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Abstract

We find the asymptotics of the OLS estimator of the parameters β and ρ in the
spatial autoregressive model with exogenous regressors Yn = Xnβ +ρWnYn +Vn. Only
low-level conditions are imposed. Exogenous regressors may be bounded or growing,
like polynomial trends. The assumption on the spatial matrix Wn is appropriate for
the situation when each economic agent is influenced by many others. The asymptotics
contains both linear and quadratic forms in standard normal variables. The conditions
and the format of the result are chosen in a way compatible with known results for the
model without lags by Anderson (1971) and for the spatial model without exogenous
regressors due to Mynbaev and Ullah (2006).

Keywords: mixed regressive spatial autoregressive model, OLS estimator, asymptotic
distribution
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1 Introduction

We busy ourselves with estimation of parameters β and ρ in the model

Yn = Xnβ + ρWnYn + Vn (1.1)

where Xn is an n × k matrix of deterministic exogenous regressors, β is an unknown k × 1
parameter, ρ is an unknown real parameter, the n×n matrix Wn is given and the elements of
WnYn represent spatial lags of the n-dimensional dependent vector Yn. Vn is an unobservable
error vector with zero mean.

The early development of spatial econometrics has been summarized in several textbooks
(Paelinck and Klaasen (1979), Anselin (1988), Cressie (1993)) and collections of spatial
econometrics papers (Anselin (1992), Anselin and Florax (1995), Anselin and Rey (1997)).
The recent years have seen new efforts in establishing asymptotic properties of various es-
timation techniques. Kelejian and Prucha (1998) provide an asymptotic analysis of the
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instrumental variables estimator. Kelejian and Prucha (1999) consider a generalized mo-
ments estimator in the absence of Xn. Lee (2002) investigates the OLS approach. Lee (2003,
2004) studies a two-stage least squares procedure and derives an asymptotic distribution of
the quasi-maximum likelihood estimator. It has long been noted that the OLS estimator
may be inconsistent (see, e.g., Whittle (1954), Ord (1975), Anselin (1988)). The search
for consistent estimators or conditions ensuring consistency of the OLS estimator has been
partially the motivation of the recent papers.

The structure of model (1.1) makes the analysis of any estimation procedure very lengthy
and sophisticated. Along the way, several complex expressions in terms of Xn, Wn and Vn

arise. Limits of those expressions need to be evaluated. The existing papers deal with
this problem by imposing the condition that the required limits exist and take the desired
values. As the level of complexity rises, it is more and more difficult to see how various
conditions relate to one another and if they are compatible at all. Thus, the state of the
current research calls for a drastic reduction in the number of conditions, with development
of a corresponding analytical method.

One such method for the OLS estimator in the absence of exogenous regressors has been
proposed by Mynbaev and Ullah (2006). They have found a closed analytical expression for
the asymptotic distribution of the OLS estimator. The asymptotic bias is a ratio of two
(in general, infinite) linear combinations of independent χ2 variables. An attractive feature
of their method is a significant reduction in the number of assumptions and possibility to
calculate all the required limits. In particular, by verifying the corresponding identification
conditions from Lee (2001), they have shown that neither the maximum likelihood nor the
method of moments work under their set of conditions.

In this paper we develop further their method to apply to the general case (1.1). While
doing this, we keep the number of conditions low and use only low-level assumptions. Note
that when there are no spatial lags, the asymptotics of the OLS estimator is expressed in
terms of a normal vector. In the other extreme case, when the exogenous regressors are
absent, the asymptotic result by Mynbaev and Ullah (2006) involves linear combinations of
χ2-variables. The major challenge is to glue these two kinds of asymptotics together. That
is, we want to derive an asymptotics for the OLS estimator δ̂ of δ = (β′, ρ)′ which would
include both linear and quadratic forms. The fact that finite-sample distributions involve
linear-quadratic forms of innovations is well-known; the problem is to carry this structure
over to infinity. Kelejian and Prucha (1998, 2001) and Lee (2004) prove central limit theorems
for linear-quadratic forms but under their conditions the quadratic part disappears in the
limit.

Lee’s (2002) paper is the most relevant to ours. The main results are not comparable as
Lee studies a different situation whenWn is row-normalized. The methodologies, on the other
hand, can be compared and the comparison reveals two important differences. Firstly, we
retain in the asymptotics both linear and quadratic forms in standard normal variables, while
in Lee (2002) and an earlier paper Kelejian and Prucha (2001) the quadratic part disappears.
Secondly, in many cases we are able to verify analogs of Lee’s conditions, instead of imposing
them as independent assumptions. The most notable examples are Assumption 5 from Lee
(2002) and Assumption 9 from Lee (2004).

We are sure that ideas and techniques used in this paper can be successfully applied
in areas other than spatial econometrics. Therefore the exposition is not limited to just
statements and proofs. In addition to explaining the mathematics, we motivate our choice
of conditions. Where appropriate, we compare different approaches.
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In Section 2 we discuss the advantages of Anderson’s (1971) normalization of the regres-
sor matrix. To the simple facts that Anderson’s normalizer is convenient and self-adjusting
we add a less simple fact from Mynbaev and Castelar (2001) that it is unique in some
sense. Section 3 is an introduction to the Lp-approximability theory developed by Mynbaev
(2001). It allows one to avoid high-level conditions when working with deterministic regres-
sors and should be distinguished from the Lp-approximability of stochastic processes defined
in Pötscher and Prucha (1991). In Section 4 we review the main ideas and tools used by
Mynbaev and Ullah (2006) to the extent necessary to study the general case.

To keep the exposition as much nontechnical as possible we separate the conceptual part
of the general case (Section 5) from the proofs (Section 6). The choice of the multiplier for
the autoregressive part (the function mn) and Assumption 5, though may seem simple, is
a culmination of the sequence of assumptions. The idea has been borrowed from Mynbaev
(2006) who studies a time series autoregressive model with one exogenous regressor.

A limit in distribution is denoted
d−→ or dlim. Likewise, symbols

p−→ or plim are used
interchangeably for limits in probability.

2 The Choice of Conditions Determines the Result

You Obtain

We start with the classical model
Yn = Xnβ + Vn (2.1)

where Xn is a deterministic matrix and Vn satisfies
Assumption 1. The components v1, ..., vn of Vn are independent identically distributed

with mean zero and variance σ2 and finite moments up to µ4 = Ev4
i .

The classical
√
n-normalization arises as follows. From the formula of the OLS estimator

β̂ = (X ′
nXn)−1X ′

nYn = β + (X ′
nXn)−1X ′

nVn (2.2)

it is easy to obtain
√
n(β̂ − β) =

(
X ′

nXn

n

)−1
X ′

nVn√
n
, (2.3)

Then one imposes the condition

the limit lim
n→∞

X ′
nXn

n
= Ω exists and is nonsingular (2.4)

and makes additional assumptions about the error to prove that

X ′
nVn√
n

converges in distribution to N(0, σ2Ω). (2.5)

Then (2.3), (2.4) and (2.5) will immediately give convergence in distribution of
√
n(β̂ − β).

The approach based on (2.3) is rather restrictive, as we shall see momentarily. Denote
Xn1, ..., Xnk the columns of Xn so that Xn is partitioned as Xn = (Xn1, ..., Xnk) and let

‖x‖2 = (x′x)1/2 =
(∑n

j=1 x
2
j

)1/2

be the Euclidean norm of x ∈ Rn. For the diagonal

elements condition (2.4) gives

lim
n→∞

‖Xni‖2
2

n
= ωii > 0 (2.6)
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where ωij denote elements of Ω. All numbers ω11, ..., ωkk are positive because if, say, ωii = 0,
then by the Cauchy-Schwartz inequality

|ωij| = lim
n→∞

|X ′
niXnj|
n

≤ lim
n→∞

‖Xni‖2√
n

‖Xnj‖2√
n

=
√
ωiiωjj = 0, j = 1, ..., k,

and Ω is singular. (2.6) shows that by requiring (2.4) you force the norms of the columns to
grow at the same

√
n-rate:

‖Xni‖2 ∼
√
nωii.

