Munich Personal RePEc Archive

Exchange Options

Jamshidian, Farshid (2007): Exchange Options.

This is the latest version of this item.

[img]
Preview
PDF
MPRA_paper_4518.pdf

Download (281kB) | Preview

Abstract

The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange option model brought somewhat up-to-date from its form three decades ago, and a lesser exponential Poisson analogue to illustrate jumps. Beyond these, a simplified Markovian SDE/PDE line is sketched in an arbitrage-free semimartingale setting. Focus is maintained on construction of a hedge using Ito's formula and on unique pricing, now for general homogenous payoff functions. Clarity is primed as the multivariate log-Gaussian and exponential Poisson cases are worked out.

Numeraire invariance is emphasized as the primary means to reduce dimensionality by one to the projective space where the SDE dynamics are specified and the PDEs solved (or expectations explicitly calculated). Predictable representation of a homogenous payoff with deltas (hedge ratios) as partial derivatives or partial differences of the option price function is highlighted. Equivalent martingale measures are utilized to show unique pricing with bounded deltas (and in the nondegenerate case unique hedging) and to exhibit the PDE or closed-form solutions as numeraire-deflated conditional expectations in the usual way. Homogeneity, change of numeraire, and extension to dividends are discussed.

Available Versions of this Item

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.