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Abstract

The paper provides an overview of probabilistic forecasting and discusses a the-
oretical framework for evaluation of probabilistic forecasts which is based on proper
scoring rules and moments. An artificial example of predicting second-order autore-
gression and an example of predicting the RTSI stock index are used as illustrations.
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1 Introduction

In the recent years increasing emphasis in the forecasting literature is made on various
probability forecasts. The initial impetus for the development of probabilistic forecasting
was made by meteorological research. Conventional deterministic or categorical forecasts
(in the form of “tomorrow it will rain”) have many potential pitfalls (e.g. Murphy and
Winkler, 1984). It is desirable that the forecaster reported not only some plausible
level of predicted variable (i.e. point forecast), but also the associated uncertainty and
probabilities of different scenarios. “With the availability of uncertainty information,
users—each with their own sensitivity to costs and losses and with varying thresholds for
taking protective action—could better decide for themselves whether to take action and
the appropriate level of response to hydrometeorological situations” (National Research
Council (U.S.), 2006, p. 13). This pertains both to the simplest daily activities (e.g.,
how to dress today) and to natural disasters with devastating effects. A detailed review
of the development of probabilistic forecasting in meteorology can be found in Murphy
and Winkler (1984).

Clearly, these considerations fully apply to forecasting of economic variables: it is
important for users to have information on the degree of forecast uncertainty and prob-
abilities of different scenarios. That is why the probabilistic forecasts are becoming
increasingly popular among economists.

Perhaps the most well-known density forecast is the Bank of England inflation forecast
(Britton et al., 1998; Clements, 2004). The forecasts are published by the Bank of England
since 1996. The forecasts are quarterly, with horizons from one quarter to two years. The
density forecast is given by a two-piece normal distribution combined from two scaled
halves of the usual normal distribution; this kind of predictive distribution captures
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asymmetry. Graphical representations of the Bank of England forecasts are published in
the form of so-called fan charts composed of interval forecasts. A detailed description of
corresponding procedures can be found in Britton et al. (1998).

Another well-known series of probabilistic forecast is provided by the Survey of Pro-
fessional Forecasters conducted by the Federal Reserve Bank of Philadelphia (Engelberg
et al., 2009; Diebold, Tay and Wallis, 1999). Among other things, the survey experts are
asked to assess probabilities that the predicted macroeconomic indicator falls in specified
ranges. This procedure does not allow the experts to specify the complete distribution
function which leads to forecast discretization, i.e. the forecasts are histogram-like.

The practice of providing point forecasts without specifying probabilities and proba-
bility distribution functions still dominates, but it is gradually realized that interpretation
and use of point forecasts may be associated with serious practical difficulties. Partic-
ularly many problems arise when the forecaster is not put to a specific task, i.e. there
is no indication of what particular feature of the forecast distribution (the mean, mode,
median) is to be predicted or what scoring function is to be used to measure the success
of the forecast (for example, absolute prediction error or squared prediction error). Some
of these issues are highlighted in Engelberg et al. (2009) and Gneiting (2011).

One can describe the simplest scheme of decision-making based on probabilistic fore-
casts as follows. The forecast user chooses some action 𝑎. The consequences depend
on a realization 𝑦 of a random variable 𝑌 . If the preferences of the forecast user are
described by a utility function1 𝑢(𝑎, 𝑦) and 𝐹 is a probabilistic forecast of 𝑌 in the form
of a probability distribution function, then the best action 𝑎(𝐹 ) is given by (e.g. Pesaran
and Skouras, 2002)

𝑎(𝐹 ) ∈ argmax
a

E[𝑢(𝑌, 𝑎)] for 𝑌 ∼ 𝐹 .

(By abuse of notation 𝐹 is either a non-random or random distribution function depend-
ing on the context).

One can say that 𝐹1 is better than 𝐹2 if it leads to a greater expected utility, that is,

E𝑢(𝑌, 𝑎(𝐹1)) > E𝑢(𝑌, 𝑎(𝐹2)).

This provides economic foundation for the theory of evaluation of probabilistic forecasts.
Note that in this formulation 𝐹1 and 𝐹2 are function-valued random elements.

