such as the limited information and exponential
tilted empirical likelihood, though guarantee the consistency, lack of probabilistic interpre-
tations. Our approach thus only requires a set of moment conditions but still possesses a
pure Bayesian interpretation.

Our analysis focuses on identified sets which are closed and convex. These sets are com-
pletely characterized by their support function, and efficient estimation of support function
may lead to optimality of estimation and inference of the identified set. By imposing a prior
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on the support function, we construct its posterior distribution. It is shown that the support
function for a very general moment inequality model admits a linear expansion, and the
posterior is consistent. The Bernstein-von Mises theorem is proven.

Note that in this paper we consider a fixed data generating process (DGP). The con-
structed BCS has asymptotically correct coverage probability for any specific DGP, and the
uniformity issue as in Andrews and Soares (2010) is not considered. The semi-parametric pos-
terior concentration theory has been often developed for a specific DGP even when we have
point identification, which relies on the existence of certain exponential tests and Schwartz’ s
theorem (see e.g., Wu and Ghosal 2008, Ghosh and Ramamoorthi 2003, Ghosal and van der
Vaart 2001, Shen and Wasserman 2001). Besides, deriving the asymptotic representation of
the support function for a fixed DGP is already technically involved. Extending these results
uniformly in a class of DGP would be a challenging problem. We plan to address this issue
in the future research.

A Support functions for two examples

A.1 Support function for the interval regression model

Consider Example 2.2. We now derive the support function for the identified set.

Lemma A.1. Suppose ϕ−1
2 exists, then

Θ(ϕ) =

{
θ ∈ Θ : θ = ϕ−1

2 (
ϕ1 + ϕ3

2
+ u), u ∈ (−ϕ3 − ϕ1

2
,
ϕ3 − ϕ1

2
)

}
.

Proof. Defline ξ = ϕ2θ. Then θ = ϕ−1
2 ξ. Let u = ξ − ϕ1+ϕ3

2
Then the identified set can be

written as: Θ(ϕ) = {ϕ−1
2 ξ : ϕ1 ≤ ξ ≤ ϕ3} =

{
ϕ−1
2 (ϕ1+ϕ3

2
+ u) : ϕ1 ≤ u+ ϕ1+ϕ3

2
≤ ϕ3

}
. This

then gives the result.

Now we are ready to calculate the support function for Θ(ϕ).

Theorem A.1. Suppose ϕ−1
2 exists. The support function for Θ(ϕ) is given by:

SΘ(ϕ)(p) = pTϕ−1
2 (

ϕ1 + ϕ3

2
) + αT

p (
ϕ3 − ϕ1

2
),

where d = dim(θ), sgn(x) = I(x > 0)− I(x < 0),

αp =



(pTϕ−1

2 )1sgn(p
Tϕ−1

2 )1
...

(pTϕ−1
2 )dsgn(p

Tϕ−1
2 )d


 .

Proof. The proof is based on straightfoward calculations. Let ∆ = (ϕ3 − ϕ1)/2, then

SΘ(ϕ)(p) = sup
θ∈Θ(ϕ)

pT θ = pTϕ−1
2 (

ϕ1 + ϕ3

2
) + sup

−∆≤u≤∆
pTϕ−1

2 u.

37



In addition,

sup
−∆≤u≤∆

pTϕ−1
2 u = sup

−∆≤u≤∆

∑

(pTϕ−1
2 )i>0

(pTϕ−1
2 )iui +

∑

(pTϕ−1
2 )i<0

(pTϕ−1
2 )iui

=
∑

(pTϕ−1
2 )i>0

(pTϕ−1
2 )i∆i −

∑

(pTϕ−1
2 )i<0

(pTϕ−1
2 )i∆i, (A.1)

which proves the theorem.

A.2 Support function for the financial asset pricing model

Let p ∈ S
d and ϕ ∈ Φ, denote p = (p1, p2) and D = ϕ2

2 − ϕ1ϕ3. Given the particular
form that the parameters ϕ1, ϕ2 and ϕ3 take in our example and by the Cauchy-Schwarz
inequality we have: ϕ2

2 ≤ ϕ1ϕ3. This implies:

D = ϕ2
2 − ϕ1ϕ3 ≤ 0.

The support function is given by

Sϕ(p) = pTΞ(p, ϕ), ∥p∥ = 1.

Here Ξ(p, ϕ) is determined by:

1. for p2 > 0, p1 > 0:

Ξ(p, ϕ) =





(µ̄, σ̄2) if σ̄2 ≥ ϕ1µ̄
2 − 2ϕ2µ̄+ ϕ3

(
φ2+

√
D+φ1σ̄2

φ1

, σ̄2

)
if σ̄2 < ϕ1µ̄

2 − 2ϕ2µ̄+ ϕ3.

2. for p2 < 0, p1 < 0:

Ξ(p, ϕ) =





(
φ2

φ1

, ϕ3 − φ2

2

φ1

)
, if ϕ2 > 0, and p1

p2

≤ ϕ2I(ϕ3 ≤ σ̄2) +
√
D + ϕ1σ̄2I(ϕ3 > σ̄2)

(
φ2−

√
D+φ1σ̄2

φ1

I(ϕ3 > σ̄2), ϕ3I(ϕ3 ≤ σ̄2) + σ̄2I(ϕ3 > σ̄2)

)
otherwise.

3. for p2 < 0, p1 > 0:

3.1. Ξ(p, ϕ) =
(

φ2

φ1

− p1

2p2φ1

,
p2

1

4p2φ1

− φ2

2

φ1

+ ϕ3

)
, if I and II below are satisfied:

I. 2ϕ2 − 2ϕ1µ̄ ≤ p1

p2

< 2ϕ2 and

II. for µ = φ2

φ1

− p1

2p2φ1

one of the following two conditions is verified:

II.a D < 0, D + ϕ1σ̄
2 ≥ 0 and

φ2−
√

D+φ1σ̄2

φ1

≤ µ ≤ φ2+
√

D+φ1σ̄2

φ1

II.b D = 0 and
φ2−

√
D+φ1σ̄2

φ1

≤ µ ≤ φ2+
√

D+φ1σ̄2

φ1

3.2. Ξ(p, ϕ) =
(
0, ϕ3I(ϕ3 ≤ σ̄2) + σ̄2I(ϕ3 > σ̄2)

)
, if p1

p2

≥ 2ϕ2;
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3.3. Ξ(p, ϕ) =
(
µ̄, ϕ1µ̄

2 − 2ϕ2µ̄+ ϕ3
)
if 2ϕ2 − 2ϕ1µ̄ >

p1

p2

and either II.a or II.b above is satisfied for
µ = µ̄;

3.4. (imaginary solution) Ξ(p, ϕ) =

(
φ2+

√
D+φ1σ̄2

φ1

, σ̄2

)
if 2ϕ2−2ϕ1µ̄ >

p1

p2

, D < 0 and D+ϕ1σ̄
2 < 0;

3.6. Ξ(p, ϕ) =
(
µ̄, σ̄2

)
if 2ϕ2 − 2ϕ1µ̄ > p1

p2

, D + ϕ1σ̄
2 ≥ 0 and either µ̄ <

φ2−
√

D+σ̄2φ1

φ1

or µ̄ >

φ2+
√

D+σ̄2φ1

φ1

;

3.7. (imaginary solution) Ξ(p, ϕ) =

(
φ2+

√
D+φ1σ̄2

φ1

, σ̄2

)
if I above is satisfied, D < 0 and D+ϕ1σ̄

2 <

0;

3.8. Ξ(p, ϕ) =
(

φ2

φ1

− p1

2p2φ1

, σ̄2

)
if I above is satisfied, D < 0, D + ϕ1σ̄

2 ≥ 0 and either µ <

φ2−
√

D+φ1σ̄2

φ1

or µ >
φ2+

√
D+φ1σ̄2

φ1

for µ = φ2

φ1

− p1

2p2φ1

;

3.9. Ξ(p, ϕ) =
(

φ2

φ1

− p1

2p2φ1

, σ̄2

)
if I above is satisfied, D = 0 and either µ <

φ2−
√

φ1σ̄2

φ1

or µ >

φ2+
√

φ1σ̄2

φ1

for µ = φ2

φ1

− p1

2p2φ1

;

4. p2 > 0, p1 < 0: Ξ(p, ϕ) =

(
φ2−

√
D+φ1σ̄2

φ1

I(ϕ3 > σ̄2), σ̄2

)
.

5. p2 = 0, p1 = 1:

Ξ(p, ϕ) =





(µ̄, σ2) ∀σ2 ∈ [ϕ1µ̄
2 − 2ϕ2µ̄+ ϕ3, σ̄

2] if σ̄2 ≥ ϕ1µ̄
2 − 2ϕ2µ̄+ ϕ3

(
φ2+

√
D+φ1σ̄2

φ1

, σ̄2

)
if σ̄2 < ϕ1µ̄

2 − 2ϕ2µ̄+ ϕ3.

6. p2 = 0, p1 = −1:

Ξ(p, ϕ) =





(0, σ2) ∀σ2 ∈ [ϕ3, σ̄
2] if ϕ3 < σ̄2

(
φ2−

√
D+φ1σ̄2

φ1

, σ̄2

)
if ϕ3 ≥ σ̄2.

7. p2 = 1, p1 = 0: Ξ(p, ϕ) = (µ, σ̄2), ∀µ ∈ [max

(
0,

φ2−
√

D+φ1σ̄2

φ1

)
,min

(
µ̄,

φ2+
√

D+φ1σ̄2

φ1

)
].

8. p2 = −1, p1 = 0:

Ξ(p, ϕ) =





(
φ2

φ1

, ϕ3 − φ2

2

φ1

)
if ϕ2 ≥ 0 and ϕ1ϕ3 − ϕ22 > 0

(0, ϕ3) if ϕ2 < 0

The linearization of the support function given in theorem 5.1 remains valid despite the
fact that Assumption 5.5 is not satisfied for three values of p ∈ S

2, that is, p = (±1, 0) and
p = (0, 1). Denote Sns : {(1, 0), (−1, 0), (0, 1)} ⊂ S

2. For p ∈ S
2\Sns the proof of the result

in theorem 5.1 remains unchanged.
For p ∈ Sns the proof is the same as the proof of theorem 5.1 except for the proof of some
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intermediate results which we now detail.

Proof of Lemma G.14: by using the notation in this lemma, we have to show that

dSϕτ
(p)

dτ+

∣∣∣∣
τ=τ0

=
dSϕτ

(p)

dτ−

∣∣∣∣
τ=τ0

. (A.2)

We refer to the expressions given in (G.14) and (G.15). For p ∈ Sns then Ξ(p, ϕτ0) is not
a singleton. However, since ∇ϕΨ(θ, ϕτ ) does not depend on σ2 and since for p = (±1, 0),
Ξ(p, ϕ) is not a singleton only in the dimension of σ2 then, we still get the equality (A.2).
For p = (0, 1), λ(p, ϕτ0) = 0 so, by using (G.14) and (G.15), this implies that the equality
(A.2) still hods.

Proof of Lemma G.13: the proof does not change except for the analysis of term A2

in CASE II. Let us start by considering p = (1, 0) which corresponds to case 5 above. If
Ξ(p, ϕ0) = (µ̄, σ2), ∀σ2 ∈ (ϕ01µ̄

2− 2ϕ02µ̄+ϕ03, σ̄
2], then the constraint is not binding so that

λ(p, ϕ0) = 0 and A2 = 0. If we are in the other case, then Ξ(p, ϕ) is a singleton in µ. Due to
this and to the continuity of Ψ(θ, ϕ) in ϕ, the term [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)] = 0 and
A2 = 0. Proving that A2 = 0 for p = (−1, 0) and p = (0, 1) proceeds exactly in the same
way and then it is omitted.

B Posterior Concentration for ϕ

Much of the literature on posterior concentration rate for Bayesian nonparametrics relies
on the notion of entropy cover number, which we now define as follows. Recall that for i.i.d.
data, the likelihood function can be written as ln(ϕ, η) =

∏n
i=1 l(Xi;ϕ, η), where l(x;ϕ, η)

denotes the density of the sampling distribution. Let

G = {l(·;ϕ, η) : ϕ ∈ Φ, η ∈ P}

be the family of likelihood functions. We assume P is a metric space with a norm ∥.∥η, which
then induces a norm ∥.∥G on G such that ∀l(·;ϕ, η) ∈ G,

∥l(·;ϕ, η)∥G = ∥ϕ∥+ ∥η∥η.

In the examples of intervel censoring data and interval regression, l(x;ϕ, η) = η(x− ϕ) and
∥η∥η = ∥η∥1 =

∫
|η(x)|dx. Then in this case ∥l(., ϕ, η)∥G = ∥ϕ∥+ ∥η∥1. Let B(l, ρ) denote a

closed ball in G centered at l ∈ G with radius ρ.
Define the entropy cover number N (ρ,G, ∥.∥G) to be the minimum number of balls with

radius ρ needed to cover G. The importance of the entropy cover number on nonparamet-
ric Bayesian asymptotics has been realized for a long history. We refer the audience to
Tihkomirov (1961) and van der Vaart and Wellner (1996) for good early references.

We first present the assumptions that are sufficient to derive the posterior concentration
rate for the point identified ϕ. The first one is placed on the entropy cover number.
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Assumption B.1. Suppose for all n large enough,

N (n−1/2(log n)1/2, G, ∥.∥G) ≤ n.

This condition requires that the “model” G be not too big. Once condition holds, then
for all rn ≥ n−1/2(log n)1/2, N (rn, G, ∥.∥G) ≤ exp(nr2n). Morever, it ensures the existence of
certain tests as given in Lemma below, and hence it can be replaced by the test condition that
are commonly used in the literature of posterior concentration rate, i.e., Jiang (2007), Ghosh
and Ramamoorthi (2003). Same condition has been imposed by Ghosal et al. (2000) when
considering Hellinger rates, and Bickel and Kleijn (2012) when considering semi-parametric
posterior asymptotic normality, among others. When η0 belongs to the family of location
mixtures, this condition was verified by Ghosal et al. (1999, Theorem 3.1).

The next assumption places conditions on the prior for (ϕ, η). For each (ϕ, η), define

Kϕ,η = E

[
log

l(X;ϕ0, η0)

l(X;ϕ, η)

∣∣∣∣ϕ0, η0

]
=

∫
log

(
l(x;ϕ0, η0)

l(x;ϕ, η)

)
l(x;ϕ0, η0)dx

Vϕ,η = var

[
log

l(X;ϕ0, η0)

l(X;ϕ, η)

∣∣∣∣ϕ0, η0

]
=

∫
log2

(
l(x;ϕ0, η0)

l(x;ϕ, η)

)
l(x;ϕ0, η0)dx−K2

ϕ,η.