This excludes, for example, a polynomial trend Tn = (1l, ..., nl)′ for which ‖Tn‖2 ∼ nl+1/2

(see, for example, Hamilton (1994)).
However, there is a better normalization appeared in Anderson (1971) and Schmidt (1976)

who did not compare it to the classical one. Amemiya (1985) does such a comparison, while
Mynbaev and Castelar (2001) prove that it is better than any other normalizer (see also
Mynbaev and Lemos (2004)). Here we repeat the main points because these sources are not
easily accessible. Put

Mn = diag[‖Xn1‖2, ..., ‖Xnk‖2].

Instead of (2.3) we now have

Mn(β̂ − β) = Mn(X ′
nXn)−1MnM

−1
n X ′

nVn = (H ′
nHn)−1H ′

nVn (2.7)

where
Hn = XnM

−1
n = (Xn1/‖Xn1‖2, ..., Xnk/‖Xnk‖2).

The conditions
the limit lim

n→∞
H ′

nHn = Γ1 exists and is nonsingular (2.8)

and
H ′

nVn converges in distribution to N(0, σ2Γ1) (2.9)

replace (2.4) and (2.5), respectively. Since the columns of H are normalized, (2.8) has the
advantages that it is more likely to be satisfied than (2.4) and it does not exclude regressors
with quickly growing norms. (2.9) is also better since the components of H ′

nVn have constant
variances if the error is subject to Assumption 1. (2.3), (2.4), (2.5) or (2.7), (2.8), (2.9)
represent the line of reasoning we call a conventional scheme.

To cover regressors with norms growing at a rate different from
√
n, you might want to

play with different functions of n as a normalizer. For example, in case of the polynomial
trend it is common to use f(n) = nl+1/2. This is not a good idea, though, because each time
you will need to figure out the rate of growth of ‖Xni‖2 and the result you obtain will be
tied to a function f(n) with a particular behavior at infinity. In fact, you obtain as many
”results” as there are functions with different asymptotics at infinity. With the Anderson
normalizer you don’t have this multitude of results because it is self-regulating: it adjusts
itself to regressors instead of separating a narrow class thereof. This is especially important
in applications where one usually has just an irregular set of numbers without any analytical
pattern.

Speaking of applications, what happens to the usual statistics if you use Anderson’s
normalizer instead of the classical square root? The analysis in Mynbaev and Castelar
(2001) shows that the usual tests of scalar and vector restrictions based on t and F statistics
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apply. The underlying assumptions and proofs change but the form of the statistics does
not. This means everybody can continue using the same statistical software.

As it happens, if in addition to (2.8) one requires the errors contribution negligibility
condition

lim
n→∞

max
i,j

|hnij| = 0 (2.10)

or, in terms of the original regressor matrix,

lim
n→∞

max
i,j

xnij

‖Xni‖2

= 0

and the error satisfies Assumption 1, then (2.9) is true. This is more or less how T.W.
Anderson came up with the next theorem (which slightly differs from the original but the
idea is the same).

Theorem (Anderson (1971)). If the error satisfies Assumption 1 and the regressors are
subject to (2.8) and (2.10), then

Mn(β̂ − β)
d−→ N(0, σ2Γ−1

1 ). (2.11)

The final and, perhaps, most important point about Mn requires a definition. Let Mn be

some diagonal k×k matrix with positive elements on the main diagonal and letHn = XnM
−1

n .
Generalizing upon (2.8) and (2.9), we say that Mn is a Conventional-Scheme-Compliant
(CSC) normalizer if

the limit lim
n→∞

H
′

nHn = Γ exists and is nonsingular and

H
′

nVn
d−→ N(0, σ2Γ) for all Vn satisfying Assumption 1.

A CSC normalizer is not unique (if it exists) because if

∆n = diag[mn1, ...,mnk], limits mk = lim
n→∞

mnk exist and are positive, (2.12)

then ∆nMn is also a CSC normalizer.
Theorem (Mynbaev and Castelar (2001)). Anderson’s normalizer is unique in the class

of CSC normalizers up to a factor satisfying (2.12), that is ifMn is any other CSC normalizer,
then there exists ∆n such that (2.12) holds and Mn = ∆nMn.

Summarizing, Mn is universally applicable (if any other CSC normalizer works, then Mn

also works), self-adjusting (you don’t need to worry about the rates of growth of regressors)
and unique (up to an asymptotically constant factor).

3 Want nice sequences of vectors? Look no further

than L2-approximability

For finite n, linear independence of columns of Xn is equivalent to detH ′
nHn 6= 0. By way

of generalization, nonsingularity of Γ1 from (2.8) can be interpreted as an asymptotic linear
independence condition. The question is: can the word ”asymptotic” be removed from this
interpretation? Put it differently, are there any vectors for which det Γ1 6= 0 would mean
just linear independence?

5



The answer is ”no” if you try to use columns Hn1, ..., Hnk. They belong to spaces Rn of
growing dimension but that is not a problem because we can think of Rn as being embedded
into the space l2 of infinite sequences x = (x1, x2, ...) provided with the norm

‖x‖2 =

(
∑

i≥1

x2
i

)1/2

.

The problem is that, due to (2.10), coordinates of the columns tend to zero and, consequently,
the columns do not converge in l2 either.

The answer may be ”yes”, if the columns are represented as images of some functions of
a continuous argument. This statement will be clear after a couple of definitions.

Consider the space L2(0, 1) of square-integrable on (0, 1) functions h provided with the
norm

‖h‖2 =

(∫ 1

0

h2(t)dt

)1/2

.

(x, y)L2
is the corresponding scalar product. Let dn : L2(0, 1) → Rn be a discretization

operator defined as follows. For h ∈ L2 (0, 1), dnh ∈ Rn is a vector with components

(dnh)i =
√
n

∫

qi

h(x)dx, i = 1, ..., n,

where qi =
(

i−1
n
, i

n

)
are small intervals that partition (0, 1). Using Hölder’s inequality it is

easy to check that
‖dnh‖2 ≤ ‖h‖2 for all h and n (3.1)

(the norm at the left is the Euclidean norm in Rn).
One can go back from Rn to L2(0, 1) by way of piece-wise interpolation. If 1qi

denotes
the indicator of qi (1qi

= 1 on qi and 1qi
= 0 outside qi), then the interpolation operator Dn

takes a vector x ∈ Rn to

Dnx =
√
n

n∑

i=1

xi1qi
.

We shall use the notation
(x, y)l2 =

∑

i∈I

xiyi

for scalar products of all vectors encountered in this paper; the set of indices I will depend
on the context. It is easy to see that Dn preserves scalar products

(Dnx,Dny)L2
= (x, y)l2 for all x, y ∈ Rn and n (3.2)

and that the product Dndn coincides with the Haar projector Pn defined by

Pnh = n

n∑

i=1

∫

qi

h(x)dx1qi
.

