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Abstract

In this paper we explore the components that should be incorporated in the price
of uncollateralized 1 derivatives. We assume that one counterparty will act as the
derivatives hedger while the other will act as the investor. Therefore, the derivative’s
price will reflect the replication costs from the hedger’s perspective, which will not be
equal to the replication price from the investor’s perspective 2. We will also assume
that the hedger only has the incentive to hedge the changes in value that the derivative
experiences while the hedger remains not defaulted. In order to take into account both
components of credit risk (jump to default risk and spread risk) the investor’s and
the hedger’s credit curves are considered as stochastic, so that the hedger is not only
concerned with the default event of the investor (but not of his own), but also with
spread changes of both counterparties.

We conclude that CVA (a unilateral version of it that does not depend on the
hedger’s funding curve) and FVA (funding value adjustment, which include both funding
cost and benefit) are the only components to be incorporated in the price of financial
derivatives. Of course, since we will follow pure hedging arguments, every pricing term
can be hedged under reasonable assumptions. The hedging of both components will
not only leave the hedger immune to both spread changes and the default event of
the investor, but also to spread changes of the hedger’s funding curve. The latter
will imply that the sensitivity to spread changes of the debt issued by the hedger will
remain unchanged when a new derivative transaction is traded and during its replication
process.

1Although the results can be easily generalized to partially collateralized transactions.
2Notice that the same happens with any manufactured product. That is, the price of a car reflects the

manufacturing costs of the car manufacturer and has nothing to do with the manufacturing cost of the car
buyer if he was to build his own car.
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1 Introduction

Over the last years, the finance community has come up with what could be considered
one of the most controversial concepts of all time: that is DVA (debit value adjustment).
While conceived by some as economically meaningful, since it contemplates counterparty
credit risk in a symmetrical way, others argue that it is meaningless due to the fact
that it cannot be hedged.

Apart from that, derivatives hedgers have also become concerned about funding
costs (FCA) or benefits (FBA) incurred in the dynamic replication process. This has
produced a big debate lately about which of this four components (CVA, DVA, FCA,
FBA) should be incorporated into the pricing of financial derivatives.

In order to give an answer to these questions, we will make the following assumptions:

• The price of a derivative should reflect all of its hedging costs.

• Since nowadays a very high percentage (if not all) of uncollateralized transactions
imply a counterparty acting as an investor (risk taker) and a hedger (risk hedger),
the derivative’s price should just reflect the hedging costs borne by the hedger.

• The hedger will only be willing to hedge the fluctuations in the derivative’s price
that he will experience while being alive, that is, while not having defaulted.

• There is neither CVA none FVA to be made to fully collateralized derivatives
(with continuous collateral margining in cash, symmetrical collateral mechanisms
and no thresholds, minimum transfer amounts, ...).

Market assumptions:

• There is a liquid CDS (credit default swap) curve for the investor.

• There is a liquid curve of bonds issued by the hedger.

• The derivative’s underlying asset can be repoed on an overnight basis.

• Continuous hedging is possible, unlimited liquidity, no bid-offer spreads, no trading
costs.

• Recovery rates are either deterministic or there are recovery locks available so
that recovery risk is not a concern.

Model assumptions:

• Both the hedger and the investor are defaultable. Simultaneous default is possible.

• The underlying asset follows a difusion process under the real world measure.

• The derivative’s underlying asset is unaffected by the default event of any of the
counterparties.
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• Both the credit spreads of the investor and of the hedger are stochastic following
correlated diffusion processes under the real world measure.

Since funding costs arise due to asymmetries between the collateral characteristics of
derivatives traded with investors (that could be uncollateralized or partially collateralized)
and those of the hedging instruments (usually traded in the interbank market, where
deals are fully collateralized), in order to incorporate funding costs we will assume this
situation. That is, an uncollateralized derivative (the one that the hedger trades with
the investor) is hedged with a collateralized derivative (a REPO on the underlying) (so
that the hedging is done in the interbank market). Nevertheless, in section 5 we will
consider the generic situation in which the hedging instrument is a generic derivative
collateralized in cash. In order to simplify the algebra we will assume that interest rates
are not stochastic, although the results achieved are also valid under stochastic interest
rates.

The structure of the paper is as follows:

• In section 2 we will explore the different risks that will affect the replication price
of financial derivatives. We will discuss which of them can generally be hedged
by the derivative’s hedger and which will be experienced by the hedger while not
having defaulted. We will see that the same risks that can be hedged are the only
ones that will be experienced by the hedger while not having defaulted.

• In order to analyze the management of both components of counterparty credit
risk (default risk and spread changes), in section 3 we will assume that the hedger
is default free while the investor is defaultable. Nevertheless we will assume that
the hedger funds himself at a deterministic spread over the OIS rate, so that
spread changes in the hedger’s funding curve are not a concern.

• In section 4 we will assume the investor to be default free while the hedger is
defaultable with a stochastic funding curve. Although we assume the hedger not
to be concerned about the change in value of the derivative produced by his own
default, the hedger will be willing to hedge the price changes produced by changes
in his spread. In this section we will see that this is feasible while maintaining the
self financing condition of the replication portfolio.

• In section 5 we assume that both the investor and the issuer are defaultable with
stochastic spreads. Therefore the hedger will be exposed to the realistic situation
where market risk, both components of counterparty credit risk (spread changes
and the default event) and changes in the hedger’s spread are a concern.

• In section 6 we summarize the main conclusions.

• In appendix A we review the PDE followed by any credit derivative. We do so by
analyzing the hedging of both jump to default and spread risks. We distinguish
between credit derivatives collateralized in cash and bonds that can be repoed.

• Throughout the paper we will obtain the PDE followed by a derivative under
different assumptions. Solving the PDE with its terminal condition will be equivalent
to calculating an expected value. In appendix B we give a proof in the most general
situation reflected in section 5.
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2 The hedgeable risks

We will assume that under the real world measure P, the evolution of the relevant
market variables (price of the derivative’s underlying asset and credit spreads of the
investor and the hedger) are governed by the following stochastic differential equations:

dSt = µS
t Stdt + σS

t StdW
S,P
t

dhI
t = µI

t dt + σI
t dW

I,P
t

dhH
t = µH

t dt + σH
t dW

H,P
t

(1)

Where St represents the price of the derivative’s underlying asset at time t, hI
t the

short term CDS spread of the investor, hH
t the short term CDS spread of the derivative’s

hedger, µS
t , µI

t , µH
t the real world drifts of the 3 processes and σS

t (t, St), σI
t (t, h

I
t ), σH

t (t, hH
t )

their volatilities. W
S,P
t , W

I,P
t , W

H,P
t are brownian motions under the real world

measure P.

We will assume that the 3 processes are correlated with time dependent correlations:

ρ
S,I
t dt = dW

S,P
t dW

I,P
t , ρ

H,I
t dt = dW

H,P
t dW

I,P
t , ρ

S,H
t dt = dW

S,P
t dW

H,P
t

Notice that although we could have assumed a n-dimensional Heath Jarrow Morton
model for credit spreads, we have assumed that the evolution of the credit curves is
governed by one factor models in order to simplify the algebra.

The other two sources on uncertainty are the default indicator processes N
I,P
t =

1{τI≤t}, N
H,P
t = 1{τH≤t} with real world default intensities λ

I,P
t , λ

H,P
t . Parameters

associated with the investor will carry a superscript I whereas those of the hedger a
superscript H. τI and τH will represent the default times of the investor and the hedger.