Assumption B.2. The prior π(ϕ, η) satisfies:

π

(
Kϕ,η ≤

log n

n
, Vϕ,η ≤

log n

n

)
nM → ∞

for some M > 2.

Intuitively, when (ϕ, η) is close to (ϕ0.η0), both Kϕ,η and Vϕ,η are close to zero. Hence this
assumption requires the prior have sufficient amount of support around the true point iden-
tified parameters in terms of the Kullback-Leibler distance. Such a prior condition through
the Kullback-Leibler neighborhood as max{Kϕ,η, Vϕ,η} ≤ logn

n
has also been commonly im-

posed in the literature of semi-parametric posterior concentration, e.g., Ghosal et al. (1999
(2.10), 2000 Condition 2.4), Shen and Wasserman (2001, Theorem 2) and Bickel and Kleijn
(2012, (3.13)). Moreover, it has been verified in the literature that the sieve prior (Shen and
Wasserman 2001), Dirichlet mixture prior (Ghosal et al. 1999) and Normal mixture prior
(Ghosal and van der Vaart 2007).

We are now ready to present the posterior concentration rate for ϕ.

Theorem B.1. Suppose the data X1, ..., Xn are i.i.d. Under Assumptions B.1 and B.2, for
some C > 0,

P (∥ϕ− ϕ0∥ ≤ Cn−1/2(log n)1/2|Dn) →p 1.

The proof of this theorem requires two technical lemmas. The first is taken from Shen
and Wasserman (2001).

Lemma B.1. Under Assumption B.2,

PDn

(∫∫
ln(ϕ, η)

ln(ϕ0, η0)
π(ϕ, η)dηdϕ ≥ 1

2n2
π(Kϕ,η ≤ log n/n, Vϕ,η ≤ log n/n)

)
→ 1.
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Proof. The proof follows the same argument of that of Lemma 1 in Shen and Wasserman
(2001), and hence is omitted.

The following lemma is regarding the existence of an exponential test, which is essential in
establishing the posterior consistency and concentration rate in the nonparametric Bayesian
literature. The idea of using the exponential test for posterior consistency dates by at least
to Schwartz (1965).

For a function of the data T (Dn), define

Eϕ,ηT (Dn) = E[T (Dn)|ϕ, η] =
∫
T (x)ln(x;ϕ, η)dx.

Lemma B.2. Under Assumption B.1, there exists a test T and a constant L > 4 and
L ≥M + 2 (for M defined in Assumption B.2) such that
(i)

Eϕ0,η0T = o(1)

(ii) for rn =
√

(log n)/n,

sup
η∈P,∥ϕ−ϕ0∥>Lrn

Eϕ,η(1− T ) ≤ exp

(
− 9

16
L2nr2n

)
.

Proof. For any natural number j, and some L > 0, define

Hj = {l(., ϕ, η) ∈ G : η ∈ P , jLrn ≤ ∥ϕ0 − ϕ∥ ≤ (j + 1)Lrn}.

We cover Hj using Nj balls like: B(ḡ, r) = {l ∈ G : ∥l− ḡ∥G ≤ r} for some small r = 4−1jLrn
and center ḡ ∈ G. Then the Hj can be covered by Nj (to be characterized later) balls like
B(gi, 4

−1jLrn), with centers gj1, ..., gj,Nj
∈ Hj:

Hj ⊂ ∪Nj

i=1B(gji, 4
−1jLrn).

Let those centers be chosen such that Nj is the minimum number to make such a cover.
Let l0 = l(., ϕ0, η0). Then for any ball B(gji, 4

−1jLrn), the center satisfies ∥gji − l0∥2G ≥
∥ϕji − ϕ0∥2 ≥ j2L2r2n. The last inequality follows since gji ∈ Hj. Then for any l(., ϕ, η) ∈
B(gji, 4

−1jLrn), ∥l− l0∥G ≥ ∥l0 − gji∥G −∥l− gji∥G ≥ jLrn − 4−1jLrn = 3
4
jLrn. So we have

shown that each element in the small ball B(gji, 4
−1jLrn) is 3jLrn/4 away from l0, and due

to the convexity of such a ball, by the standard minimax result (see Le Cam, 1986, Birgé,
1983), there exists a test Tji such that

max

{
Eϕ0,η0Tji, sup

l∈B(gji,4−1jLrn)

Eϕ,f (1− T )

}
≤ exp(−nd(l0, B(gji, 4

−1jLrn))
2)

≤ exp

(
−n 9

16
j2L2r2n

)
,

where d(l0, B) = inf l∈B ∥l − l0∥G, and we have shown that d(l0, B(gji, 4
−1jLrn)) ≥ 3

4
jLrn.
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Now define
T = sup

j≥1
max

1≤i≤Nj

Tij.

Then for any l = l(., ϕ, η) such that ∥ϕ−ϕ0∥ > Lrn, exists j
∗, so that l ∈ Hj∗ . By the cover,

there exists i∗ ≤ Nj∗ , and a ball so that l ∈ B(gj∗i∗ , 4
−1j∗Lrn). Due to −T ≤ −Tij for any

i, j, Eϕ,η(1 − T ) ≤ supg∈B(gj∗i∗ ,4
−1j∗Lrn)Eg(1 − T ) ≤ exp(−n 9

16
j∗2L2r2n) ≤ exp(−n 9

16
L2r2n).

Hence

sup
∥ϕ−ϕ∥>Lrn,η∈P

Eϕ,f (1− T ) ≤ exp

(
−n 9

16
L2r2n

)
.

This proves the second assertion (type II error) of the lemma.
For the first assertion (type I error), Eϕ0,η0T ≤∑j≥1

∑
i≤Nj

ETij ≤
∑

j Nj exp(−n 9
16
j2L2r2n).

Note that Nj = N (4−1jLrn, Hj, ∥.∥G) ≤ N (4−1jLrn, G, ∥.∥G) ≤ N (rn, G, ∥.∥G) ≤ exp(nr2n),
where we used L > 4 so 4−1jL ≥ 1, and the number of covers should be bigger if the radius
is smaller. Hence

Eϕ0,η0T ≤
∑

j

Nj exp

(
−n 9

16
j2L2r2n

)
≤ exp(nr2n)

∑

j

exp

(
−n 9

16
j2L2r2n

)
= o(1)

This is o(1) since L > 4 and nr2n → ∞.

Proof of Theorem B.1

Proof. Let E = Ef0,ϕ0 be expectation operator with respect to the distribution of data,
given the true parameters. For someM > 0, let U denote the ball centered at ϕ0 with radius
Mn−1/2(log n)1/2. Denote U c as the complement of U . Then It suffices to show that for some
M > 0, EP (ϕ ∈ U c|Dn) = o(1). In fact, for the test T in Lemma B.2,

EP (ϕ ∈ U c|Dn) = E[P (ϕ ∈ U c|Dn)T ] + E[P (ϕ ∈ U c|Dn)(1− T )]

≤ ET + EP (ϕ ∈ U c|Dn)(1− T ) = o(1) + EP (ϕ ∈ U c|Dn)(1− T ).

The last equality follows from Lemma B.2(i). Let

βn = π

(
Kϕ,η ≤

log n

n
, Vϕ,η ≤

log n

n

)
1

2n2
,

and define an event

A =

∫∫
ln(ϕ, η)

ln(ϕ0, η0)
π(ϕ, η)dϕdη ≥ βn.

Then Lemma B.1 shows that PDn
(A) → 1. In addition, exp(−Lnr2n)β−1

n = o(1) for L ≥M+2
in Lemma B.2, by Assumption B.2. Then

E[P (ϕ ∈ U c|Dn)(1− T )] = E[P (ϕ ∈ U c|Dn)(1− T )IA] + E[P (ϕ ∈ U c|Dn)(1− T )IAc ]

≤ EP (ϕ ∈ U c|Dn)(1− T )IA + 2EIAc ≤ EP (ϕ ∈ U c|Dn)(1− T )IA + o(1).

The last equality follows from PDn
(A) → 1.
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It remains to upper bound EP (ϕ ∈ U c|Dn)(1 − T )IA. We need to lower bound the
denominator of the posterior probability, and upper bound the numerator as well. Because
of IA, the lower bound of denominator can be realized on A. Then

E[P (ϕ ∈ U c|Dn)(1− T )IA] ≤
1

βn
E

{∫∫

Uc×P

n∏

i=1

l(Xi;ϕ, η)

l(Xi;ϕ0, η0)
π(dη, dϕ)(1− T )

}

= β−1
n

∫∫∫

X×Uc×P

n∏

i=1

l(Xi;ϕ, η)

l(Xi;ϕ0, η0)
(1− T )

n∏

i=1

l(Xi;ϕ0, η0)π(dη, dϕ)dX1...dXn

= β−1
n

∫∫∫

X×Uc×P

n∏

i=1

l(Xi;ϕ, η)(1− T )π(dη, dϕ)dX1...dXn

Here I used the fact that EV = Eϕ0,η0V =
∫
V
∏

i l(xi;ϕ0, η0)dx1...dxn. Also note that∫
V
∏

i l(Xi;ϕ, η)dx1...dxn = Eϕ,ηV . Using the Fubini’s theorem by changing the integration
order, we have the expression above also equals:

β−1
n

∫∫∫

X×Uc×P

n∏

i=1

l(Xi;ϕ, η)(1− T )π(df, dϕ)dX1...dXn = β−1
n

∫∫

Uc×P
Eϕ,η(1− T )π(dη, dϕ)

≤ β−1
n π(ϕ ∈ U c) sup

ϕ∈Uc,η∈P
Eϕ,η(1− T ) ≤ exp(−Lnr2n)β−1

n = o(1).

C Proofs for Section 3

C.1 Proof of Theorem 3.1

In this proof we use the notation ιϵ to denote: ϵ if ι = 1 and −ϵ if ι = −1. We start by
stating and proving the following lemma.

Lemma C.1. Let π(θ|ϕ) be a regular conditional distribution. Under assumption 3.2 there
exists a sequence of bounded and continuous functions {hm,ι(ϕ)}m defined on Φ for ι ∈
{−1, 1} such that |hm,ι(ϕ)| ≤ 1 and

π(θ ∈ Θ(ϕ0)
ιϵ|ϕ) = lim

m→∞
hm,ι(ϕ), π(ϕ)− a.s.

for ι ∈ {−1, 1}.

Proof. Denote by C(Φ) the set of continuous function on Φ. Since π(θ|ϕ) is a regular con-
ditional distribution then there exists a transition probability from (Φ,Bϕ) to (Θ,Bθ) that
characterizes it, where Bϕ and Bθ denote the σ-fields associated with Φ and Θ, respectively.
This means that π(θ ∈ Θ(ϕ0)

ιϵ|ϕ) is a measurable function of ϕ for ι ∈ {−1, 1}.
Next, remark that if ϕ /∈ Aϵ,ι then Θ(ϕ0)

ιϵ is not supported by the conditional prior
distribution π(θ|ϕ). Therefore, π(θ ∈ Θ(ϕ0)

ιϵ|ϕ) = 0, ∀ϕ /∈ Aϵ,ι. It follows by the Lusin’s
theorem (see e.g. Rudin (1986) page 55) that, on a compact set Kι ⊂ (Φ,Bϕ) of almost full
π(ϕ)-probability, π(θ ∈ Θ(ϕ0)

ιϵ|ϕ) is equal to a continuous function of ϕ. Finally, since for
any ϕ ∈ Φ, |π(θ ∈ Θ(ϕ0)

ιϵ|ϕ)| ≤ 1, by the corollary page 56 in Rudin (1986), there exists a
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sequence hm,ι ∈ C(Φ), |hm,ι| ≤ 1 such that π(θ ∈ Θ(ϕ0)
ιϵ|ϕ) = limm→∞ hm,ι(ϕ), π(ϕ)-a.s.

Under assumption 3.2 and by lemma C.1 we can apply the Dominated Convergence
Theorem so that limm→∞ hm,ι(ϕ) = π(θ ∈ Θ(ϕ0)

ιϵ|ϕ), π(ϕ)-a.s. implies

lim
m→∞

∫

Φ

hm,ι(ϕ)π(ϕ)dϕ =

∫

Φ

lim
m→∞

hm,ι(ϕ)π(ϕ)dϕ.

We consider P (θ ∈ Θ(ϕ0)
ιϵ|Dn) and show that it converges to 1 for ι = 1 and to something

smaller than 1 for ι = −1. Under assumption 3.2 and by lemma C.1, this probability can be
rewritten as

P (θ ∈ Θ(ϕ0)
ιϵ|Dn) =

∫

Φ

π(θ ∈ Θ(ϕ0)
ιϵ|ϕ)π(ϕ|Dn)dϕ =

∫

Φ

lim
m→∞

hm,ι(ϕ)π(ϕ|Dn)dϕ

= lim
m→∞

∫

Φ

hm,ι(ϕ)π(ϕ|Dn)dϕ (C.1)

We analyse separately the case with a nonparametric prior and the case with a semi-
parametric prior.

Nonparametric prior. In this case, assumption 3.1 (i) holds. The expression in (C.1)
must be developed further:

P (θ ∈ Θ(ϕ0)
ιϵ|Dn) = lim

m→∞

∫

F
hm,ι(ϕ(F ))π(F |Dn)dF.

Therefore, since ϕ is a continuous function of F (by the first part of assumption 3.1 (i))
we have that the composed function hm,ι ◦ ϕ is a continuous and bounded function of F and
under the second part of assumption 3.1 (i) we obtain

lim
n→∞

P (θ ∈ Θ(ϕ0)
ιϵ|Dn) = lim

n→∞
lim

m→∞

∫

F
hm,ι(ϕ(F ))π(F |Dn)dF

= lim
m→∞

∫

F
hm,ι(ϕ(F )) lim

n→∞
π(F |Dn)dF = lim

m→∞

∫

F
hm,ι(ϕ(F ))δF0(dF )

= lim
m→∞

hm,ι(ϕ(F0)) = π(θ ∈ Θ(ϕ0)
ιϵ|ϕ(F0))

where δF0 denotes the Dirac mass in F0. Since π(θ|ϕ(F0)) has support equal to Θ(ϕ0) and
Θ(ϕ0)

ϵ ⊂ Θ(ϕ0) ⊂ Θ(ϕ0)
ϵ then by using assumption 3.3

lim
n→∞

P (θ ∈ Θ(ϕ0)
ϵ|Dn) = 1 and lim

n→∞
P (θ ∈ Θ(ϕ0)

−ϵ|Dn) < 1, F0 − a.s.