Its main property is that it approximates the identity operator:

lim
n→∞

‖Pnh− h‖2 = 0 for any h ∈ L2(0, 1). (3.3)
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For a fixed h ∈ L2(0, 1), the sequence {dnh : n = 1, 2, ...} is called L2-generated. L2-
generated sequences have been introduced by Moussatat (1976) and used in some statistical
papers (see Milbrodt (1992) and Millar (1982)). Now, if we take two functions h1, h2 ∈
L2(0, 1), then (3.3) and continuity of scalar products imply (Pnh1, Pnh2)L2

→ (h1, h2)L2
. If,

further, we put Hn1 = dnh1, Hn2 = dnh2, then by (3.2) we have

H ′
n1Hn2 = (dnh1, dnh2)l2 = (Pnh1, Pnh2)L2

→ (h1, h2)L2
.

This tells us that if columns of Hn are L2-generated by h1, ..., hk ∈ L2(0, 1) and h1, ..., hk

are linearly independent, then (2.8) will be true with a nonsingular matrix

Γ1 =




(h1, h1)L2
... (h1, hk)L2

... ... ...
(hk, h1)L2

... (hk, hk)L2


 (3.4)

which is called a Gram matrix of the system h1, ..., hk. (2.10) will also hold because by
Hölder’s inequality and absolute continuity of the Lebesgue integral

max
i

|(dnh)i| = max
i

(∫

qi

h2(x)dx

)1/2

→ 0, n→ ∞.

Thus, (2.11) will be true if instead of requiring (2.8) and (2.10) we just say that the columns
of Hn are L2-generated by linearly independent functions h1, ..., hk. Much of the finite-
dimensional geometric intuition works in L2(0, 1). Linear (in)dependence, orthogonality of
vectors, orthoprojectors can be used in full if asymptotic properties like (2.8) are looked at
from the point of view of their counterparts in L2(0, 1).

Practitioners may object by saying that requiring the columns of Hn to be exact images
of some functions under the mapping dn will void potential applications in econometrics.
The next definition from Mynbaev (2001) is a way around this obstacle.

Definition. Let {hn} be some sequence of vectors such that hn ∈ Rn for each n. We say
that {hn} is L2-approximable if there exists a function h ∈ L2(0, 1) such that

‖hn − dnh‖2 =

(
n∑

i=1

(hni − (dnh)i)
2

)1/2

→ 0, n→ ∞.

In this case we also say that {hn} is L2-close to h.
This definition introduces some degree of freedom by allowing hn to deviate from exact

images.
Assumption 2. The columns Hn1, ..., Hnk of Hn are L2-close to h1, ..., hk ∈ L2(0, 1),

respectively.
L2-approximable sequences inherit all properties of L2-generated ones. In particular,

H ′
nlHnm → (hl, hm)L2

for 1 ≤ l,m ≤ k. (3.5)

Assumption 2 is strictly stronger than the combination (2.8) + (2.10). This can be seen from
the characterization of L2-approximability given in Mynbaev (2001). Due to their regularity
properties, L2-approximable sequences are to others as normal errors to more general ones.
It is common to require econometric results to be true at least for normal errors. Similarly,
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when imposing some condition on sequences of vectors, your justification could be: ”I have
checked that this condition holds for L2-approximable sequences”.

In the rest of this section we state and comment some properties of L2-approximable
sequences. Note that the coordinates of H ′

nVn are of form
∑n

i=1wnivn where wni are deter-
ministic weights. The next theorem describes the asymptotic behavior of such sums when
the weights are L2-approximable.

Central Limit Theorem (Mynbaev (2001)). If Assumptions 1 and 2 hold and h1, ..., hk

are linearly independent, then one has

H ′
nVn

d−→ N(0, σ2Γ1), lim
n→∞

var(H ′
nVn) = σ2Γ1. (3.6)

Theorem 4.1 from Mynbaev (2001) actually covers also weighted sums of linear processes∑j=∞

j=−∞
et−jψj with short-range dependence (

∑j=∞

j=−∞
|ψj| <∞). The second relation in (3.6)

is unusual for CLTs. Mynbaev and Castelar (2001) have shown that sequences obtained
by normalizing a polynomial trend (Tn) and logarithmic trend (Ln = (lnk 1, . . . , lnk n), k
is natural) are L2-approximable and those obtained from a geometric progression (Gn =
(a0, a1, . . . , an−1), a is real) and exponential trend (En = (ea, . . . , ena), a is real) are not.
Linear independence of h1, ..., hk means that Γ1 is positive definite. The next corollary
shows that this condition can be omitted.

Corollary. Under Assumptions 1 and 2 (3.6) remains true if h1, ..., hk are linearly de-
pendent.

Definitions of dn and Dn easily modify for a two-dimensional case. For an integrable on
the square (0, 1)2 function W , dnW is an n× n matrix with elements

(dnW )ij = n

∫

qij

W (x, y)dxdy, i, j = 1, ..., n,

where

qij =

{
(x, y) :

i− 1

n
< x <

i

n
,
j − 1

n
< y <

j

n

}

are small squares that partition (0, 1)2. The interpolation operator Dn takes a square matrix
A of order n to a piece-wise constant on (0, 1)2 function according to

DnA = n
n∑

i, j=1

aij1qij
.

Analogs of (3.2), (3.3), (3.5) are true in the two-dimensional case. A sequence of matrices
{Wn} such that Wn is of size n×n for each n is called L2-approximable if there is a function
W ∈ L2((0, 1)2) satisfying ‖Wn −dnW‖2 → 0, n→ ∞. Some statements in the next section
require a stronger

Assumption 3. For the spatial matrices Wn there exists a function W ∈ L2((0, 1)2)
such that

‖Wn − dnW‖2 = o

(
1√
n

)
.

4 Purely Autoregressive Spatial Model

For the case ρ = 0 we refer to Anderson’s theorem from Section 2. The other extreme case,
β = 0, will be discussed here. To show the intuition behind the main result of this section,
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we calculate the finite-sample deviation of the OLS estimator from the true parameter under
simplified assumptions.

Thus, here we deal with the model

Yn = ρWnYn + Vn (4.1)

and the OLS estimator ρ̂ of ρ. In many applications (1.1) and (4.1) are considered equilibrium
models. In the language of the theory of simultaneous equations, a reduced-form equation
is the one which does not contain the dependent variable on the right. If ρ is such that the
matrix

Sn = In − ρWn

is nonsingular, then the reduced form of (4.1) is Yn = S−1
n Vn. Denoting additionally Zn =

WnYn the regressor in (4.1) and
Gn = WnS

−1
n

we get the formula

ρ̂ = (Z ′
nZn)−1Z ′

nYn = ρ+
V ′

nG
′
nVn

V ′
nG

′
nGnVn

(4.2)

which can be used for analysis.
Obviously, in (4.2) we have a ratio of two quadratic forms in random variables. With-

out loss of generality we can think of Wn as a symmetric matrix because otherwise it can
be replaced by (Wn + W ′

n)/2 without changing the value of (4.2). Then each Wn can be
represented as

Wn = Pndiag[λn1, ..., λnn]P ′
n

where λn1, ..., λnn are eigenvalues of Wn and Pn is an orthogonal matrix: PnP
′
n = I. It follows

that
Sn = Pndiag[1 − ρλn1, ..., 1 − ρλnn]P ′

n,

Gn = Pndiag

[
λn1

1 − ρλn1

, ...,
λnn

1 − ρλnn

]
P ′

n.

Assume for a moment that Vn is distributed as N(0, σ2I). Putting

ν(λ) =
λ

1 − ρλ

and noting that Ṽn = P ′
nVn is also distributed as N(0, σ2I), we have

ρ̂− ρ =

∑n
i=1

(
❡vi

σ

)2
ν(λni)

∑n
i=1

(
❡vi

σ

)2
ν2(λni)

(4.3)

where both the numerator and denominator are linear combinations of χ2-variables with one
degree of freedom. Whether this ratio-of-quadratic-forms structure will be preserved in the
limit depends on assumptions. For example, if you encounter a fraction fn/gn, represent
the denominator as gn = Egn(1 + gn−Egn

Egn
) and require Egn to converge to some non-zero

value and gn−Egn

Egn
to converge in probability to zero, you will get rid of randomness in the

denominator after sending n→ ∞ (this is what happens in Lee (2002)).
We are taken by our assumptions to another world where the limit of ρ̂ − ρ is a ratio

of two infinite linear combinations of χ2-variables. Our choice has nothing to do with value
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judgments as to which world is better; we just want to stick to low-level assumptions and
trace their implications to whatever world they take us.

