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Abstract

Classify simple games into sixteen “types” in terms of the four con-
ventional axioms: monotonicity, properness, strongness, and nonweak-
ness. Further classify them into sixty-four classes in terms of finiteness
(existence of a finite carrier) and algorithmic computability. For each
such class, we either show that it is empty or give an example of a game
belonging to it. We observe that if a type contains an infinite game,
then it contains both computable infinite games and noncomputable
ones. This strongly suggests that computability is logically, as well as
conceptually, unrelated to the conventional axioms.
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1 Introduction

Rules can be classified into two classes according to a given axiom (also called
a property or a condition): those satisfying the axiom and those violating
it. If there are four axioms, rules can be classified into sixteen (24) classes.
If some of these sixteen classes are empty, it means that the conjunction of
some of these axioms implies the disjunction of the others (for example, if
there does not exist a rule satisfying Axioms 1 and 2 but violating Axioms
3 and 4, then Axioms 1 and 2 together imply Axioms 3 or 4). If, on the
other hand, each of the sixteen classes is nonempty, the four axioms are
“completely independent” in the sense that there is nothing inconsistent
about any combination of their truth values. This is exactly what May
(1953) investigated after proposing (May, 1952) four “independent” axioms
characterizing simple majority rule: he showed that the four axioms are
“completely independent” in the sense above.1

We would like to do the same for (simple) games (voting games). These
are the coalitional games that assign either 0 or 1 to each coalition—those
assigned 1 are winning coalitions and those assigned 0 are losing coalitions.
We consider six axioms for simple games. Four of them are conventional:
monotonicity, properness, strongness, and nonweakness. Another axiom is
finiteness (existence of a finite carrier), which distinguishes finite games
(those ignoring all except fixed, finitely many players) from infinite ones.
The other axiom is “computability,” which is the focus of this paper.

We start with the four conventional axioms. These axioms classify sim-
ple games into sixteen classes, which we call (conventional) types. Unfor-
tunately, these axioms are not “completely independent” (though they are
“independent”). For example, it is well known that there exist no weak, non-
proper games. We therefore cannot hope for the “complete independence”
of our six axioms.

Let us start over. Our focus is computability, an axiom that we introduce
and characterize in a companion paper (Kumabe and Mihara, 2007a). We
are interested in the relation of this new axiom to the four existing ones. In
other words, we want to investigate how computability restricts the games of
each type (some of which are finite and the others are infinite). This suggests
the following requirements for independence: If a particular type is empty
(i.e., it contains no games), we require nothing—it is not computability or
lack of it that is responsible for nonexistence of games of that type. If

1A set of consistent (compatible) axioms are “independent” (May, 1952) if for each
axiom, there are rules violating the axiom but satisfying the others. As far as the axioms
in a characterization are concerned, applying this notion of “independence” is the prevalent
practice in the axiomatic method today, as discussed in Thomson (2001). Thomson states
that an axiomatic study should offer among other things an analysis of logical relations
between axioms. We have chosen to give a complete—rather than partial—analysis, in
the spirit of earlier theorists like May (1953) and Arrow (1963, footnote 27, page 102).
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a particular type is nonempty, however, it should contain both computable
games and noncomputable ones. Put differently, we say that “computability
is independent of the four axioms (within a class of games)” if for each of
the sixteen types, there is a computable game of that type (in that class) if
and only if there is a noncomputable game of that type (in that class).

One of our main findings is (Proposition 1) that computability is indepen-
dent of the four conventional axioms within the class of infinite games. (The
analogue of Proposition 1 does not hold for the class of finite games. This
is because all finite games are computable.) In fact, we come close to saying
that computability is independent of the four conventional axioms (within
the class of all games). The conditions for the independence are satisfied
for fifteen out of the sixteen types. The only exception is the type con-
sisting exclusively of dictatorial (hence computable) games. This strongly
suggests that computability is logically, as well as conceptually, unrelated to
the conventional axioms.2 In other words, as far as compatibility with the
conventional axioms are concerned, computability is almost nonrestrictive.

We make these findings through complete investigation of the sixty-four
(26) classes with respect to the six axioms. The results of the investigation
is summarized in Table 1 in Section 3.

One can make other interesting observations from Table 1. In fact, the
table exhausts all the possible relations among the six axioms. We discuss in
Section 3 observations involving several entries of Table 1. Proposition 1 is
an example, since it involves the last two columns of the table. Observations
involving a single entry also provide useful information. For example, the
last entry on the line corresponding to Type 1 indicates that one can find a
computable infinite game without sacrificing the conventional axioms, which
are voting-theoretically desirable. The companion paper (Kumabe and Mi-
hara, 2007a) only exhibit noncomputable games satisfying the axioms and
computable games not necessarily satisfying the axioms.

The rest of the Introduction gives a background briefly. The companion
paper (Kumabe and Mihara, 2007a) gives further discussion.

One can think of simple games as representing voting methods or multi-
criterion decision rules. They have been central to the study of social choice
(e.g., Peleg, 2002). For this reason, the paper can be viewed as a contribution
to the foundations of computability analysis of social choice, which studies
algorithmic properties of social decision-making.3

The importance of computability in social choice theory would be unar-
guable. First, the use of the language by social choice theorists suggests the
importance: for example, Arrow (1963) uses words such as “process or rule”

2What is behind this terminology is the discussion of logical and conceptual indepen-
dence by Thomson (2001). We do not define “conceptual independence” mathematically.

3This literature includes Kelly (1988), Lewis (1988), Bartholdi et al. (1989a,b), Mihara
(1997, 1999, 2004), and Kumabe and Mihara (2007a,b).
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or “procedure.” Second, there is a normative reason: computability of social
choice rules formalizes the notion of “due process.”4

We consider an infinite set of “players.” Roughly speaking, a simple
game is computable if there is a Turing program (finite algorithm) that
can decide from a description (by integer) of each coalition whether it is
winning or losing. Since each member of a coalition should be describable,
we assume that the set N of (the names of) players is countable, say, N =
N = {0, 1, 2, . . .}. Also, we describe coalitions by a Turing program that can
decide for the name of each player whether she is in the coalition. Since
each Turing program has its code number (Gödel number), the coalitions
describable in this manner are describable by an integer, as desired. (Such
coalitions are called recursive coalitions.)

Kumabe and Mihara (2007a) give three interpretations of countably many
players: (i) generations of people extending into the indefinite future, (ii)
finitely many persons facing countably many states of the world (Mihara,
1997), and (iii) attributes or criteria in multi-criterion decision-making.

We discuss interpretation (iii) here because of its versatility. Examples of
multi-criterion decisions include (a) forming a team to perform a particular
task (Kumabe and Mihara, 2007a),5 (b) granting tenure to junior faculty
members at academic institutions (Al-Najjar et al., 2006), and (c) deciding
whether a certain act is legal or not. In these examples, there are potentially
infinitely many criteria or contingencies on which the decisions can be based.

There is a small literature on incomplete contracts that deals with count-
ably many criteria explicitly (Anderlini and Felli, 1994; Al-Najjar et al.,
2006; Krasa and Williams, 2007). The papers in this literature describe a
state as a countable sequence of 0’s and 1’s—no/yes answers to countably
many questions. A connection to our framework should be clear.6 The un-
derlying set of questions in that literature corresponds to the set of “players”
in our paper, implying their “state” corresponds to our “coalition.” Simi-
larly, their “computable contract” or a “finite contract” roughly corresponds
to our “computable game.”

While the definition of computability (or the intuition that we provide
to explain it) may sound unrealistic, there is an equivalent definition of
computability, according to which an algorithm asks up to finitely many

4Richter and Wong (1999) give further justifications for studying computability-based
economic theories.

5This example illustrates that the desirability of the (conventional) axioms depends on
the context. Monotonicity makes sense here, but may be too optimistic (adding a member
may turn an acceptable team into an unacceptable one). Properness may be irrelevant
or even undesirable (ensuring that a given task can be performed by two non-overlapping
teams may be important from the viewpoint of reliability). These observations suggest
the importance of finding games that violate some of the axioms.

6Put in a general way, their goal is also connected to ours. The papers in that literature
investigate, like ours, whether certain desirable properties that a complete contract enjoys
can be retained if the contract is replaced by a computable or finite one.
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questions of the form “Is player i a member of the coalition?” during a
computation (Definition 3, Corollary 1). In fact, a result (Theorem 1) that
characterizes computable games provides a “finite approximation” of the
idealized notion. We explain that now.

Consider the problem of deciding whether a certain act is legal or not.
More specifically, we fix a “clause” and ask for each given legal case, whether
the clause applies to the case. We identify a case with a state (coalition) and
assume that the clause is a computable game. According to the idealized
scenario that we give, a case is truthfully and completely reported (by an
“inquirer”) to the court (“aggregator”), which in turn decides whether the
clause applies to the case, by simply following an algorithm.

Real-world court decisions are not like this scenario, even if we ignore
incentive issues. First, a complete description of the case is usually un-
available. Second, there is no algorithm in advance. Court decisions are
accumulated bit by bit, forming an algorithm (which can give an answer to
every case) only in the limit. In the words of a philosopher of law, “The ju-
dicial practice of precedent involves deciding new cases by reference to facts
about them that are the same as facts about prior cases that were considered
by the courts that decided them as grounds for certain legal consequences.”7

This suggests the following more realistic scenario: The complete descrip-
tion of the case is not presented to the court. Instead, the court asks only
finitely many questions and obtains answers to them. It makes the final de-
cision based on those finitely many answers, specifying which set of answers
has actually counted.

Theorem 1 provides a model of this practice of “legal precedents.”8 Each
court decision extracts, given a case, a finite list of criteria (questions and
answers), satisfaction of which either determines that the clause applies
to the case or determines it does not. If the process of these extractions
is algorithmic,9 we have, in the limit, the idealized legal system that can
algorithmically decide the applicability of the clause to every case.