The cash flows that the derivative’s hedger will face in the replication process will
depend on each and every one of the sources of uncertainty (St, h

I
t , h

H
t , N

I,P
t , N

H,P
t ).

Therefore Vt = V (t, St, h
I
t , h

H
t , N

I,P
t , N

H,P
t ) (Vt represents the derivative’s value from

the investor’s perspective). Assuming that both the investor and the hedger have not
defaulted by time t, the change in value from t to t+dt experienced by Vt will be given
by (applying Itô’s Lemma for jump diffusion processes)

dVt =
∂Vt

∂St

dSt

| {z }

Delta risk

+
∂Vt

∂hI
t

dhI
t

| {z }

Spread risk to I

+
∂Vt

∂hH
t

dhH
t

| {z }

Spread risk to H

+ ∆V I
t dN

I,P
t

| {z }

Default risk to I

+ ∆V H
t dN

H,P
t

| {z }

Default risk to H

+ ∆V
H,I
t dN

I,P
t dN

H,P
t

| {z }

Simultaneous default risk

+ O(dt)
| {z }

Theta

(2)

∆V I
t represents the jump in the value of the derivative if default of the investor
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happened at time t, ∆V H
t the jump if the hedger defaulted and ∆V

H,I
t the jump

under a simultaneous default.

Of all the risk terms in (2) the hedger will only be exposed to ∂Vt

∂St
dSt,

∂Vt

∂hI
t

dhI
t ,

∂Vt

∂hH
t

dhH
t and ∆V I

t dN
I,P
t . Keep in mind that the others are all conditional on the

hedger having defaulted. Since the hedger will not be there to experience the
change in value of the derivative, there will be no incentive at all to hedge them.

Nevertheless we will analyze whether each one of the components of (2) can
actually be hedged:

•
∂Vt

∂St
dSt: This component can be hedged by trading in the underlying asset.

We assume that there exists a REPO market on St, therefore the hedger will
be able to go long or short the underlying asset without having a net cash
flow.

•
∂Vt

∂hI
t

dhI
t and ∆V I

t dN
I,P
t : In order to be hedged to both spread and default

risks of the investor, the hedger will have to trade in two credit default
swaps written on the investor with different maturities. Notice that this is
because we have assumed a one factor model for the evolution of the credit
spread curve. Had we assumed an n factor model, then the hedger would
have to trade in CDSs with n+1 different maturities. If we assume that the
investor is not perceived by the market as correlated with the hedger, the
hedger will be able to either buy or sell protection on the investor. Notice
that this hedging component will imply a zero net cash flow, since CDSs are
collateralized market instruments 3.

• ∆V
H,I
t dN

I,P
t dN

H,P
t : In order to hedge this component, the hedger will have

to trade a basket derivative written on both the hedger and the investor. Of
course, the market will never be willing to let the hedger sell protection on a
basket for which the investor is one of its components. Therefore this term
can not be hedged in general.

•
∂Vt

∂hH
t

dhH
t and ∆V H

t dN
H,P
t altogether: The hedger will have to trade on two

different credit instruments written on himself (or n + 1 under a n factor
model for the evolution of its credit curve). In general he will have to go
long or short its own credit risk. Since the market will never be willing to
buy protection written on the hedger from the hedger, the hedging of this
two components will have to be done by trading on the hedger’s own debt.
Notice that the hedging will imply a net purchase of debt, so that it could
never be done unless Vt was positive (the hedger has received funds from
the investor) and enough to purchase the net debt, which will not happen in
general. If it was not enough, then the hedging would not be possible. Notice

3When a market participant enters into a collateralized transaction with a positive value (respectively
negative) pays (receives) the value of the deal to (from) the counterparty, but receives (posts) the value as
collateral. This produces a net cash flow of zero.
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that issuing debt to purchase the hedger own debt is not an option, since
the issuance of debt will generate DVA with the funding provider, leaving
the overall DVA unaffected.

•
∂Vt

∂hH
t

dhH
t : Notice that no matter whether the hedger makes the unrealistic

assumption of being default free, in the process of replicating the derivative
it will be exposed to its own funding spread (which will be related to the
short term CDS spread hH

t ). This implies that the pricing equation would
depend on its current funding curve and, unless the hedger unrealistically
believes it to be non stochastic, the hedger should have an incentive to hedge
this source of risk. As we will see in section 4, this source of risk can always
be hedged by trading on two bonds with different maturities while forcing
the net purchase to be zero. Notice also that when a hedger enters into a
non collateralized derivative, the hedger will modify the sensitivity of his
debt with respect to changes in his funding spread. Hedging this component
will leave the sensitivity unchanged.

It is important to stress that the same sources of risk that the hedger will
not be able to hedge are the same sources of risk whose cash flows will never be
paid or received by the issuer (since it will already be defaulted). Therefore it is
convenient to get rid of these sources of risk if we define price as the value of the
replicating portfolio.

3 Pricing and hedging counterparty credit risk

In this section we will assume that the hedger is risk free while considering
the counterparty as risky. Nevertheless, we will assume that the hedger has a
deterministic funding spread h̄H

t over the OIS rate ct. Notice that h̄H
t represents

the short term funding spread over the OIS rate whereas hH
t represents the short

term credit default swap spread. In general hH
t 6= h̄H

t . In this case the hedging
equation will be given by:

Vt = αtSt + βt + γtCDS(t, T ) + ǫt CDS(t, t + dt)︸ ︷︷ ︸
=0

Remember that Vt represents the derivative’s value from the investor’s perspective,
αt the number of stock units to purchase and βt cash in collateralized transactions
plus credits or debits. Notice that regarding counterparty credit risk, the hedger
is exposed to two different sources of uncertainty (default risk and credit spread
risk). Therefore the hedger will have to trade on two CDSs written on the investor
with different maturities.

7



CDS(t,t+dt) is the value of an overnight credit default swap (with unit notional)
under which the protection buyer pays a premium at time t+ dt equal to hI

t dt. If
the default time of the investor t < τ I ≤ t+dt, then the protection buyer receives
(1−RI) (RI represents the investor’s recovery rate) at time t+dt. We will assume
that hI

t dt is such that CDS(t, t + dt) = 0. CDS(t,T) is a credit default swap
maturing on a later date T > t. In general CDS(t, T ) 6= 0. γt and ǫt represent
the notional to trade on each CDS. Both CDS(t, t + dt) and CDS(t, T ) will
represent the NPV from the protection seller and from the hedger’s perspective.

Assume that V0 < 0 (deal inception). Then the hedger will have to pay −V0

to the investor. In order to do so, he will have to borrow an amount equal to −V0

unsecured. At a later time t, if Vt remains negative, the hedger will have a net
asset with value −Vt with the client and a liability of equal value that will have
to be borrowed unsecured. So that when Vt < 0, the hedger still pays a interest
rate of

(
ct + h̄H

t

)
dt at time t + dt.

When Vt > 0, the hedger should have this proceeds available in cash as a
byproduct of an effective replication process (so that its net assets are equal to
the liabilities compromised with the investor). We have to make an assumption
regarding what the hedger does with this cash. Investing in a risky instrument
is not an option, since this would generate an unhedged risk. Another possibility
would be to invest it in a risk free asset. We will assume that there is not such
thing as a risk free asset, so that the most similar to investing funds on a risk
free asset is to leave it as collateral in a fully collateralized derivative transaction
receiving an interest rate of ctdt on it. Another possibility would be to reduce
the short term unsecured funding needs of the hedger, so that he stops paying an
interest rate of

(
ct + h̄H

t

)
dt (what can be seen as receiving a positive interest on

Vt). Another possibility would be to lend it collateralized with an asset through
a REPO receiving the REPO rate. In order to reflect the most general situation,
whenever Vt < 0, the hedger will pay fC

t dt =
(
ct + h̄H

t

)
dt and whenever Vt > 0,

the hedger will receive an interest of fB
t dt (C represents cost while B represents

benefit).