From (4.3) one can surmise that, as n → ∞, the eigenvalues λni may approach some
numbers and those numbers should be eigenvalues of something. This idea is formalized in
the next assumption. Denote W the integral operator in L2(0, 1) with the kernel W (see
Assumption 3)

(Wf)(x) =

∫ 1

0

W (x, y)f(y)dy, f ∈ L2(0, 1).

Assumption 4. W is symmetric, which together with square-integrability of W implies
that the eigenvalues λi, i = 1, 2, ..., of W are real and satisfy

∑
i≥1 λ

2
i < ∞. We assume

further that the eigenvalues are summable:
∑

i≥1 |λi| <∞.
Here the eigenvalues λi and eigenfunctions fi of W are listed according to their multi-

plicity; the system of eigenfunctions is complete and orthonormal in L2(0, 1). The kernel
can be decomposed into the series

W (x, y) =
∑

i≥1

λifi(x)fi(y) (4.4)

which converges in L2 ((0, 1)2). This decomposition leads to the identity

∫ 1

0

∫ 1

0

W 2(x, y)dxdy =
∑

i≥1

λ2
i (4.5)

which show that the condition W ∈ L2((0, 1)2) is equivalent to the square-summability of
eigenvalues. The eigenvalues summability assumption is stronger because

(
∑

i≥1

λ2
i

)1/2

≤
∑

i≥1

|λi|.

Necessary and sufficient conditions for summability of eigenvalues can be found in Gohberg
and Krĕın (1969).

The main statement about asymptotics of (4.2) is next and it will be followed by com-
mentaries and pieces of the proof needed later.

Theorem (Mynbaev and Ullah (2006)). Suppose Assumptions 1, 3 and 4 hold.
1) If

|ρ| < 1/

(
∑

i≥1

λ2
i

)1/2

, (4.6)

then the matrices S−1
n exist for all sufficiently large n and have uniformly bounded ‖ · ‖2-

norms, so that (4.2) can be used.
2) If

|ρ| < 1/
∑

i≥1

|λi|, (4.7)

then

ρ̂− ρ
d−→
∑

i≥1 u
2
i ν(λi)∑

i≥1 u
2
i ν

2(λi)
(4.8)

where ui are independent standard normal.
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3) (4.7) implies convergence

√
n(σ̂2 − σ2)

d−→ N(0, µ4 − σ4) (4.9)

where

σ̂2 =
1

n− 1
(Yn − ρ̂WnYn)′(Yn − ρ̂WnYn)

is the OLS estimator of σ2.
Commentaries
The statement about uniform boundedness of ‖S−1

n ‖2 is one of high-level conditions often
imposed in the literature.

Because of (4.5), condition (4.6) is the same as |ρ|‖W‖2 < 1. One can show that L2-
approximability contained in Assumption 3 implies

lim
n→∞

‖Wn‖2 = lim
n→∞

‖dnW‖2 = ‖W‖2 .

Therefore (4.6) implies |ρ|‖Wn‖2 < 1 for all large n and S−1
n can be represented as

S−1
n =

∞∑

l=0

ρlW l
n. (4.10)

By analogy with time series autoregressions, one might think that |ρ| < 1 is the stability
condition. Based on statement 1), we can say that (4.6) is the stability condition under
Assumptions 1, 3 and 4. Another deviation from the routine is that in (4.8) no normalization
is necessary to achieve convergence in distribution.

The region (4.7) is narrower than (4.6). It would be interesting to find out whether (4.8)

is true for 1/
∑

i≥1 |λi| ≤ |ρ| < 1/
(∑

i≥1 λ
2
i

)1/2
or, even better, for any ρ 6= 1/λi, i = 1, 2, ...

The expected value of the numerator in (4.8) is zero if and only if
∑

i≥1 ν(λi) = 0. This
fact is of little use, however, because the expected value of a fraction is not necessarily
proportional to the expectation of the numerator. Characteristic functions of infinite linear
combinations of χ2-variables have been derived by Anderson and Darling (1952). We have
not heard of such results for the ratio in (4.8).

(4.9), in particular, means that σ̂2 is a consistent estimator of σ2, despite the fact that
it is based on ρ̂, which, in general, is inconsistent.

Details of the proof
i) In many statistical expressions containing fractions the numerator converges in dis-

tribution and the denominator – in probability (this is how the conventional scheme from
Section 2 works). Therefore it is possible to use the implication

dlimfn = f
plimgn = g, g 6= 0 almost surely

}
=⇒ dlim

fn

gn

=
f

f
.

This is not the case with (4.2) where both the numerator and denominator converge just
in distribution. To circumvent this problem, one has to prove convergence of the vec-
tor (fn, gn) to the vector (f, g) in joint distribution and then apply the Continuous Map-
ping Theorem (CMT) to fn/gn. Mynbaev and Ullah (2006) apply this trick to the vector
(V ′

nG
′
nVn, V

′
nG

′
nGnVn).

ii) Most CLTs are about convergence to normal vectors. If you apply such a CLT, you will
get in the limit a normal vector and nothing but. More general CLTs treat convergence to
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the so-called stable distributions. A linear combination of χ2-variables is not one of them. If
you want to retain χ2 in the limit, you have to express your process as a continuous function
of a linear process and apply a CLT in conjunction with CMT.

iii) L2-approximability is a device to jump from finite dimensions to infinite dimension.
Another such tool is the approximation of (4.4) by its initial segment

WL(x, y) =
L∑

i=1

λifi(x)fi(y).

From an analytical perspective, there is a place in the proof where one must work with finite
L.

iv) Denote

s(A) =
∞∑

l=0

ρlAl+1

for any square matrix A such that |ρ|‖A‖2 < 1. Multiplication of (4.10) by Wn gives

Gn = s(Wn).

Working with infinite series of this type is a must in spatial econometrics if one wants to avoid
high-level conditions. We can draw a parallel with a simple autoregression yt = c1+c2yt−1+et.
In this model, one cannot assume that dependence of yt on yt−1 is essential, while all previous
values of y are op(1). One has to unwind the dependence yt = c1 + c1c2 + c22yt−2 + c2et−1 + et

and so on to infinity or to the initial point y0 (in spatial econometrics there is no initial
point).