7Lyons (1984, page 581). We do not discuss the subtle issue raised by Lyons concerning
the relation between (i) the requirement that like cases be treated alike and (ii) the
requirement that judicial decision follow prior decisions in similar cases.

8The economic literature on legal precedents studies important problems that we ig-
nore, such as the incentives for judges to follow precedents (Rasmusen, 1994) and “depre-
ciation” of precedents (Landes and Posner, 1976).

9One could justify the requirement that the process be algorithmic as Anderlini and
Felli (1994) do: the courts should be ready to present formal arguments to support their
decisions.
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2 Framework

2.1 Simple games

Let N = N = {0, 1, 2, . . .} be a countable set of (the names of) players. Any
recursive (algorithmically decidable) subset of N is called a (recursive)
coalition.

Intuitively, a simple game describes in a crude manner the power dis-
tribution among observable (or describable) coalitions (subsets of players).
We assume that only recursive coalitions are observable. According to
Church’s thesis (Soare, 1987; Odifreddi, 1992), the recursive coalitions are
the sets of players for which there is an algorithm that can decide for the
name of each player whether she is in the set.10 Note that the class REC
of recursive coalitions forms a Boolean algebra; that is, it includes N
and is closed under union, intersection, and complementation.

Formally, a (simple) game is a collection ω ⊆ REC of (recursive) coali-
tions. We will be explicit when we require that N ∈ ω. The coalitions in ω
are said to be winning. The coalitions not in ω are said to be losing. One
can regard a simple game as a function from REC to {0, 1}, assigning the
value 1 or 0 to each coalition, depending on whether it is winning or losing.

We introduce from the theory of cooperative games a few basic notions
of simple games (Peleg, 2002; Weber, 1994). A simple game ω is said to be
monotonic if for all coalitions S and T , the conditions S ∈ ω and T ⊇ S
imply T ∈ ω. ω is proper if for all recursive coalitions S, S ∈ ω implies
Sc := N \S /∈ ω. ω is strong if for all coalitions S, S /∈ ω implies Sc ∈ ω. ω
is weak if ω = ∅ or the intersection

∩

ω =
∩

S∈ω S of the winning coalitions
is nonempty. The members of

∩

ω are called veto players; they are the
players that belong to all winning coalitions. (The set

∩

ω of veto players
may or may not be observable.) ω is dictatorial if there exists some i0
(called a dictator) in N such that ω = {S ∈ REC : i0 ∈ S }. Note that a
dictator is a veto player, but a veto player is not necessarily a dictator. It
is immediate to prove the following well-known lemmas:

Lemma 1 If a simple game is weak, it is proper.

Lemma 2 A simple game is dictatorial if and only if it is strong and weak.

A carrier of a simple game ω is a coalition S ⊂ N such that

T ∈ ω ⇐⇒ S ∩ T ∈ ω

for all coalitions T . We observe that if S is a carrier, then so is any coalition
S′ ⊇ S. Slightly abusing the word, we sometimes say a game is finite if it
has a finite carrier; otherwise, the game is infinite.

10Soare (1987) and Odifreddi (1992) give a more precise definition of recursive sets as
well as detailed discussion of recursion theory. Mihara’s papers (Mihara, 1997, 1999)
contain short reviews of recursion theory.
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2.2 The computability notion

To define the notion of computability for simple games, we first introduce
an indicator for them. In order to do that, we first represent each recursive
coalition by a characteristic index (∆0-index). Here, a number e is a char-
acteristic index for a coalition S if ϕe (the partial function computed by
the Turing program with code number e) is the characteristic function for S.
Intuitively, a characteristic index for a coalition describes the coalition by
a Turing program that can decide its membership. The indicator then as-
signs the value 0 or 1 to each number representing a coalition, depending
on whether the coalition is winning or losing. When a number does not
represent a recursive coalition, the value is undefined.

Given a simple game ω, its δ-indicator is the partial function δω on N

defined by

δω(e) =







1 if e is a characteristic index for a recursive set in ω,
0 if e is a characteristic index for a recursive set not in ω,
↑ if e is not a characteristic index for any recursive set.

Note that δω is well-defined since each e ∈ N can be a characteristic index
for at most one set.

We now introduce the notion of (δ)-computable games. We start by
giving an intuition. A number (characteristic index) representing a coali-
tion (equivalently, a Turing program that can decide the membership of the
coalition) is presented by an inquirer to the aggregator (planner), who will
compute whether the coalition is winning or not. The aggregator cannot
know a priori which indices will possibly be presented to her. So, the aggre-
gator should be ready to give an answer whenever a characteristic index for
some recursive set is presented to her. This intuition justifies the following
condition of computability.

Definition 1 A game ω is (δ)-computable if δω has an extension to a
partial recursive function.

Among various notions of computability that one could conceive of, this
notion is the only one that we find (Mihara, 2004) defensible.

3 Overview of the Results

This section gives a summary of the results in Sections 5–6.
We first classify games according to the conventional axioms (monotonic-

ity, properness, strongness, and nonweakness) and the axioms concerning
simplicity (computability and finiteness).

We identify an axiom (property) for games with the class of games satis-
fying the axiom. Let A1 denote (the class of games satisfying the axiom of)
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monotonicity, A2 properness, A3 strongness, and A4 nonweakness. We can
classify games into 24 = 16 classes C1 ∩C2 ∩C3 ∩C4 according to these four
axioms, where each Cj is either Aj or Ac

j (where Ac
j is the complement of Aj ;

Ac
j is identified with the negation ¬Aj of Aj). Each class C1 ∩C2 ∩C3 ∩C4

is represented by a string (binary word) b1b2b3b4 of length four, consisting
of +’s (1’s) and −’s (0’s), where each bj is either + or −, depending on
Cj = Aj or Cj = Ac

j . For example, the class A1 ∩ Ac
2 ∩ Ac

3 ∩ A4 of mono-
tonic, nonproper, nonstrong, nonweak games are represented by the string
+−−+. The (conventional) type of a simple game is (the string b1b2b3b4

representing) the class C1 ∩ C2 ∩ C3 ∩ C4 to which the game belongs. For
ease of reference, we give a label (decimal number) to each type, as shown
in the first column of Table 1. (The labels are obtained by first identifying
the string with a binary number, next converting the binary number into a
decimal number, and finally subtracting the decimal number from 16.)

Similarly, we can classify games into 22 = 4 classes according to δ-
computability and finiteness (existence of a finite carrier).

Altogether, we can classify games into 16 × 4 = 64 classes according to
the six axioms. For each such class, we can ask the question whether there
exists a simple game in the class. The answers to those questions are given
in Sections 5–6. Table 1 summarizes the answers.11

We are mainly interested in the relation of computability to the four
conventional axioms. What can we observe from Table 1? For example, we
can see from row (2), there is a computable game of type (+ + +−), but
not a noncomputable game of the same type. (In fact, the type consists of
dictatorial games.) This means that computability is not “independent of”
the four axioms in the sense to be made precise below. For each of the other
fifteen types, however, there is a computable game of that type if and only
if there is a noncomputable game of that type. Hence, we could almost say
that computability is “unrelated to” the four axioms. In fact, if we restrict
our attention to the infinite games (games without a finite carrier), we can
say this:

Proposition 1 Axiom C (δ-computability) is independent of the axioms A1

(monotonicity), A2 (properness), A3 (strongness), and A4 (nonweakness)
within the class I of infinite games in the sense that for each of the 24 = 16
types C1 ∩ C2 ∩ C3 ∩ C4, the following condition is satisfied:

C ∩ I ∩ (C1 ∩ C2 ∩ C3 ∩ C4) 6= ∅ ⇐⇒ Cc ∩ I ∩ (C1 ∩ C2 ∩ C3 ∩ C4) 6= ∅.

The exact sense of the statement “computability is independent of the
four axioms” mentioned above can be defined by replacing the class I in the

11Some of the games constructed in this paper have the property that an empty coalition
is winning. However, one can modify all such computable games so that an empty coalition
is losing (Kumabe and Mihara, 2007b).
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Table 1: Existence of Games in Different Classes

With Finite Carrier Without Finite Carrier
Types Non Computable Non Computable

1(+ + ++) no yes yes yes
2(+ + +−) no yes no no
3(+ + −+) no yes yes yes
4(+ + −−) no yes yes yes
5(+ − ++) no yes yes yes
6(+ − +−) no no no no
7(+ −−+) no yes yes yes
8(+ −−−) no no no no
9(− + ++) no yes yes yes

10(− + +−) no no no no
11(− + −+) no yes yes yes
12(− + −−) no yes yes yes
13(−− ++) no yes yes yes
14(−− +−) no no no no
15(−−−+) no yes yes yes
16(−−−−) no no no no

The types are defined by the four conventional axioms: monotonicity, proper-
ness, strongness, and nonweakness. For example, row (2) indicates that among
the monotonic (+), proper (+), strong (+), weak (−, because not nonweak)
games, there exist no finite noncomputable ones, there exist finite computable
ones, there exist no infinite noncomputable ones, and there exist no infinite
computable ones. Note that except for row (2), the last three columns are
identical.
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statement of the proposition with the class of all simple games. Therefore,
computability is not independent of the four axioms if and only if it is
restrictive in the sense that some nonempty type consists only of computable
games or only of noncomputable games.

We leave this section with two interesting observations involving the
last three (instead of two as in Proposition 1) columns of the table: From
rows (6), (8), (10), (14), (16), we conclude that if there does not exist a finite
computable game of a particular type, then there does not exist a game of that
type. From the other rows except row (2), we conclude that if there exists
an infinite (non)computable game of a particular type, then there exists a
finite computable game of that type.