βt is comprised of the following:

• Vt: will either represent cash borrowed or lent at interest rates of fC
t and fB

t

respectively.

• αtSt: will either represent cash borrowed or lent through a REPO on St at
a rate rt.

• γtCDS(t, T ) will either have been posted as collateral by the CDS counterparty
to the hedger (if positive) or the opposite (if negative). The collateral will
accrue at a rate of ct.

Therefore
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dβt = fB
t V +

t dt + fC
t V −

t dt − rtαtStdt − ctγtCDS(t, T )dt

Remember that we have assumed that CDS(t, t + dt) = 0. That is the reason
why there’s no component in dβt related to it.

Expressing the hedging equation in differential form yields

dVt = αtdSt + αtqtStdt + fB
t V +

t dt + fC
t V −

t dt − rtαtStdt − ctγtCDS(t, T )dt

+γtdCDS(t, T ) + ǫtdCDS(t, t + dt)
(3)

The term αtqtStdt comes from the stream of dividends (that we assume continuous)
paid by the underlying asset.

If CDS(t, t + dt) and CDS(t, T ) represent the NPVs from the protection
seller’s perspective

dCDS(t, t + dt) = hI
t dt − (1 − RI)dN

I,P
t

dCDS(t, T ) =
∂CDS(t, T )

∂t
dt+

∂CDS(t, T )

∂hI
t

dhI
t +

1

2

(
σI

t

)2 ∂2CDS(t, T )

∂hI
t
2 dt+∆CDS(t, T )dN

I,P
t

Where ∆CDS(t, T ) represents the chance in value experienced by CDS(t, T )
upon default of the investor

And since Vt is a function of t, St, hI
t , N

I,Q
t , applying Itô’s Lemma for jump

diffusion processes

dVt =
∂Vt

∂t
dt+

∂Vt

∂hI
t

dhI
t +

1

2

(
σI

t

)2 ∂2Vt

∂hI
t

2 dt+
∂Vt

∂St

dSt+
1

2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

dt+Stσ
S
t σI

t ρ
S,I
t

∂2Vt

∂St∂hI
t

dt+∆V I
t dN

I,P
t

So that the hedging equation is

∂Vt

∂t
dt + ∂Vt

∂hI
t

dhI
t + 1

2

(
σI

t

)2 ∂2Vt

∂hI
t
2 dt + ∂Vt

∂St
dSt + 1

2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

dt + Stσ
S
t σI

t ρ
S,I
t

∂2Vt

∂st∂hI
t

dt + ∆V I
t dN

I,P
t =

= αtdSt + αtqtStdt + fB
t V +

t dt + fC
t V −

t dt − rtαtStdt − ctγtCDS(t, T )dt

+ǫt

(
hI

t dt − (1 − RI)dN
I,P
t

)

+γt

(
∂CDS(t,T )

∂t
dt + ∂CDS(t,T )

∂hI
t

dhI
t + 1

2

(
σI

t

)2 ∂2CDS(t,T )

∂hI
t
2 dt + ∆CDS(t, T )dN

I,P
t

)

(4)

In order to be hedged, αt, γt and ǫt will have to be determined so that the
sources of risk dSt, dhI

t and dN
I,Q
t are canceled. Therefore
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αt = ∂Vt

∂St

γt =

∂Vt

∂hI
t

∂CDS(t,T )

∂hI
t

ǫt = γt
∆CDS(t,T )

1−RT
−

∆V I
t

1−RI

(5)

Plugging (5) into (4)

∂Vt

∂t
+ (rt − qt) St

∂Vt

∂St
+ 1

2

(
σI

t

)2 ∂2Vt

∂hI
t
2 + 1

2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

+ Stσ
S
t σI

t ρ
S,I
t

∂2Vt

∂st∂hI
t

+ hI
t

∆V I
t

1−RI
=

= +fB
t V +

t + fC
t V −

t

+

∂Vt

∂hI
t

∂CDS(t,T )

∂hI
t

(
∂CDS(t,T )

∂t
+ 1

2

(
σI

t

)2 ∂2CDS(t,T )

∂hI
t
2 + hI

t
∆CDS(t,T )

1−RT
− ctCDS(t, T )

)
(6)

Since CDS(t, T ) is a credit derivative written on the investor, it must follow
the PDE (partial differential equation) followed by any credit derivative on the
same underlying credit reference (see appendix A), therefore

∂CDS(t, T )

∂t
+

1

2

(
σI

t

)2 ∂2CDS(t, T )

∂hI
t

2 +hI
t

∆CDS(t, T )

1 − RI

−ctCDS(t, T ) = −
(
µI

t − M I
t σI

t

) ∂CDS(t, T )

∂hI
t

Where M I
t is the investor’s market price of credit risk. Therefore

∂Vt

∂t
+ (rt − qt) St

∂Vt

∂St
+
(
µI

t − M I
t σI

t

)
∂Vt

∂hI
t

+ 1
2

(
σI

t

)2 ∂2Vt

∂hI
t
2 + 1

2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

+ Stσ
S
t σI

t ρ
S,I
t

∂2Vt

∂st∂hI
t

+ hI
t

∆V I
t

1−RI
=

= +fB
t V +

t + fC
t V −

t

(7)

As is proved in appendix B in a more general framework, the solution to the
last PDE is equal to calculating the following expected value

Vt = EQ

[
VT exp

(
−

∫ T

s=t

csds

) ∣∣∣Ft

]

︸ ︷︷ ︸
Fully collateralized price

−EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)(
kH

s V +
s + h̄H

s V −
s

)
ds
∣∣∣Ft

]

︸ ︷︷ ︸
Funding value adjustment

+ EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)
(RI − 1)

(
V C

s

)−
dN I,Q

s

∣∣∣Ft

]

︸ ︷︷ ︸
CVA

(8)
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In a measure Q under which the drifts of St and hI
t are given by (rt−qt)St and

µI
t − M I

t σI
t respectively. Under this measure, the default intensity of the default

event of the investor is λ
I,Q
t =

hI
t

1−RI
.

V C
t is the value of the completely cash collateralized transaction (from the

investor’s perspective). We have assumed that upon default of the investor Vt

jumps to RIV
C
t if V C

t < 0 and to V C
t if V C

t ≥ 0. kI
s := fB

t − ct and h̄I
t := fC

t − ct

4 Pricing and hedging the hedger’s spread risk

In this section we will assume that the hedger is trading with a default free
investor, although the hedger itself is a defaultable counterparty.

As we saw in the previous section, whenever Vt > 0, the hedger will have cash
available that will be invested generating an interest rate of fB

t and when Vt < 0
the hedger will have to borrow funds paying an interest rate of fC

t = h̄H
t + ct.

Notice that even if Vt > 0, in general, there will be a possibility for the sign of
Vt to change in the future, so that the hedger will be potentially exposed to its
funding spread. This will make the price to depend on the spread curve of the
hedger, therefore the hedger will have an incentive to hedge this source of risk.
Notice that this borrowing/investing will tipically be done on an overnight basis.