On the technical side, the key to many theoretical results mentioned in this paper is the
substitution property of the conditional expectation. Consider a measurable real-valued
function 𝑏(𝑥1, 𝑥2) and two random elements 𝑋1 and 𝑋2 such that E|𝑏(𝑋1, 𝑋2)| < ∞. If
𝑋2 is measurable with respect to a sub-sigma-algebra 𝒜, then 𝑋2 can be treated as fixed
inside the conditional expectation with respect to 𝒜. That is, E[𝑏(𝑋1, 𝑋2)|𝒜] = 𝐵(𝑋2),
where 𝐵(𝑥2) = E[𝑏(𝑋1, 𝑥2)|𝒜]. Unfortunately, the general result is not readily available
from the literature on probability theory. A well-known particular case is 𝑏(𝑥1, 𝑥2) = 𝑥1𝑥2

when we have E[𝑋1𝑋2|𝒜] = E[𝑋1|𝒜]𝑋2. Another variant relates to independent 𝑋1 and
𝒜 (Bhattacharya and Waymire, 2007, Theorem 2.7(ℓ)).

This paper discusses a theoretical framework for comparison and assessment of prob-
abilistic forecasts. Section 2 introduces the notions of proper scoring rule and various
modes of calibration and discusses their properties and relationships among them. Sec-
tion 3 discusses testable conditions for the different modes of calibration. Sections 4 and
5 provide illustrative examples. Section 6 concludes.

1In forecasting theory one often uses expected loss minimization instead of expected utility maximiza-
tion.
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2 Key concepts, definitions and properties

2.1 Scoring rules

A scoring rule is a function 𝑆(𝐹, 𝑦) of a distribution function 𝐹 and an outcome 𝑦. It is
assumed that this rule is used to judge the quality or success of forecasts in the form of
distribution functions. If 𝐹1, . . . , 𝐹N is a series of realizations of predictive distribution
functions, and 𝑦1, . . . , 𝑦N is a series of actual outcomes, then the forecast is more successful
the greater is its average score given by

1

𝑁

N∑︁

i=1

𝑆(𝐹i, 𝑦i).

For a scoring rule 𝑆(𝐹, 𝑦) let 𝑆(𝐹2, 𝐹1) be the expected score of a forecast distribution
𝐹2 under the assumption that the outcome 𝑌 is distributed as 𝐹1. That is,

𝑆(𝐹2, 𝐹1) = E𝑆(𝐹2, 𝑌 ) for 𝑌 ∼ 𝐹1.

By definition the scoring rule 𝑆 is proper, if

𝑆(𝐹1, 𝐹1) ≥ 𝑆(𝐹2, 𝐹1),

and it is strictly proper, if the inequality is strict for 𝐹2 ̸= 𝐹1. If the forecast is assessed
according to a proper scoring rule, then the forecaster cannot expect to benefit by cheating
and reporting forecast distribution which he believes to be incorrect. A detailed review
of this topic can be found in Gneiting and Raftery (2007) and Bröcker and Smith (2007).

When forecasts are in the form of distribution functions it is logical to base forecast
evaluation on the notion of a proper scoring rule, because it is closely related to the
maximization of expected utility by the forecast user. Indeed, define a scoring rule 𝑆 as
the utility of an outcome 𝑦 under the best action 𝑎(𝐹 ):

𝑆(𝐹, 𝑦) = 𝑢(𝑦, 𝑎(𝐹 )).

Such a utility-based scoring rule is proper since

𝑆(𝐹1, 𝐹1) = E𝑢(𝑌, 𝑎(𝐹1)) ≥ E𝑢(𝑌, 𝑎(𝐹2)) = 𝑆(𝐹2, 𝐹1) for 𝑌 ∼ 𝐹1

(see, for example, Gneiting and Raftery, 2007). Therefore, when analyzing the quality
of probabilistic forecasts one can focus on proper scoring rules and abstract from the
implicit expected utility maximization.

A proper scoring rule was first proposed for discrete outcomes by G. Brier (Brier,
1950). Let a variable 𝑌 take on 𝑘 values (1, . . . , 𝑘), 𝜋j = PF{𝑌 = 𝑗} be the probabilities
that the predictive distribution 𝐹 associates with the events 𝑌 = 𝑗 and I{𝐴} be the
indicator of an event (condition) 𝐴. Then the Brier scoring rule (also called the quadratic
scoring rule) is given by

𝑆(𝐹, 𝑦) = −

k∑︁

j=1

(𝜋j − I{𝑦 = 𝑗})2 .