The four ideas we have just explained are embodied in the representation

Xn = αn + βnL + γnL + δnL (4.11)

where

Xn =

(
V ′

nG
′
nVn

V ′
nG

′
nGnVn

)

(vector composed of numerator and denominator of (4.2)),

αn =

(
V ′

n

(
G′

n − s(dnW )
)
Vn

V ′
n

(
G′

nGn − s2(dnW )
)
Vn

)

(intuitively, if Wn is close to dnW , then G′
n = s(W ′

n) and G′
nGn = s(W ′

n)s(Wn) should be
close to s(dnW ) and s2(dnW ), resp.),

βnL =

(
V ′

n

(
s(dnW ) − s(dnWL)

)
Vn

V ′
n

(
s2(dnW ) − s2(dnWL)

)
Vn

)

(this is the jump from finite to infinite L),

γnL =

(
V ′

ns(dnWL)Vn

V ′
ns

2(dnWL)Vn

)
− δnL

(a small correction needed to obtain a continuous function of an asymptotically normal
vector) and

δnL =
L∑

i=1

(V ′
ndnfi)

2
ν(λi)

(
1

ν(λi)

)

12



(allows for application of CLT and CMT).
To complete the scheme, Billingsley’s (1968) Theorem 4.2 is used to manage the arising

double-indexed family of vectors.
Most statements in the rest of this section depend on Assumptions 1, 3, 4 and (4.7).
Symmetry of W implies symmetry of dnW .
L2-approximability implies that s(dnW ) is close to s(Wn):

‖s(Wn) − s(dnW )‖2 ≤ c ‖Wn − dnW‖2 for all large n (4.12)

and that s(dnW ) and Gn = s(Wn) have uniformly bounded norms:

sup
n≥n0

‖s(Wn)‖2 <∞, sup
n≥n0

‖s(dnW )‖2 <∞ (4.13)

where n0 depends on how close ρ is to 1/
∑

i≥1 |λi|.
With the eigenfunctions fi of W in mind, for a collection of indices i = (i1, ..., il+1), where

all of ij’s are positive integers, denote

µni =

{
(dnfi1 , dnfi2)l2(dnfi2 , dnfi3)l2 ...(dnfil , dnfil+1

)l2 , if l > 0,
1, if l = 0,

and

µ∞i =

{
1, (i1 = i2 = ... = il+1 and l > 0) or (l = 0),
0, otherwise.

Then for all i
lim

n→∞
µni = µ∞i. (4.14)

This property is a simple consequence of (dnfi, dnfj)l2 = (Pnfi, Pnfj)l2 → (fi, fj)l2 and
orthonormality of {fi}.

The functions µni allow us to write elements of the series s(dnWL) and s2(dnWL) in a
relatively compact form

(s(dnWL))st =
∑

p≥0

ρp
∑

i1,...,ip+1≤L

p+1∏

j=1

λijµni(dnfi1)s(dnfip+1
)t,

(s2(dnWL))st =
∑

p≥0

ρp(p+ 1)
∑

i1,...,ip+2≤L

p+2∏

j=1

λijµni(dnfi1)s(dnfip+2
)t,

s, t = 1, ..., n. (4.15)

For any i, j, n (
E(V ′

ndnfiV
′
ndnfj)

2
)1/2 ≤ c. (4.16)

For ν(λi) and ν2(λi) one has expansions

ν(λi) =
∑

p≥0

ρpλp+1
i , ν2(λi) =

∑

p≥0

ρp(p+ 1)λp+2
i . (4.17)

The inequalities

supn,L ‖s(dnWL)‖2 <∞, supn‖s(dnW ) − s(dnWL)‖2 ≤ c
∑

i>L

|λi|, (4.18)
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where c does not depend on L, enable us to realize the approximation of s(dnW ) by s(dnWL).
Under condition (4.7) one has an equivalence

∑

i≥1

|λi| <∞ if and only if
∑

i≥1

|ν(λi)| <∞. (4.19)

The most important elements of the proof are about convergence of variables participating
in (4.11):

plimn→∞ αn = 0, plimn→∞γnL = 0 for any fixed L, (4.20)

there is a constant c > 0 such that for any positive ε, n, L

P (|βnL1| + |βnL2| > ε) ≤ c
ε2

∑
i>L |λi|. (4.21)

If we denote

∆L = σ2

L∑

i=1

u2
i ν(λi)

(
1

ν(λi)

)
, ∆∞ = σ2

∞∑

i=1

u2
i ν(λi)

(
1

ν(λi)

)
,

where ui are independent standard normal, then

dlimn→∞Xn = ∆∞, dlimn→∞ δnL = ∆L, dlimL→ ∞∆L = ∆∞. (4.22)

5 General Case: Preliminary Analysis and Main Re-

sults

A little calculation will reveal the OLS estimator structure for the main model (1.1). De-
noting δ = (β′, ρ)′ and Zn = (Xn,WnYn) we can rewrite the model as Yn = Znδ + Vn. Until
we work out the condition for nonsingularity of Z ′

nZn it is safer to work with the normal

equation Z ′
nZn(δ̂ − δ) = Z ′

nVn. Recalling Anderson’s normalizer Mn for Xn, let

Mn =

(
Mn 0
0 mn

)

be an extended normalizer for Zn, so that the normalized regressor is

Hn = ZnM
−1

n .

Here mn > 0 is to be defined later. Then the normal equation becomes

ΩnMn(δ̂ − δ) = ξn where by definition Ωn = H
′

nHn, ξn = H
′

nVn.

Denoting

κn =
1

mn

Mnβ,

from the reduced-form equation Yn = S−1
n Xnβ + S−1

n Vn we get

WnYn = GnXnβ +GnVn = GnHnMnβ +GnVn = mnGnHnκn +GnVn,
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which leads to another expression for the normalized regressor

Hn = (Xn,WnYn)

(
M−1

n 0
0 m−1

n

)
=

(
Hn, GnHnκn +

1

mn

GnVn

)
.

Thus, the right side of the normal equation is

ξn =

(
H ′

nVn

κ′nH
′
nG

′
nVn + 1

mn
V ′

nG
′
nVn

)
(5.1)

and the blocks of the matrix

Ωn =

(
Ωn11 Ωn12

Ωn21 Ωn22

)

are

Ωn11 = H ′
nHn

Ωn12 = H ′
nGnHnκn +

1

mn

H ′
nGnVn

Ωn21 = Ω′
n12

Ωn22 = κ′nH
′
nG

′
nGnHnκn +

2

mn

κ′nH
′
nG

′
nGnVn +

1

m2
n

V ′
nG

′
nGnVn. (5.2)

We need to squeeze the most out of the assumptions imposed so far to keep the number of
the new ones low. In the next two lemmas we show that all parts of ξn and Ωn not involving
mn and κn converge. In the first lemma we consider the nonstochastic terms.

Using the system of eigenfunctions {fi} and remembering that summability of eigenvalues
λi implies summability of ν(λi) (see (4.19)), define an operator A in L2(0, 1) by

h =
∑

i≥1

(h, fi)L2
fi =⇒ Ah =

∑

i≥1

ν(λi)(h, fi)L2
fi.

The Parseval-type identities are true:

(Ajh1, h2)L2
= (h1,Ajh2)L2

=
∑

i≥1

νj(λi)(h1, fi)L2
(h2, fi)L2

, j = 1, 2.

Lemma 1. If Assumptions 2, 3, 4 and (4.7) are satisfied, then
1) limn→∞H ′

nGnHn = limn→∞H ′
nG

′
nHn = Γ2 where

Γ2 =




(Ah1, h2)L2
... (Ah1, hk)L2

... ... ...
(Ahk, h1)L2

... (Ahk, hk)L2


 . (5.3)

2) limn→∞H ′
nG

′
nGnHn = Γ3 where

Γ3 =




(A2h1, h2)L2
... (A2h1, hk)L2

... ... ...
(A2hk, h1)L2

... (A2hk, hk)L2


 . (5.4)
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In the next vector we collect all random objects (vectors and real variables) from Ωn and
ξn which do not depend on mn and κn:

Xn =




Xn1

Xn2

Xn3

Xn4

Xn5




=




H ′
nVn

H ′
nGnVn

H ′
nG

′
nGnVn

V ′
nG

′
nVn

V ′
nG

′
nGnVn




(5.5)

(H ′
nG

′
nVn is not included because it has the same limit in distribution as H ′

nGnVn; the
ordering of components of Xn does not matter). Denote h = (h1, ..., hk)

′, with a natural im-
plication that (fi, h)L2

= ((fi, h1)L2
, ..., (fi, hk)L2

)′. Following the scheme outlined in Section
4, we represent Xn as (4.11). The main part at the right of (4.11) is

δnL =




δnL1

δnL2

δnL3

δnL4

δnL5




=




H ′
nVn∑L

i=1 ν(λi)(fi, h)L2
UnL,k+i∑L

i=1 ν
2(λi)(fi, h)L2

UnL,k+i∑L
i=1 ν(λi)U

2
nL,k+i∑L

i=1 ν
2(λi)U

2
nL,k+i




where UnL is a random vector with k + L real components

UnL =




H ′
n1Vn

...
H ′

nkVn

(dnf1)
′Vn

...
(dnfL)′Vn



.

