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Abstract

This paper presents a software package that implements Bayesian model averaging
for Gnu Regression, Econometrics and Time-series Library - gretl. The Bayesian Model
Averaging (BMA) is a model-building strategy that takes account of model uncertainty
into conclusions about estimated parameters. It is an efficient tool for discovering the
most probable models and obtaining estimates of their posterior characteristics. In recent
years we have observed an increasing number of software package devoted to BMA for
different statistical and econometric software. In this paper, we propose BMA package for
gretl, which is more and more popular free, open-source software for econometric analysis
with easy-to-use GUI. We introduce BMA package for the linear regression models with
jointness measures proposed by Ley and Steel (2007) and Doppelhofer and Weeks (2009).
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1 Introduction

We know, from elementary statistical theory, that linear regression attempts to model the
relationship between two or more variables by fitting a simple linear equation to observed
data. In a classical approach, we usually rely on the Ordinary Least Squares (OLS) or the
Maximum Likelihood (ML) estimates and the popular model selection criteria, i.e. AIC and
BIC, to find the "best" model. The main problem arises when we have to select a "good"
subset of variables from a large set of regressors. When the number of possible exogenous
variables is K, the number of possible linear models is 2K . If we have, for example, K = 30
possible regressors, the number of possible linear combination equals 1073741824. It means
that it is very difficult, if not impossible, to find the estimates for all combinations. Moreover
Raftery, Madigan, and Hoeting (1997) show that standard variable selection procedures lead
to different estimates and conflicting conclusions about main questions of interest.

Bayesian model averaging is a useful alternative to other variable selection procedures,
because it incorporates model uncertainty into conclusions about estimated parameters. The
BMA is a standard Bayesian solution to model uncertainty, where the inference on parameters
is based on a weighted average over all possible models under consideration, rather than on one
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single regression model. These weights are Bayesian posterior probabilities of the individual
models.

There is a recent and growing literature on Bayesian model averaging. Examples of ap-
plications of BMA can be found in a number of works (see, for example, Hoeting, Madigan,
Raftery, and Volinsky (1999) and Steel (2011) for a recent overview). Our software package
for parameter estimation and model comparison of linear regression models is based on Fer-
nández, Ley, and Steel (2001a,b) and Koop (2003). We use the Markov Chain Monte Carlo
Model Composition MC3 sampling algorithm developed by Madigan, York, and Allard (1995)
to select a representative subset of models.

Doppelhofer and Weeks (2005, 2009) define jointness measure of dependence among ex-
planatory variables that appear in linear regression models. We use that measure to identify
whether different sets of two variables are substitutes, complements or neither. Similar joint-
ness measure was also proposed by Ley and Steel (2007).

In this paper, we propose BMA package for gretl. We can list several reasons why, in
our opinion, it is important to address this topic. The gretl is more and more popular free,
open-source software for econometric analysis, both for students and academics. Unlike most
other statistical software it has easy to use GUI interface. Our software package is, therefore,
a free and easy tool for Bayesian model averaging.1

The rest of the paper is organized as follows: Section 2 briefly outlines the Bayesian
model averaging for linear regression models with MC3 sampling algorithm and jointness
measures. Section 3 provides an overview of gretl packages for BMA. Section 4 presents
empirical illustration. The final section concludes.

2 Bayesian inference in Normal linear regression models

In this section, we briefly introduce the main features of Bayesian inference in linear regression
models. We present Bayesian estimation in linear regression models with Normal-Gamma nat-
ural conjugate prior and many explanatory variables, as well as model selection and Bayesian
model averaging techniques. Finally, in this section we present the basics of Markov Chain
Monte Carlo Model Composition (MC3) sampling algorithm and jointness measures.

2.1 Bayesian estimation and model selection in Normal linear regression

models

Consider the Normal linear regression models which differ in their explanatory variables2.
Suppose that we have K potential explanatory variables, which means there are 2K possible
models and let Mr for r = 1, . . . , 2K denote 2K different models under consideration. Suppose
also that yi and xi denote the observed data on the dependent and explanatory variables for
i = 1, .., N . The observations are placed in (N×1) vector y and (N×kr) matrix Xr containing
the set of regressors included in model Mr

3. Thus, we can write our model as

y = αιN +Xrβr + ǫ (1)

1A recent overview of BMA software in R is given in Amini and Parmeter (2011). Another useful informa-
tions about BMA software are available on website: http://www2.research.att.com/~volinsky/bma.html

2See Koop (2003) for further details.
3We subtract mean from all regressors as in Fernández et al. (2001a).
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where ιN is a (N × 1) vector of ones, βr is a (kr × 1) vector of unknown parameters, ǫ is a
(N ×1) vector of errors which are assumed to be normally distributed, ǫ ∼ N(0N , h−1IN ) and
h is error precision, which is defined as h = 1

