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Abstract 

This paper considers the classical newsvendor model when, (a) demand is 

autocorrelated, (b) the parameters of the marginal distribution of demand are 

unknown, and (c) historical data for demand are available for a sample of successive 

periods. An estimator for the optimal order quantity is developed by replacing in the 

theoretical formula which gives this quantity the stationary mean and the stationary 

variance with their corresponding maximum likelihood estimators. The statistical 

properties of this estimator are explored and general expressions for prediction 

intervals for the optimal order quantity are derived in two cases: (a) when the sample 

consists of two observations, and (b) when the sample is considered as sufficiently 

large. Regarding the asymptotic prediction intervals, specifications of the general 

expression are obtained for the time#series models AR(1), MA(1), and ARMA(1,1). 

These intervals are estimated in finite samples using in their theoretical expressions, 

the sample mean, the sample variance, and estimates of the theoretical autocorrelation 

coefficients at lag one and lag two. To assess the impact of this estimation procedure 

on the optimal performance of the newsvendor model, four accuracy implication 

metrics are considered which are related to: (a) the mean square error of the 

estimator, (b) the accuracy and the validity of prediction intervals, and (c) the actual 

probability of running out of stock during the period when the optimal order quantity 

is estimated. For samples with more than two observations, these metrics are 

evaluated through simulations, and their values are presented to appropriately 

constructed tables. The general conclusion is that the accuracy and the validity of the 

estimation procedure for the optimal order quantity depends upon the critical fractile, 

the sample size, the autocorrelation level, and the convergence rate of the theoretical 

autocorrelation function to zero.  
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1. Introduction 

In the majority of papers in stock control, the optimal inventory policies are 

derived under two conditions: (a) the parameter values of the stochastic law which 

generates the demand are known, and (b) the demand in successive periods is formed 

independently.  In practice, the first condition does not hold. One solution to this 

problem is the substitution of the true moments of the demand distribution in the 

theoretical formulae determining the target inventory measures with values which are 

obtained through certain estimation procedures (e.g. Syntetos & Boylan, 2008; 

Janssen et al., 2009). Then, in the context of managerial aspects of inventories,  the 

combined estimation – stock control operation should be evaluated through specific 

accuracy implication metrics which are usually related to service levels and inventory 

costs (Boylan & Syntetos 2006; Syntetos et al., 2010). 

Regarding the second condition, for the last three decades, an increasing 

number of works has been starting to appear in the literature aiming to study the 

effect of a serially correlated demand on the behavior of target inventory measures in 

stock control and supply chain management (Zhang, 2007). In this context, a variety 

of time#series models, including ARIMA processes and linear state space models 

(Aviv, 2003), have been used to describe the evolution of demand. Adopting these 

time#series demand models, the research has been expanded to resolve several 

problems in inventory management including the determination of safety stocks and 

optimal policies in continuous and periodic review systems, as well as, the study of  

the bullwhip effect and the value of information sharing. 

For the classical newsvendor model, the research on determining the order 

quantity when the demand in successive periods is autocorrelated and the parameters 

of demand distribution are unknown is very limited. Although a number of works 
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offer solutions to the problem of not knowing the parameters of demand distribution 

(e.g. Ritchken & Sankar, 1984; Liyanage & Shanthikumar, 2005; Kevork, 2010, 

Akcay et al., 2011; Halkos & Kevork, 2012a), these works assume that demand in 

successive periods is formed independently. To the extent of our knowledge, the work 

of Akcay et al. (2012) is the only one which addresses in the classical newsvendor 

model the issues of both the correlated demand and the demand parameters 

estimation. In particular, using a simulation#based sampling algorithm, this work 

quantifies the expected cost due to parameter uncertainty when the demand process is 

an autoregressive#to#anything time series, and the marginal demand distribution is 

represented by the Johnson translation system with unknown parameters. 

In the current paper, we study the classical newsvendor model (e.g. Silver et 

al., 1998; Khouja, 1999) when it operates under optimal conditions, and the demand 

for each period (or inventory cycle) is generated by the non#zero mean linear process 

with independent normal errors which have zero mean and the same variance. 

Assuming that historical data on demand are available for the most recent �  

successive periods, we determine for period �� +  the order quantity, by replacing in 

the theoretical expression which holds under optimality the unknown true stationary 

mean and the unknown true stationary variance with their corresponding Maximum 

Likelihood (ML) estimates.  

This process leads to deviations between the computed order quantity and the 

corresponding optimal one. These deviations are not systematic since they are caused 

by the variability of the sample mean and the sample variance. Therefore, we 

consider the computed order quantity as an estimate for the optimal order quantity. 

This estimate belongs to the sampling distribution of the estimator which has been 

constructed after replacing in the theoretical expression (which gives the optimal 
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order quantity) the true mean and the true variance with their corresponding ML 

estimators. 

The distribution of this estimator for the optimal order quantity is derived for 

�� =  and when �  is sufficiently large. Then, general expressions of the exact (for 

�� = ) and the asymptotic prediction interval for the optimal order quantity are 

obtained. Regarding the exact prediction interval, apart from the sample mean and the 

sample variance, its formula contains also the theoretical autocorrelation coefficient 

at lag one.  Using the estimate of this coefficient, we take the corresponding estimated 

exact prediction interval whose performance is evaluated for different autocorrelation 

levels over a variety of choices for the critical fractile. The latter quantity is the 

probability not to experience a stock out during the period when the newsvendor 

model operates at optimal conditions. Although the case of �� =  could be considered 

as an extreme case, and possibly not realistic, the examination of the properties of the 

exact prediction interval for such a very small sample size gives considerable insights 

in the process of estimating the optimal order quantity. Besides, as it will be clearer 

below, it is too difficult to give for �� >  analogous general expressions for exact 

prediction intervals.  

As it is not possible to obtain exact prediction intervals for any �� > , to carry 

on with the estimation of the optimal order quantity at any finite sample, we use the 

general expression of the asymptotic prediction interval. To evaluate its performance 

in finite samples, we consider three special cases of the linear process, which are the 

time#series models AR(1), MA(1), and ARMA(1,1). For each model, the 

specification of the general expression of the asymptotic prediction interval is 

obtained. In the models AR(1) and MA(1), the specified formula contains, apart from 

the sample mean and the sample variance, the unknown true variance and the 
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theoretical autocorrelation coefficient at lag one. The corresponding formula in the 

ARMA(1,1) includes also the theoretical autocorrelation coefficient at lag two. 

Replacing the variance and the two autocorrelation coefficients with their 

corresponding sample estimates, we get the estimated prediction intervals whose 

performance is also evaluated for different sample sizes and again for different 

autocorrelation levels over a variety of choices for the critical fractile. 

 To assess the impact of the aforementioned estimation procedure for the order 

quantity on the optimal performance of the newsvendor model, we consider four 

accuracy implication metrics which are related to:  

(a) the accuracy of the prediction intervals,  

(b) the validity of the prediction intervals, 

(c) the mean square error of the estimator of the optimal order quantity, and  

(d) the actual probability not to have a stock#out during the period when the 

optimal order quantity is estimated.  

Exact values for the four metrics are obtained for �� = . For larger sample 

sizes, the metrics are obtained through Monte Carlo simulations. The values of these 

four metrics enable us to trace at different autocorrelation levels the minimum 

required sample size so that the estimation procedure to have a negligible impact on 

the optimal performance of the newsvendor model. 

To derive the  prediction intervals for the optimal order quantity, we studied 

the conditions under which the sample mean and the sample  variance are 

uncorrelated and independent. For the general ARMA model, Kang and Goldsman 

(1990) showed that the correlation between the sample mean and several variance 

estimators is zero. These variance estimators are based on the techniques of  the non#

overlapping/overlapping batched means and the standardized time series. Bayazit et 
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al. (1985) offered an expression for the covariance of the sample mean and the 

sample variance of a skewed AR(1).  

Extending these findings, we prove in our work two further results. First, for 

any sample with two observations being drawn from the general linear process with 

independent normal errors, which have zero mean and constant variance, the sample 

mean and the sample variance are independent. Second, for the same linear process, 

when the theoretical autocorrelation function is positive and the autocorrelation 

coefficients are getting smaller as the lag increases, in any sample with more than two 

observations, the sample mean and the sample variance are uncorrelated but not 

independent. 

Given the above arguments and remarks, the rest of the paper is organized as 

follows. In the next section we give a brief literature review of studies which adopted 

time series models to describe the evolution of demand in continuous review and 

periodic review inventory systems. In section 3 we present the newsvendor model 

with the demand in each period to follow the non#zero mean linear process, and we 

derive the theoretical expression which determines the optimal order quantity. In 

section 4 we derive the general expressions of the exact for �� =  and the asymptotic 

prediction interval for the optimal order quantity. The evaluation of the estimated 

prediction intervals is performed and presented in section 5. Finally, section 6 

concludes the paper summarizing the most important findings. 

�

2.  A brief review of the relevant literature 

  In the context of continuous review systems, the AR(1) and MA(1) processes 

have been adopted as demand models for studying customer service levels and 

deriving safety stocks and reorder points.  Zinn et al. (1992) explained and quantified 
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through simulations the effect of correlated demand on pre#specified levels of 

customer service when lead#time distribution is discrete uniform. Fotopoulos et al. 

(1988) offered a new method to find an upper bound of the safety stock when the lead 

time follows an arbitrary distribution. Ray (1982) derived the variance of the lead#

time demand under fixed and random lead times when the parameters of the AR(1) 

and MA(1) are known, and when the expected demand during lead time is forecast. 

With fixed lead times, Urban (2000) derived variable reorder levels using for the 

demand during lead time appropriate forecasts and time#varying forecast errors 

variance/covariance, which are updated every period conditional upon the most recent 

observed demand.  