Remember that the hedger’s default event will have an impact in both the
value of the derivative and the value of the liabilities incurred by the hedger in
the replication process. Nevertheless, the hedger will not be exposed to these
price changes, since it will have already defaulted. Apart from that, as we saw in
section 2, this risk is not always hedgeable. Hence, in this section we will assume
that regarding its own credit risk, the hedger will only hedge the risk that it is
really exposed to, that is spread risk. We will also see that contrary to what
happens with default risk (jump to default risk), spread risk can be hedged.

In order to hedge the spread risk, apart from the investing/borrowing already
described, the hedger will have to modify its debt structure (by either issuing
short term debt and buying back long term debt or issuing long term debt and
buying back short term debt) so that the sensitivity of its debt structure to spread
changes remains unchanged before and after closing an uncollateralized deal. It is
very important that this modification does not imply a net issuance or buy back
of debt, so that in dollar terms, the amount of debt to be issued cancels exactly
the amount of debt to buy back. Notice that a net issuance or buy back of debt
apart from what the term related to Vt (described in the 2nd paragraph of this
section) would represent a net cash inflow or outflow that would break the self
financing condition of the replication strategy.

11



The hedging equation will be:

Vt = αtSt + βt + γt

(
B(t, T ) −

B(t, T )

B(t, t + dt)
B(t, t + dt)

)

︸ ︷︷ ︸
=0

Where, again, Vt is the derivative’s value from the investor’s perspective, αt

the number of shares purchased (or sold if negative) to delta hedge the position
(done through a REPO transaction), βt represents overnight credits or debits.

B(t, t + dt) represents short term debt issued by the hedger (that matures
at time t, dt) and that pays an interest rate of ct + h̄H

t . B(t, T ) represents long

term debt. The term B(t,T )
B(t,t+dt)

represents the number of shares issued/bought back

in B(t, t + dt) per share bought back/issued in B(t, T ), so that there is no net
issuance/bay back of debt, apart from what is included in βt. γt represents the
number of shares bought back (or issued if γt < 0) in B(t, T ).

βt will be comprised by the following terms:

• If Vt > 0, the proceeds will be invested in an asset generating an interest
rate of fB

t , if Vt < 0, the hedger will have to issue debt on an overnight basis
paying an interest of fC

t = ct + h̄H
t .

• −αtSt borrowed (or lent if αt < 0) through a REPO on the underlying,
generating an interest of rt.

So that

dβt = fB
t V +

t dt + fC
t V −

t dt − rtαtStdt

And conditional on the hedger having not defaulted at time t + dt (remember
that the hedger will not be really concerned about what happens once he is
defaulted)

dB(t, t + dt) =
(
ct + h̄H

t

)
B(t, t + dt)dt

dB(t, T ) =
∂B(t, T )

∂t
dt +

∂B(t, T )

∂hH
t

dhH
t +

1

2

(
σH

t

)2 ∂2B(t, T )

∂hH
t

2 dt

dVt =
∂Vt

∂t
dt+

∂Vt

∂hH
t

dhH
t +

1

2

(
σH

t

)2 ∂2Vt

∂hH
t

2dt+
∂Vt

∂St

dSt+
1

2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

dt+Stσ
S
t σH

t ρ
H,S
t

∂2Vt

∂St∂hH
t

dt
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Notice that the 3 processes carry a jump component upon default of the hedger.
We have omitted them since the hedger will want to be hedged only on those paths
in which he finds himself alive.

Remember that hH
t represents the short term CDS spread whereas h̄H

t the
short term financing spread over the OIS rate ct. In section A we see that there
is a relationship between hH

t , h̄H
t and the short term REPO rate associated with

short term debt issued by the hedger r
H,t+dt
t

4:

fC
t = ct + h̄H

t = rH
t + h

H,t+dt
t

So that the hedging equation on every path under which the hedger is alive
at time t + dt is

∂Vt

∂t
dt + ∂Vt

∂hH
t

dhH
t + 1

2

(
σH

t

)2 ∂2Vt

∂hH
t

2 dt + ∂Vt

∂St
dSt + 1

2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t
dt + Stσ

S
t σH

t ρ
H,S
t

∂2Vt

∂St∂hH
t

dt =

= fB
t V +

t dt + fC
t V −

t dt + qtαtStdt − rtαtStdt

+γt

(
∂B(t,T )

∂t
dt + ∂B(t,T )

∂hH
t

dhH
t + 1

2

(
σH

t

)2 ∂2B(t,T )

∂hH
t

2 dt −
B(t,T )

B(t,t+dt)

(
ct + h̄H

t

)
B(t, t + dt)dt

)

(9)

In order to be hedged

αt =
∂Vt

∂St

, γt =

∂Vt

∂hH
t

∂B(t,T )

∂hH
t

So that

∂Vt

∂t
+ 1

2

(
σH

t

)2 ∂2Vt

∂hH
t

2 + 1
2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

+ Stσ
S
t σH

t ρ
H,S
t

∂2Vt

∂St∂hH
t

=

= fB
t V +

t + fC
t V −

t + (qt − rt) St
∂Vt

∂St

+

∂Vt

∂hH
t

∂B(t,T )

∂hH
t

(
∂B(t,T )

∂t
+ 1

2

(
σH

t

)2 ∂2B(t,T )

∂hH
t

2 −
(
r

H,t+dt
t + hH

t

)
B(t, T )

)
(10)

4r
H,t+dt
t represents the REPO rate of a REPO transaction with maturity t + dt on a short term bond

issued by the hedger with maturity t + dt
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Since B(t, T ) is a bond issued by the hedger with a short term financing cost
of r

H,T
t

5, as seen in appendix A, it must follow the following PDE:

∂B(t, T )

∂t
+
(
µH

t − σH
t MH

t

) ∂B(t, T )

∂hH
t

+
1

2
σ2

t

∂2B(t, T )

∂(hH
t )2

+
hH

t

1 − RH

∆B(t, T )−r
H,T
t B(t, T ) = 0

Where MH
t is the market price of credit risk of bonds issued by the hedger

and credit derivatives also written on the hedger. ∆B(t, T ) represents the jump
experienced by B(t, T ) on default of the hedger. RH represents the recovery rate
for short term debt B(t, t + dt).

Therefore

∂B(t, T )

∂t
+

1

2
σ2

t

∂2B(t, T )

∂(hH
t )2

= −
(
µH

t − σH
t MH

t

) ∂B(t, T )

∂hH
t

−
hH

t

1 − RH

∆B(t, T )+r
H,T
t B(t, T )

Which implies

∂Vt

∂t
+ 1

2

(
σH

t

)2 ∂2Vt

∂hH
t

2 + 1
2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

+ Stσ
S
t σH

t ρ
H,S
t

∂2Vt

∂St∂hH
t

=

= fB
t V +

t + fC
t V −

t + (qt − rt) St
∂Vt

∂St

+

∂Vt

∂hH
t

∂B(t,T )

∂hH
t

(
−
(
µH

t − σH
t MH

t

)
∂B(t,T )

∂hH
t

−
hH

t

1−RH
∆B(t, T ) + r

H,T
t B(t, T ) −

(
r

H,t+dt
t + hH

t

)
B(t, T )

)

(11)

If we assume that the short term REPO rate does not depend on the underlying
bond r

H,T
t = r

H,t+dt
t and if we assumed that on default B(t, T ) jumped to RHB(t, T )

so that ∆B(t, T ) = (RH − 1)B(t, T )

∂Vt

∂t
+
(
µH

t − σH
t MH

t

)
∂Vt

∂hH
t

+ 1
2

(
σH

t

)2 ∂2Vt

∂hH
t

2 + (rt − qt) St
∂Vt

∂St
+ 1

2

(
Stσ

S
t

)2 ∂2Vt

∂S2
t

+ Stσ
S
t σH

t ρ
H,S
t

∂2Vt

∂St∂hH
t

=

= fB
t V +

t + fC
t V −

t

(12)

With boundary condition VT = g(ST ).