In econometrics the most widely used is the logarithmic scoring rule for density fore-
casts. If the predictive distribution 𝐹 is absolutely continuous, then 𝐹 ′(𝑦) is the corre-
sponding density function and the logarithmic scoring rule is defined by

𝑆(𝐹, 𝑦) = log𝐹 ′(𝑦).
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For a discrete distribution
𝑆(𝐹, 𝑦) = log 𝜋y.

There is an obvious close relation between the logarithmic scoring rule and the log-
likelihood function.

A less popular, but quite natural scoring rule is the continuous ranked probability score
(CRPS). Its original definition is

𝑆(𝐹, 𝑦) = −∫∞−∞ (𝐹 (𝑡)− I{𝑡 ≤ 𝑦})2 𝑑𝑡.

It depends on an integral of squared distance in the 𝐿2 metric between forecast distribu-
tion function and the empirical distribution function for a single observation 𝑦. Gneiting
and Raftery (2007) propose an alternative form of this rule:

𝑆(𝐹, 𝑦) =
1

2
E|𝑌 − 𝑌 ′| − E|𝑌 − 𝑦| for independent 𝑌 ∼ 𝐹 and 𝑌 ′ ∼ 𝐹.

This scoring rule is appealing, because it can be viewed as a generalization of the absolute
distance loss which is a popular criterion for evaluation of point forecast.

2.2 Calibration

The idea of calibration It is important for a probabilistic forecast to be calibrated
(Diebold, Hahn and Tay, 1999; Gneiting et al., 2007). Calibration means good conformity
between the probabilistic forecasts and the actual behavior of the predicted variable. In
practice probabilistic forecasts are not always well-calibrated. In particular, a common
phenomenon is overconfidence (Lichtenstein et al., 1982). For example, consider a situ-
ation where people report central 90% forecast intervals. The intention is that for such
an interval 5% of outcomes should be below the lower bound of the interval, 5% above
the upper bound and 90% within the interval. In practice it may well be that only 50%
of the outcomes fall in the interval. One can also observe downward or upward biases in
forecast distributions. For example, an upward bias (in the case of a central 90% interval)
may result in a situation when 9% of the outcomes are above the upper bound and only
1% of outcomes are below the lower bound.

The cause of such inconsistency can be that forecast success is judged not by proper
scoring rules, but by some other criteria. For example, to appear a more skillful forecaster
a person can report a forecast interval that is too narrow, thus exaggerating his expertise.
It can also happen that a forecaster has an incentive to report good news (for example, low
forecasts of unemployment and high forecasts of GDP growth) rather than bad ones. Some
people, on the contrary, tend to overestimate probabilities of adverse events; perhaps they
consciously or unconsciously aspire to be in a situation when they could say “Well, I told
you that there will be a crisis.”

Even if subjective judgments do not play a great role, as in forecasting using econo-
metric models, miscalibrated forecasts are still very common, as all models are imperfect
to varying degrees. To improve methods and models used for making forecasts we need
to be able to diagnose miscalibration. This can help to correct forecasts and make them
“more calibrated”.

PIT-calibration To diagnose forecast calibration in the case of density forecasting one
can use the probability integral transform values (PIT values).2 This indicator is the

2The notion of PIT can be extended to arbitrary distributions by introducing randomization (Brock-
well, 2007).
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one that is used most often for calibration diagnostics in econometrics (e.g. Diebold
et al., 1998; Mitchell and Wallis, 2011). If a forecast distribution 𝐹 is reported while
the actual outcome is 𝑦 then the corresponding PIT value is defined as 𝐹 (𝑦). The PIT
values 𝑃 = 𝐹 (𝑌 ) of a well-calibrated forecast of 𝑌 should be uniformly distributed on
the interval [0, 1], i.e. 𝑃 ∼ 𝑈 [0, 1]. For example, if 𝐹 (𝑀) = 1

2
, then 𝑀 is the median of

the forecast distribution and under adequate calibration probability that 𝑌 is less than
𝑀 is 50%. Consequently the probability that 𝑃 does not exceed 𝐹 (𝑀) = 1

2
should also

be equal to 50%. The same is true for other quantiles, i.e. the probability of the event
𝑃 ≤ 𝛼 must be equal to 𝛼. In this paper we will call such calibration PIT-calibration.3

PIT-calibration can be assessed, for example, with the help of a histogram of the PIT
values on the [0, 1] interval. The histogram should be almost flat (Diebold et al., 1998;
Gneiting et al., 2007; Mitchell and Wallis, 2011).