For periodic review systems, Johnson and Thompson (1975) showed that 

when demand is generated by the stationary general autoregressive process, the 

myopic policy for the one period is optimal for any period of an infinite time horizon. 

To prove it they showed that in any period it is always possible to order up to the 

optimal order quantity. Assuming that demand is normal and covariance#stationary 

with known autocovariance function, Charnes et al. (1995) derived the safety stock 

required to achieve the desired stock#out probability with an order#up#to an initial 

inventory level. Urban (2005) developed a periodic review model when demand is 

AR(1) and depends on the amount of inventory displayed to the customer. Zhang 

(2007) quantified the effect of a temporal heterogeneous variance on the performance 

of a periodic review system using an AR(1) and a GARCH(1,1) to describe the 

dynamic changes in the level and the variance of demand respectively. Adopting the 

ARIMA (0,1,1) as the demand generating process in a periodic review system, 

Strijbosch et al. (2011) studied the effect of single exponential smoothing and simple 

moving average estimates on the fill rate conducting appropriate simulations.  
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Apart from the classical continuous and periodic review systems, there are 

also other active research areas on inventories where time series processes have been 

adopted as demand models. For instance, Zhang (2007) provides  a list of works 

which use time series models to study the bullwhip effect, the value of information 

sharing, and the evolution of demand in supply chains. Ali et al. (2011) also provide a 

relevant literature for those works which by adopting time series processes as demand 

models explore the interaction between forecasting performance and inventory 

implications.  

 

3.  Background 

Suppose that the demand size for period t (or inventory cycle t) of the classical 

newsvendor model is generated by the non# zero mean linear process 

∑
∞

=
−εψ+	=

0k

ktjtY , (1) 

where ∞<ψ∑∞

=0k k , and tε s  are independent normal variables with ( )2
εσ0ε ,N~t . 

Denote also by tQ  the order quantity for period t, � the selling price, � the purchase 

cost per unit, � the salvage value, and � the loss of goodwill per unit of product. To 

satisfy the demand of period t, the newsvendor has available stock at the start of the 

period only the order quantity tQ . This means that any excess inventory at the end of 

period 1−t  was disposed of through either consignment stocks or buyback 

arrangements and the salvage value was used to settle such arrangements. Further, by 

receiving this order quantity, no fixed costs are charged to the newsvendor. 

Under the aforementioned notation and assumptions, and providing that the 

coefficient of variation of the marginal distribution of tY  is not large (e.g. see Halkos 
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and Kevork, 2012b), the expected profit of the newsvendor at the end of period t is 

derived from expression (1) of Kevork (2010) and is given by 

( ) ( ) ( ) ( )[ ] ( )+≥−≥−−−−−=π 0YQPr0YQ YEQvpQcpE tttttttt  

( )[ ] ( )0YQPr0YQ YEQs tttttt <−<−−+ . 

Let ( )zϕ  and ( )zΦ  be respectively the probability density function and the 

distribution function of the standard normal evaluated at ( ) otQz γ	−= , where oγ  

is the variance of the  marginal distribution of tY . Since 

( ) ( ) ( )zQPr0YQPr t0k ktktt Φ=	−≤εψ=≥− ∑∞

= − , 

( ) ( )=	−≤εψεψ+	=≥− ∑∑
∞

= −

∞

= − t0k ktk0k ktkttt Q E0YQ YE  

( )
( )z

zQ
 ZZE o

o

t
o Φ

ϕ
γ−	=














γ

	−
≤γ+	= , 

and 

( ) ( )
( )z1

zQ
 ZZE0YQ YE o

o

t
ottt Φ−

ϕ
γ+	=














γ

	−
>γ+	=<− , 

the expected profit becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }otttt zzQsvpQsQcpE γϕ+Φ	−+−−	−+−=π . 

The first and second order conditions obtained by differentiating ( )tE π  with respect 

to tQ  are 

( ) ( ) ( ) ( ) 0zsvpscp
dQ

dE

t

t =Φ+−−+−=
π

 

and 

( ) ( ) ( )
0

z
scp

dQ

Ed

o

2

t

t

2

<
γ

ϕ
+−−=

π
. 
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Setting ( ) ( )svpscpR +−+−= , the first order condition leads to the 

following equation, which is known as the ctitical fractile equation, 

( ) ( ) R
svp

scp
zZPrQYPr R

*

ttzR
=

+−
+−

=≤=≤=Φ , 

where R is the critical fractile, *

tQ  is the optimal order quantity, and 

( ) o

*

tR Qz γ	−= . Thus the optimal order quantity for period t is determined from 

oR

*

t zQ γ+	= . (2) 

In the classical newsvendor model, no stock is carried from previous periods 

to the current. So, for a time horizon consisting of a number of periods, if the 

distribution of demand in each period remained the same with the same mean and the 

same variance, the optimal order quantity would depend upon only the critical fractile 

R. And R is function of the overage and underage costs. In the analysis which 

follows, to simplify notations and symbols, we shall assume that in each period of the 

time horizon for which demand data are available, the critical fractile does not 

change. Thus for each period of the time horizon, the optimal order quantity remains 

the same, and so it is legitimate to drop out the subscript t from the symbol of the 

optimal order quantity.  

 

4. Prediction intervals for the optimal order quantity ��  

Suppose that the linear process given in (1) has generated the realization 

nY,...,Y,Y 21 , which represents demand for the most recent n successive periods in 

the newsvendor model. Further, let nYY
n

1t t∑ =
=  and ( )2

1
ˆ

�

� ��
� � �γ

=
= −∑  be ML 

estimators of 	  and oγ  respectively. Since in practice 	  and oγ  are unknown 
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quantities, replacing the ML estimators into (2), in the places of 	  and oγ , the 

resulting estimator for the optimal order quantity takes the form�

( ) oRo

* ˆzYˆ,YQ̂ γ+=γ= � . (3) 

Given the estimator *Q̂ , the rest of this section is organized as follows. At 

first, we derive the general expression for the exact prediction interval for *Q  when 

the sample consists of two observations. On the other hand, it is too difficult to give 

for 2n >  analogous general expressions for the exact prediction interval for two 

reasons. The first is that the sample variance consists of correlated chi#squared 

random variables and the second reason is that, as we shall show later, for the time 

series models AR(1), MA(1), and ARMA(1,1), the sample mean and the sample 

variance are not independent. 

Despite the dependency of the sample mean and the sample variance, in the 

second part of this section we prove that for any 2n >  their covariance is zero. So, 

with the asymptotic distributions of Y  and oγ̂  to be available in the literature, this 

allows us to construct the asymptotic variance#covariance matrix of Y  and oγ̂ , and 

then, by applying the multivariate Delta method, to derive the general expression of 

the asymptotic distribution of *Q̂ . 

�	
���
��������������������
������ �� ������ �� = �

If tY  is determined by the linear process given in (1) with ∞<ψ∑∞

=0k k  and 

tε ’s to be i.i.d. normal random variables with zero mean and constant variance, the 

sample 1Y , 2Y  follows the bivariate normal with marginal mean 	  and variance oγ . 

In this case, 2

o Xˆ =γ , where ( ) 2YYX 21 −= , with ( ) 0XE = , ( ) ( ) 21XVar 1o ρ−γ=  

and 1ρ  to be the autocorrelation coefficient at lag one. Then the statistic 
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( )1o 1X2 ρ−γ  follows the standard normal, and hence ( ) 2

1o1o ~1ˆ2 χγρ−γ . It 

also holds that the sample mean ( ) 2YYY 21 +=  is normally distributed with mean 

	  and variance ( ) 21 1o ρ+γ . 

Proposition 1: If 1Y , 2Y  is a sample drawn from the linear process given in (1), 

with ∞<ψ∑∞

=0k k , and tε ’s to be i.i.d. random variables with ( )2
εσ0ε ,N~t , then 

Y  and oγ̂  are distributed independently. 

 
Proof: See in the appendix. 

 
 

Using the result of proposition 1, together with the distributions of Y  and oγ̂ , 

for 2n =   we derive the following statistic 

( )
( )

( )

( )λ′
γ

−
ρ+

ρ−
=

γρ−

γ












ρ+
−+

ρ+γ

	−

=′ 1

o

*

1

1

o1

o

1

R

1o
t~

ˆ

QY

1

1

1

ˆ2

1

2
z

1

Y2

T , (4) 

where ( )λ′1t  is the non#central student#t distribution with one degree of freedom and 

non#centrality parameter   

1

R
1

2
z

ρ+
−=λ .  (5) 

So the interval 

( ) ( )












ρ−

ρ+
γλ′−

ρ−

ρ+
γλ′− αα

−
1

1
o

2
,1

1

1
o

2
1,1 1

1
ˆtY  ,  

1

1
ˆtY  (6) 

is the exact ( ) %1001 α−  prediction interval (P.I.) for *Q  for the special case where 

2n = 	�
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���
���
� The exact distribution of oγ̂  for 2n =  allows the exact computation of the 

Bias of *

tQ̂ . The statistic ( )[ ]1oo 1ˆ2 ρ−γγ follows the chi#distribution with one 

degree of freedom, and so we have ( ) ( ) πρ−γ=γ 1oo 1ˆE  and 

( ) ( ) 









−

π
ρ−

γ=−= 1
1

zQQ̂EQ̂Bias 1
oR

*** . 

 

The expression within the parentheses containing 1ρ  and π is always negative. So, for 

any 5.0R <  the �	
� of *Q̂  is positive, while for 5.0R >  the �	
� is negative. 

���
����� To evaluate the performance of the exact P.I. of (6), we define its relative 

expected half#length (REHL) as 

( ) ( )
( )

( ) ( )

( )R

1

2
,1

2
1,1

1
o*

2
,1

2
1,1

1

1

zCV2

tt
1

ˆE
Q2

tt

1

1
REHL

+

λ′−λ′

π
ρ+

=γ

λ′−λ′

ρ−
ρ+

=
−

αα
−

αα
−

,                      (7) 

where 	γ= oCV  is the coefficient of variation, and *Q  is given in (2). Dividing by 

*Q  ensures the comparability of REHLs evaluated at different Rs, since increasing the 

critical fractile R, we get larger optimal order quantities.  

