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Abstract

In this simulation study, I compare the efficiency and finite sample bias of param-
eter estimators for popular income dynamic models using various forms of autocovari-
ances. The dynamic models have a random walk or a heterogeneous growth permanent
component, a persistent autoregressive component and a white noise transitory com-
ponent. I compare the estimators using autocovariances in level, first differences (FD),
and autocovariances between level and future first differences (LD), where the last one
is new in the literature of income dynamics. To maintain the same information used
as in using level covariances, I also augment the FD and LD covariances with level
variances in the estimation. The results show that using level covariances can give
rise to larger finite sample biases and larger standard errors than using covariances
in FD and LD augmented by level variance. Without augmenting the level variances,
LD provides more efficient estimators than FD in estimating the non-permanent com-
ponents. I also show that LD provides a convenient test between random walk and
heterogeneous growth models with good power.
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1 Introduction

Researchers estimate income dynamics models to understand the nature income shocks, how

the variances of these shocks change over time (such as Moffitt and Gottschalk, 2012 and

their previous work) and how they affect individual behavior such as consumption (such

as Blundell, Pistaferri and Preston, 2008, Guvenen, 2007).1 These models decompose the

residual earnings into permanent and transitory components, and identify the variance of

each component with panel data. The model parameters are usually estimated by Method

of Moments through matching the theoretical and sample unconditional autocovariances

of various lags. Researchers such as Moffitt and Gottschalk (2012) and Guvenen (2009)

use the autocovariances in level, while other researchers, such as MaCurdy (1982), Baker

(1997), and Hryshko (2012) use autocovariances in first difference (hereafter FD). However,

there is a lack of research in comparing the performance of these estimators. This paper

investigates the efficiency and finite sample bias with different forms of autocovariances

through Monte-Carlo simulation.

I also investigate the use of covariances between current and future first differences

(hereafter LD) in estimation. These autocovariances cancel out the random walk com-

ponent, while keeping the information at level allows more efficient estimation for other

components. Finally, I also augment these moments with the variances in level to add back

the missing information for identifying the full model. My results show that LD can deliver

estimators with smaller finite sample bias and lower variance, whereas using the common

level autocovariances results in a substantial finite sample bias.

To shed light on the debate of whether the permanent component is driven by a random

walk process or a heterogeneous growth process2, I also consider a test by estimating a

nested model with only LD covariances with the random walk model as the null hypothesis.

This can control for the effect of the persistent AR component, and the results show that

its power is reasonably high with good size under the null.

The remaining part of the paper is as follows. Section 2 describes the model and method-

1A detailed review of the use of income dynamics models in understanding income and consumption can
be found in Meghir and Pistaferri (2011).

2See MaCurdy (1982), Baker (1997), Guvenen (2009) and Hryshko (2012).
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ology. Section 3 presents the results. I briefly conclude in Section 4.

2 Model and Estimation Methods

2.1 Earnings Dynamics Model

Let yiat be the earnings, income or wage of an individual in a year. The first step is to take

away the observable component due to xiat by OLS.

yiat = x′

iatβ + uiat (1)

xiat usually include polynomial in age, year dummies and education. The second step is to

model the dynamics of the residual, which is the deviation from the common profile. In

this simulation study, I skip this first stage and focus on the estimators for the dynamics

of the residual. A model with three independent additive components of different levels of

persistency is used.3

uiat = piat + viat + wiat (2)

where piat is a permanent component, viat is a persistent component, and wiat is a transitory

shock or measurement error.

Two types of permanent components are commonly used in the literature. One is a

random walk process

pRiat = pRi,a−1,t−1 + ε
p
iat (3)

where ε
p
iat is the permanent shock for each period with variance σ2

pε. The other is a hetero-

geneous growth process (Guvenen, 2009, calls it Heterogeneous Income Profiles, HIP.)

pHiat = θ1i + θ2ia (4)

where a is age normalized to zero at 25 and θ1i and θ2i are individual heterogeneous factors

for initial value and growth rate of earnings with variances σ2
1 and σ2

2 respectively with

correlation ρ12.

3This follows from Guvenen (2009). Many other researchers use a two-component model instead, such
as Moffitt and Gottschalk (2012).
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For the persistent component, I use an autoregressive process of order 1,

viat = ρvi,a−1,t−1 + εviat (5)

where εviat is the persistent shock with variance σ2
vε, and ρ describes the degree of persistency

in this component that satisfies |ρ| < 1. Finally, the transitory component wiat is specified

as independent and identically distributed over time with variance σ2
w.

Following the literature, I consider the working life to start at the age 25 and end at 60.

For the random walk permanent component, I allow an initial value, at the age 25, pi1 with

variance σ2
p1. I also allow a general initial value for the persistent autoregressive component

vi1 with variance σ2
v1.