5r
H,T
t represents the rate of a REPO that matures at t + dt and that has B(t, T ) as underlying.
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Again, as is proved in appendix B in a more general framework, the solution
to the last PDE is equal to calculating the following expected value

Vt = EQ

[
VT exp

(
−

∫ T

s=t

csds

) ∣∣∣Ft

]

︸ ︷︷ ︸
Fully collateralized price

−EQ

[∫ T

s=t

exp

(
−

∫ s

h=t

chdh

)(
kH

s V +
s + h̄H

s V −
s

)
ds
∣∣∣Ft

]

︸ ︷︷ ︸
Funding value adjustment

(13)

In a measure Q under which the drifts of St and hH
t are (rt−qt)St and µH

t −MH
t

respectively. In order to prove it, define the process Xt = exp
(
−
∫ t

s=0
csds

)
Vt

(Vt = V (t, hH
t , St)), apply Itô’s Lemma to Vt under Q, integrate between t and T

and take the expected value conditional on Ft.

Notice that the adjustment to be made to the fully collateralized price is the
same as the one obtained in section 3 and that was identified as the funding value
adjustment. Here the only difference is that we do not have the investor’s survival
indicator function, since the investor is assumed to be default free.

5 All costs being priced and hedged simultaneusly

In this section we consider the most general situation in which both the issuer
and the investor can default. Therefore, the hedger will hedge the risk factors
that he is exposed to on every path under which he finds himself not defaulted
(that are in fact the only that are hedgeable). These risk factors are:

• Market risk due to changes in St.

• Investor’s spread risk due to changes in hI
t .

• Investor default event.

• Hedger’s spread risk due to changes in hH
t .

The hedging equation will be

Vt = αtHt+βt+γtCDS(t, T )+ǫt CDS(t, t + dt)︸ ︷︷ ︸
=0

+ωt

(
B(t, T ) −

B(t, T )

B(t, t + dt)
B(t, t + dt)

)

︸ ︷︷ ︸
=0
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Where again Vt represents the NPV from the investor’s perspective, Ht represents
the NPV (from the hedger’s perspective) of a fully collateralized derivative (collateralized
in cash) written on St, βt represents debits/credits and cash in collateral accounts,
CDS(t, t + dt) and CDS(t, T ) short term and long term credit default swaps
written on the investor and B(t, t + dt) and B(t, T ) short term and long term
bonds issued by the hedger.

The change in βt will be given by:

dβt = V +
t fB

t dt + V −
t fC

t dt − ctαtHtdt − ctγtCDS(t, T )dt

Where all the terms have already been defined

In every path in which the hedger has not defaulted before t+dt and conditional
on both the investor and the hedger being alive at time t the change in Vt will be
given by

dVt = LSIHVtdt +
∂Vt

∂St

Stσ
S
t dW S

t +
∂Vt

∂hI
t

σI
t dW I

t +
∂Vt

∂hH
t

σH
t dWH

t + ∆V I
t dN

I,P
t

Where

LSIHVt = ∂Vt

∂t
+ µS

t St
∂Vt

∂St
+ µH

t
∂Vt

∂hH
t

+ µI
t

∂Vt

∂hI
t

+ 1
2

∂2Vt

∂S2
t
S2

t (σ
S
t )2 + 1

2
∂2Vt

∂hH
t

2 (σH
t )2 + 1

2
∂2Vt

∂hI
t
2 (σH

t )2

+ ∂2Vt

∂Sth
H
t

Stσ
S
t σH

t ρ
S,H
t + ∂2Vt

∂Sth
I
t

Stσ
S
t σI

t ρ
S,I
t + ∂2Vt

∂hI
t hH

t

σI
t σ

H
t ρ

I,H
t

The differential change in Ht

dHt = LSHtdt +
∂Ht

∂St

Stσ
S
t dW S

t

where

LSHt =
∂Ht

∂t
+ µS

t St

∂Ht

∂St

+
1

2
S2

t

(
σS

t

)2 ∂2Ht

∂S2
t

The differential change in CDS(t, t + dt) and in B(t, t + dt)
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dCDS(t, t + dt) = hI
t dt − (1 − RI)dN

I,P
t

dB(t, t + dt) =
(
ct + h̄H

t

)
B(t, t + dt)dt

Notice that the jump to default component of B(t, t + dt) has been omitted
since it will not be experienced by the hedger.

The differential change of CDS(t,T)

dCDS(t, T ) = LICDS(t, T )dt +
∂CDS(t, T )

∂hI
t

σI
t dW I

t + ∆CDS(t, T )dN
I,P
t

with

LICDS(t, T ) =
∂CDS(t, T )

∂t
+ µI

t

∂CDS(t, T )

∂hI
t

+
1

2

(
σI

t

)2 ∂2CDS(t, T )

∂hI
t
2

And finally

dB(t, T ) = LHB(t, T )dt +
∂B(t, T )

∂hH
t

σH
t dWH

t

where

LHB(t, T ) =
∂B(t, T )

∂t
+ µH

t

∂B(t, T )

∂hH
t

+
1

2

(
σH

t

)2 ∂2B(t, T )

∂hH
t

2

Again, we have omitted the jump component in B(t, T ) since it will not be
experienced by the hedger

So that the hedging equation in differential form will be given by
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LSIHVtdt + ∂Vt

∂St
Stσ

S
t dW S

t + ∂Vt

∂hI
t

σI
t dW I

t + ∂Vt

∂hH
t

σH
t dWH

t + ∆V I
t dN

I,P
t =

= V +
t fB

t dt + V −
t fC

t dt − ctαtHtdt − ctγtCDS(t, T )dt

+αt

(
LSHtdt + ∂Ht

∂St
Stσ

S
t dW S

t

)

+γt

(
LICDS(t, T )dt + ∂CDS(t,T )

∂hI
t

σI
t dW I

t + ∆CDS(t, T )dN
I,P
t

)

+ǫt

(
hI

t dt − (1 − RI)dN
I,P
t

)

+ωt

(
LHB(t, T )dt + ∂B(t,T )

∂hH
t

σH
t dWH

t −
(
ct + h̄H

t

)
B(t, T )dt

)

(14)

In order to be hedged

αt =
∂Vt
∂St
∂Ht
∂St

γt =

∂Vt

∂hI
t

∂CDS(t,T )

∂hI
t

ǫt = γt
∆CDS(t,T )

1−RT
−

∆V I
t

1−RI

ωt =

∂Vt

∂hH
t

∂B(t,T )

∂hH
t

(15)

So that every risk factor disappears from the hedging equation

L̃SIHVt = V +
t fB

t + V −
t fC

t

+αt

(
L̃SHt − ctHt

)

+γt

(
L̃ICDS(t, T ) − ctCDS(t, T )

)

+ǫth
I
t

+ωt

(
L̃HB(t, T ) −

(
ct + h̄H

t

)
B(t, T )