 

Figure 1 illustrates the graph of the REHL versus R for different values of CV 

and .1ρ . The choice of values for .1ρ is explained in the next section. By setting also 

the maximum CV at 0.2, we avoid to take a negative demand (especially in the 

simulations which are described in the next section), as we give a negligible 

probability (less than 0.00003%) to take a negative value from the marginal 

distribution of tY . Finally, the critical values of the non#central t were obtained 

through the statistical package MINITAB. 
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Figure 1: Graph of REHL as a function of R; n=2 and nominal confidence level 95%. 

CV=0.05 CV=0.2 

  
Looking at the two graphs of Figure 1, we first observe the increase of the 

REHL as R is getting closer either to zero or to one. Given CV and R, as .1ρ increases 

the REHL is also increasing, while given .1ρ and R, a higher CV results in larger 

REHLs. Finally, we observe that as CV is getting larger, the minimum of REHL is 

slightly shifted to the right of R=0.5. 

�	������������������������������
������� �� �

To derive the asymptotic distribution of *Q̂ , we shall use the asymptotic 

distributions of Y  and oγ̂  stated in Priestley (1981, pp. 338, 339). Especially, when 

demand follows the non#zero mean linear process given in (1) with  ∞<ψ∑∞

=0k k , 

and tε ’s to be independent normal variables with zero mean and constant variance, it 

holds that, 

(a) ( )	−Yn  has a limiting normal distribution with zero mean and variance  

       ∑
+∞

−∞=

ργ
k

ko , and 

 (b) ( )oo
ˆn γ−γ  is asymptotically normal with mean zero and variance ∑

+∞

−∞=

ργ
k

2

k

2

o2 , 

where kρ  is the autocorrelation coefficient at lag k. 
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Proposition 2: Let nY,...,Y,Y 21  be a sample drawn from the linear process given in 

(1) with ∞<ψ∑∞

=0k k , and tε ’s to be i.i.d. random variables with ( )2
εσ0ε ,N~t . 

Then, for any sample size the covariance of the sample mean and the sample variance 

is zero. 

Proof: See in the appendix. 

 

 The result of proposition 2, together with the asymptotic distributions of Y  

and oγ̂   lead us to state that 

( )  ,  N
ˆˆ

Y
n 2

oo

Σ0→








γ−γ

	− �
, 

where   





















ργ

ργ

=

∑

∑

∞+

−∞=

+∞

−∞=

k

2

k

2

o

k

ko

20

0

Σ , 

“�” stands for convergence in distribution, and N2 is the bivariate normal 

distribution. It also holds that 

( ) *

oR

5.0

oR

* QzˆlimpzYQ̂limp =γ+	=γ+= 
�	� . 

So, by applying the multivariate Delta Method (e.g. Knight, 2000 pp. 149) we take 

 ( ) ( ){ } ( ) ( )  ,  NQQ̂n,ˆ,Yn **

oo LΣL0 ⋅⋅′→−=γ	−γ ��� , 













γ
=















γ∂
∂

∂
∂

=′

γ=γ
	=

γ=γ
	=

o

R

ˆ
Yoˆ

Y 2

z
1

ˆY
oooo

��
L ,  

and 









ρ+ργ=⋅⋅′ ∑∑
∞+

−∞=

∞+

−∞= k

2

k

2

R

k

ko
2

z
  LΣL . 

Thus,  
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( ) ( )1,0N

2

z

QQ̂n

k

2

k

2

R

k

ko

**

→









ρ+ργ

−

∑∑
∞+

−∞=

∞+

−∞=

� ,                                         (8) 

and so the asymptotic ( ) %1001 α−  prediction interval for *Q  will have the form 









ρ+ρ

γ
± ∑∑

∞+

−∞=

∞+

−∞=
α

k

2

k

2

R

k

k
o

2

*

2

z

n
zQ̂ .                                              (9) 

��
�����
� Consider the stationary AR(1) model given by ( ) t1tt YY ε+	−φ+	= − , 

where 1<φ , ( )22

o 1 φ−σ=γ ε , and k

k φ=ρ  (k=0, 1, 2,…). Considering that the 

process has been started at some time in the remote past, and substituting repeatedly 

for 1tY − , 2tY − , 3tY − , …, the AR(1) takes the form of process (1) with j

j φ=ψ . Then 

we have 

φ−
φ+

=
φ−
φ

+=ρ+=ρ ∑∑
∞

=

∞

−∞= 1

1

1

2
121

0k

k

k

k  

and 

2

2

2

2

0k

2

k

k

2

k
1

1

1

2
121

φ−

φ+
=

φ−

φ
+=ρ+=ρ ∑∑

∞

=

∞

−∞=

. 

Hence the asymptotic prediction interval for *Q  is specified as 










ρ−

ρ+
+

ρ−

ρ+γ
± α 2

1

2

1

2

R

1

1o
2

*

1

1

2

z

1

1

n
zQ̂ ,               (10) 

since φ=ρ1 . 

��
����� �� Consider the invertible MA(1) model, 1tttY −θε+ε+	= , with 1<θ , 

( )22

o 1 θ+σ=γ ε , ( )2

1 1 θ+θ=ρ , and 0k =ρ  for 2k ≥ . This model takes the form of 

process (1) by setting 1o =ψ , θ=ψ1 , and 0k =ψ  for 2k ≥ . Hence we take 
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1

k

k 21 ρ+=ρ∑
∞

−∞=

, 2

1

k

2

k 21 ρ+=ρ∑
∞

−∞=

, and so the asymptotic prediction interval for  *Q  is 

given by   ( )







ρ++ρ+

γ
± α

2

1

2

R
1

o
2

* 21
2

z
21

n
zQ̂ .            (11) 

�
��
����� � Consider the stationary and invertible ARMA(1,1) model which is given 

by ( ) 1tt1tt YY −− θε+ε+	−φ+	= , 1<φ , 1<θ , 2

2

2

o
1

21
εσφ−

φθ+θ+
=γ , 

( )( )
φθ+θ+

θ+φφθ+
=ρ

21

1
21 , and 1

1k

k ρφ=ρ −  for 2k ≥ . Given that the process has been 

started at some time in the remote past, Harvey (1993, pp. 26) shows that this model 

takes the form of process (1) with 1o =ψ , θ+φ=ψ1 , and 1kk −φψ=ψ  for 2k ≥ . 

Thus, we take ( )φ−ρ+=ρ∑
∞

−∞=

121 1

k

k  and ( )22

1

k

2

k 121 φ−ρ+=ρ∑
∞

−∞=

.  So the 

asymptotic prediction interval for  *Q  is specified as 

  


















ρ−ρ

ρ
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ρ−ρ
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+

γ
± α 2

2

2

1
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1

2

R

21

2

1o

2

* 2
1

2

z2
1

n
zQ̂ ,            (12) 

after replacing φ  by the ratio 12 ρρ . 

 
We are closing this section by noting that for the three aforementioned time 

series models and for 2n >   the sample mean and the sample variance are not 

independent random variables. This is proved in proposition 3. So, it is required these 

intervals to be evaluated when they are applied to finite samples after replacing oγ , 

1ρ  and 2ρ  with their sample estimates. The results from this exercise and the relevant 

discussion are given in the next section. 
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Proposition 3: Let nY,...,Y,Y 21  be a sample from the linear process given in (1) with 

∞<ψ∑∞

=0k k , and tε ’s to be i.i.d. random variables with ( )2
εσ0ε ,N~t . Suppose 

also that appropriate values are assigned to the jψ ’s weights such that 

1...0 12n1n <ρ<<ρ<ρ≤ −− . Then for any 2n > , the ML estimators Y  and oγ̂  are 

not independent.  

Proof: See in the appendix. 

�

5. Prediction Interval Estimation 

In this section we assess the performance of prediction intervals (6) and (9) 

when the demand in each period of the newsvendor model is generated by the three 

time#series models AR(1), MA(1), and ARMA(1,1). The evaluation is performed 

over a variety of values for the critical fractile R, and choices of number of 

observations in the sample n, when in the expressions (6), (10), (11) and (12) the 

unknown population parameters are replaced respectively with the sample mean Y , 

the sample variance oγ̂ , and the estimates of the theoretical autocorrelation 

coefficients 1ρ  and 2ρ , which are obtained from (e.g. see Harvey, 1993, page 11)   

( )( )

( )∑

∑

=

+=
−

−

−−
=

γ

γ
=ρ

k

1t

2

t

n

1kt

ktt

o

k
k

YY

YYYY

ˆ

ˆ
ˆ . 

For ease of exposition we divided this section into three parts. In the first part, 

we justify the choice of the parameter values for the three models, describe the 

evaluation criteria, and present the process of generating different realizations (or 

replications) for each model through Monte#Carlo simulations. In the second part, we 

derive and present some exact results for the evaluation criteria when the sample 
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consists of only two observations. Finally, in the third part, we present and discuss 

simulation results for the evaluation criteria, which are computed for different sample 

sizes drawn from the generated replications of each model. 

!	
�"���#�������������������
����
�������

The choice of values for the parameters  φ , θ  and 2

εσ   of the three models 

AR(1), MA(1), and ARMA(1,1) was made up under the following three principles:  

(a) to produce different forms and levels of autocorrelation,  

(b) for all the models under consideration the marginal distribution of tΥ  to 

have the same stationary mean, 	 , and the same variance, oγ , ensuring in that 

way the same coefficient of variation, and  

(c) the theoretical autocorrelation coefficient at lag one to be the same for the  

pairs AR(1) with MA(1), and AR(1) with ARMA(1,1).  