σ2 . Following Koop (2003), the prior for βr is
normally distributed

βr | h,Mr ∼ N
(

0kr , h
−1

[

gX ′
rXr

]−1
)

(2)

while we use noninformative prior for intercept and precision

p(α) ∝ 1, p(h) ∝
1

h
(3)

where N(µ,Σ) denotes a Normal distribution with mean µ and variance Σ. The factor of
proportionality g is so-called Zellner (1986) g-prior. This prior is a convenient way to specify
the prior variance matrix, because it reduces the number of prior variance parameters and
considerably simplifies posterior computations. The gretl package offers the four most popular
alternative Zellner’s g-priors (see Fernández et al. (2001a) and Moral-Benito (2010))

• Unit Information Prior (g-UIP), recommended by Kass and Wasserman (1995)

g =
1

N
(4)

• Risk Inflation Criterion (g-RIC), proposed by Foster and George (1994)

g =
1

K2
(5)

• Benchmark Prior, recommended by Fernández et al. (2001a)

g =

{

1
K2 for N ≤ K2;
1
N

for N > K2 (6)

• g-HQ prior which mimics the Hannan-Quinn criterion, see Fernández et al. (2001a)

g =
1

(lnN)3
(7)

By Bayes rule, the mean of the posterior distribution of slope parameters βr, conditional
with respect to model Mr, can be written as

E(βr | y,Mr) =
[

(1 + g)X ′
rXr

]−1
X ′

ry (8)

It is easy to see that if g ≈ 0 the mean of the posterior distribution (8) equals to the OLS
estimates. The posterior variance of βr, conditional with respect to model Mr, is given by

V ar (βr | y,Mr) =
Ns2r
N − 2

[

(1 + g)X ′
rXr

]−1
(9)

where

s2r =

1
1+g

y′PWr
y + g

1+g
(y − ȳιN )′ (y − ȳιN )

N
(10)
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and PWr
= IN −Wr (W

′
rWr)

−1
W ′

r for Wr = (ιN , Xr).
Marginal data density, conditional with respect to model Mr, may be written as

p(y | Mr) ∝

(

g

1 + g

)
kr

2

[

1

1 + g
y′PWr

y +
g

1 + g
(y − ȳιN )′ (y − ȳιN )

]−N−1

2

(11)

In the Bayesian approach to comparing models, it is considered useful to employ proba-
bilities to represent the degree of belief associated with alternative models. For the Normal
linear regression models we can easily test two mutually exclusive (non-nested) and jointly
exhaustive models with different subset of variables. Using Bayes’s theorem, the posterior
odds ratio for for a model Ml against model Mn is given by

p(Ml | y)

p(Mn | y)
=

p(Ml)

p(Mm)

p(y | Ml)

p(y | Mn)
(12)

where p(Ml)
p(Mn)

is the prior odds ratio and p(y|Ml)
p(y|Mn)

is the Bayes factor. If the ratio (12) is larger
than one, we can say that the data supports model Ml over model Mm. In our package, we
use two popular model priors

• Binomial prior, i.e. p(Mr) = θkr(1− θ)K−kr for r = 1, . . . , 2K . Note that for θ = 0.5 we
have Uniform prior on the model space, i.e. p(Mr) = 2−K

• Binomial-Beta prior i.e. (see Gelman, Carlin, Stern, and Rubin (1997))

p(Ξ = kr) =
Γ(K + 1)

Γ(kr + 1)Γ(K − kr + 1)
·
Γ(a+ kr)Γ(K + b− kr)

Γ(a+ b+ kr)
·
Γ(a+ b)

Γ(a)Γ(b)

where Ξ denotes model size.

In our package, we only need to specify the prior expected model size E(Ξ). Note that
in case of Binomial distribution we have E(Ξ) = Kθ and the choice of E(Ξ) automatically
produces a value for the prior inclusion probability θ. If we have Binomial-Beta distribution,
the average model size will satisfy E(Ξ) = a

a+b
K. Here, we follow Ley and Steel (2009) and

fix a = 1 and hence we obtain the value of the second hyperparameter b = K−E(Ξ)
E(Ξ) .