The other terms of (4.11) are defined in Section 6.
Lemma 2. 1) Let Assumptions 1, 2, 3 hold and let

∑
i≥1 |ν(λi)| <∞. Put

∆L =




∆L1

∆L2

∆L3

∆L4

∆L5




= σ




∑∞

i=1(fi, h)L2
ui∑L

i=1 ν(λi)(fi, h)L2
ui∑L

i=1 ν
2(λi)(fi, h)L2

ui

σ
∑L

i=1 ν(λi)u
2
i

σ
∑L

i=1 ν
2(λi)u

2
i



, 1 ≤ L ≤ ∞, (5.6)

where u1, u2, ... are independent standard normal. Then

dlimn→∞ δnL = ∆L for all L <∞, (5.7)

plimL→∞ ∆L = ∆∞. (5.8)

2) Under Assumptions 1, 2, 3, 4 and (4.7) one has

dlimn→∞Xn = ∆∞. (5.9)

From (5.1), (5.2) and Lemmas 1 and 2 we see that we are only lacking information about
κn and mn. Comparison with a similar situation in Mynbaev (2006) shows that

mn = max{‖Xn1‖2|β1|, ..., ‖Xnk‖2|βk|, 1}
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is the right choice. Note that always mn ≥ 1 and |κni| ≤ 1. This definition and the next
assumption are critical to the whole paper.

Assumption 5. The limits

m∞ = lim
n→∞

mn ∈ [1,∞] and κ∞i = lim
n→∞

‖Xni‖2βi

mn

∈ [−1, 1]

exist.
The next lemma partially answers the question of what this assumption means in terms

of regressors and β.
Lemma 3. Under Assumption 5 the following is true:
a) If βi = 0, then Xni is arbitrary.
b) Let βi 6= 0. Then

b1) κ∞i = 0 is equivalent to ‖Xni‖2 = o(mn).
b2) κ∞i 6= 0 is equivalent to ‖Xni‖2/mn → ci > 0.

c) Conditions
max

i
|κ∞i| < 1 and m∞ > 1 (5.10)

are mutually exclusive.
d) κ∞ = 0 if and only if either

i) β = 0
or

ii) β 6= 0 and lim ‖Xni‖2 = 0 for any i such that βi 6= 0.
In either case mn = 1 for all large n and m∞ = 1.

e) If m∞ = ∞, then κ∞ 6= 0.
Definition. When m∞ = ∞, we say that exogenous regressors dominate. In this case

Lemma 2, Lemma 3e), (5.1) and (5.2) show that

ξn =

(
H ′

nVn

κ′nH
′
nG

′
nVn + op(1)

)
, Ωn =

(
H ′

nHn H ′
nGnHnκn + op(1)

κ′nH
′
nG

′
nHn + op(1) κ′nH

′
nG

′
nGnHnκn + op(1)

)

where κn → κ∞ 6= 0. The quadratic part in ξn and Ωn disappears. If κ∞ = 0, we say that
the autoregressive part dominates. In this case by Lemma 1 and Lemma 3d)

ξn =

(
ξn1

ξn2

)
=

(
H ′

nVn

V ′
nG

′
nVn + op(1)

)
, Ωn =

(
H ′

nHn H ′
nGnVn + o(1)

V ′
nG

′
nHn + o(1) V ′

nG
′
nGnVn + op(1)

)

and the linear part in ξn2 and Ωn22 asymptotically vanishes.
Theorem 1. Under Assumptions 1 through 5 and |ρ| < 1/

∑
i≥1 |λi| one has

dlimn→∞Ωn = Ω∞, dlimn→∞ξn = ξ∞

where

ξ∞ =

(
∆∞1

κ′∞∆∞2 + 1
m∞

∆∞4

)
,

Ω∞ =

(
Γ1 Γ2κ∞ + 1

m∞
∆∞2

κ′∞Γ2 + 1
m∞

∆′
∞2 κ′∞Γ3κ∞ + 2

m∞
κ′∞∆∞3 + 1

m2
∞

∆∞5

)
.

In particular, if the exogenous regressors dominate, then

ξ∞ =

(
∆∞1

κ′∞∆∞2

)
, Ω∞ =

(
Γ1 Γ2κ∞

κ′∞Γ2 κ′∞Γ3κ∞

)
, κ∞ 6= 0,
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and if the autoregressive part dominates, then

ξ∞ =

(
∆∞1

∆∞4

)
, Ω∞ =

(
Γ1 ∆∞2

∆′
∞2 ∆∞5

)
.

The proof follows from Lemmas 1 and 2 and comparison of (5.1), (5.2), (5.5) and (5.6).
Γ1, Γ2, Γ3 have been defined in (3.4), (5.3) and (5.4), resp. All components of ∆∞ are
obtained from (5.6) with L = ∞.

Without loss of generality we can suppose that h1, ..., hk are linearly independent and
|Γ1| 6= 0.

According to the standard results about partitioned matrices one has |Ω∞| = |Γ1|π where

π = Ω∞22 − Ω′
∞12Γ

−1
1 Ω∞12

is different from zero if and only if Ω∞ is nonsingular; the inverse is

Ω−1
∞ =

(
Γ−1

1 + 1
π
EE ′ − 1

π
E

− 1
π
E ′ 1

π

)

where E = Γ−1
1 Ω∞12. In the next theorem we make one step further by revealing the geomet-

ric nature of π in case of dominating exogenous regressors and by showing that E|Ω∞| 6= 0 in
the general case. Note that W(I−ρW)−1 is an infinite-dimensional version ofWn(I−ρWn)−1.

Theorem 2. Let conditions of Theorem 1 be satisfied and suppose that |Γ1| 6= 0.
a) If the exogenous regressors dominate, then Ω∞ is nonsingular if and only if the vector

W(I − ρW)−1κ′∞h is linearly independent of h1, ..., hk. Besides,

π = dist2(W(I − ρW)−1κ′∞h,H)

where H is the linear span of h1, ..., hk.
b) In the general case, if the vector W(I−ρW)−1κ′∞h is linearly independent of h1, ..., hk,

then
E|Ω∞| ≥ |Γ1|dist2(W(I − ρW)−1κ′∞h,H) > 0.

6 Proofs

Proof of Corollary from Section 3. Suppose Γ1 is singular. If necessary, we can renumber
h1, ..., hk in such a way that h1, ..., hl will be linearly independent and hl+1, ..., hk will be their
linear combinations:

hj =
l∑

i=1

cijhi, j = l + 1, ..., k. (6.1)

By the Cramér-Wold theorem, to prove convergence of H ′
nVn in joint distribution, it suffices

to prove convergence in distribution of

l∑

j=1

xjH
′
njVn +

k∑

j=l+1

xjH
′
njVn

for all x ∈ Rk. But because of (6.1) this is the same as
∑k

j=1 xj(Hnj − dnhj)
′Vn +

∑l
j=1 xj(dnhj)

′Vn +
∑k

j=l+1 xj

∑l
i=1 cij(dnhi)

′Vn

=
∑k

j=1 xj(Hnj − dnhj)
′Vn +

∑l
j=1

(
xj +

∑k
i=l+1 cjixi

)
(dnhj)

′Vn.
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The second sum converges in distribution by Mynbaev CLT. The first sum converges in
L2(Ω) to zero because by Assumptions 1 and 2

‖(Hnj − dnhj)
′Vn‖2

L2(Ω) = E[(Hnj − dnhj)
′VnV

′
n(Hnj − dnhj)]

= σ2 ‖Hnj − dnhj‖2
2 → 0, n→ ∞, j = 1, ..., k.