)
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Where

L̃SIHVt = ∂Vt

∂t
+ 1

2
∂2Vt

∂S2
t
S2

t (σ
S
t )2 + 1

2
∂2Vt

∂hH
t

2 (σH
t )2 + 1

2
∂2Vt

∂hI
t
2 (σH

t )2

+ ∂2Vt

∂Sth
H
t

Stσ
S
t σH

t ρ
S,H
t + ∂2Vt

∂Sth
I
t

Stσ
S
t σI

t ρ
S,I
t + ∂2Vt

∂hI
t hH

t

σI
t σ

H
t ρ

I,H
t

L̃SHt =
∂Ht

∂t
+

1

2
S2

t

(
σS

t

)2 ∂2Ht

∂S2
t

L̃ICDS(t, T ) =
∂CDS(t, T )

∂t
+

1

2

(
σI

t

)2 ∂2CDS(t, T )

∂hI
t
2

L̃HB(t, T ) =
∂B(t, T )

∂t
+

1

2

(
σH

t

)2 ∂2B(t, T )

∂hH
t

2

Substituting ǫt by its value and grouping terms

L̃SIHVt +
hI

t

1−RI
∆V I

t = V +
t fB

t + V −
t fC

t

+αt

(
L̃SHt − ctHt

)

+γt

(
L̃ICDS(t, T ) +

hI
t

1−RI
∆CDS(t, T ) − ctCDS(t, T )

)

+ωt

(
L̃HB(t, T ) −

(
ct + h̄H

t

)
B(t, t + dt)

)

Ht is a cash collateralized derivative written on St, therefore it must meet the
following PDE as seen in [14]

L̃SHt + (rt − qt) St

∂Ht

∂St

− ctHt = 0

CDS(t, T ) is a collateralized credit derivative written on I, therefore it must
follow

L̃ICDS(t, T )+
(
µI

t − M I
t σI

t

) ∂CDS(t, T )

∂hI
t

+
hI

t

1 − RI

∆CDS(t, T )−ctCDS(t, T ) = 0
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And B(t, T ) must follow

L̃HB(t, T ) +
(
µH

t − MH
t σH

t

) ∂B(t, T )

∂hH
t

+
hH

t

1 − RH

∆B(t, T ) − r
H,T
t B(t, T ) = 0

So that the hedging equation is given by

L̃SIHVt +
hI

t

1−RI
∆V I

t = V +
t fB

t + V −
t fC

t

+
∂Vt
∂St
∂Ht
∂St

(
− (rt − qt) St

∂Ht

∂St

)

+

∂Vt

∂hI
t

∂CDS(t,T )

∂hI
t

(
−
(
µI

t − M I
t σI

t

)
∂CDS(t,T )

∂hI
t

)

+

∂Vt

∂hH
t

∂B(t,T )

∂hH
t

(
−
(
µH

t − MH
t σH

t

)
∂B(t,T )

∂hH
t

−
hH

t

1−RH
∆B(t, T ) + r

H,T
t B(t, T ) −

(
r

H,t+dt
t + hH

t

)
B(t, T )

)

Where we have taken into account that ct + h̄H
t = r

H,t+dt
t + hH

t

If as we did in the previous section we assumed that the short term REPO
rate does not depend on the underlying bond r

H,T
t = r

H,t+dt
t and if we assumed

that on default B(t, T ) jumped to RHB(t, T ) so that ∆B(t, T ) = (RH −1)B(t, T )
then

L̂SIHVt +
hI

t

1−RI
∆V I

t = V +
t kt + V −

t h̄H
t + ctVt

Where

L̂SIHVt = ∂Vt

∂t
+ (rt − qt)St

∂Vt

∂St
+ (µH

t − MH
t σH

t ) ∂Vt

∂hH
t

+ (µI
t − M I

t σI
t )

∂Vt

∂hI
t

+1
2

∂2Vt

∂S2
t
S2

t (σ
S
t )2 + 1

2
∂2Vt

∂hH
t

2 (σH
t )2 + 1

2
∂2Vt

∂hI
t
2 (σH

t )2

+ ∂2Vt

∂Sth
H
t

Stσ
S
t σH

t ρ
S,H
t + ∂2Vt

∂Sth
I
t

Stσ
S
t σI

t ρ
S,I
t + ∂2Vt

∂hI
t hH

t

σI
t σ

H
t ρ

I,H
t

(16)

The solution to (16) with terminal condition given by VT = g(ST ) is equal to
calculating the following expected value
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Vt = EQ

[
VT exp

(
−

∫ T

s=t

csds

) ∣∣∣Ft

]

︸ ︷︷ ︸
Fully collateralized price

−EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)(
kH

s V +
s + h̄H

s V −
s

)
ds
∣∣∣Ft

]

︸ ︷︷ ︸
Funding value adjustment

+ EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)
(RI − 1)

(
V C

s

)−
dN I,Q

s

∣∣∣Ft

]

︸ ︷︷ ︸
CVA

(17)

In a measure Q in which the drifts of St, hH
t and hI

t are given by (rt − qt)St,
µH

t −MH
t σH

t and µI
t−M I

t σI
t respectively. Under this measure, the default intensity

of the default event of the investor is
hI

t

1−RI
. Notice that we have obtained the same

result as in section 3, where we assumed the hedger to be default free. The only
difference is that hH

t is stochastic in this context.

6 Conclusion

We have seen that assuming that the derivative’s price incorporates the hedging
costs borne by the hedger (and not those of the investor if he was to hedge the
derivative) and that the hedger has only the incentive to hedge the risks that he
will be exposed to while he remains not defaulted, the only adjustments to be
made to the risk free price (that is, the price of a fully colateralized transaction)
are an unilateral CVA (that does not depend on the hedger’s spread curve) and
a funding adjustment (FVA). We have also seen that both components can be
hedged under reasonable assumptions and that the hedging of those components
leaves the sensitivity of the hedger’s debt with respect changes in the funding
spread unchanged after a new uncollateralized transaction is traded and during
its replication. We have done so in the realistic assumption of stochastic spreads.

A Modeling credit in a PDE framework

In this section our aim is to derive the PDE followed by both bonds issued by
and collateralized credit derivatives written on a generic credit reference. We will
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assume a one factor model assumed for credit spreads and non stochastic interest
rates.

Let’s assume that we wanted to hedge a credit derivative written on a particular
credit reference. ht represents the credit reference short term credit default swap
spread. We assume that under the real world measure P ht follows

dht = µP
t dt + σtdW P

t

µP
t t represents the drift and σt the volatility. W P

t is a P brownian process.

Et will represent the value of the derivative from the investor perspective. It
will both depend on the spread ht and of the default indicator function NP

t =
1{τ≤t}, where τ is the default time of the credit reference. Therefore

dEt =
∂Et

∂t
dt +

∂Et

∂ht

dht +
1

2
σ2

t

∂2Et

∂h2
t

dt + ∆EtdNP
t

Where ∆Et represents the change in Et on default.

The two sources of randomness will have to be hedged with two different credit
derivatives. One of them will be a short term credit default swap whose value
from the protection seller will be represented by CDS(t, t + dt). ht will be such
that CDS(t, t + dt) = 0. Its differential change will be given by:

dCDS(t, t + dt) = htdt − (1 − R)dNP
t

R will represent the recovery rate.

Appart from trading on CDS(t, t + dt), that will only have sensitivity to
the default events, the hedger should also trade on another collateralized credit
derivative Ht (NPV as seen by the hedger) such that

dHt =
∂Ht

∂t
dt +

∂Ht

∂ht

dht +
1

2
σ2

t

∂2Ht

∂h2
t

dt + ∆HtdNP
t

Where ∆Ht represents the change in Ht on default.