4 Preliminary Results

This section summarizes and slightly extends the results in the companion
paper (Kumabe and Mihara, 2007a). It also introduces notation needed in
Sections 5–6.

To give a background, we first mention Theorem 1, which characterizes δ-
computable simple games in terms of sets of “determining strings.” Roughly
speaking, in a computable game, finitely many players determine whether a
coalition is winning or losing. Though we cannot tell in advance which finite
set of players determines that, we can list such sets in an effective manner.

Notation. We identify a natural number k with the finite set {0, 1, 2, . . . , k−
1}, which is an initial segment of N. Given a coalition S ⊆ N , we write
S ∩ k to represent the coalition {i ∈ S : i < k} consisting of the members
of S whose name is less than k. We call S ∩ k the k-initial segment of
S, and view it either as a subset of N or as the string S[k] of length k
of 0’s and 1’s (representing the restriction of its characteristic function to
{0, 1, 2, . . . , k − 1}). ‖

Definition 2 Consider a simple game. A string τ (of 0’s and 1’s) of length k ≥
0 is winning determining if any coalition G ∈ REC extending τ (in the
sense that τ is an initial segment of G, i.e., G∩k = τ) is winning; τ is losing
determining if any coalition G ∈ REC extending τ is losing. A string is
determining if it is either winning determining or losing determining. A
string is nondetermining if it is not determining.

Theorem 1 (Kumabe and Mihara (2007a)) A simple game ω is δ-computable
if and only if there are an r.e. set T0 of losing determining strings and an r.e.
set T1 of winning determining strings such that (the characteristic function
for) any coalition has an initial segment in T0 or in T1.

Note that T0 ∪ T1 in the theorem does not necessarily contain all deter-
mining strings.
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It is easy (Kumabe and Mihara, 2007a) to prove from Theorem 1 that
games having a finite carrier are computable and that computable games
have both finite winning coalitions and cofinite losing coalitions. As already
seen in Section 3, the property of having a finite carrier is an important
criterion for classifying games in this paper.

There are notions of computability (Anderlini and Felli, 1994; Weihrauch,
1995) that describe an input as an infinite sequence (of 0’s and 1’s). Since
an algorithm must give an output in a finite number of steps, only finite
bits from the sequence is used during the computation. This motivates the
following redefinition of computability. (One could give the definition for
games defined for all sets of players.)

Definition 3 A game ω is computable with initial segments if there is
an algorithm M (Turing machine) such that for any coalition S, if S is input
to M as an infinite sequence S(0)S(1)S(2) . . ., then M halts with giving the
output ω(S) ∈ {0, 1} reading only an initial segment S[k], for some k.

Ordinarily, an input to an algorithm is a finite object. We should there-
fore justify this alternative notion of computability. The following corollary
of Theorem 1 justifies it, as long as games are defined for (recursive) coali-
tions.

Corollary 1 A game ω is δ-computable if and only if it is computable with
initial segments.

Proof. To show the “if” direction, suppose ω is computable with initial
segments. Let e be a characteristic index for a coalition S. Effectively obtain
S(0) = ϕe(0), S(1) = ϕe(1), S(2) = ϕe(2), . . . from e and put them into the
algorithm. The computation will halt, giving ω(S).

To show the “only if” direction, suppose ω is δ-computable. We are given
a coalition S. Generate the determining strings in T0 and T1 satisfying the
conditions of Theorem 1. Wait until an initial segment S[k] of S is generated.
If the initial segment is in T0, then ω(S) = 0; if it is in T1, then ω(S) = 1.

Though the proof of Theorem 1 is rather involved, the full force of this
theorem is not needed in this paper.

First, to construct computable games, we only need the “if” direction,
whose proof is straightforward. The following proposition restates the “if”
direction of the theorem in a more convenient form:

Proposition 2 Let T0 and T1 be recursively enumerable sets of (nonempty)
strings such that any coalition has an initial segment in T0 or in T1 but not
both. Let ω be the simple game defined by S ∈ ω if and only if S has an
initial segment in T1. Then T1 consists only of winning determining strings,
T0 consists only of losing determining strings, and ω is δ-computable.

11



Proof. The assertion that T1 consists of winning determining strings is
obvious from the definition of ω. To see that T0 consists of losing determining
strings, let α ∈ T0. Suppose a coalition S extends α but S is winning. Thus
there is a string β ∈ T1 that S extends. This implies that S has an initial
segments in both T0 and T1, contrary to the assumption. Computability of
ω is immediate from the “if” direction of Theorem 1

Second, to construct noncomputable games, we only need the following
proposition, whose proof is much easier than that of Theorem 1 (it can
also be derived as a corollary of Theorem 1). It states that for δ-computable
simple games, (the characteristic function for) every coalition S has an initial
segment S ∩ k that is determining. (The number k − 1 may be greater than
the greatest element, if any, of S.) Recall that S[k] is S ∩ k viewed as a
string:

Proposition 3 (Kumabe and Mihara (2007a)) Suppose that a δ-computable
simple game is given. (i) If a coalition S is winning, then it has an initial
segment S[k] (for some k ∈ N) that is winning determining. (ii) If S is
losing, then it has an initial segment S[k] that is losing determining.

We conclude the section with a summary of notation that the reader
should take notice of.

Notation. For a partial function f , f(α) ↓ means f(α) is defined; f(α) ↑
means f(α) is undefined. ϕk(·) denotes the kth partial recursive function
of one variable—it is computed by the Turing program with code (Gödel)
number k.

Let α and β be strings (of 0’s and 1’s).
Then αc denotes the string of the length |α| such that αc(i) = 1 − α(i)

for each i < |α|; for example, 0110100100c = 1001011011. Occasionally, a
string α is identified with the set {i : α(i) = 1}. (Note however that αc is
occasionally identified with the set {i : α(i) = 0}, but never with the set
{i : α(i) = 1}c.)

αβ (or α ∗ β) denotes the concatenation of α followed by β.
α ⊆ β means that α is an initial segment of β (β extends α); α ⊆ A

means that α is an initial segment of a set A.
Strings α and β are incompatible if neither α ⊆ β nor β ⊆ α (i.e.,

there is k < min{|α|, |β|} such that α(k) 6= β(k)). ‖

5 Games with Finite Carriers

We start with the class of finite games (games having a finite carrier). Any
game in this class is δ-computable.

In the following, for each of the sixteen conventional types (with respect
to monotonicity, properness, strongness, and nonweakness), we either give
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an example of a finite game of that type or give a proof that there exists
no such game. We give each example by exhibiting finite sets T0 and T1

satisfying the condition of Proposition 2.

1. (+ + ++) A monotonic, proper, strong, nonweak game. Let T0 =
{00, 010, 100} and T1 = {11, 011, 101}.

2. (+++−) A monotonic, proper, strong, weak game. Let T0 = {0} and
T1 = {1}. Player 0 is a dictator.

3. (+ + −+) A monotonic, proper, nonstrong, nonweak game. Let T0 =
{00, 010, 0110, 100, 1010} and T1 = {11, 1011, 0111}.

4. (+ + −−) A monotonic, proper, nonstrong, weak game. Let T0 =
{0, 10} and T1 = {11}.

5. (+ − ++) A monotonic, nonproper, strong, nonweak game. Let T0 =
{00} and T1 = {1, 01}.

6. (+−+−) A monotonic, nonproper, strong, weak game. By Lemma 1,
there is no such game.

7. (+ − −+) A monotonic, nonproper, nonstrong, nonweak game. Let
T0 = {00, 1000, 1001, 0110, 0100} and T1 = {11, 1011, 1010, 0101, 0111}.

8. (+−−−) A monotonic, nonproper, nonstrong, weak game. By Lemma 1,
there is no such game.

9. (− + ++) A nonmonotonic, proper, strong, nonweak game. Let T0 =
{1} and T1 = {0}.

10. (−++−) A nonmonotonic, proper, strong, weak game. By Lemma 2,
any such game is dictatorial. But any dictatorial game is monotonic.
So there is no such game.

11. (− + −+) A nonmonotonic, proper, nonstrong, nonweak game. Let
T0 = {1, 01} and T1 = {00}.

12. (− + −−) A nonmonotonic, proper, nonstrong, weak game. Let T0 =
{1, 00} and T1 = {01}.

13. (− − ++) A nonmonotonic, nonproper, strong, nonweak game. Let
T0 = {10} and T1 = {0, 11}.

14. (−−+−) A nonmonotonic, nonproper, strong, weak game. By Lemma 1,
there is no such game.

15. (−−−+) A nonmonotonic, nonproper, nonstrong, nonweak game. Let
T0 = {01, 10} and T1 = {00, 11}.

13



16. (− − −−) A nonmonotonic, nonproper, nonstrong, weak game. By
Lemma 1, there is no such game.

6 Games without Finite Carriers

We consider infinite games (games without finite carriers) in this section.

6.1 An assortment of noncomputable games

We first give examples of infinite noncomputable simple games. We have
noted in Section 4 (immediately after Theorem 1) that all computable games
belong to the class of games that have both finite winning coalitions and
cofinite losing coalitions. To show that variety is not lost even if we restrict
our games to this class, all the examples are chosen from the class.

Three examples (namely, types 1, 3, and 9) in this section are based on
the following lemma. The construction of other examples is simpler.

Lemma 3 Let A be a recursive set. Let T0 and T1 be recursively enumerable,
nonempty sets of (nonempty) strings such that any coalition has an initial
segment in T0 or in T1 but not both. Let ω be the simple game defined by
S ∈ ω if and only if either S = A or [S 6= Ac and S has an initial segment
in T1]. Then we have the following:
(i) S /∈ ω if and only if either S = Ac or [S 6= A and S has an initial
segment in T0].
(ii) ω has a finite winning coalition and a cofinite losing coalition.
(iii) Suppose further that either A is infinite and has an initial segment
in T0 or Ac is infinite and has an initial segment in T1. Then ω is δ-
noncomputable.