4

To simplify the problem, changes in parameters over calender years or birth cohorts are

not considered in this simulation exercise. The parameter set to be estimated for a random

walk permanent component model is Θ1 = {σ2
p1, σ

2
pε, σ

2
v1, σ

2
vε, ρ, σ

2
w} and the parameter set

for a heterogeneous profile model is Θ2 = {σ2
1, σ

2
2, ρ12, σ

2
v1, σ

2
vε, ρ, σ

2
w}. While ρ and ρ12 are

restricted to lie between -1 and 1, all variance parameters are restricted to be non-negative.

2.2 Estimating Model Parameters

2.2.1 Estimation Method: Weighted Non-linear Least Squares

To estimate the dynamic model for uit, the Method of Moments in the form of Classical

Minimum Distance (CMD) (Chamberlain, 1984) is commonly used. This estimates the

parameter by matching unconditional autocovariances from the data to those implied by

the model using an appropriate weight matrix. Since Altonji and Segal (1996) showed that

the finite sample properties of using an estimated optimal weight matrix is not desirable in

this context, researchers generally use the identity weight matrix. The method can then be

expressed in terms of (weighted) non-linear least squares.

First, I demonstrate the estimation method in level covariances. Collecting all possible

4In the previous literature, the initial value of this persistent component is often set to zero. However,
because the start of the process in this model may not be the true starting point, and it is also plausible that
the initial earnings contains a component that is persistent rather than permanent, I allow a general starting
variance for the persistent component, though the results show that it is not always precisely estimated.
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within-individual pairs of observations from the data, we can obtain an estimator by

min
Θ

∑

a,s

wa,s

((
1

na,s

∑

i

uiaui,a−s

)
−m(Θ, a, s)

)2

(6)

where uiauia−s include all available within-individual pairs for all individuals in the data

and m(Θ, a, s) = V ar(uia, ui,a−s; Θ) is the model moment function given the value of param-

eters, given by the sum of the covariances of the three independent additive components5.

na,s is the number of individuals with the corresponding age-and-lag pair in the sample. wa,s

is a weight that may be used to improve efficiency depending on age (a) and lag between

the two points (s). The following forms are considered. First, the commonly used identity

weight matrix corresponds to wa,s = 1 for all age and lags. However, since different age-lag

combination contains different number of observations, so it would be more efficient to use

wa,s = na,s to allow for a higher weight for moments calculated from more observations.

Finally, we may also give a higher weight to the moments of lower variance. In the same

spirit as the Diagonally Weighted Minimum Distance (DWMD) of Blundell, Pistaferri and

Preston (2008), the third type of weight is to use the inverse of the within age-lag cell

variance:

wa,s =
na,s[

V̂ ar(ui,aui,a−s −m(Θ; a, s))
] =

na,s

V̂ ar(ui,aui,a−s)
. (7)

This can help bringing autocovariances from different moments to be more comparable in

size when we mix different types of moments in some specifications.

2.2.2 Covariances Used: Level, First Difference and Level-First-Difference

Besides using level uit, another form is to use first differences ∆uia = uia − ui,a−1 (FD).

Then the objective function becomes

min
Θ

∑

a,s

wa,s

((
1

na,s

∑

i

∆uia∆ui,a−s

)
−mFD(Θ, a, s)

)2

(8)

where mFD is the corresponding true moment function, s ≥ 0. The use of autocovariances

in FD has the advantage that it can extract the random walk shocks without regards to the

past level, and so, for lagged autocovariances, permanent shocks are uncorrelated.

5Formulas are available in the Appendix A.
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I also use the covariance between level and future first difference (LD)

cov(uia−s,∆uia)

for s ≥ 1. The estimator is obtained by

min
Θ

∑

a,s

wa,s

((
1

na,s

∑

i

uia−s∆uia

)
−mLD(Θ, a, s)

)2

(9)

where mLD is the corresponding true moment function. The main advantage is that the

future shocks does not depend on the past value in the random walk component, and so

we can drop totally the variance of random walk shock, but yet, it maintains the informa-

tion in level that enables the estimation of the parameters in the persistent and transitory

components more precisely.

Finally, to add back the required information to identify the whole model and improve

efficiency in estimating existing parameters, the variances in level are augmented to the FD

and LD moments.6 That means the following term is added to the objective function:

∑

a

w̃a

((
1

ña

∑

i

u2
ia

)
− m̃(Θ, a)

)2

(10)

2.3 Estimation for the Test

I also consider a simple test of random walk model against heterogeneous growth model

for the permanent component. Here I do not use the full model, because, as shown in

Appendix B, the age profile for level variance are the same between these two models if we

allow the shocks or growth rate changes over the lifecycle. So I focus on the most important

distinguishing feature about the covariances of longer lags.