The specifications of the three models which form the basis of our experimental 

framework are described in Table 1. 

 
Table 1: Parameter values for the time series models 
 
 

100=	 ,   400o =γ ,   2.0CV =  

3.01 =ρ  

AR(1) : 3.0=φ ,   3642 =σε  

48.01 =ρ  

AR(1) : 48.0=φ ,   84.3072 =σε  

MA(1) : 75.0=θ , 2562 =σε  

56.01 =ρ  

AR(1) : 56.0=φ , 56.2742 =σε  

ARMA(1,1) : 3.0=φ , 4.0=θ , 2602 =σε  

812.01 =ρ  

AR(1) : 812.0=φ ,  2624.1362 =σε  

ARMA(1,1) : 68.0=φ , 44.0=θ , 

1202 =σε  
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After replacing in (6), (10), (11), (12), the population parameters 	 , oγ , 1ρ  

and 2ρ  by their corresponding sample estimates, the performance of the estimated 

prediction intervals is assessed through four Accuracy Implication Metrics (AIM).  

The first AIM is the actual probability the estimated prediction interval to include (or 

otherwise to cover) the unknown population parameter which in our case is the 

optimal order quantity *Q . We call this actual probability as coverage (CVG). The 

next two AIMs are related to the precision of the estimated prediction intervals. 

Particularly, we consider the Relative Mean Square Error (RMSE) of the estimator 

*Q̂  and the relative expected half length (REHL) of the prediction interval for *Q . 

These two metrics are computed by dividing respectively the mean square error and 

the expected half#length of the interval by *Q . The justification of dividing by *Q  

has been already explained in the previous section. 

The last AIM is related to the actual probability actR  not to experience a 

stock#out during the period. The use of this metric is imposed since by replacing in 

(2) the unknown quantities 	 , oγ  with their corresponding estimates, it is very likely 

the order quantity to differ from  *Q . Then, when the newsvendor model operates at 

the optimal situation, the probability of not experiencing a stock#out during the period 

is not equal to the critical fractile R. The last AIM, therefore, gives the difference 

actRR − .  

For the time series models of Table 1, we showed in the previous section that 

for any 2n > ,  Y  and oγ̂  are not independent. Due to the dependency of Y  and oγ̂ , 

it is extremely difficult, or even impossible, to derive for 2n >  the exact distribution 

of the estimator  *Q̂ , and so to obtain exact values for the four aforementioned AIMs. 

To overcome this problem, we organized and conducted appropriate Monte#Carlo 
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Simulations. In particular, for each model of Table 1, 20000 independent replications 

of maximum size 2001 observations were generated. To achieve stationarity in each 

AR(1) and ARMA(1,1), oY  was generated from the stationary distribution ( )o,N γ	 , 

with 100=	  and 400o =γ . These values for 	  and oγ  were also used in the MA(1).  

Furthermore, in each replication of ARMA(1,1) and MA(1), oε  was generated 

from the distribution ( )2,0N εσ , with the values of 2

εσ  to be given in Table 1. We 

found out that with oε  randomly generated, for  2n = , the simulated results for the 

CVG and the REHL were very close to the corresponding exact ones. On the 

contrary, starting each replication with 0o =ε , the observed discrepancies among 

simulated and exact results of CVGs and REHLs were considerable.  

For each model of Table 1, and in each one of the 20000 replications, the 

estimates Y , oγ̂ , 1ρ̂  and 2ρ̂  were obtained for different combinations of values of R 

and sample sizes n.  Then, in each replication, having available these four estimates, 

for each combination of R and n, *Q̂  was computed using formula (2), and the 

corresponding prediction interval was constructed using respectively (10), (11), (12), 

after replacing in the variance of *Q̂  the unknown quantities oγ , 1ρ  and 2ρ  with their 

corresponding estimates. 

Using, therefore, for each model and for each combination of R and n, the 

20000 different estimates from *Q̂ , and the 20000 different estimated prediction 

intervals for *Q , the four AIMs were obtained as follows:  

(a) The CVG was computed as the percentage of the 20000 prediction 

intervals which included  *Q .  
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(β) The REHL was obtained dividing the average half#length of the 20000 

prediction intervals by *Q .  

(c) For the RMSE, first we computed the MSE as the sum of the variance of 

the 20000 estimates from *Q̂  plus the squared of the difference of the average 

of the 20000 estimates from *Q̂  minus *Q . Then the RMSE was computed 

dividing the MSE by *Q .  

(d) The difference actRR −  was obtained by computing actR as the percentage 

of the estimates from *Q̂  which were greater than the corresponding 1nY +  

values.  

Finally, let us mention that the random number generator which was used in 

this study is described in Kevork (2010), while details about its validity are found in 

Kevork (1990). To generate values from the normal distribution, we adopted the 

traditional method of Box and Muller which is described in Law (2007). 

�

!	����
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For 2n = , the estimate of 1ρ  is 
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The lack of variability in 1ρ̂  when 2n =  allows the exact computation of the CVG 

and the REHL. The process of obtaining the exact results for these two metrics is 

illustrated below. 
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���
���  � Replacing in (5) and (6) 1ρ  with its estimate 5.0ˆ
1 −=ρ , the coverage of the 

estimated exact prediction interval (P.I.) when 2n =  is derived as  

( ) ( ) =

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13

1
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13

1
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where  ( )λ′1t  is given in (4) and λ  in (5). 

 

Then the corresponding REHL of the estimated P.I. will be 

( ) ( ) ( ) ( ) ( )
( )R

1

R2,1R21,11
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e
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���
����� For the AR(1), using in (10) the estimate oγ̂  and 5.0ˆ
1 −=ρ  instead of the true 

values oγ  and 1ρ , the expression inside the square root becomes ( ) 6z5.21ˆ 2

Ro +γ . Then, for 

2n =  the CVG and the REHL of the corresponding estimated asymptotic P.I. are obtained as 
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���
��� !� For the ΜΑ(1), replacing in (11) oγ  and 1ρ  with their corresponding 

estimates, the expression inside the square root becomes 2

Rozˆ375.0 γ . So, for the 

estimated asymptotic prediction interval we have 
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���
��� *� For the ARMA(1,1), setting in (12) 02 =ρ  and 2n =  the expression inside the 

square root is the same as that one of the MA(1), namely 2

Rozˆ375.0 γ . Thus, for the two models 

CVGs and REHLs are the same when 2n = . The only difference among the two models is the 

range of 1ρ . For the MA(1) it holds 5.01 <ρ , while for the ARMA(1,1) we have 11 <ρ .  

 

In Figure 2, for 2n =  we plot the CVGs of the estimated exact and the 

estimated asymptotic P.I.s versus the critical fractile R. The CVGs for the exact P.I.s 

were computed from (13), while the CVGs for the asymptotic P.I.s were obtained 

from (15) or (17). For any pair of values R  and  R1− , the CVGs are the same. We 

observe from graph (a) that the CVGs are approaching the nominal confidence level 

0.95, and in some cases they exceed it, when R is relatively close either to zero or to 

one. From graph (b), all the CVGs are poor as they are considerably lower than 0.95. 
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Also for the pairs, AR with MA, and, AR with ARMA, for which 1ρ  is the same, the 

CVGs in the corresponding ARs are greater. 

 

Figure 2: Graph of CVG as a function of R for 2n =  and nominal confidence level  95%. 
 

(a)  Estimated exact Prediction Intervals (b)  Estimated asymptotic Prediction 

Intervals 

  
 

In conjunction with Figure 2, Table 2 gives the CVGs of the estimated 

asymptotic P.I.s for some selected values of R. Together with the exact values, we 

also give the corresponding simulated ones, namely, the CVGs as these have been 

resulted in using the 20000 independent replications generated from running Monte#

Carlo simulations. When the simulation run in each replication starts with oY  and/or  

oε  to be randomly chosen from their stationary normal distributions, the exact and 

the simulated CVGs are very close to each other, verifying the validity of the 

simulation results which follow in the next part. For the MA, we also give the 

simulated CVGs when the simulation run in each replication starts with  0o =ε . In 

this case, all the simulated CVGs (apart from R=0.5) are lower than their exact 

values.  

The REHLs of the estimated P.I.s are displayed in Table 3. Their exact values 

have been obtained from (14), (16) and (18) setting the nominal confidence level at 

0.95. At this point, let us remind that the true REHLs which ensure equality between 
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CVGs and the nominal confidence level increase as 1ρ  is getting larger (see Figure 

1). Unfortunately, such pattern of changes is not met in Table 3. Particularly, given R, 

the REHLs are  

(a) decreasing when 1ρ  is getting larger, and  

(b) greater in the exact P.I.s.  

 

Table 2: Comparison between exact and simulated results for the coverage (CVG) which is 

attained by the estimated asymptotic prediction intervals, when 2n =  and the nominal 

confidence level is set at 95%. The simulated results are based on 20000 independent 

replications starting the simulation run in each replication  with oY  and/or  oε  to be randomly 

chosen from their stationary normal distributions. 
 