Semi-parametric prior. In this case, assumption 3.1 (ii) holds. Since hm,ι(·) is a
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continuous function of ϕ, then equation (C.1) and assumption 3.1 (ii) imply

lim
n→∞

P (θ ∈ Θ(ϕ0)
ιϵ|Dn) = lim

n→∞
lim

m→∞

∫

Φ

hm,ι(ϕ)π(ϕ|Dn)dϕ

= lim
m→∞

∫

Φ

hm,ι(ϕ) lim
n→∞

π(ϕ|Dn)dϕ = lim
m→∞

∫

Φ

hm,ι(ϕ)δϕ0(dϕ)

= lim
m→∞

hm,ι(ϕ0) = π(θ ∈ Θ(ϕ0)
ιϵ|ϕ0)

where δϕ0 denotes the Dirac mass in ϕ0. Since π(θ|ϕ0) has support equal to Θ(ϕ0) then by
using assumption 3.3

lim
n→∞

P (θ ∈ Θ(ϕ0)
ϵ|Dn) = 1 and lim

n→∞
P (θ ∈ Θ(ϕ0)

−ϵ|Dn) < 1, F0 − a.s.

This concludes the proof.

D Proofs for Section 4

D.1 Proof of Theorem 4.1

Define Q(θ, ϕ) = ∥max(Ψ(θ, ϕ), 0)∥ =
[∑k

i=1(max(Ψi(θ, ϕ), 0))
2
]1/2

.

Lemma D.1. There exists C > 0, for any ϕ1, ϕ2 ∈ Φ,

sup
θ∈Θ

|Q(θ, ϕ1)−Q(θ, ϕ2)| ≤ C∥ϕ1 − ϕ2∥.

Proof. Define f(x) = xI(x ≥ 0), where x ∈ R. It is straightforward to show that ∀x1, x2,
|f(x1)− f(x2)| ≤ |x1 − x2|. One the other hand, for any ϕ1, ϕ2 ∈ Φ,

|Q(θ, ϕ1)−Q(θ, ϕ2)| = |∥max(Ψ(θ, ϕ1), 0)∥ − ∥max(Ψ(θ, ϕ2), 0)∥|
≤ ∥max(Ψ(θ, ϕ1), 0)−max(Ψ(θ, ϕ2), 0)∥

=

(
d∑

i=1

[max(Ψi(θ, ϕ1), 0)−max(Ψi(θ, ϕ2), 0)]
2

)1/2

=

(
d∑

i=1

[f(Ψi(θ, ϕ1))− f(Ψi(θ, ϕ2))]
2

)1/2

≤
(

d∑

i=1

[Ψi(θ, ϕ1)−Ψi(θ, ϕ2)]
2

)1/2

= ∥Ψθ, ϕ1)−Ψ(θ, ϕ2)∥ ≤ C∥ϕ1 − ϕ2∥ (D.1)

where C does not depend on θ, by Assumption 4.3.

Lemma D.2. There exists a closed neighborhood U(ϕ0), for any an = O(1), there exists
K > 0 that does not depend on ϕ, so that

inf
ϕ∈U(ϕ0)

inf
d(θ,Θ(ϕ))≥Kan

max
i≤k

Ψi(θ, ϕ) > an.
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Proof. For any C > 0, define AC = {ϕ ∈ U(ϕ0) : infθ:d(θ,Θ(ϕ))≥Can maxi≤k Ψi(θ, ϕ) > an}.
Then by Assumption 4.4, ∀ϕ ∈ U(ϕ0), there exists Cϕ > 0 so that ϕ ∈ ACφ

. Thus, we

have U(ϕ0) ⊂ ∪ϕ∈U(ϕ0)ACφ
. Since U(ϕ0) is a closed neighborhood inside R

dim(ϕ), which is
compact, hence there exist constants C1, ..., CN for some finite N > 0 to form a finite cover
so that U(ϕ0) ⊂

∪N
i=1ACi

. Then ∀ϕ ∈ U(ϕ0), there exists j ≤ N so that ϕ ∈ ACj
, which is

infθ:d(θ,Θ(ϕ))≥Cjan maxi≤d Ψi(θ, ϕ) > an. On the other hand, let K = max{Ci : i ≤ N}, then

inf
θ:d(θ,Θ(ϕ))≥Kan

max
i≤k

Ψi(θ, ϕ) ≥ inf
θ:d(θ,Θ(ϕ))≥Cjan

max
i≤k

Ψi(θ, ϕ) > an.

This is true for any ϕ ∈ U(ϕ0). Hence the result follows.

Lemma D.3. For any M > 0, there exists δ > 0, and a neighborhood U(ϕ0) of ϕ0, so that

inf
ϕ∈U(ϕ0)

inf
d(θ,Θ(ϕ))≥δ

√
(logn)/n

Q(θ, ϕ) > M

√
log n

n
.

Proof. For any M > 0, by Lemma D.2, there exist U(ϕ0) and δ > 0 so that

inf
ϕ∈U(ϕ0)

inf
d(θ,Θ(ϕ))≥δ

√
logn/n

max
i≤d

Ψi(θ, ϕ) > M

√
log n

n
. (D.2)

Now for any (θ, ϕ) ∈ {(θ, ϕ) ∈ Θ × U(ϕ0) : d(θ,Θ(ϕ)) ≥ δ
√
log n/n}, since θ /∈ Θ(ϕ),

maxi≤k Ψi(θ, ϕ) > 0, which implies that maxi≤k Ψi(θ, ϕ) = maxi≤k Ψi(θ, ϕ)I(Ψi(θ, ϕ) > 0).
For notational simplicity, let Ψi = Ψi(θ, ϕ), and Ψ = (Ψ1, ...,Ψk)

T . Then using the fact
that maxiA

2
i = (maxiAi)

2 if Ai ≥ 0, we have,

Q(θ, ϕ) = ∥max(Ψ, 0)∥ =

(
k∑

i=1

[max(Ψi, 0)]
2

)1/2

≥
(
max
i≤k

[max(Ψi, 0)]
2

)1/2

=

(
[max
i≤k

max(Ψi, 0)]
2

)1/2

= max
i≤k

max(Ψi, 0) = max
i≤k

ΨiI(Ψi ≥ 0) = max
i≤k

Ψi(θ, ϕ).

The result follows immediately from (D.2).

To simplify our notation, let us define

rn =

√
log n

n
.

Lemma D.4. There exists a constant C > 0 so that

P (Θ(ϕ) ⊂ Θ(ϕ0)
Crn |Dn) →p 1,

where Θ(ϕ0)
Crn = {θ ∈ Θ : d(θ,Θ(ϕ0)) ≤ Crn}, and P (.|Dn) denotes the marginal posterior

probability of ϕ.
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Proof. For any C > 0, let Θ\Θ(ϕ0)
Crn = {θ ∈ Θ : d(θ,Θ(ϕ0)) > Crn}. Suppose it is true

that there exists C > 0 so that

P

(
inf

θ∈Θ\Θ(ϕ0)Crn

Q(θ, ϕ) > sup
θ∈Θ(ϕ)

Q(θ, ϕ)

∣∣∣∣Dn

)
→p 1, (D.3)

then the lemma holds, this is because on the event infθ∈Θ\Θ(ϕ0)Crn Q(θ, ϕ) > supθ∈Θ(ϕ)Q(θ, ϕ),

we have Θ(ϕ) ⊂ Θ(ϕ0)
Crn . Thus it suffices to show (D.3). Note that supθ∈Θ(ϕ)Q(θ, ϕ) = 0,

since ∀θ ∈ Θ(ϕ), g(θ, ϕ) ≤ 0, which is equivalent to Q(θ, ϕ) = 0. On the other hand, we have
P (∥ϕ− ϕ0∥ < rn|Dn) →p 1. Therefore, it remains to show

P

(
inf

θ∈Θ\Θ(ϕ0)Crn

Q(θ, ϕ) > 0

∣∣∣∣Dn

)
→p 1. (D.4)

In fact, for any ϕ so that ∥ϕ− ϕ0∥ ≤ rn, by Lemma D.1, there exists K > 0, for any C > 0,

inf
θ∈Θ\Θ(ϕ0)Crn

Q(θ, ϕ) ≥ inf
θ∈Θ\Θ(ϕ0)Crn

Q(θ, ϕ0)− sup
θ∈Θ

|Q(θ, ϕ)−Q(θ, ϕ0)|
≥ inf

θ∈Θ\Θ(ϕ0)Crn

Q(θ, ϕ0)−Krn. (D.5)

Now by Lemma D.3, there exists C > 0 such that

inf
θ∈Θ\Θ(ϕ0)Crn

Q(θ, ϕ0) = inf
d(θ,Θ(ϕ0))≥Crn

Q(θ, ϕ0) ≥ 3Krn.

Hence we have shown that whenever ∥ϕ − ϕ0∥ ≤ rn, infθ∈Θ\Θ(ϕ0)Crn Q(θ, ϕ) ≥ 2Krn > 0.
Therefore, by the posterior concentration for ϕ, (D.4) holds from

P

(
inf

θ∈Θ\Θ(ϕ0)Crn

Q(θ, ϕ) > 0

∣∣∣∣Dn

)
≥ P (∥ϕ− ϕ0∥ ≤ rn|Dn) →p 1.

Lemma D.5. There exists L > 0 so that P (Θ(ϕ0) ⊂ Θ(ϕ)Lrn |Dn) →p 1.

Proof. By Lemma D.1, there exists K > 0 so that whenever ∥ϕ− ϕ0∥ ≤ rn,

sup
θ∈Θ

|Q(θ, ϕ)−Q(θ, ϕ0)| ≤ Krn.

We now fix such a ϕ, then for all large enough n, ϕ ∈ U(ϕ0) where U(ϕ0) is the neighborhood
defined in Lemma D.3. For such aK, by Lemma D.3, there exists L > 0 that does not depend
on ϕ (since the following inequality holds uniformly for ϕ ∈ U(ϕ0) by Lemma D.3),

inf
d(θ,Θ(ϕ))≥Lrn

Q(θ, ϕ) > Krn,

which then implies that {θ : Q(θ, ϕ) ≤ Krn} ⊂ {θ : d(θ,Θ(ϕ)) ≤ Lrn}. On the other hand,
for any θ ∈ Θ(ϕ0), Q(θ, ϕ0) = 0, which implies Q(θ, ϕ) ≤ 0 + |Q(θ, ϕ) − Q(θ, ϕ0)| ≤ Krn.
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Therefore, Θ(ϕ0) ⊂ {θ : Q(θ, ϕ) ≤ Krn} ⊂ {θ : d(θ,Θ(ϕ)) ≤ Lrn}. Hence we have in fact
shown that, the event ∥ϕ−ϕ0∥ ≤ rn implies the event Θ(ϕ0) ⊂ Θ(ϕ)Lrn . Moreover, the event
∥ϕ − ϕ0∥ ≤ rn occurs with probability approaching one under the posterior distribution of
ϕ, which then implies the result.

Lemma D.6. For two sets A,B, if A ⊂ Br1 and B ⊂ Ar2 for some r1, r2, then

dH(A,B) ≤ max{r1, r2}.

Proof. dH(A,B) = max{supa∈A d(a,B), supb∈B d(b, A)}. Then ∀a ∈ A, since A ⊂ Br1 , a ∈
Br1 , which is d(a,B) ≤ r1. This simplies supa∈A d(a,B) ≤ r1. Similarly we can show
supb∈B d(b, A) ≤ r2.

Proof of Theorem 4.1

Theorem 4.1 follows from combining Lemmas D.4-D.6. Q.E.D.

E Proofs for Section 5

Lemma E.1. If Ψ(θ, ϕ0) contains a subvector of strictly convex functions ΨS(., ϕ0) of θ,
then the function θ 7→ ΨS(θ, ϕ) is strictly convex for all ϕ ∈ B(ϕ0, δ).

Proof. We fix a constant δ > 0 to be determined later. Then for any ϕ ∈ B(ϕ0, δ), λ ∈ [0, 1]
and θ1, θ2 ∈ Θ, we want to show ΨS(θ1λ+ (1− λ)θ2, ϕ) < λΨS(θ1, ϕ) + (1− λ)ΨS(θ2, ϕ). In
fact, since ΨS(θ, ϕ0) is strictly convex in θ, there is ϵ0 > 0 such that ΨS(θ1λ+(1−λ)θ2, ϕ0) <
λΨS(θ1, ϕ0) + (1− λ)ΨS(θ2, ϕ0)− ϵ0. Then by the continuity of ϕ→ ΨS(θ, ϕ) at ϕ0, there is
δ > 0 such that whenever ∥ϕ− ϕ0∥ < δ, we have

ΨS(θ1, ϕ0) < ΨS(θ1, ϕ) + ϵ0/3, ΨS(θ2, ϕ0) < ΨS(θ2, ϕ) + ϵ0/3

and ΨS(θ1λ+ (1− λ)θ2, ϕ) < ΨS(θ1λ+ (1− λ)θ2, ϕ0) + ϵ0/3. Therefore,

ΨS(θ1λ+ (1− λ)θ2, ϕ) < ΨS(θ1λ+ (1− λ)θ2, ϕ0) + ϵ0/3
< λΨS(θ1, ϕ0) + (1− λ)ΨS(θ2, ϕ0)− ϵ0 + ϵ0/3 < λΨS(θ1, ϕ) + (1− λ)ΨS(θ2, ϕ).

E.1 Proof of Theorem 5.1

For any τ ∈ [0, 1] and any ϕ1, ϕ2 ∈ B(ϕ0, rn), define ϕτ = τϕ1+(1−τ)ϕ2 with ϕ2 = ϕτ |τ=0

and ϕ1 = ϕτ |τ=1. For every p ∈ S
d the support function may be rewritten as a function of

τ : Sϕ(·)
(p) : [0, 1] → R. By lemma G.14 the support function Sϕτ

(p) is differentiable at
τ = τ0 ∈ (0, 1) and then we can apply the mean value theorem to Sϕτ

(p):

Sϕ1(p)− Sϕ2(p) =
∂

∂τ
Sϕτ

(p)

∣∣∣∣
τ=τ0∈(0,1)

. (E.1)
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By defining τ0 : Sd → (0, 1) a measurable and differentiable function of p and by using the
result of Lemma G.14 we obtain

∂

∂τ
Sϕτ

(p)

∣∣∣∣
τ=τ0(p)

= λ(p, ϕτ0(p))
T∇ϕΨ(θ̃(p), ϕτ0(p))[ϕ1 − ϕ2] (E.2)

for some θ̃(p) ∈ Ξ(p, ϕτ0(p)), p ∈ S
d. By plugging (E.2) in (E.1) and developing further we

obtain

Sϕ1(p)− Sϕ2(p) = λ(p, ϕτ0(p))
T∇ϕΨ(θ̃(p), ϕτ0(p))[ϕ1 − ϕ2]

= λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)[ϕ1 − ϕ2] (E.3)

+
(
λ(p, ϕτ0(p))

T∇ϕΨ(θ̃(p), ϕτ0(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)

)
[ϕ1 − ϕ2]

where θ∗ : Sd → Θ is a Borel measurable mapping satisfying θ∗(p) ∈ Ξ(p, ϕ0). Denote

f(ϕ1, ϕ2) = sup
p∈Sd

(
λ(p, ϕτ0(p))

T∇ϕΨ(θ̃(p), ϕτ0(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)

)
[ϕ1 − ϕ2].