Using LD moments only, under the random walk model, cov(pRiat,∆pRi,a+s,t+s) = 0 for

all s > 0, because the future shocks are all uncorrelated to previous levels. However, for

the heterogeneous growth model, cov(pHiat−s,∆pHi,a,t) = (a − s)σ2
2, which is non-zero for all

lags s. Therefore, we can estimate the heterogeneous growth model (also a nested model)

6In principle, using level covariances and the FD and LD augmented with level variances contain the
same information in that using level variances plus the FD or LD covariances can solve for covariances
at level for all corresponding lags. However, due to over-identification and a non-linear (sum of squares)
criterion function, the results may differ substantially.
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and test if σ2
2 = 0 against σ2

2 > 0. To avoid non-standard distribution under the null, I

drop the non-negative restriction of the estimator of σ2
2. Here, I apply a one-tail test and

the null of random walk is rejected when the t-value is above 1.645. I have tried a similar

test using FD moments, but some parameter estimators become unstable because the FD

moments do not have enough information to estimate the persistent component precisely,

so the performance is not good.7

3 Simulation Results

3.1 Results for Parameter Estimation

In the simulation exercise, I simulate uit according to the true model with N individuals

from the age of 25 to 60. I then extract the segment of T years observed, and apply

the above estimation methods to obtain the parameter estimates. T years of data for

each individual are used, where I randomly assign the starting observed age from uniform

distribution between 25 and 60 − T + 1.8 I repeat this process 5000 times and calculate

the means and standard deviations of the parameter estimates among these simulations. I

assume that all shocks and initial conditions are normally distributed with mean zero with

the corresponding variances. The parameters used to simulate the data are chosen with

reference to Guvenen (2009) and Moffitt and Gottschalk (2012).

Table 1 reports the results for models with a random walk permanent component under

different weighting schemes for all five sets of covariances. The baseline I use is N = 3000

and T = 10. The three panels show the results from unweighted, weighted by number of

observations used, and weighted by number of observations divided by cell variance. The

third weighting scheme gives the lowest finite sample bias and variances, especially for the

specifications that mix level variance with FD or LD covariances. Table 2 shows the results

of different sample length, number of individuals and different parameter values, with the

third weighting scheme applied. The use of usual level autocovariances actually results in

higher finite sample biases and less efficient estimators, especially for the AR persistent

7Results are available upon request.
8The age structure in the data may differ, but this setting should be useful for understanding relative

performance.
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parameter ρ. Using FD or LD augmented with level variance gives lower finite sample

biases and standard deviations. Moreover, using only FD results in more noisy estimators of

parameters, while using only LD gives us estimator for persistent and transitory components

as precise as augmenting these moments by level variances. These findings are robust across

variations shown in Table 2.

Table 3 and 4 show the analogous results for models with a heterogeneous growth perma-

nent component. Table 3 shows the results for different weighting schemes. Table 4 shows

the results for varying sample structures and parameter values under the third weighting

scheme. The results are very similar to those of the random walk model. There is a general

tendency that LD gives us more efficient estimators with close to zero bias. However, the

advantage is smaller for LD-only versus FD-only under the heterogeneous growth model,

except for the initial variance parameter of the transitory component. On the other hand,

using only FD covariances can pin down the variance of the heterogeneous growth rate

rather precisely when the panel length is long.

In summary, using level autocovariances results in larger finite sample biases and stan-

dard errors, while using LD covariances essentially removes this bias and generally provides

more efficient estimators.

3.2 Results for Test between Models

Table 5 shows the rejection probability of the test of random walk model against hetero-

geneous growth model of various data structure, parameter values and models. I use the

standard deviations across simulations as the standard error.9 Under all specifications, the

rejection probabilities of random walk models are close to the nominal size of 5%. For

heterogeneous growth model, in many cases the rejection probabilities exceed 0.5 and some-

times even close to 1, unless the sample size and length are both small, or the heterogeneous

growth rate variance is small. A higher persistent ρ in the AR component reduces the power

of the test.

9In actual data, we have to use an estimator for the standard error, such as bootstrap, that involves
more sampling variations, but this should not change the results substantially.
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4 Conclusions

In the simulation study, I find that using level autocovariances is not the best in terms of

reducing finite sample bias and standard errors. The use of LD covariances perform the

best in these two aspects, so I recommend researchers to use LD covariances in empirically

estimating income dynamic models. This paper also introduces a reasonably powerful test

to distinguish between random walk and heterogeneous growth permanent component using

the LD covariances.
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Tables

Table 1: Means and Standard Deviations Across Simulations for Random Walk Model with
Various Weights

σ2
p1 σ2

pǫ ρ σ2
v1 σ2

vǫ σ2
w

True Values 0.1 0.012 0.8 0.1 0.05 0.05

Unweighted

Level 0.0598 0.0112 0.8538 0.1364 0.0425 0.0588

(0.0470) (0.0030) (0.0732) (0.0612) (0.0109) (0.0120)

FD Only 0.0154 0.7140 0.1006 0.0504 0.0462

(0.0126) (0.1990) (0.0950) (0.0098) (0.0115)

FD + Level Variance 0.0668 0.0115 0.8184 0.1312 0.0479 0.0513

(0.0575) (0.0028) (0.0966) (0.0664) (0.0069) (0.0049)