Marginal calibration It can be seen that the concept of PIT-calibration relates to
interval forecasting and quantile forecasting (e.g. value-at-risk forecasting). This concept
assumes that probabilities are fixed while the bounds are reported by the forecaster. A
reversed situation is when bounds are fixed while the forecaster reports probabilities as
in the Survey of Professional Forecasters. A calibrated forecast must supply probabilities
which are in accordance with the true ones (cf. Clements, 2004). Formally, a forecast 𝐹
is marginally calibrated if E𝐹 (𝑦) = 𝐺(𝑦) for any real 𝑦, where 𝐺(𝑦) is the unconditional
distribution function of 𝑌 . The term was proposed in Gneiting et al. (2007).

Marginal calibration implies that point forecasts derived from a probabilistic forecast
must be unbiased if the point forecast corresponds to a distribution moment such as the
mean. For the mean we must have E[mean(𝐹 )] = E𝑌 .

Auto-calibration In density forecasting situation PIT-calibration and marginal cal-
ibration are different concepts. Neither of them generalizes the other one.4 A con-
cept which subsumes both PIT-calibration and marginal calibration can be called auto-
calibration. A forecast 𝐹 is auto-calibrated if 𝐹 (𝑦) = 𝐺F (𝑦), where 𝐺F (𝑦) = 𝐺(𝑦|𝐹 )
is the distribution function of 𝑌 conditional on 𝐹 . Here the information used to assess
forecast calibration is the forecast itself. The easiest way to understand this property
is to consider forecasting of a dichotomous 0/1 variable. Among the cases in which the
forecast assigns probability 𝜋 to the event 𝑌 = 1 the event must occur with this same
probability: P(𝑌 = 1|𝜋) = 𝜋.5

Calibration with respect to an information set Previous arguments do not pay
enough attention to the conditional nature of calibration and to efficient use of information
available to forecasters.6

3In Gneiting et al. (2007) this aspect of calibration is called probabilistic calibration.
4Counterexamples can be found in Gneiting et al. (2007) and in the autoregression example below

taken from Mitchell and Wallis (2011) (Combo and Unfocus forecasts).
5Galbraith and van Norden (2011), p. 1042: “For example, if we forecast that the probability of a

recession beginning in the next quarter is 20%, and of all occasions on which we make this forecast the
proportion in which a recession actually begins is 20%, and if this match holds for all other possible
predicted probabilities, then the forecasts are correctly calibrated”.

6Clements and Taylor (2003), p. 446: “Evaluating probability forecasts by calibration ignores the
conditional aspect”.
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By using for a forecast 𝐹 based on some available information 𝒜 analysis which is
conditional on 𝒜 we can strengthen the definition of calibration.7 A forecast 𝐹 based on
the information set 𝒜 is calibrated with respect to 𝒜 if 𝐹 (𝑦) = 𝐺𝒜(𝑦), where 𝐺𝒜(𝑦) =
𝐺(𝑦|𝒜) is the distribution function of 𝑌 conditional on 𝒜.8 Such a forecast can be called
ideal (of all forecasts based on 𝒜). A forecast which is calibrated with respect to an
information set is always auto-calibrated and hence both PIT-calibrated and marginally
calibrated.9

In the case of density forecasting the PIT value 𝑃 = 𝐹 (𝑌 |𝒜) of a probabilistic forecast
𝐹 which is ideal with respect to 𝒜 is not only uniformly distributed on the interval
[0, 1], but also uniformly distributed conditionally on 𝒜: 𝑃 |𝒜 ∼ 𝑈 [0, 1]. Similarly, point
forecasts derived from a probabilistic forecast must be not only unconditionally unbiased,
but also unbiased conditionally on 𝒜. These properties of ideal forecasts are discussed
further in Subsection 3.2.