Proof of Lemma 1. 1) The elements of the matrix H ′
nGnHn are H ′

nlGnHnm, 1 ≤ l,m ≤
k. For any l,m

H ′
nlGnHnm = H ′

nl(s(Wn) − s(dnW ))Hnm +H ′
nls(dnW )Hnm.

Here the first term tends to zero by (3.5) and (4.12):

|H ′
nl(s(Wn) − s(dnW ))Hnm| ≤ c‖Hnl‖2 ‖Wn − dnW‖2 ‖Hnm‖2 → 0.

For the second term (4.15) gives

H ′
nls(dnW )Hnm =

∑

p≥0

ρp

∞∑

i1,...,ip+1=1

p+1∏

j=1

λijµni(dnfi1 , Hnl)l2(dnfip+1
, Hnm)l2 .

The series converge uniformly because

|H ′
nls(dnW )Hnm| ≤ c

∑

p≥0

|ρ|p
∞∑

i1,...,ip+1=1

|λi1 ...λip+1
| = c

∑

p≥0

(
|ρ|

∞∑

i=1

|λi|
)p ∞∑

i=1

|λi| <∞.

Besides, by (4.14) and (3.5) we have element-wise convergence, so

H ′
nls(dnW )Hnm →

∑

p≥0

ρp

∞∑

i1,...,ip+1=1

p+1∏

j=1

λijµ∞i(fi1 , hl)L2
(fip+1

, hm)L2

=
∑

p≥0

ρp

∞∑

i=1

λp+1
i (fi, hl)L2

(fi, hm)L2

=
∞∑

i=1

ν(λi)(fi, hl)L2
(fi, hm)L2

= (Ahl, hm)L2
.

We have taken into account (4.17) and the fact that µ∞i vanishes outside the line i1 = ... =
ip+1.

2) As above, we note that H ′
nG

′
nGnHn has H ′

nlG
′
nGnHnm as its elements and

H ′
nlG

′
nGnHnm = H ′

nl(G
′
nGn − s2(dnW ))Hnm +H ′

nls
2(dnW )Hnm.

The first term is estimated using (3.5), (4.12) and (4.13):

|H ′
nl(G

′
nGn − s2(dnW ))Hnm|

≤ ‖Hnl‖2(‖G′
n − s(dnW )‖2 ‖Gn‖2 + ‖s(dnW )‖2 ‖Gn − s(dnW )‖2)‖Hnm‖2

≤ c ‖Wn − dnW‖2 → 0.
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By (4.15) the second term rewrites as

H ′
nls

2(dnW )Hnm =
∑

p≥0

ρp(p+ 1)
∞∑

i1,...,ip+2=1

p+2∏

j=1

λijµni(dnfi1 , Hnl)l2(dnfip+2
, Hnm)l2

with the series converging uniformly. After letting n → ∞ and applying (4.14), (3.5) and
(4.17) we obtain

H ′
nls

2(dnW )Hnm →
∑

p≥0

ρp(p+ 1)
∞∑

i1,...,ip+2=1

p+2∏

j=1

λijµ∞i(fi1 , hl)L2
(fip+2

, hm)L2

=
∞∑

i=1

(
∑

p≥0

ρp(p+ 1)λp+2
i

)
(fi, hl)L2

(fi, hm)L2

=
∞∑

i=1

ν2(λi)(fi, hl)L2
(fi, hm)L2

= (A2hl, hm)L2
.

Proof of Lemma 2, part 1). By Corollary from Section 3 UnL converges in distribution
to a normal vector with zero mean and variance-covariance matrix equal to σ2 times the Gram
matrix of the system h 1, ..., hk, f1, ..., fL. Putting FL = (f1, ..., fL) and using the usual vector
operations we can write that matrix in the form

σ2

(
(h, h′)L2

(h, F ′
L)L2

(FL, h
′)L2

(FL, F
′
L)L2

)
=




∑∞

i=1(fi, h)L2
(fi, h

′)L2
(f1, h)L2

... (fL, h)L2

(f1, h
′)L2

1 0

...
. . .

(fL, h
′)L2

0 1


 .

If we take a sequence of independent standard normal variables u1, u2, ... and put

UL = σ




∑∞

i=1(fi, h)L2
ui

u1

...
uL


 ,

it will have the required mean and variance. Hence, UnL
d−→ UL, n → ∞. δnL, being a

continuous function of UnL, converges in distribution to the same function of UL. To obtain
(5.7), it suffices to substitute for H ′

nVn and UnL,k+i their limits in distribution.
The component

∑∞

i=1(fi, h)L2
ui converges in L2(Ω), all others converge, as L → ∞, in

L1(Ω), due to summability of ν(λi) and ν2(λi). This proves (5.8).
Part 2). We have given the required definitions and estimates for the last two com-

ponents of Xn in Section 4. Therefore here we consider only the first three components of
alphas, betas and gammas. Thus, the missing elements of (4.11) are

αn =




αn1

αn2

αn3


 =




0
H ′

n

(
Gn − s(dnW )

)
Vn

H ′
n

(
G′

nGn − s2(dnW )
)
Vn




(the first block of αn is zero because Mynbaev CLT is directly applicable to H ′
nVn),

βnL =




βnL1

βnL2

βnL3


 =




0
H ′

n

(
s(dnW ) − s(dnWL)

)
Vn

H ′
n

(
s2(dnW ) − s2(dnWL)

)
Vn


 ,
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γnL =




γnL1

γnL2

γnL3


 =




0
H ′

ns(dnWL)Vn

H ′
ns

2(dnWL)Vn


−




0
δnL2

δnL3


 .

Our task is to show that the alphas, betas and gammas are asymptotically negligible.
For any n× n matrix An we can write by Assumption 1 and boundedness of ‖Hnl‖2

(E‖H ′
nAnVn‖2

2)
1/2 =

[
E

(
k∑

l=1

H ′
nlAnVnV

′
nA

′
nHnl

)]1/2

= σ

(
k∑

l=1

H ′
nlAnA

′
nHnl

)1/2

≤ σ

(
k∑

l=1

‖Hnl‖2
2‖An‖2

2

)1/2

≤ c‖An‖2. (6.2)

One can use this fact to prove that

E‖αni‖2
2 → 0, n→ ∞, i = 2, 3. (6.3)

Indeed, for i = 2 it suffices to use (4.12), whereas for i = 3 by (4.12), (4.13) and symmetry
of dnW

(E‖αn3‖2
2)

1/2 ≤ c‖G′
nGn − s2(dnW )‖2

≤ c[‖s(W ′
n) − s(dnW )‖2 ‖s(Wn)‖2 + ‖s(dnW )‖2 ‖s(Wn) − s(dnW )‖2]

≤ c1 ‖Wn − dnW‖2 → 0.