LD Only 0.8001 0.1057 0.0504 0.0500

(0.0516) (0.0564) (0.0056) (0.0034)

LD + Level Variance 0.0838 0.0116 0.8157 0.1146 0.0480 0.0513

(0.0415) (0.0024) (0.0656) (0.0491) (0.0068) (0.0050)

Weighted by number of observations only

Level 0.0596 0.0114 0.8530 0.1409 0.0432 0.0572

(0.0470) (0.0027) (0.0672) (0.0704) (0.0088) (0.0089)

FD Only 0.0126 0.7713 0.1121 0.0502 0.0491

(0.0096) (0.1014) (0.1006) (0.0077) (0.0045)

FD + Level Variance 0.0583 0.0116 0.8371 0.1421 0.0479 0.0517

(0.0532) (0.0022) (0.0717) (0.0674) (0.0053) (0.0036)

LD Only 0.8005 0.1012 0.0500 0.0500

(0.0346) (0.0327) (0.0029) (0.0022)

LD + Level Variance 0.0786 0.0117 0.8259 0.1211 0.0474 0.0518

(0.0414) (0.0020) (0.0570) (0.0538) (0.0056) (0.0040)

Weighted by number of observations times inverse of variance of each age-lag cell

Level 0.0592 0.0114 0.8547 0.1372 0.0445 0.0557

(0.0427) (0.0021) (0.0596) (0.0605) (0.0083) (0.0082)

FD Only 0.0126 0.7784 0.1049 0.0500 0.0490

(0.0092) (0.0898) (0.0831) (0.0076) (0.0038)

FD + Level Variance 0.0923 0.0118 0.8075 0.1039 0.0501 0.0497

(0.0246) (0.0014) (0.0380) (0.0379) (0.0028) (0.0021)

LD Only 0.7986 0.0955 0.0499 0.0495

(0.0349) (0.0325) (0.0031) (0.0022)

LD + Level Variance 0.0984 0.0119 0.8009 0.0972 0.0496 0.0497

(0.0240) (0.0012) (0.0360) (0.0350) (0.0033) (0.0024)
Note: N=3000 and T=10 are used in the above specifications. I repeat the simulation 5000 times. Means

across simulations are reported with standard deviations across simulations in the parenthesis. FD stands

for using autocovariances of first difference. LD stands for using covariances between level and future first

differences.
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Table 2: Means and Standard Deviations Across Simulations for Random Walk Model with
Different Sample Sizes and Parameter Values

σ2

p0
σ2

pǫ
ρ σ2

v1
σ2

vǫ
σ2

w

True Value (Default) 0.1 0.012 0.8 0.1 0.05 0.05

Smaller Number of Observations: N = 1500, T = 10
Level 0.0436 0.0109 0.8706 0.1513 0.0440 0.0565

(0.0442) (0.0031) (0.0609) (0.0753) (0.0094) (0.0093)
FD Only 0.0144 0.7436 0.1057 0.0500 0.0467

(0.0117) (0.1586) (0.1065) (0.0093) (0.0093)
FD + Level Variance 0.0845 0.0116 0.8121 0.1090 0.0502 0.0494

(0.0379) (0.0021) (0.0567) (0.0557) (0.0040) (0.0031)
LD Only 0.7973 0.0941 0.0499 0.0491

(0.0505) (0.0552) (0.0047) (0.0033)
LD + Level Variance 0.0953 0.0116 0.8032 0.09676 0.0492 0.0495

(0.0354) (0.0019) (0.0530) (0.0500) (0.0048) (0.0036)
Longer Panels: N = 3000, T = 20
Level 0.0970 0.0119 0.8110 0.0996 0.0480 0.0523

(0.0113) (0.0013) (0.0301) (0.0394) (0.0047) (0.0054)
FD Only 0.0123 0.7969 0.1000 0.0498 0.0498

(0.0028) (0.0276) (0.0535) (0.0022) (0.0014)
FD + Level Variance 0.0981 0.0119 0.8027 0.0997 0.0500 0.0499

(0.0130) (0.0010) (0.0199) (0.0277) (0.0018) (0.0013)
LD Only 0.8000 0.0960 0.0499 0.0498

(0.0157) (0.0233) (0.0017) (0.0013)
LD + Level Variance 0.1002 0.0119 0.8006 0.0970 0.0498 0.0499

(0.0136) (0.0009) (0.0161) (0.0253) (0.0018) (0.0013)
Lower Persistence in AR component: ρ = 0.5, σ2

vǫ
= 0.1. N = 3000, T = 10

Level 0.0874 0.0117 0.5856 0.0991 0.0842 0.0644
(0.0270) (0.0016) (0.1289) (0.0519) (0.0236) (0.0222)

FD Only 0.0132 0.4890 0.1020 0.1008 0.0474
(0.0047) (0.0703) (0.0587) (0.0081) (0.0100)

FD + Level Variance 0.0988 0.0120 0.5023 0.0994 0.1003 0.04907
(0.0134) (0.0010) (0.0482) (0.0351) (0.0083) (0.0077)