It is easy to show that the posterior probability of model Ml is given by

p(Ml | y) =
p(Ml)p(y | Ml)

∑2K

r p(Mr)p(y | Mr)
(13)

The posterior density of vector β is the average of the posterior densities p(βr | y,Mr)
conditional on the models

p(β | y) =

2K
∑

r=1

p(Mr | y)p(βr | y,Mr) (14)

Once the model posterior probabilities have been calculated, we can also easily evaluate
the mean and variance of the posterior distribution of slope parameters4

E(β | y) =
2K
∑

r=1

p(Mr | y)E(βr | y,Mr) (15)

4See Leamer (1978).
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and

V ar(β | y) =
2K
∑

r=1

p(Mr | y)V ar(βr | y,Mr) +

+
2K
∑

r=1

p(Mr | y) (E(βr | y,Mr)− E(β | y))2 (16)

In a similar manner, we can find other characteristics of the posterior distribution (see
for example (Koop, 2003, p. 266)). We might be also interested in the estimates of posterior
inclusion probability p(i | y) (PIP) i.e. the probability that, conditional on the data, but
unconditional with respect to the model space, the variable xi is relevant in explaining the
dependent variable y (see Leamer (1978); Mitchell and Beauchamp (1988); Doppelhofer and
Weeks (2009)). The posterior inclusion probability is calculated as the sum of the posterior
model probabilities for all of the models including variable xi.

2.2 MC3 sampling algorithm

Our MC3 sampling algorithm is based on the Metropolis - Hastings algorithm, and was origi-
nally developed by Madigan et al. (1995). It simulates a chain of models M (s) for s = 1, . . . , N
to find the equilibrium distribution p(Mr | y) of the posterior model probabilities. We do it as
follows. We set a candidate model from the set of models, including the previously accepted
model M (s−1), all models which delete one independent variable from M (s−1) and all models
which add one independent variable to M (s−1). The chain is then constructed by drawing a
candidate model M ′ and the acceptance probability has the form

α
(

M (s−1),M ′
)

= min

{

p(M ′)p(y | M ′)

p(M (s−1))p(y | M (s−1))
, 1

}

(17)

In order to assess the stability and convergence of the chain, we look at the Pearson’s
correlation between the analytical and MC3 posterior model probabilities. Convergence is
achieved if the correlation is above 0.99 (see Fernández et al. (2001b) and Koop (2003)). Note
that we measure correlation between the analytical and MC3 posterior model probabilities
only for the top ranked models. If the number of top ranked models is very small, it may lead
to high value of Pearson’s correlation even, when convergence has not been achieved.

2.3 Jointness measures

The main implementations of model averaging are concerned with selection of variables when
model uncertainty is present. Another relevant issue which arises in this framework is to iden-
tify whether different sets of two variables xi and xj are substitutes, complements or neither
over the model space. For that reason, Ley and Steel (2007) and Doppelhofer and Weeks
(2009) define ex-post jointness measures of dependence between different sets of explanatory
variables. According to Ley and Steel (2007), the logarithm of the jointness statistic has the
form

JLS = ln

[

p(i ∩ j | y)

p(i | y) + p(j | y)− 2p(i ∩ j | y)

]

(18)
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where p(i∩j | y) represents the sum of the posterior probabilities of those models that contain
both variables xi and xj , p(i | y) and p(j | y) are the posterior inclusion probabilities of xi
and xj .

JLS can be interpreted as the posterior odds ratio of the models including both i and j vs
the models that include them only individually (see Ley and Steel (2007)).

An alternative jointness measure was proposed by Doppelhofer and Weeks (2009). It can
be written as follows

JDW = ln

[

p(i ∩ j | y)p(̃i ∩ j̃ | y)

p(i ∩ j̃ | y)p(̃i ∩ j | y)

]

(19)

where p(̃i ∩ j̃ | y) denotes the sum of the posterior probabilities of the regression models
in which neither xi and xj are included, p(i ∩ j̃ | y) corresponds to sum of the posterior
probabilities of all the models in which xi is included and xj is excluded. The last probability
p(̃i ∩ j | y) is defined accordingly.

JDW corresponds to the posterior odds of including i given that j is included divided by
the posterior odds of including i given that j is not included (see Doppelhofer and Weeks
(2009)). According to Doppelhofer and Weeks (2009), we use the following classification of
jointness among variables:

Evidence Jointness statistics

strong substitutes JLS , JDW ≤ −2
significant substitutes −2 < JLS , JDW ≤ −1
not significantly related −1 < JLS , JDW < 1
significant complements 1 ≥ JLS , JDW < 2
strong complements JLS , JDW ≥ 2

3 Implementation in gretl

In this section, we document the code as well as the use of the gretl package for Bayesian
model averaging, together with accompanying jointness statistics. First, we will describe our
code and the use of the graphical interface, then we will present how to use our BMA script.
At the end we will present the outputs that are returned.

3.1 Hansl programming language

”Hansl (the name expands, in recursive fashion, to ”Hansl’s a neat scripting language") is gretl’s
scripting language.” (Cottrell and Lucchetti, 2013a, p. 1). Hansl’s syntax is very similar to C

language including passing pointers to functions. What is very useful for end user is that Hansl

provides a nice mechanism for building GUI interfaces to functions/packages. Such packages
consist on (at least) one "public" function and zero or more "private" helper functions (see
Cottrell and Lucchetti (2013c)). This distinction gives programmers flexibility in writing the
packages for gretl and allows to split the code into small pieces (functions) responsible for
logically separated computations.