The hedging equation will be
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Et = αtHt + γtCDS(t, t + dt) + βt

Where βt represents cash held in collateral accounts. We assume both Et and
Ht to be collateralized in cash, so that:

dβt = ctEtdt − ctαtHtdt

So that the hedging equation in differential form is

∂Et

∂t
dt + ∂Et

∂ht
dht + 1

2
σ2

t
∂2Et

∂h2
t
dt + ∆EtdNP

t =

αt

(
∂Ht

∂t
dt + ∂Ht

∂ht
dht + 1

2
σ2

t
∂2Ht

∂h2
t

dt + ∆HtdNP
t

)

+γt

(
htdt − (1 − R)dNP

t

)

+ctEtdt − ctαtHtdt

(18)

In order to be hedged, the random terms dht and dNP
t should be canceled. In

order to do so

αt =
∂Et

∂ht

∂Ht

∂ht

γt = αt

∆Ht

1 − R
−

∆Et

1 − R

So that

∂Et
∂t

+ 1
2
σ2

t
∂2Et

∂h2
t

+
ht

1−R
∆Et−ctEt

∂Et
∂ht

=

∂Ht
∂t

+ 1
2
σ2

t
∂2Ht

∂h2
t

+
ht

1−R
∆Ht−ctHt

∂Ht
∂ht

(19)

Adding µP
t and dividing by σt both sides of the last equation we obtain what

could be interpreted as the expected excess return of the derivative over the
collateral rate divided by the the derivatives volatility factor, therefore

∂Et
∂t

+µP
t

∂Et
∂ht

+ 1
2
σ2

t
∂2Et

∂h2
t

+
ht

1−R
∆Et−ctEt

σt
∂Et
∂ht

=

∂Ht
∂t

+µP
t

∂Ht
∂ht

+ 1
2
σ2

t
∂2Ht

∂h2
t

+
ht

1−R
∆Ht−ctHt

σt
∂Ht
∂ht

= M(t, ht)

(20)
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Since the ratio must be valid for any credit derivative (Ht and Et are two
generic payoffs), then it must be just a function of t and ht. Mt = M(t, ht) will
be called the market price of credit risk. Therefore, the PDE followed by any
credit derivative must be

∂Et

∂t
+
(
µP

t − σtMt

) ∂Et

∂ht

+
1

2
σ2

t

∂2Et

∂h2
t

+
ht

1 − R
∆Et − ctEt = 0

When dealing with bonds, things are a little bit different. First we have to
establish a relationship between the short term financing rate ft and the short
term CDS rate ht. In order to do so, we compare two different strategies:

• Selling protection at time t with maturity t + dt.

• Buying a bond at t maturing at time t + dt through a REPO transaction
maturing also at time t + dt.

Both strategies imply a net cash flow at time t equal to 0. At time t + dt, the
net cash flows are (assuming τ > t):

CDS: htdt − (1 − R)1{τ≤t+dt}

REPO: (1 + ftdt)1{τ>t+dt} + R1{τ≤t+dt} − (1 + rtdt) =

= (1 + ftdt) − (1 + rtdt) − (1 − R + ftdt)1{τ≤t+dt} = (ft − rt)dt − (1 − R)1{τ≤t+dt}

Where rt is a short term REPO rate on a short term bond maturing at time
t + dt. Therefore:

ht = ft − rt

In order to obtain the PDE followed by defaultable bonds and derivatives
that are replicated with bonds we should keep in mind that collateralized credit
derivatives are financed at the collateral rate used to remunerate collateral accounts
in cash no matter the volatility of the underlying derivative, whereas bonds are
purchased at REPO rates that might differ between different bonds. Therefore
the PDE will be

∂Bt

∂t
+
(
µP

t − σtMt

) ∂Bt

∂ht

+
1

2
σ2

t

∂2Bt

∂h2
t

+
ht

1 − R
∆Bt − rB

t Bt = 0
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Where rB
t represents the short term REPO rate for bond Bt. Notice that ht

is again the short term CDS spread and not the financing spread over EONIA.

B Link between the hedging PDE and the expected

value of the derivative

Let’s assume a function Vt = V (t, St, h
I
t , h

H
t ) that follows the PDE:

L̂SIHVt + hI
t

∆V I
t

1−RI
= +fB

t V +
t + fC

t V −
t

(21)

With terminal condition V (T, ST ) = g(ST )

where

L̂SIHVt = ∂Vt

∂t
+ (rt − qt)St

∂Vt

∂St
+ (µH

t − MH
t σH

t ) ∂Vt

∂hH
t

+ (µI
t − M I

t σI
t )

∂Vt

∂hI
t

+1
2

∂2Vt

∂S2
t
S2

t (σ
S
t )2 + 1

2
∂2Vt

∂hH
t

2 (σH
t )2 + 1

2
∂2Vt

∂hI
t
2 (σH

t )2

+ ∂2Vt

∂Sth
H
t

Stσ
S
t σH

t ρ
S,H
t + ∂2Vt

∂Sth
I
t

Stσ
S
t σI

t ρ
S,I
t + ∂2Vt

∂hI
t hH

t

σI
t σ

H
t ρ

I,H
t

(22)

In this section we want to prove that the solution to (21) is equal to the
following expected value

Vt = EQ

[
VT exp

(
−

∫ T

s=t

csds

) ∣∣∣Ft

]

︸ ︷︷ ︸
Fully collateralized price

−EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)(
kI

sV
+
s + h̄I

sV
−
s

)
ds
∣∣∣Ft

]

︸ ︷︷ ︸
Funding value adjustment

+ EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)
(RI − 1)

(
V C

s

)−
dN I,Q

s

∣∣∣Ft

]

︸ ︷︷ ︸
CVA

(23)

In a measure Q in which the drifts of St, hH
t and hI

t are given by (rt − qt)St,
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µH
t −MH

t σH
t and µI

t−M I
t σI

t respectively. Under this measure, the default intensity

of the default event of the investor is λ
I,Q
t =

hI
t

1−RI
.

In order to see the equivalence between the solution of the PDE and an
expected value, let’s define the process:

Xt = Vt exp

(
−

∫ t

s=0

csds

)
1{τI>t}

Let’s apply Itô’s Lemma for jump diffusion processes to Xt in Q

dXt = 1{τI>t} exp

(
−

∫ t

s=0

csds

)(
−ctVtdt + L̃SIHVtdt +

∂Vt

∂St

Stσ
S
t dWS

t +
∂Vt

∂hI
t

σI
t dW I

t +
∂Vt

∂hH
t

σH
t dWH

t − VtdN
I,Q
t

)

Taking (21) into account

L̃SIHVt =
(
fB

t − ct

)
V +

t +
(
fC

t − ct

)
V −

t +ctVt−λ
I,Q
t ∆V I

t = kI
t V

+
t +h̄I

t V
−
t +ctVt−λ

I,Q
t ∆V I

t

Where kI
t is the funding benefit spread.