LD Only 0.4991 0.0962 0.0999 0.0491
(0.0424) (0.0330) (0.0078) (0.0071)

LD + Level Variance 0.0999 0.0120 0.5007 0.0973 0.0996 0.0493
(0.0143) (0.0010) (0.0432) (0.0323) (0.0079) (0.0072)

Lower Variance in Persistent Shock: σ2

pǫ
= 0.006. N = 3000, T = 10

Level 0.0668 0.0056 0.8470 0.1309 0.0451 0.0549
(0.0390) (0.0014) (0.0544) (0.0563) (0.0073) (0.0072)

FD Only 0.0079 0.7776 0.0941 0.0487 0.0491
(0.0072) (0.0799) (0.0687) (0.0057) (0.0034)

FD + Level Variance 0.0928 0.0059 0.8075 0.1039 0.0500 0.0497
(0.0224) (0.0010) (0.0347) (0.0353) (0.0025) (0.0020)

LD Only 0.7985 0.0950 0.0499 0.0495
(0.0302) (0.0301) (0.0027) (0.0021)

LD + Level Variance 0.0991 0.0059 0.8004 0.0967 0.0497 0.0497
(0.0201) (0.0009) (0.0316) (0.0319) (0.0029) (0.0022)

Note: The benchmark is the parameter values on the first row and N = 3000, T = 10, and the weights are

the number of observations times inverse of variance of each age-lag cell. I repeat the simulation 5000 times.

Means across simulations are reported with standard deviations across simulations in the parentheses. FD

stands for using covariances in first difference. LD stands for using covariances between level and future

first differences.
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Table 3: Means and Standard Deviations Across Simulations for Heterogeneous Growth
Model Under Various Weights

σ2
1 σ2

2 × 100 ρ12 ρ σ2
v1 σ2

vǫ σ2
w

True Value 0.1 0.03 0.0 0.8 0.1 0.05 0.05

Unweighted

Level 0.1073 0.0341 0.0883 0.8274 0.0924 0.0456 0.0541

(0.0506) (0.0178) (0.5936) (0.0583) (0.0656) (0.0094) (0.0087)

FD Only 0.0398 0.7791 0.1000 0.0504 0.0493

(0.0361) (0.0574) (0.0842) (0.0029) (0.0028)

FD + Level Variance 0.1056 0.0355 -0.0108 0.8053 0.0960 0.0493 0.0502

(0.0484) (0.0207) (0.6611) (0.0873) (0.0572) (0.0042) (0.0035)

LD Only 0.0371 0.8031 0.1034 0.0538 0.0501

(0.0379) (0.0541) (0.0355) (0.0220) (0.0030)

LD + Level Variance 0.1023 0.0316 0.1197 0.8029 0.0976 0.0494 0.0503

(0.0412) (0.0142) (0.4991) (0.0437) (0.0494) (0.0048) (0.0034)

Weighted by number of observations only

Level 0.1010 0.0329 0.1338 0.8248 0.1014 0.0466 0.0531

(0.0491) (0.0161) (0.5938) (0.0513) (0.0721) (0.0072) (0.0063)

FD Only 0.0346 0.7926 0.1039 0.0502 0.0497

(0.0292) (0.0437) (0.0816) (0.0024) (0.0022)

FD + Level Variance 0.0929 0.0337 0.0500 0.8187 0.1093 0.0492 0.0506

(0.0457) (0.0173) (0.6529) (0.0656) (0.0586) (0.0032) (0.0026)

LD Only 0.0312 0.7994 0.1014 0.0506 0.0499

(0.0157) (0.0356) (0.0296) (0.0061) (0.0019)

LD + Level Variance 0.0989 0.0310 0.1345 0.8083 0.1016 0.0491 0.0506

(0.0393) (0.0129) (0.4965) (0.0359) (0.0524) (0.0038) (0.0026)

Weighted by number of observations times inverse of variance of each age-lag cell

Level 0.0960 0.0335 0.0788 0.8363 0.1008 0.0460 0.0535

(0.0467) (0.0149) (0.5684) (0.0447) (0.0666) (0.0063) (0.0057)

FD Only 0.0364 0.7948 0.0974 0.0501 0.0494

(0.0303) (0.0437) (0.0607) (0.0023) (0.0022)

FD + Level Variance 0.0981 0.0302 0.1221 0.8026 0.0987 0.0500 0.0496

(0.0340) (0.0110) (0.4381) (0.0282) (0.0456) (0.0024) (0.0019)

LD Only 0.0312 0.7991 0.0957 0.0504 0.0496

(0.0143) (0.0366) (0.0294) (0.0053) (0.0020)