By lemma G.15, f(ϕ1,ϕ2)
∥ϕ1−ϕ2∥ converges to 0 uniformly in (ϕ1, ϕ2) ∈ B(ϕ0, rn) as rn → 0.

Finally, we analyze the first term in E.3. By lemma G.9 and lemma G.10, the function
p 7→ λ(p, ϕ0) is continuous in p ∈ S

d and therefore it attains its supremum. Moreover,
supp∈Sd ∇ϕΨ(θ∗(p), ϕ0) ≤ supθ∈Θ ∇ϕΨ(θ, ϕ0) and the supremum is attained since, under as-
sumptions 5.2 and 5.3 (i), θ 7→ ∇ϕΨ(θ, ϕ0) is uniformly continuous on Θ. We have

sup
p∈Sd

∣∣(Sϕ1(p)− Sϕ2(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)[ϕ1 − ϕ2]

∣∣ (E.4)

= sup
p∈Sd

∣∣∣
(
λ(p, ϕτ0(p))

T∇ϕΨ(θ̃(p), ϕτ0(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)

)
[ϕ1 − ϕ2]

∣∣∣

=: f(ϕ1, ϕ2). (E.5)

E.2 Proof of Theorem 5.2

Proof. Denote rn = (log n)1/2n−1/2 and Ω = {ϕ ∈ B(ϕ0, rn)}. Under assumption 4.1:
P (Ωc|Dn) = op(1). Then, by using the expansion of the support function given in lemma 5.1
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we have

P
(
sup
p∈Sd

|Sϕ(p)− Sϕ0(p)| ≥ Crn

∣∣∣Dn

)
= P

(
{sup
p∈Sd

|Sϕ(p)− Sϕ0(p)| ≥ Crn} ∩ Ω
∣∣∣Dn

)

+ P
(
sup
p∈Sd

|Sϕ(p)− Sϕ0(p)| ≥ Crn ∩ Ωc
∣∣∣Dn

)

≤ P
(
sup
p∈Sd

|Sϕ(p)− Sϕ0(p)| ≥ Crn ∩ Ω
∣∣∣Dn

)
+ P (Ωc|Dn)

≤ P
(
f(ϕ1, ϕ2) + sup

p∈Sd
|λ(p, ϕ0)

′∇ϕΨ(θ∗(p), ϕ0)[ϕ− ϕ0]| ≥ Crn ∩ Ω
∣∣∣Dn

)
+ op(1)

≤ P
(
o(∥ϕ− ϕ0∥) + sup

p∈Sd
|λ(p, ϕ0)

′∇ϕΨ(θ∗(p), ϕ0)∥∥ϕ− ϕ0∥ ≥ Crn

∣∣∣Dn

)
P (Ω|Dn) + op(1)

which converges to 0 in probability under assumption 4.1.

E.3 Proof of Theorem 5.3

Proof. Denote rn = (log n)1/2n−1/2, Ω := {ϕ ∈ B(ϕ0, rn)} and hn :=
√
n supp∈Sd(Sϕ(p) −

Sϕ0(p)). Since the Total Variation distance is bounded by 2 we have:

E∥Phn|Dn
−N (∆̄n,ϕ0 , Ī

−1
ϕ0

)∥TV = E∥Phn|Dn
−N (∆̄n,ϕ0 , Ī

−1
ϕ0

)∥TV IΩ

+ E∥Phn|Dn
−N (∆̄n,ϕ0 , Ī

−1
ϕ0

)∥TV IΩc

≤ E∥Phn|Dn
−N (∆̄n,ϕ0 , Ī

−1
ϕ0

)∥TV IΩ + 2P (Ωc).

By the expansion of the support function given in lemma G.16 the element hn is asymp-
totically equal to

√
n|λ(p, ϕ0)

′∇ϕΨ(θ∗(p), ϕ0)[ϕ − ϕ0]. Moreover, under assumption 4.1,
P (Ωc|Dn) = op(1). Therefore, E∥Phn|Dn

−N (∆̄n,ϕ0 , Ī
−1
ϕ0

)∥TV equals

E∥P√
n sup

p∈Sd
|λ(p,ϕ0)′∇φΨ(θ∗(p),ϕ0)[ϕ−ϕ0]∥Dn

−N (∆̄n,ϕ0 , Ī
−1
ϕ0

)∥TV IΩ + o(1) + op(1)

which converges to 0 under assumption 5.7.

F Proofs for Section 6

F.1 Proof of Theorem 6.1

Lemma F.1. For any consistent estimator ∥ϕ̂− ϕ0∥ = op(1), P (θ /∈ Θ(ϕ̂)|Dn) = op(1).

Proof. Straightforward calculation shows

P (θ /∈ Θ(ϕ̂)|Dn) =

∫
π(θ /∈ Θ(ϕ̂)|ϕ)p(ϕ|Dn)dϕ ≤

∫
π(θ /∈ Θ(ϕ0)|ϕ)p(ϕ|Dn)dϕ

+

∫
|π(θ /∈ Θ(ϕ̂)|ϕ)− π(θ /∈ Θ(ϕ0)|ϕ)|p(ϕ|Dn)dϕ ≡ A+B.
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We investigate A and B respectively. First of all, by the posterior concentration of ϕ, there
is rn = o(1) such that (note that π(θ|ϕ) = π(θ|ϕ)Iθ∈Θ(ϕ))

A =

∫

∥ϕ−ϕ0∥≤rn

π(θ /∈ Θ(ϕ0)|ϕ)p(ϕ|Dn)dϕ+ op(1)

=

∫

∥ϕ−ϕ0∥≤rn

∫

θ/∈Θ(ϕ0),θ∈Θ(ϕ)

π(θ|ϕ)dθp(ϕ|Dn)dϕ+ op(1).

By the expansion of the support function, ∥ϕ− ϕ0∥ ≤ rn implies dH(Θ(ϕ),Θ(ϕ0)) ≤ Crn for
some C > 0. Hence Θ(ϕ) ⊂ Θ(ϕ0)

Crn , which yields

A ≤
∫

∥ϕ−ϕ0∥≤rn

∫

θ/∈Θ(ϕ0),θ∈Θ(ϕ0)Crn

π(θ|ϕ)dθp(ϕ|Dn)dϕ+ op(1) = op(1),

where the last equality follows since rn = o(1) and supθ,ϕ π(θ|ϕ) < ∞. On the other hand,

let H = {θ ∈ Θ(ϕ0), θ /∈ Θ(ϕ̂)} ∪ {θ ∈ Θ(ϕ̂), θ /∈ Θ(ϕ0)}. Then

sup
ϕ∈Φ

|π(θ /∈ Θ(ϕ0)|ϕ)− π(θ /∈ Θ(ϕ̂0)|ϕ)| ≤ sup
ϕ∈Φ

π(θ ∈ H|ϕ).

Due to the consistency of ϕ̂, and the expansion of the support function,
dH(Θ(ϕ0),Θ(ϕ̂)) = op(1), and therefore µ(H) = op(1) which implies supϕ∈Φ π(H|ϕ) = op(1)
since supθ,ϕ π(θ|ϕ) <∞. We conclude that B = op(1).

Now to finish proving part (i) of the theorem, noting that Θ(ϕ̂) ⊂ FCS(τ), we have

P (θ /∈ FCS(τ)|Dn) ≤ P (θ /∈ Θ(ϕ̂)|Dn) = op(1),

which by definition, leads to the conclusion of part (i).
For part (ii), by the definition of BCS that P (θ ∈ BCS(τ)|Dn) = 1− τ , we have

P (θ ∈ FCS(τ), θ /∈ BCS(τ)|Dn) ≤ P (θ /∈ BCS(τ)|Dn) = τ.

On the other hand, Lemma F.1 implies P (θ /∈ Θ(ϕ̂)∪θ ∈ BCS(τ)|Dn) ≤ op(1)+1−τ. Hence

P (θ ∈ FCS(τ), θ /∈ BCS(τ)|Dn) ≥ P (θ ∈ Θ(ϕ̂), θ /∈ BCS(τ)|Dn)
≥ 1− (op(1) + 1− τ) = τ + op(1).

F.2 Proof of Theorems 6.2 and 6.3

Theorem 6.2 has been proved in the main text. We now prove Theorem 6.3.

Lemma F.2. Suppose that assumptions 5.1-5.6 hold with δ = rn. Then, for any x ≥ 0,

P (
√
n sup

∥p∥=1

|Sϕ(p)− Sϕ̂M
(p)| ≤ x|Dn)− PDn

(
√
n sup

∥p∥=1

|Sϕ0(p)− Sϕ̂M
(p)| ≤ x) = op(1).
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Proof. For θ∗(p) and λ(p, ϕ0) defined in Lemma G.16, define

fn
p (ϕ1, ϕ2) =

√
nλ(p, ϕ0)

T∇Ψ(θ∗(p), ϕ0)(ϕ1 − ϕ2)

where θ∗(p) and λ(p, ϕ0) do not depend on specific choice of ϕ1 and ϕ2. Then Lemma G.16
implies that

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
∥p∥=1

|√n(Sϕ1(p)− Sϕ2(p))− fn
p (ϕ1, ϕ2)| = o(1). (F.1)

For notational simplicity, we further write gn(ϕ1, ϕ2) =
√
n sup∥p∥=1 |Sϕ1(p)− Sϕ2(p)|. Then

|P (gn(ϕ, ϕ̂M) ≤ x|Dn)− PDn
(gn(ϕ0, ϕ̂M) ≤ x)|

≤ |P ( sup
∥p∥=1

|fn
p (ϕ, ϕ̂M)| ≤ x|Dn)− PDn

( sup
∥p∥=1

|fn
p (ϕ0, ϕ̂M)| ≤ x)|

+|P (gn(ϕ, ϕ̂M) ≤ x|Dn)− P ( sup
∥p∥=1

|fn
p (ϕ, ϕ̂M)| ≤ x|Dn)|

+|PDn
( sup
∥p∥=1

|fn
p (ϕ0, ϕ̂M)| ≤ x)− PDn

(gn(ϕ0, ϕ̂M) ≤ x)|
= a1 + a2 + a3

It remains to show that ai = op(1) for i = 1, 2, 3. By the Bernstein von Mises theorem

and asymptotic normality of ϕ̂M (Assumption 6.2), the posterior
√
n(ϕ − ϕ̂M)|Dn and the

sampling distribution
√
n(ϕ̂M − ϕ0) are asymptotically identically distributed. This implies

that a1 = op(1). On the other hand, (F.1) implies
supϕ1,ϕ2∈B(ϕ0,rn) |gn(ϕ1, ϕ2)− sup∥p∥=1 f

n
p (ϕ1, ϕ2)| = o(1), where we used the inequality

| supx g1(x)−supx g2(x)| ≤ 3 supx |g1(x)−g2(x)| for any wo functions g1(x) and g2(x). There-
fore, if we write ∆ = |gn(ϕ, ϕ̂M)− sup∥p∥=1 f

n
p (ϕ, ϕ̂M)|,

a2 ≤ |P (gn(ϕ, ϕ̂M) ≤ x|Dn)− P (gn(ϕ, ϕ̂M) ≤ x+∆|Dn)|
+|P (gn(ϕ, ϕ̂M) ≤ x|Dn)− P (gn(ϕ, ϕ̂M) ≤ x−∆|Dn)| = op(1)

since ∆ = op(1). Similarly, a3 = op(1).

Proof of Theorem 6.3

PDn
(Θ(ϕ̂M)−qτ/

√
n ⊂ Θ(ϕ0) ⊂ Θ(ϕ̂M)qτ/

√
n) = PDn

(
√
n sup

∥p∥=1

|Sϕ0(p)− Sϕ̂M
(p)| ≤ qτ )

≥ P (J(ϕ) ≤ qτ |Dn) + op(1) = 1− τ + op(1),

where the inequality follows from Lemma F.2.
Proof of Corollary 6.1

Proof. For any fixed θ ∈ Θ(ϕ0),

PDn
(θ ∈ Θ(ϕ̂M)q̃τ/

√
n) ≥ PDn

(Θ(ϕ0) ⊂ Θ(ϕ̂M)q̃τ/
√
n) ≥ 1− τ + op(1)

where op(1) is uniformly in θ ∈ Θ(ϕ0). This gives the result.
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G Technical Lemmas

We remind some technical notation that will be used throughout this section.

- d = dim(θ), dϕ = dim(ϕ);

- B(ϕ0, δ) = {ϕ ∈ Φ; ∥ϕ− ϕ0∥ ≤ δ};

- ΨS(θ, ϕ) is the kS-subvector of Ψ(θ, ϕ) containing the constraints that are strictly convex
functions of θ and λS(p, ϕ) are the corresponding Lagrange multipliers for p ∈ S

d;

- ΨL(θ, ϕ) is the kL-subvector of Ψ(θ, ϕ) containing the constraints that are linear in θ and
λL(p, ϕ) are the corresponding Lagrange multipliers for p ∈ S

d;

- Ξ(p, ϕ) = argmaxθ∈Θ{pT θ; Ψ(θ, ϕ) ≤ 0} is the support set of Θ(ϕ);

- ∇ϕΨ(θ, ϕ) the k × dϕ matrix of partial derivatives of Ψ with respect to ϕ;

- ∀θ ∈ Θ(ϕ) and ϕ ∈ B(ϕ0, rn), we denote by Act(θ, ϕ) := {i; Ψi(θ, ϕ) = 0} the set of the
inequality active constraint indices and by dA(θ, ϕ) the number of its elements;

- ∀i ∈ Act(θ, ϕ), ∇θΨi(θ, ϕ) denotes the d-vector of partial derivatives of Ψi with respect to θ.

Lemma G.1. Under assumptions 5.1 and 5.3 (iii) with δ = rn if (θ̃, ϕ̃) ∈ Θ× B(ϕ0, rn) are such
that Ψ(θ̃, ϕ̃) < 0, then there exists a N such that whenever n ≥ N we have that Ψ(θ̃, ϕ) < 0 for
every ϕ ∈ B(ϕ0, rn).

Proof. Under assumption 5.3 (iii) with δ = rn for every ϕ ∈ B(ϕ0, rn) there exists a θ ∈ Θ such that
Ψ(θ, ϕ) < 0. Denote by (θ̃, ϕ̃) this value (i.e. Ψ(θ̃, ϕ̃) < 0). By assumption 5.1 the function Ψ(θ, ϕ)
is continuous in (θ, ϕ), then there is a N such that whenever n ≥ N we have that Ψ(θ̃, ϕ) < 0 for
every ϕ ∈ B(ϕ0, rn).
Q.E.D.