We claim that (
E‖βnLi‖2

2

)1/2 ≤ c
∑

i>L

|λi|, i = 2, 3, (6.4)

where c does not depend on n, L. The inequality for i = 2 is an immediate consequence of
(6.2) and the second bound in (4.18). For i = 3 we use (6.2), (4.13) and (4.18):

(
E‖βnL3‖2

2

)1/2 ≤ c‖s2(dnW ) − s2(dnWL)‖2

≤ c(‖s(dnW )‖2 + ‖s(dnWL)‖2) ‖s(dnW ) − s(dnWL)‖2 ≤ c1
∑

i>L

|λi|.

Now we prove that for any ε, L > 0 there exists n0 = n0(ε, L) such that

E|(γnLj)l| ≤ cε, n ≥ n0, l = 1, ..., k, j = 2, 3. (6.5)

By the first equation in (4.15) and using the vector UnL we have for l = 1, ..., k

H ′
nls(dnWL)VL =

∑

p≥0

ρp
∑

i1,...,ip+1≤L

p+1∏

j=1

λijµni(dnfi1 , Hnl)l2UnL,k+ip+1
.

On the other hand, using the first equation in (4.17) and the definition of µ∞i the lth
coordinate of δnL2 can be rearranged like this:

(δnL2)l =
L∑

i=1

∑

p≥0

ρpλp+1
i (fi, hl)L2

UnL,k+i

=
∑

p≥0

ρp
∑

i1,...,ip+1≤L

p+1∏

j=1

λijµ∞i(fi1 , hl)L2
UnL,k+ip+1

.
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The last two equations give the next expression for the lth component of γnL2:

(γnL2)l =
∑

p≥0

ρp
∑

i1,...,ip+1≤L

p+1∏

j=1

λij [µni(dnfi1 , Hnl)l2 − µ∞i(fi1 , hl)L2
]UnL,k+ip+1

.

Applying continuity (3.5) and (4.14) we can say that for any ε, L > 0 there exists n0 =
n0(ε, L) such that

|µni(dnfi1 , Hnl)l2 − µ∞i(fi1 , hl)L2
| < ε, n ≥ n0,

for all i which enter (γnL2)l. Besides, by (4.16)

E|UnL,k+ip+1
| ≤ (E(V ′

ndnfip+1
V ′

ndnfip+1
))1/2 ≤ c.

Hence, the estimate in (6.5) for j = 2 follows. The proof for j = 3 goes in a similar fashion,
except that when dealing with s2(dnWL) one has to use the second equations in (4.15) and
(4.17), in place of the first ones.

After these preparatory steps we can conclude the proof of Lemma 2. Due to (4.19), we
can apply part 1) of Lemma 2. (4.20) and (6.3) show that plimn→∞ αn = 0. From (4.20)
and (6.5) we see that plimn→∞γnL = 0 for any fixed L. Because of (6.4) and the Chebyshev
inequality

P (‖βnL2‖2 + ‖βnL3‖2 > ε) ≤ c

ε2

∑

i>L

|λi|.

This bound, (4.21) and (4.11) imply

lim supn→∞ P (‖Xn − δnL‖2 > ε) ≤ c

ε2

∑

i>L

|λi|.

By Billinsgley’s (1968) Theorem 4.2 then the statement of part 2) of Lemma 2 follows.
Proof of Lemma 3. a) is obvious.
b) If βi 6= 0. then ‖Xni‖2 = κnimn/βi. This equation implies b1) and b2).
c) Suppose that (5.10) is true and denote ε = 1 − maxi |κ∞i|. Then for all large n

mn = max{‖Xn1‖2|β1|, ..., ‖Xnk‖2|βk|} and |κni| = ‖Xni‖2|βi|/mn ≤ 1− ε/2. This leads to a
contradiction: mn ≤ (1 − ε/2)mn.

d) Let κ∞ = 0. If β = 0, there is nothing to prove. If β 6= 0, then consider any i such
that βi 6= 0. By b1) for any such i we have ‖Xni‖2 = o(mn). This is possible only if mn = 1
for all large n and ‖Xni‖2 → 0. Conversely, if i) is true, then trivially κ∞ = 0. If ii) is true,
then mn = 1 for all large n and κni = ‖Xni‖2βi → 0 for any i such that βi 6= 0. Hence,
κ∞ = 0.

e) If m∞ = ∞, then by c) maxi |κ∞i| = 1 and κ∞ 6= 0.
Proof of Theorem 2. a) From Theorem 1 π = κ′∞Γ3κ∞ − κ′∞Γ2Γ

−1
1 Γ2κ∞. Consider an

operator B : L2(0, 1) → l2 defined by

Bf = ((f, f1)L2
, (f, f2)L2

, ...).

B is linear and norm-preserving:

‖Bf‖2 =

(
∑

i≥1

(f, fi)
2
L2

)1/2

= ‖f‖2 .
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Therefore Bh1, ...,Bhk are linearly independent in l2. The matrix G = (Bh1, ...,Bhk) with
infinite square-summable columns can be manipulated as a finite-dimensional matrix. Let
A =diag[ν(λ1), ν(λ2), ...] be a diagonal operator in l2. Then

BAf = B
(
∑

i≥1

ν(λi)(f, fi)L2
fi

)
= (ν(λ1)(f, f1)L2

, ν(λ2)(f, f2)L2
, ...) = ABf,

that is BA =AB.
It is easy to see that

Γ1 = G′G, Γ2 = G′AG, Γ3 = G′A2G

and that P = G(G′G)−1G′ and Q = I −P are orthoprojectors: P 2 = P = P ′, Q2 = Q = Q′.
Therefore

π = κ′∞G
′A2Gκ∞ − κ′∞G

′AG(G′G)−1G′AGκ∞

= κ′∞G
′A(I −G(G′G)−1G′)AGκ∞ = κ′∞G

′AQ′QAGκ∞ = ‖QAGκ∞‖2
2 .

Q projects onto the subspace orthogonal to the image Im(P ) and ‖Qx‖2 is the distance from
x to Im(P ). Thus,

π = dist2(AGκ∞, Im(P ))̇.

Im(P ) coincides with Im(B): for any x ∈ l2 we have y = (G′G)−1G′x ∈ Rk and

Pf = G(G′G)−1G′x =
k∑

l=1

ylBhl = B
k∑

l=1

ylhl.

From the functional calculus A = W(I − ρW)−1 and

AGκ∞ = A

k∑

l=1

κ∞lBhl =
k∑

l=1

κ∞lBAhl = B
(

k∑

l=1

κ∞lAhl

)

= B(W(I − ρW)−1κ′∞h).

Since B is norm-preserving, we get

π = dist2(B(W(I − ρW)−1κ′∞h), Im(B))̇

= dist2(W(I − ρW)−1κ′∞h, Im(H))̇.

b) In the general case

π = κ′∞Γ3κ∞ − κ′∞Γ2Γ
−1
1 Γ2κ∞ +

2

m∞

κ′∞∆∞3 +
1

m2
∞

∆∞5

− 2

m∞

κ′∞Γ2Γ
−1
1 ∆∞2 −

1

m2
∞

∆′
∞2Γ

−1
1 ∆∞2.

Since ∆∞2 and ∆∞3 are linear in normal variables, we have

Eπ = dist2(W(I − ρW)−1κ′∞h,H) +
1

m2
∞

E(∆∞5 − ∆′
∞2Γ

−1
1 ∆∞2).
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As ∆∞2 and ∆∞5 converge in L2(Ω) and L1(Ω), respectively, we can write

E(∆∞5 − ∆′
∞2Γ

−1
1 ∆∞2) = σ2 lim

L→∞
EζL where ζL = ∆L5

− ∆′
L2

Γ−1
1 ∆L2

.

Let uL = (u1, ..., uL, 0, ...). Then ∆L5
= u′LA

2uL − u′LAG(G′G)−1G′AuL = ‖QAuL‖2
2 ≥ 0.

This proves the statement.
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