LD + Level Variance 0.0997 0.0299 0.1025 0.7999 0.0963 0.0497 0.0496

(0.0331) (0.0095) (0.3855) (0.0279) (0.0415) (0.0027) (0.0020)
Note: N=3000 and T=10 are used in the above specifications. I repeat the simulation 5000 times. Means

across simulations are reported with standard deviations across simulations in the parenthesis. FD stands

for using covariances in first difference. LD stands for using covariances between level and future first

differences.
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Table 4: Means and Standard Deviations Across Simulations for Heterogeneous Growth
Model with Different Parameter Values

σ2

1
σ2

2
× 100 ρ12 ρ σ2

v1
σ2

vǫ
σ2

w

True Value (Default) 0.1 0.03 0.0 0.8 0.1 0.05 0.05

Smaller Number of Observations: N = 1500, T = 10

Level 0.0950 0.0359 0.0650 0.8532 0.1001 0.0449 0.0543

(0.0606) (0.0188) (0.6912) (0.0546) (0.0850) (0.0077) (0.0072)

FD Only 0.0426 0.7896 0.1002 0.0502 0.0488

(0.0392) (0.0610) (0.0832) (0.0034) (0.0032)

FD + Level Variance 0.0985 0.0308 0.1760 0.8042 0.0952 0.0499 0.0492

(0.0432) (0.0149) (0.5544) (0.0417) (0.0598) (0.0034) (0.0027)

LD Only 0.0344 0.7990 0.0924 0.0523 0.0492

(0.0320) (0.0541) (0.0482) (0.0297) (0.0029)

LD + Level Variance 0.1012 0.0302 0.1603 0.7990 0.0909 0.0494 0.0493

(0.0432) (0.0128) (0.5033) (0.0401) (0.0554) (0.0039) (0.0029)

Longer Panels: N = 3000, T = 20

Level 0.0969 0.0297 0.1043 0.8045 0.0998 0.0492 0.0507

(0.0307) (0.0084) (0.3528) (0.0229) (0.0445) (0.0033) (0.0030)

FD Only 0.0305 0.7999 0.0999 0.0500 0.0498

(0.0056) (0.0164) (0.0429) (0.0015) (0.0012)

FD + Level Variance 0.0984 0.0298 0.0658 0.8009 0.0999 0.0499 0.0498

(0.0229) (0.0072) (0.2828) (0.0152) (0.0335) (0.0015) (0.0012)

LD Only 0.0306 0.7997 0.0958 0.0502 0.0498

(0.0090) (0.0202) (0.0211) (0.0029) (0.0011)

LD + Level Variance 0.0990 0.0298 0.0493 0.8003 0.0983 0.0498 0.0499

(0.0225) (0.0059) (0.2279) (0.0145) (0.0302) (0.0016) (0.0012)

Smaller Persistence at AR Component: ρ = 0.5,σ2

vǫ
= 0.1

Level 0.0958 0.0298 0.0938 0.5402 0.0962 0.0917 0.0571

(0.0236) (0.0094) (0.3548) (0.0568) (0.0505) (0.0127) (0.0110)

FD Only 0.0355 0.4994 0.1013 0.1004 0.0489

(0.0196) (0.0463) (0.0556) (0.0080) (0.0075)

FD + Level Variance 0.0976 0.0294 0.0896 0.5029 0.1003 0.1000 0.0493

(0.0211) (0.0086) (0.3185) (0.0437) (0.0364) (0.0077) (0.0072)

LD Only 0.0302 0.4992 0.0964 0.0999 0.0492

(0.0107) (0.0471) (0.0323) (0.0070) (0.0071)

LD + Level Variance 0.0986 0.0294 0.0757 0.5020 0.0982 0.0993 0.0497

(0.0207) (0.0078) (0.2879) (0.0366) (0.0333) (0.0071) (0.0064)

Lower Spread in Growth Rates: σ2

2
× 100 = 0.015

Level 0.0950 0.0177 0.1079 0.8322 0.0996 0.0464 0.0532

(0.0389) (0.0111) (0.5949) (0.0404) (0.06012) (0.0057) (0.0052)

FD Only 0.0258 0.7920 0.0951 0.0501 0.0493

(0.0260) (0.0411) (0.0589) (0.0023) (0.0021)

FD + Level Variance 0.0990 0.0154 0.1543 0.8026 0.0968 0.0500 0.0496

(0.0292) (0.0084) (0.4958) (0.0280) (0.0416) (0.0023) (0.0019)

LD Only 0.0170 0.8005 0.0954 0.0506 0.0496

(0.0123) (0.0327) (0.0283) (0.0048) (0.0019)

LD + Level Variance 0.1009 0.0152 0.1409 0.7990 0.0945 0.0497 0.0496

(0.0297) (0.0074) (0.4534) (0.0261) (0.0384) (0.0025) (0.0019)
Note: The benchmark is the parameter values on the first row and N = 3000, T = 10, and the weights are

the number of observations times inverse of variance of each age-lag cell. I repeat the simulation 5000 times.