Lemma G.2. Let assumptions 5.1 and 5.2 be satisfied with δ = rn. For every ϵn > 0 there exists
a N such that for every n ≥ N and ϕ ∈ B(ϕ0, rn)

sup
θ∈Θ

∥Ψ(θ, ϕ)−Ψ(θ, ϕ0)∥ < ϵn. (G.1)

Proof. Under assumption 5.1, the function ϕ → Ψ(θ, ϕ) is continuous on Φ, for every θ ∈ Θ, and
uniformly continuous on B(ϕ0, rn), due to the compactness of B(ϕ0, rn). Therefore, ∀ϵn > 0 there
exists a δθ > 0 such that ∀ϕ ∈ B(ϕ0, rn): ∥Ψ(θ, ϕ)−Ψ(θ, ϕ0)∥ < ϵn for every θ ∈ Θ. Now, for every
ϕ ∈ B(ϕ0, rn) denote fϕ(θ) = ∥Ψ(θ, ϕ)−Ψ(θ, ϕ0)∥ and

Aδθ :=
{
θ̃ ∈ Θ; fϕ(θ̃) < ϵn, ∀ϕ ∈ B(ϕ0, rn); rn < δθ

}

for every θ ∈ Θ, ϵn > 0 and δθ > 0. This means that ∀θ ∈ Θ there is a δθ such that θ ∈ Aδθ .
Under assumption 5.1 fϕ(θ) is continuous in θ, hence Aδθ is an open set and

∪
θ∈ΘAδθ is an open

cover of Θ: Θ ⊂ ∪θ∈ΘAδθ . Due to compactness of Θ (see assumption 5.2) there exists a finite set

{δ1, . . . , δK}, K <∞ such that {Aδi}Ki=1 is a subcover of Θ, that is, Θ ⊂ ∪K
i=1Aδi .
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Let δ∗ = min{δ1, . . . , δK} so that Aδi ⊆ Aδ∗ for every i = 1, . . . ,K and for any θ ∈ Θ we have
θ ∈ Aδ∗ . Remark that this δ∗ does not depend on θ. This then implies that for any ϕ ∈ B(ϕ0, rn)
and rn < δ∗

sup
θ∈Θ

∥Ψ(θ, ϕ)−Ψ(θ, ϕ0)∥ < ϵn.

Q.E.D.

Lemma G.3. Under assumptions 5.1, 5.2 and 5.3 (iii) with δ = rn, there exists a N such that
for every n ≥ N the correspondence ϕ 7→ Θ(ϕ) is well defined and continuous at all ϕ ∈ B(ϕ0, rn),
that is, it is upper and lower hemicontinuous.

Proof. This proof follows the lines of the proof of Lemma B.3 in Kaido and Santos (2011) with
minor modifications. First, under assumptions 5.1 and 5.3 (iii) the set Θ(ϕ) is a convex set with
nonempty interior for every ϕ ∈ B(ϕ0, rn).

Next, we have to show that the correspondence ϕ 7→ Θ(ϕ) is continuous (for a definition of
continuity of a correspondence see for instance Definition 17.2 in Aliprantis and Border (2006)).
First, we show that ϕ 7→ Θ(ϕ) is lower hemicontinuous at any ϕ ∈ B(ϕ0, rn). We show this by
showing Theorem 17.19 (ii) in Aliprantis and Border (2006), that is, for any θ∗ ∈ Θ(ϕ) (i.e.
Ψ(θ∗, ϕ) ≤ 0) and net {ϕj} with ϕj → ϕ, there exists a subnet {ϕjβ}β∈Υ and a net {θβ}β∈Υ such
that θβ ∈ Θ(ϕjβ ), for every β ∈ Υ, and θβ → θ∗. In order to show this, consider a net ϕj → ϕ. Then
we distinguish between two cases. Case I: θ∗ ∈ int(Θ)(ϕ), i.e. Ψ(θ∗, ϕ) < 0. By Lemma G.1 there
exists a N such that for every n ≥ N there exists a jn such that ϕjn ∈ B(ϕ0, rn) and Ψ(θ∗, ϕj) < 0
for every j ≥ jn. Define Υ ≡ {j ≥ jn} and ϕj = ϕβ with β ∈ Υ. Fix θβ = θ∗ (i.e. θβ is a constant
net equal to θ∗) so that θβ ∈ Θ(ϕβ) for every β ∈ Υ and θβ → θ∗. Case II: θ∗ ∈ ∂Θ(ϕ). Since Θ(ϕ)
is convex with non-empty interior then there exists {θ̃λ} that belongs to int(Θ)(ϕ), for every λ,
with θ̃λ → θ∗. By Lemma G.1 there exists a N such that for every n ≥ N there exists a jn,λ such
that ϕj ∈ B(ϕ0, rn) and Ψ(θ̃λ, ϕj) < 0 for every j ≥ jn,λ (i.e. θ̃λ ∈ Θ(ϕj) for every j ≥ jn,λ). Since
B(ϕ0, rn) is compact then every convergent net admits a convergent subnet, that is, there exists
ln such that {ϕjβ}β∈Υ converges to ϕ where Υ ≡ {j ≥ max{l0, j0,λ}}. The corresponding θβ ≡ θ̃λ
satisfies θβ → θ∗ by construction, θβ ∈ Θ(ϕjβ ) and θ

∗ ∈ ∂Θ(ϕ).
Now, let us show that the correspondence ϕ 7→ Θ(ϕ) is upper hemicontinuous at any ϕ ∈

B(ϕ0, rn). By theorem 17.16 in Aliprantis and Border (2006) it is sufficient to show that for every
net {ϕj , θj} such that θj ∈ Θ(ϕj) for each j (i.e. (ϕj , θj) is in the graph of Θ(·)), if ϕj → ϕ then
θj → θ∗ ∈ Θ(ϕ).

To show this, first observe that, since Θ is compact then a convergent net θj ∈ Θ(ϕj) has a
subnet θjβ ∈ Θ(ϕjβ ) which is convergent, that is, θjβ → θ∗ for some θ∗ ∈ Θ. Therefore, we have to
show that θ∗ ∈ Θ(ϕ). To show this first remark that there exists jn > 0 such that for every j ≥ jn,
ϕj ∈ B(ϕ0, rn). Since B(ϕ0, rn) is compact then every convergent net ϕj → ϕ admits a convergent
subnet {ϕjβ}β∈Υ such that ϕjβ → ϕ. By the result of Lemma G.2 we have that

Ψ(θjβ , ϕjβ )−Ψ(θjβ , ϕ)

converges to 0 uniformly in θ. Moreover, under assumption 5.1 the function Ψ(·, ϕ) is continuous
in θ. This allows to conclude that

Ψ(θjβ , ϕjβ ) → Ψ(θ∗, ϕ) (G.2)

(because Ψ(θjβ , ϕjβ )−Ψ(θjβ , ϕ) =
(
Ψ(θjβ , ϕjβ )−Ψ(θjβ , ϕ)

)
+
(
Ψ(θjβ , ϕ)−Ψ(θ∗, ϕ)

)
). Since Ψ(θjβ , ϕjβ ) ≤

0 because θjβ ∈ Θ(ϕjβ ) then Ψ(θ∗, ϕ) ≤ 0. We conclude that θ∗ ∈ Θ(ϕ) and upper hemicontinuity

55



is established. Q.E.D.

Lemma G.4. Let Assumptions 5.1, 5.2, and 5.3 (ii)-(iii) hold with δ = rn. Then, there exists a
N such that for every n ≥ N the correspondence

(p, ϕ) 7→ Ξ(p, ϕ) = argmax
θ∈Θ

{pT θ; Ψ(θ, ϕ) ≤ 0}

has non-empty compact values and it is upper hemicontinuous on S
d ×B(ϕ0, rn).

Proof. Let τ0 : Sd → (0, 1) be a measurable and differentiable function of p. For every ϕ1, ϕ2 ∈
B(ϕ0, rn) define ϕτ0(p) = τ0(p)ϕ1+(1−τ0(p))ϕ2. Lemma G.3 implies that there exists a N such that
for every n > N the correspondence ϕ 7→ Θ(ϕ) is well defined and continuous at all ϕ ∈ B(ϕ0, rn).
Therefore, for any ϕ1, ϕ2 ∈ B(ϕ0, rn), the correspondence p 7→ Θ(ϕτ0(·)) : Sd → R

d is continuous
because it is the composition of continuous functions.

Under assumption 5.1 the function θ 7→ Ψ(θ, ϕ) is continuous in θ for every ϕ ∈ Φ then it
is also lower semi-continuous. Therefore, for every i = 1, . . . , k and ϕ ∈ Φ, the lower level sets
{θ ∈ Θ; Ψi(θ, ϕ) ≤ 0} are closed and the set Θ(ϕ) is closed because it is a finite intersection of
closed sets. Because ∀ϕ ∈ Φ, Θ(ϕ) ⊆ Θ and Θ is compact (under assumption 5.2) then the set
Θ(ϕ) is also compact.

Now, under assumption 5.3 (ii) we can apply the “Berge Maximum Theorem”, see e.g. theorem
17.31 in Aliprantis and Border (2006), which guarantees that the correspondence

p 7→ Ξ(p, ϕτ0(p)) = arg max
θ∈Θ(ϕτ0(p)

)
pT θ

has nonempty compact values and it is upper hemicontinuous for every ϕ1, ϕ2 ∈ B(ϕ0, rn).
By the definition of upper hemicontinuity (see e.g. theorem 17.16 in Aliprantis and Border (2006)),
for every net {pj , θj} such that θj ∈ Ξ(pj , ϕτ0(pj)), if pj → p then θj → θ ∈ Ξ(p, ϕτ0(p)). The corre-
spondence p 7→ Ξ(p, ϕτ0(p)) may be rewritten as a correspondence of two arguments: (p, ϕτ0(p)) 7→
Ξ(p, ϕτ0(p)) – where (p, ϕτ0(p)) in turn is the value taken by the map (p, ϕ1, ϕ2) 7→ (p, ϕτ0(p)) – and,
since for every net (pj , ϕτ0(pj), θj) such that θj ∈ Ξ(pj , ϕτ0(pj)), if (pj , ϕτ0(pj)) → (p, ϕτ(p)) then
θj → θ ∈ Ξ(p, ϕτ0(p)), it follows that the correspondence (p, ϕτ0(p)) 7→ Ξ(p, ϕτ0(p)) is also upper
hemicontinuous. Since every ϕ ∈ B(ϕ0, rn) can be represented as ϕτ0(p) (if we choose ϕ1 and ϕ2
on the boundary of B(ϕ0, rn)) then we can rewrite the correspondence as (p, ϕ) 7→ Ξ(p, ϕ) which is
upper hemicontinuous. Q.E.D.

Lemma G.5. Let assumptions 5.1, 5.2 and 5.3 (ii)-(iii) be satisfied with δ = rn. Let W ⊆ S
d be

compact and Ξ(p, ϕ0) be a singleton ∀p ∈W . Then there exists a N such that for every n ≥ N and
ϕ ∈ B(ϕ0, rn) there exists a εn > 0 which goes to 0 as rn → 0 such that for θ∗(p) = Ξ(p, ϕ0),

sup
p∈W

sup
θ∈Ξ(p,ϕ)

∥θ − θ∗(p)∥ < εn

Proof. For every (p, ϕ) ∈ S
d × B(ϕ0, rn) define Ξδ(p, ϕ) := {θ ∈ R

d; inf θ̃∈Ξ(p,ϕ) ∥θ − θ̃∥ < δ}. Since
∥ϕ − ϕ0∥ ≤ rn and Ξ(p, ϕ) : Sd × B(ϕ0, rn) → R

d is upper hemicontinuous by lemma G.4 (for n
sufficiently large), then whenever ϕ ∈ B(ϕ0, rn) for any p ∈ S

d there exists a εn > 0 such that
Ξ(p, ϕ) ⊆ Ξεn(p, ϕ0) where εn → 0 as rn → 0. This implies that

sup
θ∈Ξ(p,ϕ)

∥θ − θ∗(p)∥ ≤ sup
θ∈Ξεn (p,ϕ0)

∥θ − θ∗(p)∥ < εn.
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Now, fix the sequence εn, denote fϕ(p) := supθ∈Ξ(p,ϕ) ∥θ − θ∗(p)∥ for ϕ ∈ B(ϕ0, rn) and

Aδp := {p̃ ∈W ; fϕ(p̃) < εn, ∀ϕ ∈ B(ϕ0, rn) with rn < δp}

for every p ∈ W . This means that for any p ∈ W there is a δp so that p ∈ ANp . Since fϕ(p) is
continuous in p (by the result of lemma G.4), hence Aδp is an open set and

∪
p∈W Aδp is an open

cover of W : W ⊂ ∪p∈W Aδp .

Due to the compactness of W there exists a finite set {δ1, . . . , δK}, K <∞ such that {Aδi}Ki=1 is a
subcover of W : W ⊂ ∪K

i=1Aδi . Let δ
∗ = min{δ1, . . . , δK} so that Aδi ⊆ Aδ∗ for every i = 1, . . . ,K

and for any p ∈W we have p ∈ Aδ∗ . This then implies that for any rn < δ∗

sup
p∈W

sup
θ∈Ξ(p,ϕ)

∥θ − θ∗(p)∥ < εn.

Lemma G.6. Let assumptions 5.1, 5.2 and 5.3 (ii)-(iii) be satisfied with δ = rn. Let W ⊆ S
d be

compact and Ξ(p, ϕ0) be a singleton ∀p ∈ W . Moreover, let εn > 0 satisfy assumption 5.6 (iv).
Then for θ∗(p) = Ξ(p, ϕ0),

sup
ϕ∈B(ϕ0,rn)

sup
p∈W

sup
θ∈Ξ(p,ϕ)

∥θ − θ∗(p)∥ = O(rn).

Proof. By lemma G.5 we know that supp∈W supθ∈Ξ(p,ϕ) ∥θ − θ∗(p)∥ < εn where now εn is chosen
such that εn = O(rn). Such an εn exists by assumption 5.6 (iv). Next, for ϕ ∈ B(ϕ0, rn), denote
f(ϕ) := supp∈W supθ∈Ξ(p,ϕ) ∥θ − θ∗(p)∥ and

Aδφ :=
{
ϕ̃ ∈ B(ϕ0, rn); f(ϕ̃) < εn, ∀rn < δϕ

}
.