 Critical Fractile 

ρ1=0.3 R=0.5 R=0.6 R=0.7 R=0.8 R=0.9 R=0.95 R=0.99 R=0.999 

AR Exact 0.338 0.356 0.398 0.447 0.481 0.486 0.478 0.469 

 Simulated 0.332 0.349 0.392 0.440 0.472 0.479 0.470 0.464 

ρ1=0.48 R=0.5 R=0.6 R=0.7 R=0.8 R=0.9 R=0.95 R=0.99 R=0.999 

MA Exact 0 0.112 0.218 0.309 0.376 0.395 0.395 0.387 

 Simulated 0 0.111 0.218 0.306 0.372 0.394 0.393 0.386 

  0 0.089* 0.175* 0.247* 0.294* 0.301* 0.293* 0.283* 

AR Exact 0.282 0.298 0.337 0.383 0.419 0.426 0.416 0.405 

 Simulated 0.277 0.291 0.330 0.374 0.409 0.418 0.409 0.399 

ρ1=0.56 R=0.5 R=0.6 R=0.7 R=0.8 R=0.9 R=0.95 R=0.99 R=0.999 

ARMA Exact 0 0.101 0.196 0.280 0.344 0.362 0.360 0.350 

 Simulated 0 0.098 0.193 0.272 0.325 0.341 0.334 0.327 

AR Exact 0.256 0.270 0.307 0.351 0.386 0.392 0.382 0.368 

 Simulated 0.253 0.265 0.302 0.342 0.376 0.385 0.375 0.364 

ρ1=0.812 R=0.5 R=0.6 R=0.7 R=0.8 R=0.9 R=0.95 R=0.99 R=0.999 

ARMA Exact 0 0.061 0.120 0.171 0.208 0.215 0.199 0.177 

 Simulated 0 0.063 0.123 0.170 0.200 0.204 0.184 0.164 

AR Exact 0.161 0.170 0.193 0.221 0.241 0.239 0.216 0.192 

 Simulated 0.162 0.168 0.192 0.218 0.236 0.237 0.216 0.192 

*: The simulation run in each replication started with 0o =ε  

 

The latter two remarks fully justify the size and the pattern of changes of the 

CVGs in Figures 2a and 2b. Furthermore, regarding the asymptotic P.I.s,  for the pairs 

AR with MA and AR with ARMA, the estimated REHLs are greater in the 

corresponding AR models. This justifies why in Figure 2, for each pair of models 

with the same 1ρ , the AR gives higher CVGs. 
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Table 3: Exact results for the REHLs of the estimated prediction intervals, when 2n =  and 

the nominal confidence level is set at 95%. 
 
 Critical Fractile 

ρ1=0.3 R=0.2 R=0.4 R=0.5 R=0.55 R=0.6 R=0.8 R=0.95 R=0.99 

Exact P.I. 1.793 0.821 0.693 0.697 0.742 1.277 2.131 2.728 

AR asymptotic P.I. 0.151 0.086 0.076 0.075 0.077 0.108 0.158 0.197 

ρ1=0.48 R=0.2 R=0.4 R=0.5 R=0.55 R=0.6 R=0.8 R=0.95 R=0.99 

Exact P.I. 1.546 0.708 0.597 0.601 0.640 1.100 1.836 2.351 

MA asymptotic P.I. 0.099 0.026 0.000 0.012 0.024 0.070 0.121 0.155 

AR asymptotic P.I. 0.130 0.074 0.065 0.065 0.067 0.093 0.137 0.169 

ρ1=0.56 R=0.2 R=0.4 R=0.5 R=0.55 R=0.6 R=0.8 R=0.95 R=0.99 

Exact P.I. 1.422 0.651 0.549 0.552 0.588 1.012 1.689 2.162 

ARMA asymptotic P.I. 0.091 0.024 0.000 0.011 0.022 0.065 0.111 0.143 

AR asymptotic P.I. 0.120 0.068 0.060 0.060 0.061 0.085 0.126 0.156 

ρ1=0.812 R=0.2 R=0.4 R=0.5 R=0.55 R=0.6 R=0.8 R=0.95 R=0.99 

Exact P.I. 0.929 0.426 0.359 0.361 0.385 0.662 1.104 1.413 

ARMA asymptotic P.I. 0.059 0.016 0.000 0.007 0.014 0.042 0.073 0.093 

AR asymptotic P.I. 0.078 0.044 0.039 0.039 0.040 0.056 0.082 0.102 
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In this part, we present simulated results for the four Accuracy Implication 

Metrics (AIMs), which have been obtained using for each model of Table 1 the 20000 

generated independent replications after running the Monte#Carlo Simulations. 

For the MA(1) and ARMA(1,1), Table 4 gives the  number of replications for 

which in small samples the estimated asymptotic variance of *Q̂  was negative. This 

number becomes smaller when R approaches either 0 or 1. Nonetheless, with at least 

20 observations in the sample, the number of negative values becomes negligible 

compared to the total of 20000 replications. For example, for the ARMA with 

812.01 =ρ , when n=20 and R=0.99, the percentage of negative values ranges below 

0.7%. In Tables 5, 6, 7, and 8 which follow, in small samples from the MA and the 

ARMA models the AIMs were computed using only those replications for which the 

estimated asymptotic variance of *Q̂  was positive. 

In Table 5, all the CVGs are poor for small n, but approach the nominal 

confidence level 95% as n increases. The rate of convergence to 0.95 depends upon 
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the autocorrelation level expressed by the size of 1ρ  and the rate of convergence of 

the autocorrelation function (ACF) to zero. The AR and the ARMA models of Table 

1 have ACF of the same form. But in the ARMA the ACF converges to zero faster. 

So we observe that the CVGs in the ARMA approach 0.95 faster than those of the 

AR. Regarding the MA with 48.01 =ρ , since its ACF has a “cut#off” at lag 1, its 

CVGs are almost of the same size as those of the AR with  3.01 =ρ .  

Table 4 : Number of replications with negative estimated asymptotic variance of *Q̂  for the 

MA(1) and ARMA(1,1) models. Results are based on 20000 independent replications 

generated from running Monte#Carlo simulations. 
 

 Sample Sizes 

ρ1=0.48 n=5 n=10 n=20 n=30 n=40 n=50 n=60 n=80 n=100 

MA(1) R=0.2 0 0 0 0 0 0 0 0 0 

 R=0.3 216 1 0 0 0 0 0 0 0 

 R=0.4 488 8 0 0 0 0 0 0 0 

 R=0.5 624 15 0 0 0 0 0 0 0 

 R=0.6 488 8 0 0 0 0 0 0 0 

 R=0.7 216 1 0 0 0 0 0 0 0 

 R=0.8 0 0 0 0 0 0 0 0 0 

 R=0.99 0 0 0 0 0 0 0 0 0 

ρ1=0.56 n=5 n=10 n=20 n=30 n=40 n=50 n=60 n=80 n=100 

ARMA(1,1) R=0.2 650 119 14 3 0 0 0 0 0 

 R=0.3 806 100 8 0 0 0 0 0 0 

 R=0.4 921 87 3 0 0 0 0 0 0 

 R=0.5 997 85 2 0 0 0 0 0 0 

 R=0.6 921 87 3 0 0 0 0 0 0 

 R=0.7 806 100 8 0 0 0 0 0 0 

 R=0.8 650 119 14 3 0 0 0 0 0 

 R=0.99 367 178 39 5 1 0 0 0 0 

ρ1=0.812 n=5 n=10 n=20 n=30 n=40 n=50 n=60 n=80 n=100 

ARMA(1,1) R=0.2 958 279 85 38 18 8 3 3 0 

 R=0.3 1228 291 72 18 10 5 2 1 0 

 R=0.4 1465 299 60 11 5 2 0 0 0 

 R=0.5 1611 302 56 8 4 1 0 0 0 

 R=0.6 1465 299 60 11 5 2 0 0 0 

 R=0.7 1228 291 72 18 10 5 2 1 0 

 R=0.8 958 279 85 38 18 8 3 3 0 

 R=0.99 344 276 135 84 35 14 12 4 0 
 

To make general recommendations for the required sample size to attain 

acceptable sizes of CVG, we consider that a CVG equal to 0.90 is a satisfactory 

approximation to the 95% nominal confidence level. So, looking at the entries of 

Table 5:  
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(a)� For the AR with 3.01 =ρ  and the MA with 48.01 =ρ , a sample of at 

least 30 observations should be available.  

(b)� For the AR with 48.01 =ρ  and for the pair AR, ARMA with 

56.01 =ρ  we need a sample of 50 observations or more.  

(c)� For the pair AR, ARMA with 812.01 =ρ  a sample of more than 100 

observations is necessary. 

Table 5: Coverage (CVG) of asymptotic prediction intervals for the AR(1), ARMA(1,1), and 

MA(1) models at nominal confidence level 0.95. Results are based on 20000 independent 

replications generated from running Monte#Carlo simulations. 
 Sample Sizes 

ρ1=0.3 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.5 AR 0.66 0.81 0.88 0.90 0.92 0.93 0.94 0.94 0.95 0.95 

R=0.6 AR 0.67 0.81 0.88 0.90 0.92 0.93 0.94 0.94 0.95 0.95 

R=0.8 AR 0.71 0.82 0.88 0.90 0.92 0.93 0.94 0.95 0.95 0.95 

R=0.95 AR 0.74 0.83 0.88 0.90 0.92 0.93 0.94 0.95 0.95 0.95 

R=0.99 AR 0.73 0.82 0.88 0.90 0.92 0.93 0.94 0.95 0.95 0.95 

ρ1=0.48 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.5 MA 0.67 0.83 0.89 0.91 0.93 0.94 0.94 0.95 0.95 0.95 

 AR 0.60 0.76 0.85 0.88 0.91 0.93 0.94 0.94 0.95 0.95 

R=0.6 MA 0.67 0.83 0.89 0.91 0.93 0.94 0.94 0.95 0.95 0.95 

 AR 0.60 0.76 0.85 0.88 0.90 0.93 0.94 0.94 0.95 0.95 

R=0.8 MA 0.68 0.82 0.89 0.91 0.92 0.93 0.94 0.95 0.95 0.95 

 AR 0.64 0.77 0.85 0.88 0.90 0.92 0.94 0.94 0.95 0.95 

R=0.95 MA 0.68 0.81 0.87 0.90 0.92 0.93 0.94 0.95 0.95 0.95 

 AR 0.66 0.77 0.84 0.88 0.90 0.92 0.94 0.94 0.95 0.95 

R=0.99 MA 0.67 0.79 0.87 0.89 0.91 0.93 0.94 0.95 0.95 0.95 

 AR 0.65 0.76 0.84 0.87 0.90 0.92 0.94 0.94 0.95 0.95 

ρ1=0.56 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.5 ARMA 0.64 0.78 0.86 0.89 0.91 0.93 0.94 0.94 0.95 0.95 