Means across simulations are reported with standard deviations across simulations in the parentheses. FD

stands for using covariances in first difference. LD stands for using covariances between level and future

first differences.
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Table 5: Rejection Probability of the Null of Random Walk Under Various True Models
Sample Sizes

N 3000 1500 3000 1500 10000
T 20 20 10 10 10
Data Generated from

ρ = 0.8, σ2
vε = 0.05

Random Walk 0.069 0.067 0.052 0.034 0.064
Heterogeneous Growth 0.976 0.761 0.676 0.279 0.994

ρ = 0.5, σ2
vε = 0.1

Random Walk 0.051 0.061 0.060 0.063 0.054
Heterogeneous Growth 1.000 0.998 0.878 0.592 0.999

Half Permanent Change
Random Walk 0.067 0.067 0.072 0.042 0.061
Heterogeneous Growth 0.610 0.374 0.332 0.139 0.692

Note: The nominal size of tests is 5%. For the parameters of the data generating process, the benchmark

is σ2

p1
= 0.1, σ2

pε
= 0.012, σ2

1
= 0.1, σ2

2
= 0.0003, ρ12 = 0, σ2

v1
= 0.1, σ2

w
= 0.05. For specifications with

ρ = 0.8, σ2

vε
= 0.05. For specifications with ρ = 0.5, σ2

vε
= 0.1. We half the size of σ2

2
and σ2

pε
for the third

panel. The test is performed by estimating the heterogeneous growth model using LD covariances, but not

to restrict the growth variance to be positive, and then perform a one-tail test on this parameter under the

null of zero for the random walk model against a positive value for the heterogeneous growth model. The

above report the probability of rejection using T test, using standard deviation across all simulations as the

standard error.
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Appendix

A Theoretical Covariances of Different Sets of Mo-

ment Conditions

Consider Error Component Model

uit = pit + vit + wit

where pit is the permanent component, vitis a persistent component that dies down relatively

slowly, and witis a short memory component. Here I take it as an independent component

over time.

A.1 Permanent component

I have two types of permanent component: random walk and heterogeneous profile.

A.1.1 Random Walk Model

piat = pi,a−1,t−1 + ǫi,a,t

where a is age-24.

For variance of level, we have

V ar(piat) = V ar(pi,a−1,t−1) + V ar(ǫi,a,t)

or

σ2
p,a,t = σ2

p,a−1,t−1 + σ2
pǫ,a,t

with initial condition V ar(pi,1,t) = σ2
p0. Thus the variances can be calculated recursively.

The covariance is then given by

cov(piat, pia−s,t−s) = cov(pi,a−s,t−s +
s−1∑

s′=0

ǫi,a−s′,t−s′ , pi,a−s,t−s) = V ar(pi,a−s,t−s)

since new shocks are uncorrelated to old values.

Then, consider first difference

∆piat = piat − pi,a−1,t−1 = ǫi,a,t
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Then,

V ar(∆piat) = V ar(ǫi,a,t) = σ2
pǫ

and

cov(∆piat,∆pi,a−s,t−s) = cov(ǫi,a,t, ǫi,a−s,t−s) = 0

for s > 1

Then, consider the covariance between level and future first difference

cov(piat,∆pi,a+s,t+s) = cov(piat, ǫi,a+s,t+s) = 0

where s > 1. This is true because future shocks are uncorrelated to previous shocks and

thus realized values by definition.

A.1.2 Heterogeneous Growth Profile

Using the usual parameterization,

piat = θ1 + θ2a

where across individuals, E(θ1) = E(θ2) = 0 and V ar(θ1) = σ2
1 and V ar(θ2) = σ2

2 and

cov(θ1, θ2) = σ12 = ρ12σ1σ2.

If using level,

V ar(piat) = V ar(θ1) + a2V ar(θ2) + 2acov(θ1, θ2) = σ2
1 + σ2

2a
2 + 2aσ12

and

cov(piat, pia−s,t−s) = cov(θ1 + θ2a, θ1 + θ2(a− s)) = σ2
1 + σ2

2a(a− s) + (a+ (a− s))σ12

If we use first difference, then

∆piat = piat − pi,a−1,t−1 = θ2

Therefore,

V ar(∆piat) = V ar(θ2) = σ2
2

and

cov(∆piat,∆pi,a−s,t−s) = cov(θ2, θ2) = σ2
2
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Finally, if we use covariance between level and future first difference, we will use

cov(piat,∆pi,a+s,t+s) = cov(θ1 + θ2a, θ2) = σ12 + aσ2
2

For estimating a complete model, putting σ12 as σ1σ2ρ12 may be useful to impose appro-

priate restrictions on the correlation coefficient. But if σ1 cannot be identified independently,

but σ12 is involved, it may bring about some unreasonable extreme estimates. In some parts

of my paper, I have dropped this part and assume θ1 and θ2 are independent, because the

identification of the covariance between the two is indeed weak.