Proof. (i) From the definition of ω and the assumption that any coalition
S has a initial segment in T0 or T1 but not both, we have

S /∈ ω ⇐⇒ S 6= A and [S = Ac or S has no initial segment in T1]

⇐⇒ [S 6= A and S = Ac] or

[S 6= A and S has no initial segment in T1]

⇐⇒ [S = Ac] or [S 6= A and S has an initial segment in T0].

(ii) Choose a string α from the nonempty set T1. Let β = α ∗ A(|α|).
Then β 6= Ac since β(|α|) = A(|α|) 6= Ac(|α|). Since β has the initial
segment α ∈ T1, β ∈ ω by the definition of ω. We have obtained a finite
winning coalition, namely β. To obtain a cofinite losing coalition, choose
α ∈ T0 and let β = α ∗ Ac(|α|). Then by (i), B := {i : β(i) = 1 or β(i) ↑} is
a cofinite losing set.

14



(iii) Suppose A is infinite and has an initial segment A[k] in T0. Suppose
ω is δ-computable. Then, by Proposition 3, the winning coalition A has
an initial segment A[k′] that is a winning determining string. Let k̂ =
max{k, k′}. Then on the one hand, A[k̂], which is different from A and has
an initial segment in T0, is losing by (i). On the other hand, A[k̂] is winning
since it extends the winning determining string A[k′]. We have obtained a
contradiction. The case where Ac is infinite and has an initial segment in T1

is similar.

In the rest of this section, we give, for each of the sixteen conventional
types of simple games, an example of an infinite noncomputable game of
that type, if such a game exists.

1. (+ + ++) A monotonic, proper, strong, nonweak game. Let A =
{0}c = {1, 2, 3, . . .} ⊇ 0, T1 = {1}, and T0 = {0}. The game ω
defined by Lemma 3 satisfies the properties (Kumabe and Mihara,
2007a, Section 6.1).

2. (+ + +−) A monotonic, proper, strong, weak game. By Lemma 2,
such a game has a dictator, violating the property that it has no finite
carrier.

3. (+ + −+) A monotonic, proper, nonstrong, nonweak game. Let A =
{0, 1}c = {2, 3, 4, . . .} ⊇ 00, T1 = {11, 1011, 0111}, and T0 = {00, 010,
0110, 100, 1010}. Define ω by S ∈ ω if and only if either S = A or
[S 6= Ac and S has an initial segment in T1]. Then Lemma 3 applies.
Note that all the elements of T1∪T0 except 11 and 00 are determining
and 111 is winning determining. To show that ω is monotonic, suppose
S ∈ ω and T ) S. If S = A, then T ⊇ 1011 or T ⊇ 0111 or
T = N ⊇ 111, implying that T ∈ ω. Otherwise, S ⊇ α for some
α ∈ T1. Then, T ⊇ 1011 or T ⊇ 0111 or T = N ⊇ 1111, implying that
T ∈ ω.

To show that it is proper, suppose S, Sc ∈ ω. If S = A, then con-
tradiction is obtained sine Sc = Ac 6= A. Otherwise, S 6= Ac and
S[2] = 11 or S[4] = 1011 or 0111. This contradicts the condition that
Sc has an initial segment in T0.

It is nonstrong since {1, 3} ⊇ 010 is losing and {1, 3}c ⊇ 1010 is
losing. It is nonweak since the winning coalitions {0, 1, 4} ⊇ 11001,
{0, 2, 3} ⊇ 1011, {1, 2, 3} ⊇ 0111 have an empty intersection.

4. (++−−) A monotonic, proper, nonstrong, weak game. Let A = {0, 1},
T1 = {11}, and T0 = {0, 10}. Define ω by S ∈ ω if and only if S 6= A
and S has an initial segment in T1. Then, we have S /∈ ω if and only
if S = A or S has an initial segment in T0. To show that ω is noncom-
putable, suppose it is not. Then, by Proposition 3, the losing coalition
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A has an initial segment A[k] that is losing determining, where k ≥ 2
without loss of generality. But A[k] ∗ 1 is winning, contradiction. The
proofs of the remaining properties are easy.

5. (+ − ++) A monotonic, nonproper, strong, nonweak game. Let A =
{0, 1}c = {2, 3, 4, . . .}, T1 = {1, 01} and T0 = {00}. Define ω by S ∈ ω
if and only if S = A or S has an initial segment in T1. Then, we have
S /∈ ω if and only if S 6= A and S has an initial segment in T0. The
proofs of all the properties are easy.

6. (+ − +−) A monotonic, nonproper, strong, weak game. There is no
such game.

7. (+ − −+) A monotonic, nonproper, nonstrong, nonweak game. Let
A = {0, 1}c = {2, 3, 4, . . .}, T1 = {11, 1011, 1010, 0101, 0111}, and T0 =
{00, 1000, 1001, 0110, 0100}. Define ω by S ∈ ω if and only if S = A
or S has an initial segment in T1. The proofs of all the properties are
easy.

8. (+ − −−) A monotonic, nonproper, nonstrong, weak game. There is
no such game.

9. (− + ++) A nonmonotonic, proper, strong, nonweak game. Let A =
N ⊇ 1, T1 = {0}, and T0 = {1}. Define ω by S ∈ ω if and only if either
S = A or [S 6= Ac and S has an initial segment in T1]. Then Lemma 3
applies. It is nonmonotonic since {1} ⊇ 0 ∈ ω but {0, 1} ⊇ 1 /∈ ω.
To show that it is proper and strong, note the condition equivalent to
S /∈ ω given in Lemma 3 (i): S = Ac or [S 6= A and S has an initial
segment in T0]. This condition is in turn equivalent to Sc ∈ ω since S
has an initial segment in T0 if and only if Sc has an initial segment in
T1 in this example. It is nonweak since the disjoint sets {1} ⊇ 01 and
{2} ⊇ 001 are winning.

10. (− + +−) A nonmonotonic, proper, strong, weak game. There is no
such game.

11. (− + −+) A nonmonotonic, proper, nonstrong, nonweak game. Let
A = {0, 1}c = {2, 3, 4, . . .}, T1 = {00}, and T0 = {1, 01}. Define ω by
S ∈ ω if and only if S 6= A and S has an initial segment in T1. The
proofs of all the properties are easy.

12. (− + −−) A nonmonotonic, proper, nonstrong, weak game. Let A =
{1}, T1 = {01}, T0 = {1, 00}. Define ω by S ∈ ω if and only if S 6= A
and S has an initial segment in T1. The proofs of all the properties
are easy.
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13. (− − ++) A nonmonotonic, nonproper, strong, nonweak game. Let
A = {1}c = {0, 2, 3, 4, . . .}, T1 = {0, 11}, and T0 = {10}. Define ω by
S ∈ ω if and only if S = A or S has an initial segment in T1. The
proofs of all the properties are easy.

14. (− − +−) A nonmonotonic, nonproper, strong, weak game. There is
no such game.

15. (−−−+) A nonmonotonic, nonproper, nonstrong, nonweak game. Let
A = N , T1 = {00, 11}, and T0 = {01, 10}. Define ω by S ∈ ω if and
only if S 6= A and S has an initial segment in T1. The proofs of all
the properties are easy.

16. (−−−−) A nonmonotonic, nonproper, nonstrong, weak game. There
is no such game.

6.2 A class of computable, monotonic, proper, strong, non-

weak games without finite carriers

In this section, we construct for each recursive set A, an infinite, computable,
monotonic, proper, strong, nonweak simple game ω[A]. We do so with a view
to constructing examples of various types in Section 6.3. For this reason,
the construction is long and elaborate.12

Our approach is to construct recursively enumerable sets T0 and T1 of
strings (of 0’s and 1’s) satisfying the conditions of Proposition 2. We first
construct certain sets Fs of strings for s ∈ {0, 1, 2, . . .}. We then specify an
algorithm for enumerating the elements of T0 and T1 using the sets Fs, and
construct a simple game ω[A] according to Proposition 2. We conclude that
the game is computable by checking (Lemma 10) that T0 and T1 satisfy the
conditions of Proposition 2. Finally, we show (Lemmas 12, 13, and 14) that
the game satisfies the desired properties.

Before constructing sets T0 and T1 of determining strings, we introduce
the notions of p-strings and d-strings. Roughly speaking, a p-string consists
of 10’s or 01’s; A d-string is a concatenation of a p-string followed by 00 or 11.
More formally, a string α is a p-string if |α| is even and for each 2k < |α|,
we have α(2k)α(2k + 1) ∈ {10, 01} (i.e., α(2k + 1) = 1 − α(2k)). Examples
of a p-string include the empty string, 01, 0101, 0110, and 1001011010.

12One reason that the construction is complicated is that we construct a family of
type 1 games ω[A], one for each recursive set A, while requiring additional conditions that
would become useful for constructing other types of games in Section 6.3. In Kumabe and
Mihara (2007b, Appendix A), we construct just one type 1 game, forgetting about the
additional conditions. Some aspects of the construction thus become more apparent in
that construction. The construction there extends the one (not requiring the game to be
of a particular type) in the companion paper (Kumabe and Mihara, 2007a, Section 6.2).
The reader might want to consult these papers first.
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Note that any substring of even length of a p-string is a p-string. Denote
by α− the substring α[|α| − 1] of α with length |α| − 1. In other words,
α = α− ∗ α(|α| − 1). A string α (of even length) is a d-string if α−− is a
p-string and α(|α| − 2)α(|α| − 1) ∈ {00, 11} (i.e., α(|α| − 2) = α(|α| − 1)).
In other words, a d-string α is of the form α−− ∗ 00 or α−− ∗ 11 for some
p-string α−−.