So that

dXt = 1{τI>t} exp
(
−
∫ t

s=0
csds

)(
kI

t V +
t dt + hI

t V
−
t dt − λ

I,Q
t ∆V I

t dt

+ ∂Vt

∂St
Stσ

S
t dWS

t + ∂Vt

∂hI
t

σI
t dW I

t + ∂Vt

∂hI
H

σH
t dWH

t − VtdN
I,Q
t

)
=

= 1{τI>t} exp
(
−
∫ t

s=0
csds

)(
kI

t V +
t dt + hI

t V
−
t dt − λ

I,Q
t ∆V I

t dt

+∆V I
t dN

I,Q
t + ∂Vt

∂St
Stσ

S
t dWS

t + ∂Vt

∂hI
t

σI
t dWS

t + ∂Vt

∂hI
t

σH
t dWH

t − (Vt + ∆V I
t )dN

I,Q
t

)

(24)

Integrating between t and T and assuming τ I > t

VT exp
(
−
∫ T

s=t
csds

)
1{τI>T} − Vt =

∫ T

s=t
1{τI>s} exp

(
−
∫ s

h=t
chds

) (
kI

sV +
s ds + hI

sV
−
s ds

−λI,Q
s ∆V I

s ds + ∆V I
s dN I,Q

s + ∂Vs

∂Ss
Ssσ

S
s dWS

s + ∂Vs

∂hI
s
σI

sdWS
s + ∂Vt

∂hH
s

σH
t dWH

t

−(Vs + ∆V I
s )dN I,Q

s

)

(25)
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And taking the expectation conditional on Ft

EQ

h

VT exp
“

−
R T

s=t
csds

”

1{τI>T}

˛

˛

˛

Ft

i

− Vt = EQ

h

R T

s=t
1{τI>s} exp

`

−
R s

h=t
chdh

´

“

kI
sV +

s ds + hI
sV −

s ds

−λ
I,Q
s ∆V I

s ds + ∆V I
s dN

I,Q
s + ∂Vs

∂Ss
SsσS

s dW S
s + ∂Vs

∂hI
s
σI

sdW I
s + ∂Vt

∂hH
s

σH
t dW H

t

−(Vs + ∆V I
s )dN

I,Q
s

”

˛

˛

˛

Ft

i

(26)

In the right hand side of (27), the expected values of the terms in ∂Vs

∂Ss
Ssσ

S
s dW S

s ,
∂Vs

∂hI
s
σI

sdW I
s and ∂Vt

∂hH
s

σH
t dWH

t are zero since they represent the expected values of

Itô integrals. The expected value of the term −λI,Q
s ∆V I

s ds + ∆V I
s dN I,Q

s also
vanishes, since we have the integral of a Cox process less its compensator.

Therefore

Vt = EQ

[
VT exp

(
−
∫ T

s=t
csds

)
1{τI>T}

∣∣∣Ft

]

−EQ

[∫ T

s=t
1{τI>s} exp

(
−
∫ s

h=t
chdh

) (
kI

sV
+
s ds + hI

sV
−
s

)
ds
∣∣∣Ft

]

+EQ

[∫ T

s=t
1{τI>s} exp

(
−
∫ s

h=t
chdh

)
(Vs + ∆V I

s )dN I,Q
s

∣∣∣Ft

]

(27)

But

EQ

[
VT exp

(
−

∫ T

s=t

csds

)
1{τI>T}

∣∣∣Ft

]
= EQ

[
VT exp

(
−

∫ T

s=t

csds

)∣∣∣Ft

]
−EQ

[
VT exp

(
−

∫ T

s=t

csds

)
1{τI≤T}

∣∣∣Ft

]

and

EQ

[
VT exp

(
−

∫ T

s=t

csds

)
1{τI≤T}

∣∣∣Ft

]
= EQ

[∫ T

s=t

VT exp

(
−

∫ T

u=t

cudu

)
1{τI>s}dN I,Q

s

∣∣∣Ft

]
=

EQ

[∫ T

s=t

EQ

[
VT exp

(
−

∫ T

u=t

cudu

)
1{τI>s}dN I,Q

s

∣∣∣Fs

] ∣∣∣Ft

]
=

= EQ

[∫ T

s=t

1{τI>s}dN I,Q
s EQ

[
VT exp

(
−

∫ T

u=t

cudu

) ∣∣∣Fs

] ∣∣∣Ft

]
=

= EQ

[∫ T

s=t

1{τI>s}dN I,Q
s V C

s exp

(
−

∫ s

u=t

cudu

) ∣∣∣Ft

]

Where V C
t represents the time t value of a completely collateralized derivative

with payoff function g(ST ). We have applied the fact that a collateralized derivative
divided by the current account that accrues at the collateral rate is a martingale
under Q.
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Going back to (27), we have

Vt = EQ

[
VT exp

(
−
∫ T

s=t
csds

) ∣∣∣Ft

]

−EQ

[∫ T

s=t
1{τI>s} exp

(
−
∫ s

h=t
chdh

) (
kI

sV
+
s ds + hI

sV
−
s

)
ds
∣∣∣Ft

]

+EQ

[∫ T

s=t
1{τI>s} exp

(
−
∫ s

h=t
chdh

)
(Vs + ∆V I

s − V C
t )dN I,Q

s

∣∣∣Ft

]

(28)

And if we assumed that after default Vs + ∆V I
s = RIV

C
s then

Vt = EQ

[
VT exp

(
−
∫ T

s=t
csds

) ∣∣∣Ft

]

−EQ

[∫ T

s=t
1{τI>s} exp

(
−
∫ s

h=t
chdh

) (
kI

sV
+
s ds + hI

sV
−
s

)
ds
∣∣∣Ft

]

+EQ

[∫ T

s=t
1{τI>s} exp

(
−
∫ s

h=t
chdh

)
(RI − 1)V C

t dN I,Q
s

∣∣∣Ft

]

(29)

References

[1] D. Brigo, A. Pallavicini and D. Perini. Funding, Collateral and Hedging:
Uncovering the Mechanics and the Subtleties of Funding Valuation
Adjustments. http://papers.ssrn.com/sol3/papers.cfm?abstract id=2161528,
October, 2012.

[2] C. Burgard and M. Kjaer. Partial differential equation representations of
derivatives with counterparty risk and funding costs. The Journal of Credit
Risk, Vol. 7, No. 3, 1-19, 2011.

[3] C. Burgard, M. Kjaer. In the balance, Risk, Vol 11, 72-75, 2011.

[4] C. Burgard, M. Kjaer. Generalised CVA with funding and
collateral via semi-replication, Working paper. Dec 2012.
http://papers.ssrn.com/sol3/papers.cfm?abstract id=2027195

[5] Antonio Castagna. On the Dynamic Replication of the DVA: Do Banks Hedge
their Debit Value Adjustment or their Destroying Value Adjustment?. July,
2012. http://www.iasonltd.com/FileUpload/files/DVA

[6] A. Castagna. Funding, liquidity, credit and counterparty risk: Links and
implications. Iason research paper. http://iasonltd.com/resources.php, 2011.

[7] J. Gregory. Being Two-faced over Counterpartyrisk. Risk, February, 2009.

28



[8] J. Gregory. Counterparty credit risk and credit value adjustment. Wiley, 2nd
edition, 2012.

[9] J. Hull, A. White. The FVA debate, Risk, Aug 2012.

[10] J. Hull, A. White. The FVA debate continued, Working paper, Sep 2012.

[11] J. Hull, A. White. CVA, DVA, FVA and the Black-Scholes-Merton
Arguments, Working paper, Sep 2012.

[12] M. Kjaer. A generalized credit value adjustment. The Journal of Credit Risk,
Vol. 7, No. 1, 1-28, 2011.

[13] M. Morini and A. Pramploni. Risky funding with counterparty and liquidity
charges. Risk, March, 70-75, 2011.

[14] V. Piterbarg. Funding beyond discounting: Collateral agreements and
derivatives pricing. Risk, February, 97-102, 2010.

[15] V. Piterbarg. Cooking with collateral. Risk, August, 2012.

29