The BMA package consist on 1 public and 17 private functions, but only 16 of them are
used regularly. The name of each function starts with "BMA_" prefix.
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3.2 The core of BMA code

3.2.1 The main function

The core package function which runs and controls the main loop is

function matrix BMA_main (

list big_list "List of all variables for BMA (Y must be the first one)",

int acc_type[1:2:1] "Prior" {"Binomial", "Binomial-Beta"},

scalar av_model_size[0::] "Prior average model size",

scalar alpha[0:1:0.6] "Significance level for the initial model",

int l_rank[2::10] "Number of the top ranked models",

int g_type[1:4:1] "g-prior type" {"Benchmark prior",

"Unit Information Prior (g-UIP)",

"Risk Inflation Criterion (g-RIC)", "Hannan and Quinn HQC"},

int do_joint[0:2:0] "Jointness analysis" {"None",

"Ley-Steel Measure", "Doppelhofer-Weeks Measure"},

int Nrep[1000000] "Total number of replications",

int burn[0:99:10] "Percentage of burn-in draws",

int verbosity[1:2:1] "Verbosity")

Text in quotation marks are labels for GUI interface shown in Figure 2.

The big_list is a gretl’s object "named list" which is just set of K + 1 variables (defined
by names or dataset ID). What is very important: the first member of the big_list is treated
as y variable and rest of the members are treated as K explanatory variables. Furthermore
the big_list cannot contain a const (gretl’s internal and automatically generated constant
term).

The acc_type[1:2:1] is an integer indicating prior type (the default is Binomial, see
page 4).

The scalar av_model_size[0::] is a scalar with prior average model size. Note: if
av_model_size = K

2 and prior is set to Binomial, we get Uniform prior on the model space.

The scalar alpha[0:1:0.6] is the significance level in OLS estimation. A independent
variable enters the initial model if its p-value is less than the significance level (see 2.2). The
default value is α = 0.6, but setting α = 1 results in model consisting on 0 to K randomly
chosen explanatory variables.

The int l_rank[2::10] is the number of the top ranked models. The default value is 10.
See page 5.

The int g_type[1:4:1] indicates type of g-prior to be used (the default value is 1:
"Benchmark prior"). See page 3.

The int do_joint[0:2:0] indicates whether we do jointness analysis and if so which
measure to use. The default value is 0: "None". See page 5.

The int Nrep[1000000] is the total number of replications in Monte Carlo simulation.
The default value is 1000000.

The int burn[0:99:10] is the percentage of burn-in draws ranging from 0% to 99%. The
default value is 10%.

The int verbosity[1:2:1] indicates the level of verbosity of the BMA package when
results are printed. The default value is 1: silent mode.
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3.2.2 The main loop

The main loop of the BMA package is split into four parts:

1. Setting up the MC3 sampling algorithm.

2. Starting model.

3. Markov Chain Monte Carlo simulation.

4. Results printing.

In the first part of the main loop (Setting up the MC3 sampling algorithm), we set up
internal variables and also check correctness of the parameters passed to the package. We use
two private functions here

1. function string BMA_parse (list big_list, const scalar *k,

const scalar *av_model_size, const scalar *l_rank)

2. function void BMA_scaling_factors (matrix *factors,

const scalar *k, scalar *y_sq, const int g_type, const matrix *Y)

where arguments indicated by the * modifier are pointers, see Cottrell and Lucchetti (2013c)
for explanation. If there is no error, we run the function BMA_scaling_factors which calls
the function scalar BMA_gprior (const scalar *k, int type) to compute g-prior ac-
cording to formulas (4)-(7) and sets up some scalars needed for further computations

In the second part of the main loop (Starting model), we construct the initial model for
MC3 sampling and set up some additional internal variables. Here we use five private functions

1. function list BMA_initial_model (const series *Y, list X,

const scalar *alpha, scalar *k, matrix var_order)

2. function void BMA_new_X_matrix (const matrix *big_mat_dem,

const matrix *Ones, const scalar *k, matrix *X_new_num,

matrix *X_new, list X_list, const scalar *k_new,

const matrix *var_numbers2)

3. function void BMA_matrix_precompute (const matrix *Y, matrix *X,

const scalar *k, const matrix *Ones, const matrix *factors,

matrix *XtY, matrix *XtXinv, scalar *yMy)

4. function void BMA_ols (const matrix *Y, matrix *X,

const matrix *factors, matrix *XtY, matrix *XtXinv,

scalar *yMy, matrix *bhat, matrix *bvar)

5. function matrix BMA_model_structure (const matrix *var_numbers,

matrix *X_new_num, const scalar *k, matrix *models_rank[null],

const scalar *l_models_rank[null], bool start_model[0])