 AR 0.56 0.73 0.83 0.87 0.90 0.92 0.93 0.94 0.95 0.95 

R=0.6 ARMA 0.64 0.78 0.86 0.89 0.91 0.93 0.94 0.94 0.95 0.95 

 AR 0.56 0.73 0.83 0.87 0.90 0.92 0.94 0.94 0.95 0.95 

R=0.8 ARMA 0.64 0.78 0.86 0.89 0.91 0.92 0.94 0.95 0.95 0.95 

 AR 0.59 0.74 0.83 0.87 0.89 0.92 0.94 0.94 0.95 0.95 

R=0.95 ARMA 0.62 0.76 0.85 0.88 0.91 0.92 0.94 0.94 0.95 0.95 

 AR 0.61 0.73 0.82 0.86 0.89 0.91 0.93 0.94 0.95 0.95 

R=0.99 ARMA 0.61 0.74 0.84 0.87 0.90 0.92 0.94 0.94 0.95 0.95 

 AR 0.60 0.72 0.81 0.85 0.88 0.91 0.93 0.94 0.95 0.95 

ρ1=0.812 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.5 ARMA 0.45 0.62 0.76 0.82 0.86 0.90 0.93 0.94 0.95 0.95 

 AR 0.39 0.56 0.70 0.77 0.83 0.88 0.92 0.93 0.94 0.95 

R=0.6 ARMA 0.45 0.62 0.76 0.82 0.86 0.90 0.93 0.94 0.95 0.95 

 AR 0.39 0.55 0.70 0.76 0.83 0.88 0.92 0.93 0.94 0.95 

R=0.8 ARMA 0.45 0.62 0.76 0.81 0.86 0.90 0.93 0.94 0.95 0.95 

 AR 0.40 0.55 0.69 0.76 0.82 0.88 0.91 0.93 0.94 0.95 

R=0.95 ARMA 0.43 0.60 0.74 0.80 0.85 0.89 0.92 0.94 0.94 0.95 

 AR 0.39 0.53 0.67 0.74 0.81 0.87 0.91 0.93 0.94 0.95 

R=0.99 ARMA 0.40 0.58 0.72 0.78 0.84 0.88 0.92 0.94 0.94 0.95 

 AR 0.36 0.51 0.65 0.72 0.79 0.85 0.90 0.93 0.94 0.94 
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From Tables 6 and 7, the REHL and the RMSE exhibit the same behavior for 

each model of Table 1. As R is getting larger, these two metrics decrease when 

5.0R < , reach a minimum at some 5.0R >  and then start to increase again as R 

approaches one. Increasing either 1ρ  or  n,  the minimum  REHLs are attained at 

values of R which are closer to 1. For example, with 48.01 =ρ  and 100n = , the 

minimum REHL is attained at some R around 0.7, while for 812.01 =ρ  and 500n =  

the minimum occur for R around 0.8.  

On the contrary, for any model and sample size of Table 7, the minimum 

RMSEs are observed when R ranges between 0.55 and 0.7. Regarding their sizes, 

given  n  and  R , both REHLs and RMSEs become larger when 1ρ  increases. To 

relate also the CVGs of Table 5 to the REHLs and the RMSEs of Tables 6 and 7, in 

any of the three pairs of models under consideration, we observe that the CVGs of the 

estimated prediction intervals in the AR are always accompanied by larger REHLs 

and larger RMSEs compared to those of the corresponding MA or ARMA models. 

Finally, from Table 8, the size of differences actRR −  declines as  n is getting 

larger. For 5.0R >  and small samples these differences are positive. The differences 

are negative for 5.0R < , but we do not report them in order (a) to reduce the length 

of the table, and (b) because for any pair of values R and R1− , the absolute value of 

the differences is approximately the same. Given 1ρ  and  n, actRR −  becomes larger 

when R ranges between 0.8 and 0.95. In the same range of  R, for samples neither too 

small nor too large, actRR −  is larger in the AR than in the model which belongs to 

the same pair and has the same 1ρ . Considering also that an actRR −  below 1.5% is 

negligible from the management practice point of view, we make the following 

recommendations for the required sample sizes to attain such small differences: (a) at 
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least 30 observations for  3.01 =ρ , (b) at least 50 observations for 1ρ  equal to 0.48 or 

0.56, and (c) more than 100 observations when 812.01 =ρ . 

Table 6: Relative Expected Half#Length (REHL) of the asymptotic confidence intervals for 

the AR(1), ARMA(1,1), and MA(1) models at nominal confidence level 0.95, and coefficient 

of variation equal to 0.2. Results are based on 20000 independent replications generated from 

running Monte#Carlo simulations. 
  Sample Sizes 

ρ1=0.3 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 AR 0.1778 0.1420 0.1206 0.0961 0.0695 0.0498 0.0317 0.0225 0.0159 

R=0.6 AR 0.1242 0.1011 0.0863 0.0690 0.0500 0.0359 0.0228 0.0162 0.0115 

R=0.7 AR 0.1235 0.0998 0.0851 0.0679 0.0492 0.0352 0.0224 0.0159 0.0113 

R=0.8 AR 0.1266 0.1011 0.0859 0.0684 0.0495 0.0354 0.0225 0.0160 0.0113 

R=0.9 AR 0.1349 0.1061 0.0898 0.0713 0.0514 0.0368 0.0234 0.0166 0.0117 

R=0.99 AR 0.1616 0.1242 0.1044 0.0825 0.0593 0.0423 0.0269 0.0191 0.0135 

ρ1=0.48 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 MA 0.1830 0.1472 0.1253 0.1000 0.0724 0.0518 0.0330 0.0234 0.0166 

 AR 0.1886 0.1617 0.1407 0.1142 0.0837 0.0604 0.0386 0.0274 0.0194 

R=0.6 MA 0.1293 0.1046 0.0892 0.0712 0.0515 0.0369 0.0235 0.0167 0.0118 

 AR 0.1343 0.1169 0.1021 0.0831 0.0610 0.0441 0.0282 0.0200 0.0142 

R=0.7 MA 0.1280 0.1033 0.0880 0.0703 0.0509 0.0364 0.0232 0.0164 0.0116 

 AR 0.1325 0.1148 0.1001 0.0813 0.0597 0.0431 0.0276 0.0196 0.0139 

R=0.8 MA 0.1303 0.1048 0.0892 0.0712 0.0515 0.0369 0.0235 0.0167 0.0118 

 AR 0.1342 0.1151 0.1002 0.0813 0.0596 0.0430 0.0275 0.0195 0.0138 

R=0.9 MA 0.1379 0.1102 0.0938 0.0748 0.0541 0.0388 0.0247 0.0175 0.0124 

 AR 0.1408 0.1192 0.1034 0.0837 0.0613 0.0442 0.0282 0.0200 0.0142 

R=0.99 MA 0.1636 0.1297 0.1101 0.0878 0.0635 0.0455 0.0289 0.0205 0.0145 

 AR 0.1645 0.1363 0.1175 0.0947 0.0692 0.0498 0.0318 0.0226 0.0160 

ρ1=0.56 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 ARMA 0.1855 0.1601 0.1383 0.1116 0.0814 0.0587 0.0374 0.0266 0.0188 

 AR 0.1915 0.1716 0.1516 0.1246 0.0923 0.0669 0.0429 0.0305 0.0216 

R=0.6 ARMA 0.1316 0.1141 0.0991 0.0802 0.0586 0.0423 0.0270 0.0191 0.0136 

 AR 0.1371 0.1246 0.1105 0.0910 0.0674 0.0489 0.0314 0.0223 0.0158 

R=0.7 ARMA 0.1300 0.1126 0.0976 0.0789 0.0576 0.0415 0.0265 0.0188 0.0133 

 AR 0.1351 0.1221 0.1081 0.0890 0.0659 0.0478 0.0306 0.0218 0.0154 

R=0.8 ARMA 0.1321 0.1140 0.0985 0.0795 0.0580 0.0418 0.0266 0.0189 0.0134 

 AR 0.1363 0.1221 0.1079 0.0887 0.0657 0.0476 0.0305 0.0217 0.0154 

R=0.9 ARMA 0.1393 0.1195 0.1029 0.0828 0.0603 0.0434 0.0277 0.0196 0.0139 

 AR 0.1423 0.1259 0.1110 0.0910 0.0673 0.0488 0.0313 0.0222 0.0157 

R=0.99 ARMA 0.1647 0.1395 0.1194 0.0957 0.0695 0.0499 0.0318 0.0226 0.0160 

 AR 0.1647 0.1428 0.1252 0.1023 0.0755 0.0547 0.0350 0.0249 0.0176 

ρ1=0.812 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 ARMA 0.1765 0.1864 0.1759 0.1523 0.1171 0.0865 0.0560 0.0399 0.0284 