Lemma 4 (i) Any string of even length either is a p-string or extends a
d-string. (ii) Any two distinct d-strings α and β are incompatible. That is,
we have neither α ⊆ β nor β ⊆ α.

Proof. (i) Let α be a string of even length. Find the least k with
2k + 1 < |α| such that α(2k)α(2k + 1) ∈ {00, 11}. If there is not such a k,
then α is a p-string. If there is such a k, then the substring α[2k + 2] is a
d-string.

(ii) Assume α and β are different d-strings. If |α| = |β|, then clearly
they are incompatible (since they are different). Otherwise, assume |α| > |β|
without loss of generality. Since these length are even, we have |α| − 2 ≥
|β|. Suppose α and β are compatible. Then α ⊃ β in this case. In fact,
the inequality above implies that α−− ⊇ β. But this is impossible since
α−−(|β| − 2)α−−(|β| − 1) ∈ {10, 01} (a pair in a p-string) on the one hand,
while β(|β| − 2)β(|β| − 1) ∈ {00, 11} (the tail of a d-string) on the other
hand.

Let {ks}
∞
s=0 be an effective listing (recursive enumeration) of the mem-

bers of the recursively enumerable set {k : ϕk(2k) ∈ {0, 1}}, where ϕk(·) is
the kth partial recursive function of one variable. We can assume without
loss of generality that k0 ≥ 1 and all the elements ks are distinct. Thus,

CRec ⊂ {k : ϕk(2k) ∈ {0, 1}} = {k0, k1, k2, . . .},

where CRec is the set of characteristic indices for recursive sets.
Let l0 = 2k0+2 ≥ 4 and for s > 0, let ls = max{ls−1, 2ks +2}. Then {ls}

is an nondecreasing sequence of even numbers and ls > 2ks + 1 for each s.
Note also that ls ≥ ls−1 > 2ks−1 + 1, ls ≥ ls−2 > 2ks−2 + 1, etc. imply that
ls > 2ks + 1, 2ks−1 + 1, 2ks−2 + 1, . . . , 2k0 + 1.

For each s, let Fs be the finite set of p-strings α = α(0)α(1) · · ·α(ls−1) ⊇
10 of length ls ≥ 4 such that

(1) α(2ks) = ϕks
(2ks) and for each s′ < s, α(2ks′) = 1 − ϕk

s′
(2ks′).

Note that (1) imposes no constraints on α(2k) for k /∈ {k0, k1, k2, . . . , ks},
while it actually imposes constraints for all k in the set, since |α| = ls > 2ks,
2ks−1, 2ks−2, . . . , 2k0. We observe that if α ∈ Fs ∩ Fs′ , then s = s′. Let
F =

∪

s Fs. Then F is recursive and we have the following:
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Lemma 5 Any two distinct elements in F are incompatible.

Proof. Let α, β ∈ F such that |α| ≤ |β|, without loss of generality. If
α and β have the same length, then the conclusion follows since otherwise
they become identical strings. If ls = |α| < |β| = ls′ , then s < s′ and by (1),
α(2ks) = ϕks

(2ks) on the one hand, but β(2ks) = 1− ϕks
(2ks) on the other

hand. So α(2ks) 6= β(2ks).

Let f be a recursive bijection from F onto N (f can be obtained by
enumerating the elements of F one by one, assigning 0 to the first element
enumerated, 1 to the second element enumerated, and so on). Regarding
f as a partial function on the set of strings, we have f(α) ↓ (i.e., f(α) is
defined) if and only if α ∈ F .

Lemma 6 Let α ⊇ 10 be a p-string of length ls. Then the following state-
ments are equivalent: (i) no substring of α is in F ; (ii) for each s′ ≤ s,
α[ls′ ] /∈ F ; (iii) for each s′ ≤ s, f(α[ls′ ]) ↑; (iv) for each s′ ≤ s, α(2ks′) =
1 − ϕk

s′
(2ks′).

Proof. The definition of F implies that α ∈ F only if |α| = ls for some s.
Hence the equivalence of (i), (ii), and (iii) is immediate. We next show that
(ii) and (iv) are equivalent. The direction from (iv) to (ii) is clear from (1).
To see the other direction, suppose that (iv) is not the case; we derive the
negation of (ii). For some s′ ≤ s, we have α(2ks′) = ϕk

s′
(2ks′). Choose the

least such s′. Then (s′ = 0 or) for any s′′ < s′, α(2ks′′) = 1−ϕk
s′′

(2ks′′). So
α[ls′ ] ∈ Fs′ by (1), since α[ls′ ] ⊇ 10 is a p-string of length ls′ . Thus (ii) is
violated.

Let A be a recursive set. The game ω[A] will be defined via the sets
T0 := TA

0 and T1 := TA
1 of strings, constructed by enumerating the elements

as follows: For each s and α ∈ Fs (having a length ls and extending 10),

(2.i) for each p-string α′ that is a proper substring of α, if s = 0 or |α′| ≥
ls−1, then enumerate α′ ∗ 11 in T1 and α′ ∗ 00 in T0;

(2.ii) if f(α) ∈ A, enumerate α in T1; if f(α) /∈ A, enumerate α in T0 (note
that f(α) ↓ since α ∈ F );

(3) if a string β is enumerated in T1 (or in T0) above, then enumerate βc

in T0 (or in T1, respectively).

Clearly, T0 and T1 are recursively enumerable because of this generating
algorithm. We observe that the sets T0 and T1 consist of

• d-strings (11, 00, and those extending 10 enumerated at (2.i) and those
extending 01 enumerated at (3) via (2.i)) and
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• p-strings (those extending 10 enumerated at (2.ii) and those extending
01 enumerated at (3) via (2.ii)).

We also observe that 11 ∈ T1, 00 ∈ T0, T0 ∩ T1 = ∅, and α ∈ T0 ⇔ αc ∈ T1.
Define a game ω[A] by S ∈ ω[A] if and only if S has an initial segment

in T1. Lemma 10 establishes computability of ω[A] (as well as the assertion
that T0 consists of losing determining strings and T1 consists of winning
determining strings) by way of Proposition 2.

Lemma 7 Let α, β be distinct strings in T0∪T1. Then α and β are incom-
patible. In particular, if α ∈ T0 and β ∈ T1, then α and β are incompatible.

Proof. Obviously, neither α nor β is an empty string. Since T0 and T1

consist of p-strings and d-strings, there are three cases to consider:
Case (pp): Both α and β are p-strings. Then either α or αc is enumer-

ated at (2.ii) of the generating algorithm and so α ∈ F or αc ∈ F . Similarly,
β ∈ F or βc ∈ F . If α ∈ F and β ∈ F , then α and β are incompatible, since
any two distinct elements of F are incompatible by Lemma 5. If α ∈ F and
βc ∈ F , then α ⊃ 10 and β ⊃ 01, so they are incompatible. The other two
subcases are similar.

Case (pd): one of α or β is a p-string and the other is a d-string.
Without a loss of generality, α is a p-string and β is a d-string. Suppose
α and β are compatible. Then, β ⊃ α. In fact, β−− ⊇ α. As in (pp)
above, either α ∈ F or αc ∈ F . Also, since either β or βc is enumerated
at (2.i) of the algorithm, we have either (pd.i) β−− ⊂ β̃ for some β̃ ∈ F or
(pd.ii) (βc)−− ⊂ β̂ for some β̂ ∈ F . Subcase: α ∈ F and (pd.i). α and β̃
and both in F . So they are incompatible by Lemma 5, contradicting the
fact that α ⊆ β−− ⊂ β̃. Subcase: α ∈ F and (pd.ii). Then α ⊇ 10 but
β ⊃ 01, a contradiction. Subcase: αc ∈ F and (pd.i). Similar to the second
subcase. Subcase: αc ∈ F and (pd.ii). Similar to the first subcase.

Case (dd): Both α and β are d-strings. Immediate from Lemma 4.

Notation. We write f(β) ↓∈ A if f(β) ∈ A (which requires f(β) ↓); we
write f(β)↓ /∈ A if f(β) ↓ but f(β) /∈ A.

Lemma 8 Let α ⊃ 1 be a string of length ls.

(i) α extends a string in T1 if and only if (i.a) for some s′ ≤ s, f(α[ls′ ])↓
∈ A (in this case, α[ls′ ] ∈ T1) or (i.b) α extends a d-string α′ =
(α′)−− ∗ 11 such that no substring of (α′)−− is in F (in this case,
α′ ∈ T1).

(ii) α extends a string in T0 if and only if (ii.a) for some s′ ≤ s, f(α[ls′ ])↓
/∈ A (in this case, α[ls′ ] ∈ T0) or (ii.b) α extends a d-string α′ =
(α′)−− ∗ 00 such that no substring of (α′)−− is in F (in this case,
α′ ∈ T0).
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(iii) α does not extend a string in T0 ∪T1 if and only if α is a p-string and
no substring of α is in F .

Proof. (i) (=⇒). Assume α ⊇ 11. Then (i.b) is satisfied by letting
α′ = 11.

Assume α ⊇ 10 extends a string α′ ∈ T1. Suppose first that α′ is
enumerated in T1 by applying (2.i) of the generating algorithm. (We show
(i.b) holds.) Then α′ = (α′)−−∗11 and (α′)−− is properly extended by some
element in Fs. Since any two different elements in F are incompatible by
Lemma 5, no substring of (α′)−− is in F . So (i.b) holds. Suppose next that α′

is enumerated in T1 by applying (2.ii). Then f(α′) ∈ A. Since α′ = α[ls′ ] for
some s′ ≤ s, we obtain (i.a). Finally, the case where α′ ⊇ 10 is enumerated
in T1 by applying (3) is impossible, since every string enumerated at (3)
extends 0.