The function BMA_initial_model returns X_old_l – the list of explanatory variables in
the initial model according to the scalar *alpha. Next, the function BMA_new_X_matrix

constructs X_new – the matrix of demeaned explanatory variables based on the X_old_l.
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Next, the X_new matrix is taken by the function BMA_matrix_precompute for linear algebra
computations necessary to compute formulas (8)-(11). Now we run the following code snippet
to compute formula (11)

lprob_old = scaling_f[5]*(k_new + 1) - scaling_f[6]*log(scaling_f[3]*yMy

+ scaling_f[4])

Next, we run the function BMA_ols to compute formulas (8)-(10). Finally, we call the function
BMA_model_structure, which returns the 1 × K row vector with 1 if certain explanatory
variable was in the initial model and 0 elsewhere.

In the third part of the main loop (Markov Chain Monte Carlo simulation), we discard
the first Nburn = round(burn/100*Nrep) draws as burn-in replications and then we simulate
a chain of models. The most important code snippets are:

1. Drawing a candidate model.

potential_var = randint(0,k)

...

if (potential_var > 0)

if (mod_struct[potential_var] == 1)

X_new_l = X_old_l - var_numbers[potential_var+1]

else

X_new_l = X_old_l var_numbers[potential_var+1]

endif

...

2. Taking a decision if to accept the candidate model.

if (log(randgen1(u,0,1)) < BMA_accept_prob(acc_type, &lprob_new,

&lprob_old, &k_new, &k_old, &k, &a, &b))

...

endif

3. Construction/modification of the analytical and numerical model rankings.

function void BMA_build_rank (matrix *mod_rank,

matrix *mod_rank_prob, matrix *mod_nume_prob,

const matrix *mod_struct, const scalar *l_rank,

const scalar *lprob_old)

4. Bayesian model averaging stuff.

mod_size += k_new

var_prob += mod_struct

loop for i=1..k_new --quiet

bhat_avg[X_new_num[i] - 1] += bhat[i+1]

bvar_avg[X_new_num[i] - 1] += (bvar[i+1] + bhat[i+1]^2)

endloop
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5. Jointness analysis (if needed).

function void BMA_jointness_matrix (const matrix *mod_struct,

const scalar *k, matrix *jointness_m)

At 1. we draw the number of a variable ranging from 0 to K by the gretl’s build-in function
randint() which uses the SIMD-oriented Fast Mersenne Twister (SFMT) RNG (see Cottrell
and Lucchetti (2013b); Yalta and Schreiber (2012))5. If the dawned variable was in the last
model, this variable was then removed from it, otherwise it was added to the last model.

At 2. we take a decision whether to accept the new draw (model) or not. We call the
BMA_accept_prob function, which implements priors described on page 4.

At 3. we call the BMA_build_rank function, which is responsible for creating analytical,
as well as numerical rankings.

At 4. we do some counting needed for essential BMA computations formulated in (15)-
(16), that is the mean and variance of the posterior distribution of slope parameters, as well
as average model size and posterior inclusion probability (PIP).

Finally at 5., if jointness analysis was chosen, we call the BMA_jointness_matrix function,
which counts each coexistence (jointness) of every pair of explanatory variables in the given
draw.

In the last part of the main loop (Results printing), we finally call the BMA_print_results
function in order to print the MC3 sampling results.A detailed description of the structure of
the results printed here will be depicted in section 3.3.

3.2.3 The matrix returned by BMA package

The BMA package can optionally return a matrix containing substantial results obtained in
the analysis. The structure of that matrix is shown on Figure 1. The result matrix has K

rows, one for each explanatory variable. The first five columns are: PIP, Mean, Std.Dev.,
Cond.Mean, Cond.Std.Dev, see Outputs on page 13 for details. The next K columns appears
only if any of jointness analysis was selected and contain values of one of the bi-jointness
measures: Ley-Steel or Doppelhofer-Weeks.

PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev x1 x2 x3 . . . xK
x1
x2
x3 JLS or JDW

...
xK

Figure 1: Structure of the matrix returned by the BMA package

5The code of BMA package contains private function ran2 which implements so-called "ran2" RNG by
L’Ecuyer with Bays-Durham shuffle and added safeguards (see Press, Flannery, Teukolsky, and Vetterling
(1988)). We implemented this RNG for convenience in replication of the earlier published results, i.e. Fernández
et al. (2001b) and Ley and Steel (2007). In the BMA’s main loop code there are guidelines how to switch from
SFMT to ran2 RNG. Note: our ran2 function is much slower than gretl’s internal RNG.
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3.3 Usage of the BMA package

3.3.1 The GUI way

Once you start the gretl, you must open a data file and then you can load the relevant BMA

function package from the gretl server (In the main window, go to File > Function files > On
server heading). By choosing it, you will open a window similar to the one shown in Figure 2.