 AR 0.1736 0.1949 0.1921 0.1744 0.1397 0.1055 0.0692 0.0496 0.0353 

R=0.6 ARMA 0.1259 0.1347 0.1276 0.1107 0.0852 0.0630 0.0408 0.0291 0.0207 

 AR 0.1259 0.1428 0.1409 0.1281 0.1026 0.0775 0.0509 0.0364 0.0259 

R=0.7 ARMA 0.1242 0.1322 0.1251 0.1085 0.0834 0.0616 0.0399 0.0285 0.0202 

 AR 0.1234 0.1394 0.1375 0.1250 0.1001 0.0756 0.0496 0.0356 0.0253 

R=0.8 ARMA 0.1256 0.1327 0.1252 0.1084 0.0833 0.0616 0.0398 0.0284 0.0202 

 AR 0.1235 0.1388 0.1367 0.1242 0.0994 0.0751 0.0493 0.0353 0.0251 

R=0.9 ARMA 0.1317 0.1374 0.1292 0.1117 0.0857 0.0633 0.0409 0.0292 0.0207 

 AR 0.1275 0.1419 0.1396 0.1266 0.1013 0.0765 0.0502 0.0360 0.0256 

R=0.99 ARMA 0.1539 0.1572 0.1469 0.1265 0.0969 0.0714 0.0462 0.0329 0.0234 

 AR 0.1449 0.1585 0.1554 0.1407 0.1125 0.0849 0.0557 0.0399 0.0284 
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Table 7: Relative Mean Square Error (RMSE) of the estimator *Q̂  when the coefficient of 

variation equals to 0.2. Results are based on 20000 independent replications generated from 

running Monte#Carlo simulations. 
  Sample Sizes 

ρ1=0.3 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 AR 1.0576 0.5387 0.3644 0.2199 0.1097 0.0559 0.0223 0.0109 0.0054 

R=0.55 AR 0.6802 0.3518 0.2385 0.1457 0.0737 0.0368 0.0148 0.0073 0.0036 

R=0.6 AR 0.6752 0.3488 0.2363 0.1444 0.0732 0.0364 0.0147 0.0072 0.0036 

R=0.7 AR 0.6906 0.3552 0.2400 0.1465 0.0744 0.0367 0.0148 0.0073 0.0036 

R=0.8 AR 0.7482 0.3818 0.2570 0.1565 0.0796 0.0390 0.0158 0.0078 0.0039 

R=0.99 AR 1.4238 0.7031 0.4671 0.2799 0.1419 0.0689 0.0280 0.0140 0.0070 

ρ1=0.48 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 MA 1.1726 0.5920 0.3983 0.2394 0.1192 0.0606 0.0242 0.0119 0.0059 

 AR 1.4766 0.7781 0.5326 0.3251 0.1634 0.0833 0.0334 0.0164 0.0081 

R=0.55 MA 0.7324 0.3751 0.2537 0.1545 0.0780 0.0389 0.0156 0.0077 0.0038 

 AR 0.9772 0.5222 0.3578 0.2206 0.1122 0.0561 0.0226 0.0111 0.0055 

R=0.6 MA 0.7280 0.3726 0.2519 0.1535 0.0777 0.0385 0.0155 0.0076 0.0038 

 AR 0.9681 0.5168 0.3537 0.2182 0.1111 0.0554 0.0224 0.0110 0.0055 

R=0.7 MA 0.7501 0.3825 0.2581 0.1571 0.0798 0.0393 0.0159 0.0078 0.0039 

 AR 0.9820 0.5220 0.3562 0.2195 0.1121 0.0555 0.0225 0.0111 0.0055 

R=0.8 MA 0.8233 0.4171 0.2807 0.1703 0.0867 0.0424 0.0172 0.0085 0.0043 

 AR 1.0482 0.5531 0.3760 0.2311 0.1183 0.0582 0.0237 0.0117 0.0058 

R=0.99 MA 1.6536 0.8162 0.5430 0.3238 0.1649 0.0801 0.0325 0.0163 0.0082 

 AR 1.8735 0.9564 0.6410 0.3878 0.1989 0.0966 0.0395 0.0197 0.0099 

ρ1=0.56 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 ARMA 1.4366 0.7444 0.5056 0.3066 0.1535 0.0781 0.0313 0.0153 0.0076 

 AR 1.7470 0.9416 0.6495 0.3993 0.2017 0.1029 0.0413 0.0203 0.0100 

R=0.55 ARMA 0.9194 0.4841 0.3302 0.2028 0.1029 0.0514 0.0207 0.0102 0.0050 

 AR 1.1649 0.6370 0.4395 0.2727 0.1391 0.0698 0.0282 0.0138 0.0069 

R=0.6 ARMA 0.9129 0.4802 0.3272 0.2009 0.1021 0.0508 0.0205 0.0101 0.0050 

 AR 1.1536 0.6302 0.4343 0.2695 0.1377 0.0688 0.0278 0.0137 0.0068 

R=0.7 ARMA 0.9350 0.4895 0.3326 0.2040 0.1040 0.0514 0.0208 0.0102 0.0051 

 AR 1.1677 0.6352 0.4364 0.2705 0.1386 0.0688 0.0279 0.0137 0.0069 

R=0.8 ARMA 1.0154 0.5272 0.3568 0.2180 0.1114 0.0547 0.0222 0.0110 0.0055 

 AR 1.2419 0.6705 0.4588 0.2837 0.1458 0.0719 0.0293 0.0144 0.0072 

R=0.99 ARMA 1.9515 0.9794 0.6527 0.3914 0.1999 0.0969 0.0395 0.0198 0.0099 

 AR 2.1829 1.1385 0.7677 0.4677 0.2410 0.1173 0.0481 0.0240 0.0120 

ρ1=0.812 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 n=2000 

R=0.2 ARMA 2.6566 1.5318 1.0786 0.6761 0.3456 0.1770 0.0713 0.0350 0.0172 

 AR 3.3529 2.1202 1.5516 1.0064 0.5273 0.2727 0.1105 0.0542 0.0268 

R=0.55 ARMA 1.7169 1.0185 0.7198 0.4557 0.2352 0.1188 0.0482 0.0237 0.0118 

 AR 2.2089 1.4441 1.0619 0.6936 0.3651 0.1865 0.0762 0.0375 0.0186 

R=0.6 ARMA 1.7049 1.0095 0.7124 0.4509 0.2329 0.1173 0.0476 0.0234 0.0116 

 AR 2.1900 1.4292 1.0494 0.6851 0.3608 0.1838 0.0753 0.0370 0.0184 

R=0.7 ARMA 1.7444 1.0247 0.7200 0.4546 0.2353 0.1177 0.0479 0.0236 0.0118 

 AR 2.2268 1.4407 1.0533 0.6861 0.3617 0.1833 0.0753 0.0371 0.0184 

R=0.8 ARMA 1.8895 1.0944 0.7640 0.4804 0.2490 0.1236 0.0505 0.0249 0.0124 

 AR 2.3863 1.5197 1.1037 0.7161 0.3779 0.1905 0.0784 0.0387 0.0193 

R=0.99 ARMA 3.5832 1.9532 1.3325 0.8205 0.4244 0.2073 0.0851 0.0423 0.0211 

 AR 4.3303 2.5632 1.8126 1.1534 0.6088 0.3032 0.1255 0.0624 0.0310 
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Table 8: Values for actRR −  using the estimator *Q̂  instead of the optimal order quantity *Q  

when the coefficient of variation equals to 0.2. Results are based on 20000 independent 