A.2 Persistent Component

The persistent component is represented by an AR(1) process,

viat = ρvi,a−1,t−1 + ǫviat

where −1 < ρ < 1. I do not assume it to be stationary, so there is an initial variance

V ar(vi,1,t) = σ2
v,1,t

and its unconditional variance evolves according to

V ar(vi,a,t) = ρ2V ar(vi,a−1,t−1) + V ar(ǫviat) = ρ2σ2
v,a−1,t−1 + σ2

ǫv,a,t

Then, the covariance is given by

cov(vi,a,t, vi,a−s,t−s) = cov(ρsvi,a−s,t−s +
s−1∑

s′=0

ρs
′

ǫi,a−s′,t−s′ , vi,a−s,t−s) = ρsσ2
v,a−s,t−s

For first differences, the following formulation is the most useful,

∆vi,a,t = (ρ− 1)vi,a−1,t−1 + ǫviat

in which the two terms on the right-hand side are uncorrelated by definition. So,

V ar(∆viat) = (ρ− 1)2V ar(vi,a−1,t−2) + V ar(ǫviat) = (ρ− 1)2σ2
v,a−1,t−1 + σ2

ǫv,a,t
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and

cov(∆viat,∆vi,a−s,t−s) = cov((ρ− 1)vi,a−1,t−1 + ǫviat, vi,a−s,t−s − vi,a−s−1,t−s−1)

= cov((ρ− 1)ρs−1vi,a−s,t−s + ..., vi,a−s,t−s − vi,a−s−1,t−s−1)

= ρs−1(ρ− 1)
[
σ2
v,a−s,t−s − ρσ2

v,a−s−1,t−s−1

]

where the second line we omit the future shocks that are uncorrelated to past v, and in the

last line, we apply the above covariance results for s = 1. Moreover,

cov(viat,∆vi,a+s,t+s) = cov(viat, ρ
s−1(ρ− 1)viat + ...)

= ρs−1(ρ− 1)σ2
v,a,t

A.3 Transitory Component

Here I assume the transitory component follows identically and independently distributed

shocks. This may be measurement errors or very transitory shocks. So,

V ar(wiat) = σ2
w,a,t

and

cov(wiat, wi,a−s,t−s) = 0

and

V ar(∆wiat) = V ar(wiat − wi,a−1,t−1) = σ2
w,a,t + σ2

w,a−1,t−1

and

cov(∆wiat,∆wi,a−1,t−1) = cov(wiat − wi,a−1,t−1, wi,a−1,t−1 − wi,a−2,t−2) = −σ2
w,a−1,t−1

and

cov(∆wiat,∆wi,a−s,t−s) = 0

for s > 1, and

cov(wiat,∆wi,a+1,t+1) = −σ2
w,a,t

and

cov(wiat,∆wi,a+s,t+s) = 0

for s > 1.
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B Variance Profile for the Two Models of Permanent

Components

Here I would like to show that the two types of permanent components in the basic form

imply different shapes of variance profile, but if we extend the basic form of model to have

age-varying shocks or growth rates, they indeed can have the same implication in the shape

of variance profile. Therefore, in the tests in this paper, I do not use level covariances that

involves the variance profile to test between the two main types of models, and restrict our

attention to the long term covariances involving first difference.

Recall that the simple form of random walk model takes the form

pRiat = pRi,a−1,t−1 + ǫi,a,t

and the variance takes the recursive formula

V ar(pRiat) = V ar(pRi,a−1,t−1) + V ar(ǫi,a,t)

= V ar(pRi,1,t−a+1) +
a−2∑

s=0

V ar(ǫi,a−s,t−s)

= σ2
p1 + (a− 1)σ2

pǫ

assuming that the random walk shocks are of the same variance over the life-cycle. Thus,

the variance profile is linear in age.

On the other hand, for a standard heterogeneous growth model

pHiat = θ1 + θ2a

and the variance formula is given by

V ar(pHiat) = σ2
1 + σ2

2a
2 + 2aσ12

and so it is a convex quadratic function in age.

Then, let us extend the model so that the shock size or growth rate are age-varying and

unrestricted. For the random walk case, the change in variance of the permanent component

is

V ar(pRiat)− V ar(pRi,a−1,t−1) = σ2
pǫ,a
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which is a general positive function of age for all a. For the heterogeneous growth case, an

age-varying loading λa can be introduced

pHiat = θ1 + θ2

a∑

a′=2

λa′

where λa is unrestricted besides a normalization such as λ2 = 1. The variance is then given

by

V ar(pHiat) = V ar(θ1) + V ar(θ2)

(
a∑

a′=2

λa′

)2

+ 2cov(θ1, θ2)

(
a∑

a′=2

λa′

)

and to make it more clearly, we take the difference

V ar(pHiat)− V ar(pHi,a−1,t−1) = V ar(θ2)



(

a∑

a′=2

λa′

)2

−

(
a−1∑

a′=2

λa′

)2

+ 2cov(θ1, θ2)λa

which is also a free function of age. Given the value of σ2
pǫ,a, we can solve for λa that gives

the same change in variance. This change in variance can even be more general than the

random walk model because it can take a negative value.
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