Figure 2: Main window for BMA

According to Figure 2, we can specify the following entries in the GUI BMA window

• List of all variables for BMA (Y must be the first one) - Loading variables from
the database, which must have been opened previously. The dependent variable must
be the first one on the list of the variables currently available. Notice that by default
we assume that you want to estimate an intercept, therefore a constant is implicitly
included to the list of the variables.

• Prior - Indicates the choice of model prior. One can employ the Binomial model prior
or the Binomial-Beta model prior. Note that the Uniform model prior is a special case
of Binomial model prior therefore, in fact, our package allows three types of priors.

• Prior average model size - Specifies the prior expected model size E(Ξ). Note that
for the Binomial model prior and E(Ξ) = 0.5K one can define Uniform prior on the
model space.

• Significance level for the initial model - Defines the significance level which was
used to build the initial model. A explanatory variable enters the initial model if its
p-value is less than the significance level. If significance level equals 1 the initial model
will be randomly chosen (with equal probability) from all available models. Note that
if all available explanatory variable enters the initial model you will get the following
gretl’s error messages "No independent variables were omitted".

• Number of the top ranked models - Specifies the number of the best models for
which information is stored.
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• g-prior type - Here one can choose between four Zellner’s g-prior for the regression
coefficients. Choices include: Benchmark prior, Unit Information Prior (g-UIP), Risk
Inflation Criterion (g-RIC) and Hannan and Quinn prior (g-HQP).

• Jointness analysis - If ’None’ (the default) the jointness analysis is omitted. On the
other hand, one can choose jointness measure of Ley and Steel (2007) or Doppelhofer
and Weeks (2009).

• Total number of replications - Defines the total number of iteration draws to be
sampled.

• Percentage of burn-in draws - Provides a number of burn-in replications, calculated
as the percentage of the total number of iteration draws.

• Verbosity - An integer ranging from 1 to 2: the default is 1, which allows to see the
basic Bayesian model averaging results. If verbosity equals 2, a more detailed description
of analysis is provided (initial model, speed of convergence, estimation results for top
ranked models).

• matrix - You can save the output under a specified name to the current session.

3.3.2 Script

The BMA package can also be used inside a Hansl scripts. The very minimal code could be
as follows:

open greene9_1.gdt

include BMA.gfn

list green = dataset

BMA_main(green, 1, 1.5, 0.6, 4, 1, 0, 1000000, 10, 1)

The above example consists of three blocks. The first block is just opening of the so called
greene9_1 dataset, which is bundled in every standard gretl installation. This dataset contains
cross-sectional data on manufacturing of transportation equipment presented as Table 9.1 in
Greene (1999).

The second block is the definition of the green list which contains all variables available in
the greene9_1 dataset. The first variable – valadd – will be the dependent variable.

The third block contains the definition of BMA analysis: Binomial prior, prior average
model size set to 1.5, significance level for the initial model set to 0.6, 4 top ranked models,
Benchmark g-prior, without jointness analysis, 100000 replications with 10% burn in draws
and basic output (verbosity set to 1).

Suppose we want to set g-prior to Risk Inflation Criterion (g-RIC), do jointness analysis
with Ley-Steel Measure and print additional information in results (verbosity set to 2). The
code would be as follows:

BMA_main(arg1, 1, 1.5, 0.6, 4, 3, 1, 1000000, 10, 2)

Finally, if we want to save results of the above BMA analysis in the matrix results_mat,
the code should be as follows:

results_mat = BMA_main(arg1, 1, 1.5, 0.6, 4, 3, 1, 1000000, 10, 2)

12



Bayesian Model Averaging and Jointness Measures for gretl

3.3.3 Outputs

If you select the appropriate entries in the GUI BMA window our package returns the posterior
inclusion probabilities (PIP), the posterior mean and standard deviation of each coefficient
(Mean and Std.Dev.) and the posterior mean and standard deviation of each coefficient con-
ditional on the variable being included in the model (Cond.Mean and Cond.Std.Dev).
Let us consider the data used in Fernández et al. (2001b) (FLS hereafter). These data com-
prises information about 72 countries and 41 potential growth determinants for the period
1960 to 19926. For example, for the FLS data the following estimates should appear:

Posterior moments (unconditional and conditional on inclusion):
PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev

GDPsh560 0.999327 -1.620005 0.306288 -1.621096 0.303491
Confuncious 0.991093 5.673435 1.431048 5.724422 1.332078
Life_Exp 0.942527 0.084238 0.033110 0.089374 0.026533
Equip_Inv 0.914864 15.124520 6.762346 16.531993 5.168802
SubSahara 0.761057 -1.207077 0.844624 -1.586053 0.579907
Muslim 0.643448 0.886294 0.782963 1.377413 0.525597
Rule_of_Law 0.541924 0.794867 0.827829 1.466751 0.528284
Yrs_Open 0.473959 0.650766 0.770991 1.373043 0.512306
. . .