Remark that δϕ must be such that ϕ ∈ Aδφ for every ϕ ∈ B(ϕ0, rn). Since f(ϕ) is continuous in
ϕ, hence Aδφ is an open set and

∪
ϕ∈B(ϕ0,rn)

Aδφ is an open cover of B(ϕ0, rn), that is, B(ϕ0, rn) ⊂∪
ϕ∈B(ϕ0,rn)

Aδφ . Due to compactness of B(ϕ0, rn) there exists a finite set {δ1, . . . , δK}, K < ∞
such that {Aδi}Ki=1 is a subcover of B(ϕ0, rn), that is,

B(ϕ0, rn) ⊂
K∪

i=1

Aδi .

Let δ∗ = min{δ1, . . . , δK} so that Aδi ⊆ Aδ∗ for every i = 1, . . . ,K and for every ϕ ∈ B(ϕ0, rn) we
have ϕ ∈ Aδ∗ . This then implies that for any rn < δ∗

sup
ϕ∈B(ϕ0,rn)

sup
p∈W

sup
θ∈Ξ(p,ϕ)

∥θ − θ∗(p)∥ = O(rn).

Q.E.D.

Lemma G.7. Let assumptions 5.1, 5.2, 5.3 (iii) and 5.4 (i) be satisfied with δ = rn. For every
θ ∈ Θ(ϕ0) denote by Act(θ, ϕ0) := {i; Ψi(θ, ϕ0) = 0} the set of constraints in Ψ(θ, ϕ0) ≤ 0 which
are active and by dA(θ, ϕ) the number of elements in Act(θ, ϕ). Then, there exists an N such that
dA(θ, ϕ) ≤ d for every θ ∈ Θ(ϕ), ϕ ∈ B(ϕ0, rn) and n ≥ N .
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Proof. Consider the correspondence Θ(·) : B(ϕ0, rn) → Θ and a net (ϕα, θα) in the graph of Θ(ϕ),
that is, ϕα ∈ B(ϕ0, rn) and θα ∈ Θ(ϕα). Under Assumption 5.2, Θ(ϕ) is compact ∀ϕ ∈ B(ϕ0, rn)
since it is a closed subset of a compact space. Because, by lemma G.3, the correspondence Θ(·) :
B(ϕ0, rn) → Θ is upper-hemicontinuous it follows by theorem 17.16 in Aliprantis and Border (2006)
and equation (G.2) that for every i ∈ Actc(θ, ϕ0), for any ϵ > 0, there exists an N such that for
every ϕα ∈ B(ϕ0, rn) with n > N we have

|Ψi(θα, ϕα)−Ψi(θ
∗, ϕ0)| < ϵ, Ψi(θα, ϕα) < 0

where θ∗ ∈ Θ(ϕ0). This is because, since Ψi(θ
∗, ϕ0) < 0 for every i ∈ Actc(θ, ϕ0) then there

exists a ϵ̃ > 0 such that Ψi(θ
∗, ϕ0) < −ϵ̃i and, for any ϵ < ϵ̃i, we can always find a N such that

Ψi(θα, ϕα) < 0 for every ϕα ∈ B(ϕ0, rn) and n > N .
This means that for every θ ∈ Θ(ϕ0), Act

c(θ, ϕ0) ⊆ Actc(θα, ϕα) for every ϕα ∈ B(ϕ0, rn) and n
sufficiently large. Therefore, the reverse inclusion holds for the complements of these sets:

Act(θα, ϕα) ⊆ Act(θ, ϕ0), θ ∈ Θ(ϕ0), θα ∈ Θ(ϕα) (G.3)

for every ϕα ∈ B(ϕ0, rn) and n sufficiently large. By assumption 5.4 (i) we have dA(θ, ϕ0) ≤ d
which, together with (G.3), implies that for any θ ∈ Θ(ϕ), dA(θ, ϕ) ≤ d for every ϕ ∈ B(ϕ0, rn) and
n sufficiently large. Q.E.D.

Lemma G.8. Let Assumptions 5.1, 5.2, 5.3 (iii), 5.3 (v) and 5.4 (ii) be satisfied with δ = rn.
Then, there exists an N such that for every n ≥ N , ϕ ∈ B(ϕ0, rn) and θ ∈ Θ(ϕ) the vectors

{∇θΨi(θ, ϕ)}i∈Act(θ,ϕ)

are linearly independent.

Proof. By (G.3) we have the inclusion Act(θ, ϕ) ⊆ Act(θ, ϕ0), for every θ ∈ Θ(ϕ0), ϕα ∈ B(ϕ0, rn)
and n sufficiently large. Therefore, we can prove the results by considering the indices in the biggest
set Act(θ, ϕ0).
Since, by lemma G.3, the correspondence ϕ 7→ Θ(ϕ) is upper hemicontinuous then for every net
{ϕα, θα} in the graph of Θ(·) (i.e. such that θα ∈ Θ(ϕα), ∀α such that ϕα ∈ B(ϕ0, rn)) we have that
if ϕα → ϕ0 then θα → θ∗ where θ∗ is some element of Θ(ϕ0) (see e.g. theorem 17.16 in Aliprantis
and Border (2006)). Because by assumption 5.3 (v) the vectors ∇θΨi(θ, ϕ), i ∈ Act(θ, ϕ0) with
θ ∈ Θ(ϕ0), are continuous in (θ, ϕ) it follows that

∇θΨi(θα, ϕα) → ∇θΨi(θ
∗, ϕ0), ∀i ∈ Act(θ, ϕ0), θ ∈ Θ(ϕ0). (G.4)

Now, denote by ∇θΨ
A(θ, ϕ) the (d × dA) matrix obtained by stacking columnwise the vectors

{∇θΨi(θ, ϕ)}i∈Act(θ,ϕ0) and by {ρi(θ, ϕ)}i∈Act(θ,ϕ0) its singular values. By assumption 5.4 (ii) the ma-

trix ∇θΨ
A(θ, ϕ0) is full-column rank and then there exists a ϵ > 0 such that infi∈Act(θ,ϕ0) ρi(θ, ϕ0) >

ϵ. Continuity of the singular values (which follows from the continuity of ∇θΨ
A(θ, ϕ), see e.g. the-

orem II.5.1 in Kato (1995)) and (G.4) imply

ρi(θα, ϕα) → ρi(θ
∗, ϕ0) ∀i ∈ Act(θ, ϕ0), θ ∈ Θ(ϕ0).

We conclude that there exists a N such that for every n ≥ N , ϕ ∈ B(ϕ0, rn) and θ ∈ Θ(ϕ) the
eigenvalues {ρi(θ, ϕ)}i∈Act(θ,ϕ0) are strictly positive which implies that ∇θΨ

A(θ, ϕ) is non-singular.
Henceforth, {∇θΨi(θ, ϕ)}i∈Act(θ,ϕ) are linearly independent. Q.E.D.
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Lemma G.9. Let assumptions 5.1, 5.2, 5.3 (iii), 5.3 (v) and 5.4 (ii) hold with δ = rn. Then, there
exists a N such that for every n ≥ N , ϕ ∈ B(ϕ0, rn) and p ∈ S

d there exists a unique λ(p, ϕ) ∈ R
k
+

satisfying
sup

θ∈Θ(ϕ)
pT θ = sup

θ∈Θ

{
pT θ − λ(p, ϕ)TΨ(θ, ϕ)

}
. (G.5)

Proof. For every ϕ ∈ Φ, Θ(ϕ) is a compact set since it is a closed subset of Θ, which is compact
under assumption 5.2. This implies that supθ∈Θ(ϕ) < p, θ > is finite. Hence, if assumption 5.3 (iii)
holds then, the conditions of Corollary 28.2.1 in Rockafellar (1970) are satisfied and by applying
this corollary we obtain that, for every ϕ ∈ B(ϕ0, rn) and p ∈ S

d, there exists λ(p, ϕ) satisfying
equation (G.5).

In order to show uniqueness of λ(p, ϕ), suppose that for (ϕ, p) ∈ B(ϕ0, rn)× S
d there exist two

different vectors λ1(p, ϕ) and λ2(p, ϕ) that satisfy equation (G.5). Since assumption 5.3 (iv) implies
Ξ(p, ϕ) ⊂ intΘ for all (p, ϕ) ∈ S

d ×B(ϕ0, rn), where intΘ denotes the interior of Θ, it follows that
for any θ̃ ∈ Ξ(p, ϕ), λ1(p, ϕ) and λ2(p, ϕ) satisfy the first order condition:

p−∇θΨ(θ̃, ϕ)λ1(p, ϕ) = p−∇θΨ(θ̃, ϕ)λ2(p, ϕ) = 0. (G.6)

By the complementary slackness condition the Lagrange multipliers of the non-binding constraints
are equal to 0. Therefore, equation (G.6) simplifies to

p−
dA∑

i=1

λi1(p, ϕ)∇θΨi(θ̃, ϕ) = p−
dA∑

i=1

λi2(p, ϕ)∇θΨi(θ̃, ϕ) = 0 (G.7)

which, after simplifications, gives

dA∑

i=1

(
λi1(p, ϕ)− λi2(p, ϕ)

)
∇θΨi(θ̃, ϕ) = 0. (G.8)

By lemma G.8 the vectors {∇θΨi(θ̃, ϕ)}i∈Act(θ̃,ϕ) are linearly independent for ϕ ∈ B(ϕ0, rn), θ̃ ∈
Θ(ϕ) and n sufficiently large. Therefore, the same holds for θ̃ ∈ Ξ(p, ϕ) with p ∈ S

d since Ξ(p, ϕ) ⊂
Θ(ϕ). This and (G.8) contradict λ1(p, ϕ) ̸= λ2(p, ϕ). Q.E.D.

Lemma G.10. Let Assumptions 5.1, 5.2, 5.3 (ii)-(v) and 5.4 (ii) hold with δ = rn. Then, there
exists an N such that for every n ≥ N the vector λ(p, ϕ) is continuous in (p, ϕ) ∈ S

d ×B(ϕ0, rn).

Proof. For every ϕ ∈ B(ϕ0, rn) and θ ∈ Θ(ϕ), denote by λA(p, ϕ) the dA-vector with components
{λi(p, ϕ)}i∈Act(θ,ϕ) and by ∇θΨ

A(θ, ϕ) the (d × dA) matrix obtained by stacking columnwise the
vectors {∇θΨi(θ, ϕ)}i∈Act(θ,ϕ). By lemma G.8, there exists a N such that ∀n ≥ N , ϕ ∈ B(ϕ0, rn)

and θ ∈ Θ(ϕ), the matrix [∇θΨ
A(θ, ϕ)]T∇θΨ

A(θ, ϕ) is invertible. It follows from the first order
condition in (G.7) – which is valid under assumption 5.3 (iv) – that for n sufficiently large we can
write

λA(p, ϕ) =
(
[∇θΨ

A(θ, ϕ)]T∇θΨ
A(θ, ϕ)

)−1
[∇θΨ

A(θ, ϕ)]T p,

∀(p, ϕ) ∈ S
d×B(ϕ0, rn) and θ ∈ Ξ(p, ϕ). Since λi(p, ϕ) = 0 for every i /∈ Act(θ, ϕ) then ∥λ(p, ϕ)∥ =
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∥λA(p, ϕ)∥ and

sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∥λ(p, ϕ)∥ = sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∥λA(p, ϕ)∥

≤ sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∣∣∣
∣∣∣[∇θΨ

A(θ̃(p, ϕ), ϕ)]T∇θΨ
A(θ̃(p, ϕ), ϕ)

∣∣∣
∣∣∣
−1

∥∇θΨ
A(θ̃(p, ϕ), ϕ)∥∥p∥

≤ sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

(
ρ(θ̃(p, ϕ), ϕ)

)−2
sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∥∇θΨ
A(θ̃(p, ϕ), ϕ)∥

where θ̃(p, ϕ) ∈ Ξ(p, ϕ) and ρ(θ, ϕ) denotes the smallest singular values of ∇θΨ
A(θ, ϕ). Under

assumption 5.3 (v), and because Act(θ, ϕ) ⊆ Act(θ, ϕ0), ∀θ ∈ Θ(ϕ), ϕ ∈ B(ψ0, rn) and n sufficiently
large under assumption 5.4 (ii), the matrix ∇θΨ

A(θ, ϕ) is continuous in (θ, ϕ). Further, because
Ξ(p, ϕ) ⊂ Θ(ϕ) and S

d × B(ϕ0, rn) × Ξ(p, ϕ) is compact (compactness of Ξ(p, ϕ) follows from
lemma G.4), it follows from the extreme value theorem and lemma G.4 that ∇θΨ

A(θ, ϕ) attains its
maximum value on S

d ×B(ϕ0, rn)× Ξ(p, ϕ) so that there exists a constant 0 < C1 <∞ such that

sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∥∇θΨ
A(θ̃(p, ϕ), ϕ)∥ ≤ sup

p∈Sd
sup

ϕ∈B(ϕ0,rn)
sup

θ∈Ξ(p,ϕ)
∥∇θΨ

A(θ, ϕ)∥ < C1.

Continuity of the singular values (which follows from the continuity of ∇θΨ
A(θ, ϕ), see e.g. theorem

II.5.1 in Kato (1995)) and compactness of Sd×B(ϕ0, rn)×Ξ(p, ϕ) implies that there exists a constant
0 < C2 <∞ such that

sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

(
ρ(θ̃(p, ϕ), ϕ)

)−2
≤ sup

p∈Sd
sup

ϕ∈B(ϕ0,rn)
sup

θ∈Ξ(p,ϕ)

(
ρ(θ, ϕ)

)−2
< C2.

This shows that λ(p, ϕ) is uniformly bounded in (p, ϕ) ∈ S
d × B(ϕ0, rn) which implies that it is

continuous. Q.E.D.

Lemma G.11. Let assumptions 5.1, 5.2, 5.3 (ii)-(v) and 5.4 (ii) hold with δ = rn. Then, there
exists a N such that for every n ≥ N and for any ϵn > 0 which converges to 0 as rn → 0 we have

sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∥λ(p, ϕ)− λ(p, ϕ0)∥ = O(ϵn).