replications generated from running Monte#Carlo simulations. 
  Sample Sizes 

ρ1=0.3 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 

R=0.6 AR 2.5% 1.9% 0.6% 0.4% 0.4% 0.4% #0.5% #0.2% 0.1% 

R=0.7 AR 5.3% 3.3% 1.5% 1.1% 0.3% 0.6% 0.1% #0.5% #0.3% 

R=0.8 AR 7.9% 4.6% 2.2% 1.4% 0.9% 0.9% 0.0% #0.4% 0.0% 

R=0.9 AR 9.4% 4.9% 2.1% 1.4% 0.7% 0.5% 0.2% 0.0% #0.2% 

R=0.95 AR 9.1% 4.5% 2.1% 1.3% 0.5% 0.5% 0.1% 0.0% #0.2% 

R=0.99 AR 6.6% 2.6% 1.3% 0.7% 0.2% 0.1% 0.1% 0.1% 0.0% 

ρ1=0.48 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 

R=0.6 MA 3.1% 1.8% 1.0% 0.5% 0.1% 0.6% #0.3% #0.2% 0.4% 

 AR 3.1% 2.4% 1.2% 0.7% 0.6% 0.4% #0.3% #0.3% #0.2% 

R=0.7 MA 6.3% 3.5% 1.9% 1.0% 0.4% 0.6% #0.2% #0.2% #0.3% 

 AR 6.4% 4.1% 1.9% 1.3% 0.8% 0.8% 0.1% #0.2% #0.2% 

R=0.8 MA 9.2% 5.0% 2.4% 1.5% 0.7% 0.7% #0.1% #0.1% #0.3% 

 AR 9.0% 5.5% 2.9% 1.8% 1.0% 1.0% 0.2% #0.1% 0.0% 

R=0.9 MA 10.7% 5.4% 2.5% 1.7% 0.9% 0.5% 0.2% 0.3% 0.0% 

 AR 10.5% 5.9% 2.8% 2.0% 1.0% 0.5% 0.4% 0.0% #0.1% 

R=0.95 MA 10.2% 4.8% 2.1% 1.6% 0.8% 0.3% 0.1% 0.3% #0.1% 

 AR 10.2% 5.4% 2.5% 1.8% 0.7% 0.4% 0.2% 0.1% 0.0% 

R=0.99 MA 7.4% 2.9% 1.2% 0.8% 0.3% 0.1% 0.1% 0.1% 0.0% 

 AR 7.4% 3.1% 1.5% 0.9% 0.3% 0.2% 0.1% 0.1% 0.0% 

ρ1=0.56 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 

R=0.6 ARMA 3.5% 2.5% 1.1% 0.7% 0.5% 0.5% #0.3% #0.2% 0.1% 

 AR 3.5% 2.7% 1.3% 0.9% 0.6% 0.4% -0.4% -0.5% -0.2% 

R=0.7 ARMA 7.1% 4.1% 2.2% 1.3% 0.7% 0.8% #0.1% #0.2% 0.0% 

 AR 6.9% 4.7% 2.5% 1.6% 1.0% 0.8% 0.1% -0.3% -0.2% 

R=0.8 ARMA 10.1% 5.6% 3.0% 1.8% 1.0% 0.9% 0.1% 0.0% #0.2% 

 AR 9.5% 6.1% 3.4% 2.1% 1.3% 1.1% 0.3% 0.0% -0.1% 

R=0.9 ARMA 11.6% 6.5% 2.9% 2.1% 1.1% 0.6% 0.3% 0.2% #0.1% 

 AR 11.1% 6.6% 3.3% 2.4% 1.3% 0.6% 0.4% 0.0% 0.0% 

R=0.95 ARMA 11.2% 5.5% 2.6% 1.8% 0.7% 0.3% 0.2% 0.2% 0.0% 

 AR 10.8% 6.0% 2.8% 2.1% 1.0% 0.5% 0.2% 0.1% 0.0% 

R=0.99 ARMA 8.2% 3.4% 1.5% 1.0% 0.3% 0.2% 0.2% 0.1% 0.0% 

 AR 7.8% 3.4% 1.6% 1.1% 0.4% 0.2% 0.1% 0.1% 0.1% 

ρ1=0.812 n=5 n=10 n=20 n=30 n=50 n=100 n=200 n=500 n=1000 

R=0.6 ARMA 4.9% 3.5% 2.0% 1.8% 0.9% 0.6% #0.1% 0.0% 0.1% 

 AR 4.1% 3.4% 2.5% 2.0% 1.3% 1.0% 0.0% 0.1% 0.4% 

R=0.7 ARMA 9.4% 6.7% 4.0% 2.9% 1.9% 1.2% 0.3% #0.1% 0.2% 

 AR 8.1% 6.9% 4.7% 3.7% 2.4% 1.7% 0.2% 0.0% 0.1% 

R=0.8 ARMA 12.9% 9.3% 5.2% 3.7% 2.3% 1.3% 0.8% 0.2% #0.1% 

 AR 11.9% 9.6% 6.0% 4.8% 3.1% 1.7% 0.9% 0.3% 0.1% 

R=0.9 ARMA 15.0% 9.6% 5.3% 4.1% 2.2% 1.1% 0.8% 0.4% 0.0% 

 AR 13.5% 10.2% 6.3% 5.0% 3.1% 1.6% 1.2% 0.2% 0.3% 

R=0.95 ARMA 14.4% 8.6% 4.4% 3.3% 1.6% 0.7% 0.6% 0.4% 0.1% 

 AR 12.8% 8.6% 5.0% 4.2% 2.3% 1.0% 0.8% 0.4% 0.1% 

R=0.99 ARMA 10.2% 5.0% 2.4% 1.6% 0.7% 0.4% 0.2% 0.2% 0.1% 

 AR 9.1% 4.9% 2.5% 1.8% 1.1% 0.4% 0.2% 0.2% 0.1% 
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6. Conclusions 

For the classical newsvendor model operating under optimal conditions we 

have developed a procedure to determine the order quantity when (a) demand in 

successive periods is autocorrelated, (b) the parameters of the stochastic law which 

generates the demand are unknown, and (c) data for the demand are available for a 

number of recent successive periods. 

Using estimates for the stationary mean,  the stationary variance and the 

theoretical autocorrelation coefficients at lags one and two, we illustrated how to 

estimate the optimal order quantity and to construct the corresponding prediction 

interval. General expressions for two types of predictions intervals were derived. The 

exact when the sample consists of two observations, and the asymptotic when the 

sample is considered as sufficiently large. Specifications of the asymptotic prediction 

interval were obtained for the stationary time series models AR(1), MA(1), and 

ARMA(1,1). 

To study the impact of the estimation procedure on the optimal performance 

of the newsvendor model, we have considered four accuracy implication metrics. The 

first is the coverage of the estimated prediction intervals, that is, the actual probability 

the interval to include the optimal order quantity. The second is the expected half#

length of the estimated prediction interval divided by the optimal order quantity. The 

third is the mean square error of the estimator for the optimal order quantity divided 

by the optimal order quantity. Finally, the last implication metric is the difference 

between the critical fractile and the actual probability of not running out of stock 

during the period when the optimal order quantity is estimated. Exact values for the 

first two metrics were obtained only when the sample size was two. In any other 
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sample size greater than two, the four metrics were evaluated through Monte Carlo 

simulations. 

 Although the case of a sample with only two observations could be 

considered as extreme and unrealistic, the evaluation for such a small sample of the 

performance of both the exact and the asymptotic prediction intervals for the three 

time series models under consideration gave useful insights in the estimation process 

of the optimal order quantity. For instance, the analysis showed that it is too difficult 

to obtain exact prediction intervals for samples with more than two observations. 

Regarding the asymptotic prediction intervals, when they are estimated using a 

sample of size two, we verified  the validity of the simulation results since the 

discrepancies between the exact and the simulated values of the coverage were 

negligible. 

By estimating the exact and the asymptotic prediction intervals using a sample 

of two observations, we illustrated that only the exact prediction interval gave 

acceptable coverage in relation to the nominal confidence level, providing that the 

critical fractile was quite close either to zero or to one. The last remark cannot be 

taken as promising for using a sample of size two, since the actual probability not to 

experience a stock out during the period differed considerably from the critical 

fractile, especially when the critical fractile was close to zero or to one. Furthermore, 

the differences between the two probabilities were getting larger when the theoretical 

autocorrelation coefficient at lag one was approaching one. 

 The estimation of the asymptotic prediction intervals in finite samples of size 

greater than two gave some promising and acceptable results. For the three time series 

models under consideration the coverage was approaching to the nominal confidence 

level as the sample was getting larger. The rate of convergence, however, differed 
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accordingly (a) of how fast the autocorrelation function decays to zero, and (b) the 

size of the theoretical autocorrelation coefficient at lag one. So, the convergence rate 

was slower for heavy autocorrelation levels and autocorrelation functions decaying to 

zero quite slowly. With a nominal confidence level of 0.95, a coverage of at least 0.90 

was attained  

(a) for low autocorrelation levels when the sample size was at least 30 observations,  

(b) for moderate autocorrelation levels with a sample size of at least 50 observations, 

and  

(c) for high autocorrelation levels when the sample exceeded 100 observations.  

Furthermore, only for quite large samples the coverage was almost the same in the 

whole range of values of the critical fractile which we considered. For very small, or 

moderate, sample sizes the coverage was declining as the critical fractile was 

approaching one (or zero).  

 Increasing the critical fractile, the relative precision of the prediction intervals 

and the relative mean square error of the estimator for the optimal order quantity 

exhibited the same behavior. Depending upon the sample size and the size of the 

theoretical autocorrelation coefficient at lag one, the minimum values of these two 

accuracy implication metrics were attained at a critical fractile ranging between 0.5 

and one.  

 Regarding the actual probability of not experiencing a stock#out during the 

period when the optimal order quantity is estimated, this probability was approaching 

the critical fractile as the sample size was increasing. For the autocorrelations levels 

and the sample sizes which we considered in this work, the differences between the 

critical fractile and this actual probability became larger when the critical fractile was 

ranging between 0.8 and 0.95. Nonetheless, having at least available the three 
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aforementioned minimum required sample sizes for the three different autocorrelation 

levels for which an acceptable coverage was attained, the differences between these 

two probabilities were ranging below 1.5%.  

Summarizing, therefore, for certain autocorrelation forms we give in the 

current paper guidelines for the minimum required sample size in order the prediction 

interval of the optimal order quantity to attain an acceptable coverage. But, even with 

this minimum required sample size, the researcher faces a dilemma. For that critical 

fractile where the precision is relatively large, for the same critical fractile the actual 

probability of not experiencing a stock out during the period has a relatively large 

distance from the critical fractile. We consider that the tables which we offer can help 

the practitioner to give his own priority and eventually to decide upon the size of the 

critical fractile that he will be aiming at. There is also the case the available sample 

size to be smaller than the required minimum.  Again the tables which we offer can 

help the practitioner to trace the losses in the coverage and in the precision of the 

prediction interval for the optimal order quantity, as well as, to know a#priori the 

actual probability of not running out of stock during the period. 
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Appendix 
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Let [ ]n21 Y...YY=′Y  and [ ]1...11	=′B . If tY  is generated by the linear process 

given in (1) with tε ’s to be i.i.d. normal random variables with mean zero and constant 

variance, then Y  follows the n#variate normal distribution with mean B  and variance#

covariance matrix 
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Theorem 2 of section 2.5 of Searle (1971) says that nY  and oγ̂   are distributed independently 

when 0GΣβ ′=⋅⋅′ .  For n=2 this condition is met, and the proof is completed. 
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This proof requires a set of prerequisite results. Setting 	−= tt Yy  and using (1) we have 
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since ( ) 0E 3

t =ε ,  ( ) ( ) 0EE 2

rtr

2

t =εε=εε  for rt ≠  ,  and  ( ) 0E urt =εεε  for urt ≠≠ . 

Using (A1) and (A2), 
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Using (A5), 
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Further, as the vector [ ]n21 Y...YY=′Y  follows the n#variate Normal distribution with 

the same marginal mean 	  and variance#covariance matrix given in proposition 1,  









ρ















 −+
γ

	 ∑
−

=
k

1n

1k

o  
n

k
121

n
 , N~Y , (A7) 

and so  
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Finally, Sutradhar (1994) showed that 
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Hence, from (A7), (A9), and (A10) we obtain 

( ) ( ) ( ) ( ) 0ˆEYEˆYEˆ,YCov ooo =γ−γ⋅=γ , 

which completes the proof. 
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Using Theorem 2 of Searle (1971), which was stated in proposition 1, we have 
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To prove that Y  and oγ̂  are not independent random variables, it is enough to show that at 

least one element of the product GΣβ ⋅⋅′  is not zero. We choose the element in row 1 and 

column 1 of  GΣβ ⋅⋅′  which is 
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The proof is completed by noting that when n is odd, the expression inside the brackets of 

(A11) becomes 
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