Posterior probability of models:
Model 1: 0.007459
Model 2: 0.005290
Model 3: 0.002812
Model 4: 0.002947
Model 5: 0.002500
. . .

Total probability of the models in ranking (numerical): 0.030975
Correlation coefficient between the analytical
and numerical probabilities of the above models: 0.997971

The BMA estimate function accepts a scalar which sets the verbosity of the output. Its
default value is 1, which causes the estimation output to be printed out. The value 2 forces
BMA function to print out all the details of estimation. You can print out the above-mentioned
results and additional the following informations: the total CPU time, type of model prior,
prior average model size, significance level for the initial model, type of g-prior, total number
of iterations and finally number of burn-in draws. Moreover, the BMA estimate function
produces the estimation results for the initial and top ranking models. The jointness analysis
is inactive by default. If it is, not you will get: posterior joint probability of explanatory
variables, jointness statistic (18) or (19) and classification of jointness measures. The jointness
analysis for the previous example should look like this

Posterior joint probability of variables:
GDPsh560 Confuncious Life_Exp Equip Inv . . .

GDPsh560 0 0.987472 0.930539 0.924864 . . .
Confuncious 0 0 0.922697 0.915026 . . .
Life_Exp 0 0 0 0.858191 . . .
Equip Inv 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . .

6The dataset is publicly available on the Journal of Applied Econometrics online data archive.
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Jointness statistics (Ley-Steel Measure):
GDPsh560 Confuncious Life_Exp Equip Inv . . .

GDPsh560 0 4.367153 2.606921 2.510349 . . .
Confuncious 0 0 2.527561 2.386118 . . .
Life_Exp 0 0 0 1.812569 . . .
Equip Inv 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . .

Strong substitutes:
Rev_Coup, Area -4.453350
Publ_Edu_pct, Area -4.432202
. . .
Significant substitutes:
Mining, Hindu -1.999312
SubSahara, Catholic -1.991931
. . .
Significant complements:
Life_Exp, Equip_Inv 1.812569
GDPsh560, SubSahara 1.033650
. . .
Strong complements:
GDPsh560, Confuncious 4.367153
GDPsh560, Life_Exp 2.606921
. . .

4 Empirical illustration

In this section, we examine the ability of our package in replicating the results published
by Fernández et al. (2001b) and Ley and Steel (2007). We use the same original dataset to
attempt to replicate their results. In our empirical illustration, we discard the first 1 million
models and draw samples from the model space 2 million times. We specify the following
entries in the GUI BMA window: prior = ’Binomial’, prior average model size =’20.5’ (We
set the models priors to the uniform distribution.), number of the top ranked models =’20’,
g-prior type=’Benchmark prior’, total number of replications =’3000000’, percentage of burn-
in draws =’33’. Table 1 present the estimation results. This table also reports the posterior
means and standard errors of regressors calculated from the BMS Zeugner (2012) package
and the results published in Ley and Steel (2007). These benchmarking results allow us to
compare and analyse the performance of our package.

As is apparent from Table 1, the gretl package is reasonably successful at matching the
reported results in Ley and Steel (2007). All the PIPs and estimated posterior means or
standard deviations are reasonably close for all cases and the same variables are identified to
be relevant. Note that the gretl package results are almost identical to the results produced
by BMS package. The only minor differences in posterior results are found between them and
the results published in Ley and Steel (2007).

6The reported chain took about 120 minutes of CPU time on a PC with AMD Phenom II X6 1100T CPU,
6.0 Gb of RAM running under Debian GNU/Linux. We used gretl 1.9.11.cvs compliled by GCC 4.7.2. The
seed for RNG was set to 1000000.
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Table 1: Performance of gretl BMA package for FLS data