(⇐=). Assume α ⊇ 11. Since 11 ∈ T1, the left hand side of (i) holds.
Assume α ⊇ 10 and either (i.a) or (i.b) holds.
Suppose (i.a) first. By the definition of f , α[ls′ ] ∈ Fs′ . Since f(α[ls′ ]) ∈

A, we have α[ls′ ] ∈ T1 by (2.ii). So α extends a string in T1.
Suppose (i.b) next: α extends a d-string α′ = (α′)−− ∗ 11 such that no

substring of (α′)−− is in F . We show that α′ is in T1.
Suppose (α′)−− ⊂ α[l0] first. Since l0 is even and (α′)−− is a p-string

of even length < l0, we have |(α′)−−| ≤ l0 − 2. Since l0 := 2k0 + 2, we
can find a p-string β of length l0 that is an extension of (α′)−− such that
β(2k0) = ϕk0

(2k0). Then β ∈ F0 and by (2.i) (for β and (α′)−− instead of
α and α′, respectively), α′ = (α′)−− ∗ 11 ∈ T1.

Otherwise, there is s′′ such that 0 < s′′ ≤ s and α[ls′′−1] ⊆ (α′)−− ⊂
α[ls′′ ]. Since α′ is a d-string, (α′)−− is a p-string. As α[ls′′−1] ⊆ (α′)−− and
no substring of (α′)−− is in F , α[ls′′−1] is a p-string of which no substring is
in F . By Lemma 6, for each t ≤ s′′−1, we have α[ls′′−1](2kt) = 1−ϕkt

(2kt).
Since α[ls′′−1] ⊆ (α′)−− ⊂ α[ls′′ ], we have ls′′−1 < ls′′ . Hence ls′′ :=

max{ls′′−1, 2ks′′ +2} = 2ks′′ +2. Since |(α′)−−| and ls′′ are even, |(α′)−−| ≤
2ks′′ . We can find a p-string β of length ls′′ that is an extension of (α′)−−

such that β(2ks′′) = ϕk
s′′

(2ks′′). Therefore, for each t ≤ s′′ − 1, we have
β[ls′′−1](2kt) = (α′)−−[ls′′−1](2kt) = 1 − ϕkt

(2kt). So β ∈ Fs′′ by (1). Then
since |(α′)−−| ≥ ls′′−1, we have by (2.i) (for β and (α′)−− instead of α and
α′, respectively), α′ = (α′)−− ∗ 11 ∈ T1.

(ii) Similar to (i).
(iii) (=⇒). Suppose that α does not extend a string in T0 ∪ T1. Then

the negations of (i.a) and of (ii.a) imply for each t ≤ s, f(α[lt]) ↑, which
implies by Lemma 6 that no substring of α is in F . Furthermore, (since no
substring of α is in F ) the negations of (i.b) and of (ii.b) imply that α does
not extend a d-string. By Lemma 4 (i), α is a p-string.

(⇐=). Suppose that α is a p-string and no substring of α is in F . Since
α is a p-string, no substring of α is a d-string. So α does not satisfy (i.b) or
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(ii.b). Since no substring α′ of α is in F , we have for such α′, f(α′) ↑. So
α does not satisfy (i.a) or (ii.a). Therefore, α does not extend a string in
T0 ∪ T1.

Lemma 9 Let α ⊃ 1 be a string of length ls such that α(2ks) = ϕks
(2ks).

Then α extends a string in T0 ∪ T1.

Proof. If α ⊇ 11, the conclusion follows immediately, since 11 ∈ T1.
Suppose α ⊇ 10. We prove the lemma by induction on s. Assume s = 0.

If α is a p-string, then α ∈ F0. By (2.ii) of the generating algorithm for
T0 and T1, we obtain α ∈ T0 ∪ T1. Otherwise, by Lemma 4 (i), α extends
a d-string β. Since |β−−| < l0 ≤ ls for all s, no substring of β−− is in F
(because F consists of certain strings of length ls for some s). By Lemma 8
(i.b) or (ii.b), α extends a string (namely β) in T0 ∪ T1.

Assume the lemma holds for s−1. If for some s′ < s, α(2ks′) = ϕk
s′
(2ks′)

then by the induction hypothesis, α[ls′ ] extends a string in T0 ∪ T1. So α
extends a string in T0 ∪ T1. Otherwise, for each s′ < s, α(2ks′) = 1 −
ϕk

s′
(2ks′). If α is a p-string then α ∈ F by (1), hence it is in T0 ∪ T1 by

(2.ii) of the construction. If α is not a p-string then by Lemma 4 (i), α
extends a d-string β. Then |β−−| < ls. Since β ⊆ α and for each s′ < s,
α(2ks′) = 1 − ϕk

s′
(2ks′), no substring of β−− is in F by (1). By Lemma 8

(i.b) or (ii.b), α extends a string (namely β) in T0 ∪ T1.

Lemma 10 Any coalition S ∈ REC has an initial segment in T0 or in T1,
but not both.

Proof. We show that S has an initial segment in T0 ∪ T1. Lemma 7
implies that S does not have initial segments in both T0 and T1. (The
assertion following “In particular” in Lemma 7 is sufficient for this, but
we can actually show the stronger statement that S has exactly one initial
segment in T0 ∪ T1.)

If S ⊇ 1, suppose ϕk is the characteristic function for S. Then k ∈
{k0, k1, k2, . . .} since this set contains the set CRec of characteristic indices.
So k = ks for some s. By Lemma 9, the initial segment S[ls] (i.e., ϕks

[ls])
extends a string in T0 ∪ T1. So, S has an initial segment in T0 ∪ T1.

If S ⊇ 0, then Sc ⊇ 1 has an initial segment in T0 ∪ T1 by the argument
above. So, S has an initial segment in T1 ∪ T0.

Next, we show that the game ω[A] has the desired properties. Before
showing monotonicity, we need the following lemma. For strings α and β
with |α| ≤ |β|, we say β properly contains α if for each k < |α|, α(k) ≤ β(k)
and for some k′ < |α|, α(k′) < β(k′); we say β is properly contained by α if
for each k < |α|, β(k) ≤ α(k) and for some k′ < |α|, β(k′) < α(k′).
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Lemma 11 Let α and β be strings such that ls = |α| ≤ |β| for some s.
(i) If α extends a string in T1 and β properly contains α, then β extends
a string in T1. (ii) If α extends a string in T0 and β is properly contained
by α, then β extends a string in T0.

Proof. We only prove (i). The proof for (ii) is similar. Suppose that α
extends a string in T1 and that β properly contains α.

Case 1: α ⊇ 1. In this case, (i.a) or (i.b) of Lemma 8 holds.
First assume (i.a) is the case: we can choose an s′ ≤ s such that

f(α[ls′ ]) ↓∈ A (in this case, α[ls′ ] ∈ T1). If β extends α[ls′ ], clearly the
conclusion holds. Otherwise, since |β| ≥ ls ≥ ls′ , α[ls′ ] and β are incompati-
ble; that is, there exists k < ls′ such that α[ls′ ](k) 6= β(k). Choose the least
such k; since β properly contains α, we have α[ls′ ](k) = 0 and β(k) = 1. Let
β′ = β[k](= α[k]). Note that f(α[ls′ ]) ↓ implies α[ls′ ] ∈ F , which in turn
implies α[ls′ ] is a p-string.

Suppose k is even. We will show that β extends β′∗11 ∈ T1. Since k < ls′

and ls′ is also even, we have k +1 < ls′ , so that α[ls′ ](k +1) ↓. Since α[ls′ ] is
a p-string, β(k+1) ≥ α[ls′ ](k+1) = 1−α[ls′ ](k) = 1. So β(k)β(k+1) = 11.
Hence β′ ∗ 11 ⊆ β[ls]. Since α[ls′ ] ∈ F , no proper substring of α[ls′ ] is in F .
As β′ ⊂ α[ls′ ], no substring of β′ is in F . So by Lemma 8 (i.b), β[ls] extends
a string (namely, β′ ∗ 11) in T1.

Suppose k is odd. We will show that β extends (β′)− ∗ 11 ∈ T1. Since
α[ls′ ] is a p-string, β(k − 1) = α[ls′ ](k − 1) = 1 − α[ls′ ](k) = 1. So β(k −
1)β(k) = 11. Hence (β′)− ∗ 11 ⊆ β[ls]. Since no proper substring of α[ls′ ] is
in F and (β′)− ⊂ α[ls′ ], no substring of (β′)− is in F . So by Lemma 8 (i.b),
β[ls] extends a string (namely, (β′)− ∗ 11) in T1.

Next assume (i.b) is the case: α extends a d-string α′ = (α′)−− ∗ 11
such that no substring of (α′)−− is in F (in this case, α′ ∈ T1). Choose the
least k ≤ |α| such that α(k) 6= β(k); we have α(k) = 0 and β(k) = 1. Let
β′ = β[k](= α[k]). Since α′(|α′| − 2) = α′(|α′| − 1) = 1, either k > |α′| − 1
or k < |α′| − 2 = |(α′)−−|. If k > |α′| − 1, we get β′ ⊇ α′. This implies
β ⊇ β′ ⊇ α′ ∈ T1; hence β extends a string in T1. Otherwise, we have
k < l := |(α′)−−| and β′ ⊂ (α′)−−.

Suppose k is even. Since k < l and l is also even, we have k + 1 < l,
so that (α′)−−(k + 1) ↓. Since α is a p-string, β(k + 1) ≥ (α′)−−(k + 1) =
1 − (α′)−−(k) = 1. So β(k)β(k + 1) = 11. Hence β′ ∗ 11 ⊆ β[ls]. Since no
substring of (α′)−− is in F and β′ ⊂ (α′)−−, no substring of β′ is in F . So
by Lemma 8 (i.b), β[ls] extends a string (namely, β′ ∗ 11) in T1.