Proof. By lemmas G.9 and G.10 there exists a N such that for every n ≥ N the function λ :
S
d × B(ϕ0, rn) → R

k
+ is singleton valued and continuous in (p, ϕ) ∈ S

d × B(ϕ0, rn). Therefore, by
compactness of B(ϕ0, rn) the function ϕ 7→ λ(p, ϕ) is uniformly continuous on B(ϕ0, rn) for every
p ∈ S

d. This means that for every p and any ϵn > 0 which converges to 0 as rn → 0 there exists a
natural number Np that depends on p such that for all n ≥ Np,

sup
ϕ∈B(ϕ0,rn)

∥λ(p, ϕ)− λ(p, ϕ0)∥ < ϵn. (G.9)

For a fixed ϵn define fn(p) := supϕ∈B(ϕ0,rn) ∥λ(p, ϕ)− λ(p, ϕ0)∥ and

ANp :=
{
p̃ ∈ S

d; fn(p̃) < ϵn, ∀n > Np

}

for every p ∈ S
d. This means that for any p ∈ S

d there is a Np so that p ∈ ANp . Since fn(p) is
continuous in p, hence ANp is an open set and

∪
p∈Sd ANp is an open cover of Sd: Sd ⊂ ∪p∈Sd ANp .
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Due to compactness of Sd there exists a finite set {N1, . . . , NK}, K < ∞ such that {ANi
}Ki=1 is a

subcover of Sd: Sd ⊂ ∪K
i=1ANi

.
Let N∗ = max{N1, . . . , NK} so that ANi

⊆ AN∗ for every i = 1, . . . ,K and for any p ∈ S
d we have

p ∈ AN∗ . Remark that this N∗ does not depend on p. This then implies that for any n > N∗

sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∥λ(p, ϕ)− λ(p, ϕ0)∥ < ϵn.

Lemma G.12. Let Assumptions 5.1, 5.2, 5.3 (ii)-(iii) hold with δ = rn. If Ψ(θ, ϕ0) contains a
subvector of strictly convex functions ΨS(·, ϕ0) of θ, then there exists an N such that for every
n ≥ N and any ϕ ∈ B(ϕ0, rn), p ∈ S

d for which Ξ(p, ϕ) is not a singleton we have

ΨS(θ̃, ϕ) < 0 for some θ̃ ∈ Ξ(p, ϕ).

Proof. By lemma E.1 there exists an N such that for every n ≥ N and ϕ ∈ B(ϕ0, rn) the function
θ → ΨS(θ, ϕ) is strictly convex. Moreover, since by lemma G.4 Ξ(p, ϕ) is compact for every
(p, ϕ) ∈ S

d×B(ϕ0, rn) for n sufficiently large, then Ξ(p, ϕ) is closed and bounded (by the Heine-Borel
theorem) and convex (since it is a closed subset of the convex sets Θ(ϕ)). For some θ̃1, θ̃2 ∈ Ξ(p, ϕ),
θ̃1 ̸= θ̃2, and ν ∈ [0, 1] define θ̃ := νθ̃1 + (1 − ν)θ̃2. It follows that θ̃ belongs to Ξ(p, ϕ). Since
ΨS(·, ϕ) is strictly convex in θ for every ϕ ∈ B(ϕ0, rn) we conclude that

ΨS(θ̃, ϕ) < νΨS(θ̃1, ϕ) + (1− ν)ΨS(θ̃2, ϕ) ≤ 0

where the last inequality is due to the fact that θ̃1, θ̃2 ∈ Ξ(p, ϕ) ⊂ Θ(ϕ). Q.E.D.

Lemma G.13. Let τ0 : Sd → (0, 1) be a measurable and differentiable function of p. For every
ϕ1, ϕ2 ∈ B(ϕ0, rn) define ϕτ0(p) = τ0(p)ϕ1+(1− τ0(p))ϕ2. Let assumptions 5.1, 5.2, 5.3 (i)-(v), 5.4
(ii) and 5.5 hold. Then, there exists a N such that ∀n ≥ N there exists a constant λ̄(ϕ0) > 0 and
an εn > 0 such that εn → 0 as rn → 0 and :

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥
[
∇ϕΨ(θ, ϕτ0(p))−∇ϕΨ(θ∗(p), ϕ0)

]T
λ(p, ϕ0)∥ < λ̄(ϕ0)εn.

Proof. First, remark that

∥
[
∇ϕΨ(θ, ϕτ0(p))−∇ϕΨ(θ∗(p), ϕ0)

]T
λ(p, ϕ0)∥ ≤ ∥

[
∇ϕΨ(θ, ϕτ0(p))−∇ϕΨ(θ, ϕ0)

]T
λ(p, ϕ0)∥

+ ∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]
T λ(p, ϕ0)∥ ≡ A1 +A2 (G.10)

and the function p 7→ λ(p, ϕ0) is continuous in p ∈ S
d by lemmas G.9 and G.10. Therefore, it

attains its supremum. We start by analyzing the first term A1:

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥
[
∇ϕΨ(θ, ϕτ0(p))−∇ϕΨ(θ, ϕ0)

]T
λ(p, ϕ0)∥

≤ sup
ϕ∈B(ϕ0,rn)

sup
θ∈Θ

∥∇ϕΨ(θ, ϕ)−∇ϕΨ(θ, ϕ0)∥ sup
p∈Sd

∥λ(p, ϕ0)∥

since by convexity of B(ϕ0, rn) we have ϕ1, ϕ2 ∈ B(ϕ0, rn) implies ϕτ0(p) ∈ B(ϕ0, rn), ∀p ∈ S
d.

In order to show convergence to zero of this term we follow the proof of lemma G.11, therefore
we shorten explanations. By compactness of B(ϕ0, rn) and under assumption 5.3 (i), the function
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ϕ 7→ ∇ϕΨ(θ, ϕ) is uniformly continuous on B(ϕ0, rn) for every θ ∈ Θ. Hence, for every θ and any
εn > 0 which converges to 0 as rn → 0 there exists a natural number Nθ that depends on θ such
that for all n ≥ Nθ we have

fn(θ) := sup
ϕ∈B(ϕ0,rn)

∥∇ϕΨ(θ, ϕ)−∇ϕΨ(θ, ϕ0)∥ < εn. (G.11)

Define ANθ
:=
{
θ̃ ∈ Θ; fn(θ̃) < εn, ∀n > Nθ

}
for every θ ∈ Θ. Since fn(θ) is continuous in θ,

hence ANθ
is an open set and

∪
θ∈ΘANθ

is an open cover of Θ. Due to compactness of Θ there

exists a finite set {N1, . . . , NK}, K <∞ such that {ANi
}Ki=1 is a subcover of Θ: Θ ⊂ ∪K

i=1ANi
.

Let N∗ = max{N1, . . . , NK} so that ANi
⊆ AN∗ for every i = 1, . . . ,K and for any θ ∈ Θ we

have θ ∈ AN∗ . Remark that this N∗ does not depend on θ so for any n > N∗,

sup
θ∈Θ

sup
ϕ∈B(ϕ0,rn)

∥∇ϕΨ(θ, ϕ)−∇ϕΨ(θ, ϕ0)∥ < εn.

We conclude that the first term is upper bounded by εn.
Now we analyze the second term A2 of (G.10). We have to consider two cases: I. for every

(p, ϕ) ∈ S
d × B(ϕ0, rn) the set Ξ(p, ϕ) is a singleton; II. for some (p, ϕ) ∈ S

d × B(ϕ0, rn) the set
Ξ(p, ϕ) is not a singleton.
Case I. This case corresponds to the situation where assumption 5.5 (i) holds. Hence, the corre-
spondences θ∗(p) and Ξ(p, ϕτ0(p)) are single-valued and

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥

= sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

∥
[
∇ϕΨ(Ξ(p, ϕτ0(p)), ϕ0)−∇ϕΨ(Ξ(p, ϕ0), ϕ0)

]T
λ(p, ϕ0)∥.

By Lemma G.4, θ(p) = Ξ(p, ϕτ0(p)) is a continuous function of p and by assumption 5.3 (i) the matrix
∇ϕΨ(θ, ϕ) is continuous in θ. Because the composition of two continuous functions is continuous,
this implies that ∇ϕΨ(Ξ(·, ϕτ0(·)), ϕ0) is a continuous function on S

d × B(ϕ0, rn). Moreover, the

compactness of Sd×B(ϕ0, rn) implies that∇ϕΨ(Ξ(·, ϕτ0(·)), ϕ0) is uniformly continuous in (p, ϕ1, ϕ2).
From this and that supB(ϕ0,rn) supp∈Sd ∥ϕτ0(p) − ϕ0∥ ≤ rn, it follows that there exists a εn > 0 such
that

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

∥∇ϕΨ(Ξ(p, ϕτ0(p)), ϕ0)−∇ϕΨ(Ξ(p, ϕ0), ϕ0)∥ < εn.

Remark that this εn converge to 0 as rn → 0. Finally, because λ(p, ϕ0) is uniformly bounded in p
by some constant, say λ̄1(ϕ0) > 0, (by Lemma G.10 and by compactness of Sd) we conclude that

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥

≤ sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

∥∇ϕΨ(Ξ(p, ϕτ0(p)), ϕ0)−∇ϕΨ(Ξ(p, ϕ0), ϕ0)∥ sup
p∈Sd

∥λ(p, ϕ0)∥ = λ̄1(ϕ0)εn.

Case II. This case corresponds to the situation where assumption 5.5 (ii) holds. For some
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δn := δ(rn) > 0 that converges to 0 with rn define:

Sns :=
{
p ∈ S

d; Ξ(p, ϕ0) is not a singleton
}

S
δ
ns =

{
p ∈ S

d; inf
p̃∈Sns

∥p− p̃∥ < δn

}

and Sns ⊆ S
δ
ns ⊆ S

d. Therefore,

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥ =

sup
p∈Sδns

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥

+ sup
p∈(Sδns)

c

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥ =: B1 + B2 (G.12)

where (Sδns)
c denotes the complement of Sδns and is a closed and compact set.

We start by analyzing term B1. By lemma 5.1 if there exists a subvector of strictly convex
constraints ΨS(·, ϕ0) of θ then the function θ → ΨS(·, ϕ) is strictly convex for every ϕ ∈ B(ϕ0, rn).
Then, by lemma G.12, for all p ∈ S

d for which Ξ(p, ϕ0) is not a singleton we have ΨS(θ̃, ϕ0) <
0 (where the inequality holds componentwise) for some θ̃ ∈ Ξ(p, ϕ0). This means that these
constraints are not binding and the corresponding Lagrange multipliers, say λS(p, ϕ0), are equal
to 0 (by the complementary slackness condition). Therefore, by the uniqueness of the Lagrange
multiplier (see lemma G.9), λS(p, ϕ0) = 0 is the optimum value of the Lagrange multipliers and B1

simplifies as

sup
p∈Sδns

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0) − ∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥

= sup
p∈Sδns

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨL(θ, ϕ0)−∇ϕΨL(θ∗(p), ϕ0)]

T λL(p, ϕ0)∥

= sup
p∈Sδns

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕA2(ϕ0)−∇ϕA2(ϕ0)]

T λL(p, ϕ0)∥ = 0.

Let us consider term B2. By the result in lemma G.5 with W = (Sδns)
c, there exists an ε̃n > 0

such that supϕ∈B(ϕ0,rn) supp∈(Sδns)
c supθ∈Ξ(p,ϕ) ∥θ − θ∗(p)∥ < ε̃n. Moreover, since θ 7→ ∇ϕΨ(θ, ϕ0) is

uniformly continuous on Θ (under assumptions 5.1 and 5.2) it follows that for every ϕ ∈ B(ϕ0, rn)
there exists an εn > 0 such that

sup
p∈(Sδns)

c

sup
θ∈Ξ(p,ϕ)

∥∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)∥ < εn.

Since B(ϕ0, rn) is compact we can easily show, by using a proof similar to that one used in lemma
G.11, that supϕ∈B(ϕ0,rn) supp∈(Sδns)

c supθ∈Ξ(p,ϕ) ∥∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)∥ < εn.

Therefore, by Lemma G.10 and compactness of Sd there exists a constant, say λ̄2(ϕ0) > 0, such
that supp∈(Sδns)

c ∥λ(p, ϕ0)∥ < λ̄2(ϕ0) and supϕ1,ϕ2∈B(ϕ0,rn) B2 is upper bounded by

sup
ϕ∈B(ϕ0,rn)

sup
p∈(Sδns)

c

sup
θ∈Ξ(p,ϕ)

∥∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)∥ sup
p∈(Sδns)

c

∥λ(p, ϕ0)∥ < λ̄2(ϕ0)εn.
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We conclude that

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥

= sup
ϕ∈B(ϕ0,rn)

(B1 + B2) < λ̄2(ϕ0)εn.

Q.E.D.

Lemma G.14. For any ϕ1, ϕ2 ∈ B(ϕ0, rn) and τ ∈ (0, 1) define ϕτ = τϕ1 + (1 − τ)ϕ2 with
ϕ2 = ϕτ |τ=0 and ϕ1 = ϕτ |τ=1. Let assumptions 5.1, 5.2, 5.3 (i)-(iii), 5.3 (v), 5.4 and 5.5 hold with
δ = rn. Then, there exists a N such that ∀n ≥ N and for all p ∈ S

d we have

∂

∂τ
Sϕτ

(p)

∣∣∣∣
τ=τ0(p)

= λ(p, ϕτ0(p))
′∇ϕΨ(θ̃(p), ϕτ0(p))[ϕ1 − ϕ2] (G.13)

where τ0 : Sd → (0, 1) is a measurable and differentiable function of p, θ̃(p) ∈ Ξ(p, ϕτ0(p)) and

∇ϕΨ(θ̃(p), ϕτ0(p)) denotes the (k × dϕ)-matrix Ψ(θ, ϕ) evaluated at (θ, ϕ) = (θ̃(p), ϕτ0(p)).

Proof. Define L(θ, λ, p, τ0(p)) =< p, θ > −λ(p, ϕτ0(p))′Ψ(θ, ϕτ0(p)) for λ(p, ϕ) : Sd × R
dφ → R

k
+.

By Corollary 5 in Milgrom and Segal (2002) (which can be applied under assumptions 5.1, 5.2
and 5.3 (i)) the function Sϕτ0(p)

(p) is directionally differentiable in p and its directional derivatives

(in direction p) are given by d
dp+Sϕτ0(p)

(p) = maxθ∈Ξ(p,ϕτ0)
d
dpL(θ, λ, p, τ0(p)) and d

dp−Sϕτ0(p)
(p) =

minθ∈Ξ(p,ϕτ0 )
d
dpL(θ, λ, p, τ0(p)). For simplicity we have shorten τ0(p) with τ0.

Now, by denoting τ ′0 :=
dτ0
dp we have

d

dp
L(θ, λ, p, τ0(p)) = θ − ∂

∂p
λ(p, ϕτ )

∣∣∣∣
′

τ=τ0(p)

Ψ(θ, ϕτ )|τ=τ0(p)

−(ϕ1 − ϕ2)
′ ∂

∂ϕτ
λ(p, ϕτ )

∣∣∣∣
′

τ=τ0(p)

Ψ(θ, ϕτ )|τ=τ0(p)
τ ′0 − λ(p, ϕτ0(p))

′ ∇ϕΨ(θ, ϕτ )|τ=τ0(p)
(ϕ1 − ϕ2)τ

′
0.