BMS gretl Ley and Steel (2007)
Regressors PIP Mean SD PIP Mean SD PIP Mean SD
log GDP in 1960 1.00 -1.4247 0.277 1.00 -1.4275 0.275 1.00 -1.4180 0.269
Fraction Confucian 0.99 0.4936 0.128 0.99 0.4942 0.126 1.00 0.4900 0.117
Life expectancy 0.93 0.9647 0.391 0.94 0.9672 0.386 0.95 0.9574 0.371
Equipment investment 0.92 0.5497 0.236 0.92 0.5499 0.234 0.94 0.5575 0.222
Sub-Saharan dummy 0.74 -0.4748 0.347 0.74 -0.4741 0.346 0.76 -0.4772 0.334
Fraction Muslim 0.64 0.2572 0.229 0.65 0.2607 0.229 0.66 0.2565 0.219
Rule of law 0.50 0.2469 0.279 0.50 0.2463 0.279 0.52 0.2594 0.280
Number of years open economy 0.50 0.2540 0.283 0.51 0.2558 0.282 0.50 0.2556 0.283
Degree of capitalism 0.46 0.1533 0.183 0.46 0.1518 0.182 0.47 0.1577 0.184
Fraction Protestant 0.45 -0.1434 0.178 0.45 -0.1429 0.178 0.46 -0.1441 0.176
Fraction GDP in mining 0.47 0.1493 0.181 0.44 0.1366 0.174 0.44 0.1384 0.176
Non-Equipment investment 0.43 0.1361 0.174 0.47 0.1489 0.181 0.43 0.1346 0.173
Latin American dummy 0.21 -0.0815 0.188 0.22 -0.0822 0.190 0.19 -0.0729 0.175
Primary school enrollment. 1960 0.20 0.1026 0.233 0.21 0.1038 0.234 0.18 0.0941 0.224
Fraction Buddhist 0.21 0.0497 0.112 0.20 0.0481 0.110 0.17 0.0394 0.100
Black market premium 0.18 -0.0405 0.098 0.18 -0.0415 0.099 0.16 -0.0355 0.092
Fraction Catholic 0.13 -0.0111 0.124 0.13 -0.0098 0.125 0.11 -0.0123 0.113
Civil liberties 0.13 -0.0487 0.151 0.13 -0.0496 0.151 0.10 -0.0388 0.134
Fraction Hindu 0.13 -0.0356 0.122 0.13 -0.0360 0.124 0.10 -0.0247 0.094
Primary exports. 1970 0.10 -0.0286 0.104 0.10 -0.0287 0.104 0.07 -0.0209 0.089
Political rights 0.10 -0.0282 0.108 0.10 -0.0283 0.107 0.07 -0.0205 0.090
Exchange rate distortions 0.08 -0.0164 0.070 0.08 -0.0164 0.069 0.06 -0.0134 0.063
Age 0.08 -0.0147 0.058 0.09 -0.0153 0.060 0.06 -0.0098 0.048
War dummy 0.08 -0.0146 0.062 0.08 -0.0146 0.062 0.05 -0.0097 0.051
Fraction of Pop. Speaking English 0.07 -0.0107 0.048 0.07 -0.0106 0.048 0.05 -0.0071 0.039
Fraction speaking foreign language 0.07 0.0120 0.060 0.07 0.0120 0.059 0.05 0.0089 0.051
Size labor force 0.08 0.0194 0.101 0.08 0.0197 0.103 0.05 0.0099 0.069
Ethnolinguistic fractionalization 0.06 0.0106 0.058 0.06 0.0096 0.066 0.04 0.0059 0.042
Spanish Colony dummy 0.05 0.0087 0.063 0.06 0.0106 0.058 0.03 0.0058 0.050
S.D. of black-market premium 0.05 -0.0062 0.038 0.05 -0.0062 0.038 0.03 -0.0041 0.031
French Colony dummy 0.05 0.0067 0.040 0.05 0.0070 0.041 0.03 0.0042 0.031
Absolute latitude 0.04 0.0013 0.055 0.04 0.0011 0.054 0.02 0.0005 0.040
Ratio workers to population 0.04 -0.0057 0.044 0.04 -0.0050 0.041 0.02 -0.0030 0.031
Higher education enrollment 0.05 -0.0085 0.058 0.05 -0.0089 0.060 0.02 -0.0041 0.039
Population growth 0.04 0.0053 0.048 0.04 0.0054 0.048 0.02 0.0032 0.035
British colony dummy 0.04 -0.0033 0.031 0.04 -0.0028 0.031 0.02 -0.0019 0.022
Outward orientation 0.04 -0.0035 0.029 0.04 -0.0037 0.030 0.02 -0.0018 0.021
Fraction Jewish 0.03 -0.0024 0.027 0.04 -0.0024 0.027 0.02 -0.0014 0.020
Revolutions and coups 0.03 0.0000 0.023 0.03 -0.0001 0.023 0.02 0.0000 0.017
Public education share 0.03 0.0008 0.024 0.03 0.0008 0.023 0.02 0.0004 0.017
Area (scale effect) 0.03 -0.0009 0.021 0.03 -0.0009 0.021 0.02 -0.0006 0.014

Note: The dependent variable is the growth rate from 1960-1996 across 72 countries. All the regressors have been standardized to have
zero mean and unit variance.

5 Conclusions

This paper has outlined the new software package that implements Bayesian model averaging
analysis and jointness measures for gretl. Bayesian model averaging is a straightforward and
natural extension of standard Bayesian analysis and it is a useful and popular alternative to
other variable selection procedures, especially for a large set of regressors. Here we used gretl,
which is free, open-source software for econometric analysis with easy-to-use GUI. Our goal
was to familiarize potential users with the features and the different options that our package
has to offer. We described how our package implements a BMA analysis, as well as the outputs
that are returned.
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