Suppose k is odd. Since (α′)−− is a p-string, β(k−1) = (α′)−−(k−1) =
1 − (α′)−−(k) = 1. So β(k − 1)β(k) = 11. Hence (β′)− ∗ 11 ≤ β[ls]. Since
no substring of (α′)−− is in F and (β′)− ⊂ (α′)−−, no substring of (β′)− is
in F . So by Lemma 8 (i.b), β[ls] extends a string (namely, (β′)− ∗ 11) in T1.

Case 2: α ⊇ 0. First note that assertion (ii) for Case 1 can be proved
by an argument similar to the proof of assertion (i) for Case 1 above (use
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Lemma 8 (ii) instead of Lemma 8 (i)). By the construction of T1 and T0,
αc ⊇ 1 extends a string in T0 and βc is properly contained by αc. Applying
assertion (ii) for Case 1, we obtain that βc extends a string in T0. Hence β
extends a string in T1.

Note that the preceding proof shows that β actually extends a d-string
unless it extends α[ls′ ].

Lemma 12 The game ω[A] is monotonic.

Proof. Suppose B ∈ ω[A] and B′ ⊇ B. By the definition of ω[A], B has
an initial segment α ∈ T1. Choose the least s such that ls ≥ |α|. Then the
initial segment B[ls] extends α ∈ T1. Let β = B′[ls]. Then either β = B[ls]
or β properly contains B[ls].

If β = B[ls], then clearly β extends α ∈ T1 and so does B′. Therefore,
B′ ∈ ω[A]. Otherwise, β properly contains B[ls], which extends α ∈ T1.
By Lemma 11 (i), β extends a string in T1 and so does B′. Therefore,
B′ ∈ ω[A].

Lemma 13 The game ω[A] is proper and strong.

Proof. It suffices to show that Sc ∈ ω ⇔ S /∈ ω. From the observations
that T0 and T1 consist of determining strings and that αc ∈ T0 ⇔ α ∈ T1, we
have: Sc ∈ ω iff Sc has an initial segment in T1 iff S has an initial segment
in T0 iff S /∈ ω.

Lemma 14 The game ω[A] is nonweak and does not have a finite carrier.

Proof. We construct a set B such that for infinitely many l, the l-initial
segment B[l] has an extension that is winning and an extension that is losing.
Let B ⊇ 10 be a set such that for each ks, B(2ks) = 1 − ϕks

(2ks) and any
initial segment of B of even length is a p-string. Let s be such that ls+1 > ls.

Then ls+1 := max{ls, 2ks+1 + 2} = 2ks+1 + 2 and 2ks+1 + 2 > ls implies
(since both sides are even numbers) that 2ks+1 ≥ ls. By the definition of
B, for each t ≤ s, we have B(2kt) = 1 − ϕkt

(2kt) and 2kt < ls (the last
inequality from the observation that ls > 2ks + 1, 2ks−1 + 1, 2ks−2 + 1, . . . ,
2k0 − 1). Then since 2ks+1 ≥ ls, there is a p-string α ⊇ B[ls] of length ls+1

such that α(2ks+1) = ϕks+1
(2ks+1) and for each t ≤ s, α(2kt) = 1−ϕkt

(2kt).
Then by (1), α ∈ Fs+1 and |α−−| = |α| − 2 = ls+1 − 2 = 2ks+1 ≥ ls. So by
(2.i) of the generating algorithm, α−− ∗ 11 ∈ T1 and α−− ∗ 00 ∈ T0.

There are infinitely many such s. It follows that any initial segment of
B has an extension in T1 and an extension in T0. This means that the game
has no finite carrier.
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To show nonweakness, we give three (winning) coalitions in T1 whose
intersection is empty. First, 10 (in fact any initial segment of the coalition
B ⊇ 10) has extensions α in T1 and β in T0 by the argument above. So 01
has the extension βc in T1. Clearly, the intersection of the winning coalitions
11 ∈ T1, α ⊇ 10, and βc ⊇ 01 is empty.

Note that the proof that ω[A] has no finite carrier depends on (2.i), but
not (2.ii) or (3), of the generating algorithm.

6.3 An assortment of computable games without finite car-

riers

In this section, we give, for each of the sixteen conventional types of simple
games, an example of an infinite computable game of that type, if such a
game exists. Most of the examples are based on the game ω[A] in Section 6.2.

1. (+ + ++) A monotonic, proper, strong, nonweak game. ω[A] is such
a game.

2. (+ + +−) A monotonic, proper, strong, weak game. By Lemma 2,
such a game has a dictator, violating the property that it has no finite
carrier.

3. (+ + −+) A monotonic, proper, nonstrong, nonweak game. Let ω =
ω[∅] ∩ ω[N]; that is, S ∈ ω if and only if S ∈ ω[∅] and S ∈ ω[N].

To show ω is proper, suppose S ∈ ω and Sc ∈ ω. Then S ∈ ω[N] and
Sc ∈ ω[N], contradicting the properness of ω[N].

To show ω is nonstrong, let α ∈ F . We show that both α and αc are
losing. On the one hand, we have α ∈ T ∅

0
by (2.ii) of the generating

algorithm. Since T ∅
0

consists of losing determining strings, α /∈ ω[∅].
Hence α /∈ ω. On the other hand, we have α ∈ T N

1 by (2.ii). Hence
αc ∈ T N

0 . Since T N
0 consists of losing determining strings, αc /∈ ω[N].

Hence αc /∈ ω, as desired.

Computability, monotonicity, and nonweakness of ω are immediate
from the corresponding properties of ω[A]. The proof that ω does not
have a finite carrier is similar to the proof for ω[A].

4. (+ + −−) A monotonic, proper, nonstrong, weak game. In the con-
struction of (the sets T0 and T1 for) ω[A] in Section 6.2, replace (2.i),
(2.ii), and (3) by

(2*.i) for each p-string α′ that is a proper substring of α, if s = 0 or
|α′| ≥ ls−1, then enumerate 1 ∗ α′ ∗ 11 in T1 and 1 ∗ α′ ∗ 00 in T0;
furthermore, enumerate 0 in T0;
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(2*.ii) if f(α) ∈ A, enumerate 1 ∗ α in T1; if f(α) /∈ A, enumerate 1 ∗ α
in T0;

(3*) if a string β = 1 ∗ β′ is enumerated in T1 (or in T0) above, then
enumerate 1 ∗ (β′)c in T0 (or in T1, respectively).

Let T ′
0 and T ′

1 be the sets T0 and T1 in the original (Section 6.2)
construction of ω[A] renamed. We observe that β = 1 ∗ β′ ∈ Ti if and
only if β′ ∈ T ′

i .

We first show that any coalition S has exactly one initial segment in
T0 ∪ T1. This is immediate if S ⊇ 0. So, suppose S ⊇ 1. Define S′

by S′(k) = S(k + 1) for all k. Then, by the proof of Lemma 10 for
ω[A], S′ has exactly one initial segment S′[k] in T ′

0 ∪ T ′
1. From the

observation above, S[k + 1] = 1 ∗S′[k] ∈ T0 ∪ T1 for a unique k, which
is what we wanted.

To show the game is monotonic, it suffices to show Lemma 11 (i) holds
for the newly defined game. Suppose that α, β satisfy the assumption
of the lemma and that α extends a string α̂ in T1 and β properly
contains α. Then, α̂ ⊇ 1; write α̂ = 1 ∗ α̂′. Then α̂′ ∈ T ′

1 from the
observation above. We can write β = 1 ∗ β′. Then β′ either extends
or properly contains α̂′ ∈ T ′

1. If β′ extends α̂′ ∈ T ′
1, then β extends

1 ∗ α̂′ ∈ T1, as desired. Otherwise, β′ properly contains α̂′ ∈ T ′
1. By

Lemma 11 for the original game ω[A] (the condition that ls = |α| can
be ignored for our purpose), β′ extends a string β̂ ∈ T ′

1. So, β = 1 ∗ β′

extends 1 ∗ β̂ ∈ T1, as desired.

The game is weak (hence proper by Lemma 1) since every winning
coalition extends 1; in other words, 0 is a veto player. It is nonstrong
since {0} ⊇ 100 ∈ T0 implies {0} /∈ ω, while {0}c ⊇ 0 ∈ T0 implies
{0}c /∈ ω. The proof that the game is computable and has no finite
carrier is similar to the proofs for ω[A].

5. (+ − ++) A monotonic, nonproper, strong, nonweak game. Let ω =
ω[∅] ∪ ω[N]; that is, S ∈ ω if and only if S ∈ ω[∅] or S ∈ ω[N].

To show ω is nonproper, let α ∈ F . We show that both α and αc are
winning. On the one hand, we have α ∈ T N

1 by (2.ii). So α ∈ ω[N],
implying α ∈ ω. On the other hand, we have α ∈ T ∅

0
by (2.ii). Hence

αc ∈ T ∅
1
. So αc ∈ ω[∅]. Hence αc ∈ ω, as desired.

To show ω is strong, suppose S /∈ ω and Sc /∈ ω. Then S /∈ ω[N] and
Sc /∈ ω[N], contradicting the strongness of ω[N].

Computability and monotonicity of ω are immediate from the corre-
sponding properties of ω[A]. Nonweakness is immediate from non-
properness by Lemma 1. The proof that ω does not have a finite
carrier is similar to the proof for ω[A].
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6. (+ − +−) A monotonic, nonproper, strong, weak game. There is no
such game.

7. (+−−+) A monotonic, nonproper, nonstrong, nonweak game. Let A
be the set of even numbers. In the construction of ω[A], replace (2.ii)
and (3) by

(2*.ii) if f(α) ∈ A, enumerate α and αc in T1; if f(α) /∈ A, enumerate
α and αc in T0;

(3*) if a string β is enumerated in T1 (or in T0) by applying (2.i), then
enumerate βc in T0 (or in T1, respectively).