Therefore, the partial derivative of L(θ, λ, p, τ) with respect to its fourth argument is:

d

dτ
L(θ, λ, p, τ) = −(ϕ1 − ϕ2)

′
(

∂

∂ϕτ
λ(p, ϕτ )

)′
Ψ(θ, ϕτ )− λ(p, ϕτ(p))

′∇ϕΨ(θ, ϕτ )(ϕ1 − ϕ2)

and

dSϕτ
(p)

dτ+

∣∣∣∣
τ=τ0

= max
θ∈Ξ(p,ϕτ0 )

[
− (ϕ1 − ϕ2)

′ ∂

∂ϕτ
λ(p, ϕτ )

∣∣∣∣
′

τ=τ0

Ψ(θ, ϕτ )|τ=τ0(p)

−λ(p, ϕτ0)′ ∇ϕΨ(θ, ϕτ )|τ=τ0
(ϕ1 − ϕ2)

]

dSϕτ
(p)

dτ−

∣∣∣∣
τ=τ0

= min
θ∈Ξ(p,ϕτ0 )

[
− (ϕ1 − ϕ2)

′ ∂

∂ϕτ
λ(p, ϕτ )

∣∣∣∣
′

τ=τ0

Ψ(θ, ϕτ )|τ=τ0(p)

−λ(p, ϕτ0)′ ∇ϕΨ(θ, ϕτ )|τ=τ0
(ϕ1 − ϕ2)

]
.

The first term on the right hand side of both these equations is equal to zero because Ψ(θ, ϕτ )|τ=τ0
=

0 for θ ∈ Ξ(p, ϕτ0) since this is the first order condition of the optimization problem in Ξ(p, ϕτ0)
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evaluated at the optimum value θ. More precisely, it is the partial derivative of the Lagrangian
function with respect to the Lagrange multiplier. Thus,

dSϕτ
(p)

dτ+

∣∣∣∣
τ=τ0

= max
θ∈Ξ(p,ϕτ0 )

[
− λ(p, ϕτ0)

′ ∇ϕΨ(θ, ϕτ )|τ=τ0
(ϕ1 − ϕ2)

]
(G.14)

dSϕτ
(p)

dτ−

∣∣∣∣
τ=τ0

= min
θ∈Ξ(p,ϕτ0 )

[
− λ(p, ϕτ0)

′ ∇ϕΨ(θ, ϕτ )|τ=τ0
(ϕ1 − ϕ2)

]
. (G.15)

If p ∈ S
d is such that Ξ(p, ϕτ0) is a singleton then

dSφτ (p)
dτ+

∣∣∣
τ=τ0

=
dSφτ (p)
dτ−

∣∣∣
τ=τ0

. If p ∈ S
d is such

that Ξ(p, ϕτ0) is not a singleton then, by Lemma G.12 there exists a N such that ∀n ≥ N and
ϕ1, ϕ2 ∈ B(ϕ0, rn) there is a θ̃ ∈ Ξ(p, ϕτ0) such that ΨS(θ̃, ϕτ0) < 0, where ΨS denotes the vector
of constraints that are strictly convex in θ. This means that these constraints are not binding
and the corresponding Lagrange multipliers, say λS(p, ϕτ0), are equal to 0 (by the complementary
slackness condition). Therefore, by the uniqueness of the Lagrange multiplier (see Lemma G.9),

λS(p, ϕτ0) = 0 is the optimum value of the Lagrange multipliers and the term in
dSφτ (p)
dτ+

∣∣∣
τ=τ0

and

dSφτ (p)
dτ−

∣∣∣
τ=τ0

simplifies as

λ(p, ϕτ0)
′ ∇ϕΨ(θ, ϕτ )|τ=τ0

= λL(p, ϕτ0)
′ ∇ϕΨL(θ, ϕτ )|τ=τ0

over Ξ(p, ϕτ0). By using the expression given in assumption 5.5 (ii) for the linear constraints we get

∇ϕΨL(θ, ϕτ )|τ=τ0
= ∇ϕA2(ϕτ )|τ=τ0 which does not depend on θ so that

dSφτ (p)
dτ+

∣∣∣
τ=τ0

=
dSφτ (p)
dτ−

∣∣∣
τ=τ0

even when Ξ(p, ϕτ0) is not a singleton.
Q.E.D.

Lemma G.15. For every ϕ1, ϕ2 ∈ B(ϕ0, rn) and τ ∈ [0, 1] define ϕτ := τϕ1 + (1− τ)ϕ2 and:

f(ϕ1, ϕ2) := sup
p∈Sd

∣∣∣
(
λ(p, ϕτ0(p))

T∇ϕΨ(θ̃(p), ϕτ0(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)

)
[ϕ1 − ϕ2]

∣∣∣ .

where τ0 : Sd → (0, 1) is a measurable and differentiable function of p, θ̃(p) ∈ Ξ(p, ϕτ0(p)) and
θ∗(p) ∈ Ξ(p, ϕ0).
Let Assumptions 5.1, 5.2, 5.3 (i)-(v), 5.4 (ii) and 5.5 hold with δ = rn. Then, there exists a
constant C > 0 and an N (independent of ϕ1 and ϕ2) such that for every n > N

sup
ϕ1,ϕ2∈B(ϕ0,rn)

f(ϕ1, ϕ2)

∥ϕ1 − ϕ2∥
< Cε̃n

where ε̃n → 0 as n→ ∞.

Proof. Remark that θ̃(p) depends also on ϕ1 and ϕ2. By the Cauchy-Schwartz inequality we can
write:

∣∣∣
(
λ(p, ϕτ0(p))

T ∇ϕΨ(θ̃(p), ϕτ0(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)

)
[ϕ1 − ϕ2]

∣∣∣

≤ ∥∇ϕΨ(θ̃(p), ϕτ0(p))
Tλ(p, ϕτ0(p))−∇ϕΨ(θ∗(p), ϕ0)Tλ(p, ϕ0)∥ ∥ϕ1 − ϕ2∥
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so that

f(ϕ1, ϕ2)

∥ϕ1 − ϕ2∥
≤ ∥∇ϕΨ(θ̃(p), ϕτ0(p))

T
(
λ(p, ϕτ0(p))− λ(p, ϕ0)

)
∥ +

∥
(
∇ϕΨ(θ̃(p), ϕτ0(p))−∇ϕΨ(θ∗(p), ϕ0)

)T
λ(p, ϕ0)∥ =: A1 +A2.

We start by analyzing term A1. Since B(ϕ0, rn) is convex then ϕ1, ϕ2 ∈ B(ϕ0, rn) implies
ϕτ ∈ B(ϕ0, rn), ∀τ ∈ [0, 1]. Thus,

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

A1 = sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

∥∇ϕΨ(θ̃(p), ϕτ0(p))
T
(
λ(p, ϕτ0(p))− λ(p, ϕ0)

)
∥

≤ sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
τ∈[0,1]

sup
θ∈Ξ(p,ϕτ )

∥∇ϕΨ(θ, ϕτ )
T (λ(p, ϕτ )− λ(p, ϕ0)) ∥

≤ sup
ϕ∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ )

∥∇ϕΨ(θ, ϕ)∥ sup
ϕ∈B(ϕ0,rn)

sup
p∈Sd

∥λ(p, ϕ)− λ(p, ϕ0)∥

≤ sup
ϕ∈B(ϕ0,rn)

sup
θ∈Θ

∥∇ϕΨ(θ, ϕ)∥ sup
ϕ∈B(ϕ0,rn)

sup
p∈Sd

∥λ(p, ϕ)− λ(p, ϕ0)∥.

By assumptions 5.2 and 5.3 (i), ∇ϕΨ exists and is continuous in (θ, ϕ) ∈ Θ×B(ϕ0, rn). Since Θ and
B(ϕ0, rn) are compact it follows that ∥∇ϕΨ(θ, ϕ)∥ is uniformly bounded on Θ×B(ϕ0, rn), that is,
there exists a constant ψ̄(ϕ0) > 0 such that supϕ∈B(ϕ0,rn) supθ∈Θ ∥∇ϕΨ(θ, ϕτ )∥ < ψ̄(ϕ0). By lemma
G.11 there exists ϵn := ϵ(rn) > 0, ϵn → 0 as rn → 0 such that:

sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

∥λ(p, ϕ)− λ(p, ϕ0)∥ < ϵn

for n sufficiently large and we conclude that supϕ1,ϕ2∈B(ϕ0,rn) supp∈Sd A1 < ψ̄(ϕ0)ϵn, where ϵn → 0
as n→ 0. Next, let us consider term A2:

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

∥
(
∇ϕΨ(θ̃(p), ϕτ0(p))−∇ϕΨ(θ∗(p), ϕ0)

)T
λ(p, ϕ0)∥

≤ sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥
(
∇ϕΨ(θ, ϕτ0(p))−∇ϕΨ(θ∗(p), ϕ0)

)T
λ(p, ϕ0)∥.

By using the result of lemma G.13 there exists a constant λ̄(ϕ0) > 0 and an εn := ε(rn) > 0, εn → 0
as rn → 0 such that

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥
(
∇ϕΨ(θ, ϕτ0(p))−∇ϕΨ(θ∗(p), ϕ0)

)T
λ(p, ϕ0)∥ < λ̄(ϕ0)εn.

By collecting the two upper bounds and by denoting ε̃n = ϵn + εn we get the result.
Q.E.D.

Lemma G.16. Let rn =
√

(log n)/n. Suppose that assumptions 5.1-5.6 hold with δ = rn. Then,
there exists a N such that for every n ≥ N , ϕ1, ϕ2 ∈ B(ϕ0, rn) we have:

sup
ϕ1,ϕ2∈B(ϕ0,rn)

sup
p∈Sd

∣∣√n (Sϕ1(p)− Sϕ2(p))−
√
nλ(p, ϕ0)

T∇ϕΨ(θ∗(p), ϕ0)[ϕ1 − ϕ2]
∣∣ = o(1)

where θ∗ : Sd → Θ is a Borel measurable mapping satisfying θ∗(p) ∈ Ξ(p, ϕ0) for all p ∈ S
d.
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Proof. On B(ϕ0, rn) we have that ∥ϕ1 − ϕ2∥ ≤ rn for every ϕ1, ϕ2 ∈ B(ϕ0, rn). Then, assumption
5.6 (i) implies that ∥λ(p, ϕ1)− λ(p, ϕ2)∥ ≤ K1rn and therefore

sup
ϕ∈B(ϕ0,rn)

∥λ(p, ϕ1)− λ(p, ϕ2)∥ ≤ K1rn.

This implies that the rate ϵn in lemma G.11 is ϵn = O(rn).
A similar argument may be applied to show that εn = O(rn) in lemma G.13. To this aim, first
consider term A1 in the proof of lemma G.13:

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥
[
∇ϕΨ(θ, ϕτ0(p))−∇ϕΨ(θ, ϕ0)

]T
λ(p, ϕ0)∥

≤ sup
p∈Sd

sup
ϕ∈B(ϕ0,rn)

sup
θ∈Ξ(p,ϕ)

∥∇ϕΨ(θ, ϕ)−∇ϕΨ(θ, ϕ0)∥ sup
p∈Sd

∥λ(p, ϕ0)∥

≤ sup
ϕ∈B(ϕ0,rn)

sup
θ∈Θ

∥∇ϕΨ(θ, ϕ)−∇ϕΨ(θ, ϕ0)∥ sup
p∈Sd

∥λ(p, ϕ0)∥ = O(∥ϕ− ϕ0∥)

since supp∈Sd ∥λ(p, ϕ0)∥ = O(1) (by lemma G.10) and since assumption 5.6 (ii) implies
supϕ∈B(ϕ0,rn) supθ∈Θ ∥∇ϕΨ(θ, ϕ)−∇ϕΨ(θ, ϕ0)∥ ≤ K2∥ϕ−ϕ0∥. Now, consider term A2 in the proof

of lemma G.13. In Case I where Ξ(p, ϕ) is a singleton for every (p, ϕ) ∈ S
d ×B(ϕ0, rn) we have:

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥

≤ sup
ϕ∈B(ϕ0,rn)

sup
p∈Sd

∥∇ϕΨ(Ξ(p, ϕ), ϕ0)−∇ϕΨ(θ∗(p), ϕ0)∥ sup
p∈Sd

∥λ(p, ϕ0)∥

≤ K3 sup
ϕ∈B(ϕ0,rn)

sup
p∈Sd

∥Ξ(p, ϕ)− θ∗(p)∥ sup
p∈Sd

∥λ(p, ϕ0)∥

under assumption 5.6 (iii). By lemma G.6, under assumption 5.6 (iv), we have an upper bound:
supϕ∈B(ϕ0,rn) supθ∈Θ ∥Ξ(p, ϕ)− θ∗(p)∥ = O(rn) so that we conclude that

sup
p∈Sd

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥ = O(rn).

For the Case II in the proof of lemma G.13, the analysis of term B1 does not change while for term
B2 we obtain:

B2 = sup
p∈(Sδns)

c

sup
θ∈Ξ(p,ϕτ0(p)

)
∥ [∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)]

T λ(p, ϕ0)∥

≤ sup
ϕ∈B(ϕ0,rn)

sup
p∈(Sδns)

c

sup
θ∈Ξ(p,ϕ)

∥∇ϕΨ(θ, ϕ0)−∇ϕΨ(θ∗(p), ϕ0)∥ sup
p∈Sd

∥λ(p, ϕ0)∥

≤ K3 sup
ϕ∈B(ϕ0,rn)

sup
p∈(Sδns)

c

sup
θ∈Ξ(p,ϕ)

∥θ − θ∗(p)∥O(1) = O(rn)

under assumptions 5.6 (iii) and (iv) and by lemma G.6.
By replacing these rates in the proof of lemma G.15 we get

sup
p∈Sd

∣∣∣
(
λ(p, ϕτ0(p))

T∇ϕΨ(θ̃(p), ϕτ0(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)

)
[ϕ1 − ϕ2]

∣∣∣ = O(rn∥ϕ1 − ϕ2∥).
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This and (E.4) give: ∀ϕ1, ϕ2 ∈ B(ϕ0, rn),

sup
p∈Sd

∣∣(Sϕ1(p)− Sϕ2(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)[ϕ1 − ϕ2]

∣∣

= sup
p∈Sd

∣∣∣
(
λ(p, ϕτ0(p))

T∇ϕΨ(θ̃(p), ϕτ0(p))− λ(p, ϕ0)
T∇ϕΨ(θ∗(p), ϕ0)

)
[ϕ1 − ϕ2]

∣∣∣ = O(r2n),

and
sup

ϕ1,ϕ2∈B(ϕ0,rn)
sup
p∈Sd

∣∣√n (Sϕ1(p)− Sϕ2(p))−
√
nλ(p, ϕ0)

T∇ϕΨ(θ∗(p), ϕ0)[ϕ1 − ϕ2]
∣∣

= O(
√
nr2n) = O

(
log(n)√

n

)

which converges to 0.
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