To show the game is monotonic, it suffices to show Lemma 11 (i)
holds. Suppose that α, β satisfy the assumption of the lemma and
that α extends a string α′ in T1 and β properly contains α. Let T ′

0 and
T ′

1 be the sets T0 and T1 in the original construction of ω[A] renamed.
Note that the replacement of (2.ii) and (3) by (2*.ii) and (3*) only
affects p-strings, but not d-strings; hence the set of d-strings in T1 is
the same as the set of d-strings in T ′

1, the set of d-strings in T0 is the
same as the set of d-strings in T ′

0, and the set of p-strings in T0 ∪ T1

is the same as the set of p-strings in T ′
0 ∪ T ′

1. If α′ is a d-string in T1,
it is in T ′

1. Lemma 11 (i) implies that β extends a string in T ′
1. In

fact, an inspection of the proof of Lemma 11 reveals that β extends a
d-string in T ′

1, unless β ⊇ α′, in which case the conclusion is obvious.
So assume β 6⊇ α′. Then β extends a d-string in T ′

1; hence it extends
a d-string in T1, as desired. If α′ is a p-string in T1, it is in T ′

1 ∪ T ′
0. If

α′ ∈ T ′
1, then Lemma 11 (i) implies that β extends a string in T ′

1. So
the rest of the proof is similar. If α′ ∈ T ′

0, then Lemma 11 (ii) implies
that βc extends a string in T ′

0. Assume β 6⊇ α′ as before. Then βc

extends a d-string in T ′
0; hence it extends a d-string in T0. By (3*), β

extends a d-string in T1, as desired.

The game is nonproper since (2*.ii) implies that there is a string α ∈ F
such that the coalitions {i : α(i) = 1} and {i : α(i) = 1}c (which
extends αc) are winning. Similarly, it is nonstrong since there is a
string α ∈ F such that the coalitions above are losing. It is nonweak by
Lemma 1 since it is nonproper. The proof that the game is computable
and has no finite carrier is similar to the proofs for ω[A].

8. (+ − −−) A monotonic, nonproper, nonstrong, weak game. There is
no such game.

9. (− + ++) A nonmonotonic, proper, strong, nonweak game. In the
construction of ω[A], replace (2.i) by
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(2*.i) for each p-string α′ 6= ∅ that is a proper substring of α, if s = 0
or |α′| ≥ ls−1, then enumerate α′ ∗ 11 in T1 and α′ ∗ 00 in T0;
furthermore, enumerate 00 in T1.

By (3) of the construction, 11 ∈ T0. (In other words, the game is
constructed from the sets T0 := T ′

0 ∪{11} \ {00} and T1 := T ′
1 ∪{00} \

{11}, where T ′
0 and T ′

1 are T0 and T1 in the original construction of
ω[A] renamed.) Since 00 is winning and 11 is losing, the game is
nonmonotonic. It is also nonweak since 00 (or an empty coalition) is
winning. For the remaining properties, the proofs are similar to the
proofs for ω[A].

10. (− + +−) A nonmonotonic, proper, strong, weak game. There is no
such game.

11. (−+−+) A nonmonotonic, proper, nonstrong, nonweak game. In the
construction of ω[A], replace (2.i) and (3) by

(2*.i) for each p-string α′ 6= ∅ that is a proper substring of α, if s = 0
or |α′| ≥ ls−1, then enumerate α′ ∗ 11 in T1 and α′ ∗ 00 in T0;
furthermore, enumerate 00 and 11 in T0;

(3*) if a string β /∈ {00, 11} is enumerated in T1 (or in T0) above, then
enumerate βc in T0 (or in T1, respectively).

(In other words, the game is constructed from the sets T0 := T ′
0∪{11}

and T1 := T ′
1 \ {11}, where T ′

0 and T ′
1 are T0 and T1 in the original

construction of ω[A] renamed.)

The game is nonmonotonic since N is losing but there are winning
coalitions. It is proper since it is a subset of ω[A], which is proper. It
is nonstrong since 11, 00 ∈ T0 implies that the coalitions {0, 1}, {0, 1}c

are losing.

To show nonweakness, find a β ∈ T1 such that |β| = lt+1 for some t
(e.g., let β = α−− ∗ 11 in the proof of Lemma 14, with s replaced by
t). Choose an s such that lt+1 < ls < ls+1. Following the proof of
Lemma 14, we can find α ∈ Fs+1 such that |α−−| ≥ ls, α−− ∗ 11 ∈ T1,
and α−− ∗ 00 ∈ T0. Then (αc)−− ∗ 11 ∈ T1. Nonweakness follows
since the intersection of winning coalitions β (regarded as the coalition
{i : β(i) = 1}), α−− ∗ 11 ∈ T1, and (αc)−− ∗ 11 is empty.

The proofs of computability and nonexistence of a finite carrier are
similar to the proofs for ω[A].

12. (−+−−) A nonmonotonic, proper, nonstrong, weak game. Let A = N.
In the construction of ω[A] = ω[N], replace (2.i) by
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(2*.i) for each p-string α′ that extends 1010 or 1001 and is a proper
substring of α, if s = 0 or |α′| ≥ ls−1, then enumerate α′ ∗ 11
in T1 and α′ ∗ 00 in T0; furthermore, enumerate d-strings 11 and
1000 in T1 and strings 1011 and 0 in T0.

and remove (3). To show that any coalition S has an initial segment
in T0 ∪ T1, suppose that S extends 1010 or 1001. (The other cases are
immediate.) Let T ′

0 and T ′
1 be T0 and T1 in the original construction of

ω[N] renamed. Then, by Proposition 10, S has an initial segment S[k]
in T ′

0∪T ′
1, where k ≥ 4 without loss of generality. If S[k] is enumerated

in T ′
0∪T ′

1 by applying (2.ii), then it is enumerated in T0∪T1 by applying
(2.ii). So, the conclusion follows. If S[k] is enumerated in T ′

0 ∪ T ′
1 by

applying (2.i), then S[k] is equal to α′∗11 or α′∗00 for some p-string α′

satisfying the requirements in (2.i). Clearly, α′ extends 1010 or 1001.
So, S[k] is enumerated in T0∪T1 by applying (2*.i). So the conclusion
follows.

To show that no coalition S has initial segments in both T0 and T1,
it suffices to show that a string α enumerated in T0 by (2*.i) and a
p-string β enumerated in T1 by (2.ii) are incompatible. (Note that all
α ∈ F are enumerated in T1 and none in T0 by (2.ii).) Since β ⊃ 10,
it is incompatible with 0 ∈ T1. All the other strings enumerated by
(2*.i) are d-strings, so α and β are compatible only if α extends β,
which in turn extends (since β ∈ F is of length ≥ 4) 1001 or 1010.
Then, α = α′ ∗ 00 for some α′, so as above, α ∈ T ′

0; similarly, β ∈ T ′
1.

This implies that α and β are incompatible.

The game ω defined above is nonmonotonic since 1000 is winning but
1011 is not. To see ω is weak (hence proper by Lemma 1), note that
any winning coalition extends 1; so the intersection contains a veto
player 0. The game is nonstrong because 0, 1011 ∈ T0 imply that the
coalitions {1} and {1}c are losing. The proofs of computability and
nonexistence of a finite carrier are similar to the proofs for ω[A].

13. (−−++) A nonmonotonic, nonproper, strong, nonweak game. In the
construction of ω[A], replace (2.i) and (3) by

(2*.i) for each p-string α′ 6= ∅ that is a proper substring of α, if s = 0
or |α′| ≥ ls−1, then enumerate α′ ∗ 11 in T1 and α′ ∗ 00 in T0;
furthermore, enumerate 00 and 11 in T1;

(3*) if a string β /∈ {00, 11} is enumerated in T1 (or in T0) above, then
enumerate βc in T0 (or in T1, respectively).

(In other words, the game is constructed from the sets T0 := T ′
0 \ {00}

and T1 := T ′
1 ∪ {00}, where T ′

0 and T ′
1 are T0 and T1 in the original

construction of ω[A] renamed.)
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The game is nonmonotonic since ∅ is winning but there are losing coali-
tions. It is nonproper since the coalitions {0, 1}, {0, 1}c are winning.
It is strong since its subset ω[A] is strong. It is nonweak by Lemma 1
since it is nonproper. The proofs of computability and nonexistence
of a finite carrier are similar to the proofs for ω[A].

14. (− − +−) A nonmonotonic, nonproper, strong, weak game. There is
no such game.

15. (−−−+) A nonmonotonic, nonproper, nonstrong, nonweak game. In
the construction of ω[A], replace (2.i) and (3) by

(2*.i) for each p-string α′ that extends 1010 or 1001 and is a proper
substring of α, if s = 0 or |α′| ≥ ls−1, then enumerate α′ ∗ 11 in
T1 and α′ ∗ 00 in T0; furthermore, enumerate d-strings 00, 1000,
and 0111 in T0 and d-strings 11, 1011 and 0100 in T1;

(3*) if a string β /∈ {00, 11, 1000, 0111, 1011, 0100} is enumerated in T1

(or in T0) above, then enumerate βc in T0 (or in T1, respectively).

The game is nonmonotonic since 0100 is winning but 0111 is not. The
game is nonproper since 1011, 0100 ∈ T1 imply that the coalitions {1}
and {1}c are winning. It is nonstrong since 1000, 0111 ∈ T0 imply {0}
and {0}c are losing. It is nonweak by Lemma 1 since it is nonproper.
The proofs of computability and nonexistence of a finite carrier are
similar to the proofs for ω[A].

16. (−−−−) A nonmonotonic, nonproper, nonstrong, weak game. There
is no such game.
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