An important property of an ideally calibrated forecast is that it achieves the maxi-
mum expected score when the scoring rule used is proper:10

E𝑆(𝐺𝒜, 𝑌 ) ≥ E𝑆(𝐹, 𝑌 ).

This is the reason for calling a well-calibrated forecast ideal (or efficient). Moreover,
under appropriate additional conditions the inequality here is strict if the scoring rule 𝑆
is strictly proper. Thus, if a forecast is miscalibrated, then there is a potential for its
improvement as measured by the mean score according to a proper scoring rule. In a
certain sense the concept of calibration is intrinsically based on proper scoring rules and
score maximization.

Independence and uniformity of the PIT values If a sequence of one-step density
forecast of a time series 𝑌t is made from the full history of the same series, then calibration
is usually tested by analyzing the resulting series of PIT values. Consider a sequence
𝐹t of probabilistic forecasts of a univariate time series 𝑌t based on its own previous
history 𝜎(𝑌1, . . . , 𝑌t−1), 𝑇 = 1, 2, . . . (For 𝑡 = 1 the forecast is unconditional). Define the
corresponding PIT values as

𝑃t = 𝐹t(𝑌t), 𝑡 = 1, 2, . . . .

The sequence of forecasts is correctly calibrated if and only if the PIT values 𝑃t are
independent and distributed as 𝑈 [0, 1] (cf. Diebold et al., 1998).

7Formally, the random element F is 𝒜-measurable.
8The definition was proposed independently in Gneiting and Ranjan (2011). It is also similar to the

definition of interval forecast efficiency with respect to the information set in Christoffersen (1998).
9In general, when F is based on 𝒜, we have σ(F ) ⊂ 𝒜 and E[GA(y)|F ] = GF (y). Further, if

F = GA (F is ideal) we have E[GA(y)|F ] = E[GA(y)|GA] = GA(y) and thus F (y) = GA(y) = GF (y)
(auto-calibration).

Gneiting and Ranjan (2011) note that the ideal forecast is both marginally calibrated and probabilis-
tically calibrated (PIT-calibrated). An outline of the proofs is as follows. Since E[GA(y)] = G(y) for
any y, under ideal calibration with respect to 𝒜 we have EF (y) = G(y) (marginal calibration). Further,
as explained below, under ideal calibration with respect to 𝒜, we have F (Y )|𝒜 ∼ U [0, 1] which implies
unconditional uniformity F (Y ) ∼ U [0, 1] (PIT-calibration).

Since auto-calibration of F means that F is ideally calibrated with respect to σ(F ), it follows that
auto-calibration implies both marginal calibration and PIT-calibration, as was stated above.

10Diebold et al. (1998), p. 866: “. . . If a forecast coincides with the true data generating process, then
it will be preferred by all forecast users, regardless of loss function.” See also Granger and Pesaran
(2000).
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Independence of the PIT values can be judged, for example, by the autocorrelation
function of the PIT values and their transformations (Diebold et al., 1998). Independence
implies the absence of serial correlation.

In general, uniformity and independence of the PIT values do not indicate ideal fore-
cast, since the forecast can incorporate extraneous noise. In addition, this property does
not hold for multi-step forecasts and forecasts using revised real-time data. Furthermore,
independence and uniformity of the PIT values is necessary, but not sufficient for the
ideal calibration of forecasts of a series which can use the history of some other series.

Refining the notion of calibration Ideal calibration refers to some given informa-
tion set 𝒜. However, in a forecast evaluation situation one should distinguish (at least)
two different parties: the forecaster and the individual who evaluates the forecast. The
second party will be called the examiner here. The information sets of the forecaster and
the examiner can be distinct, say, 𝒜f and 𝒜e. Then the notion of ideal calibration is
ambiguous without specifying the information set. The forecast which is calibrated with
respect to 𝒜f can be not calibrated with respect to 𝒜e and vice versa.

If the forecaster possesses some information which is not available to the examiner
then the examiner can potentially derive some new information from the forecast. Thus,
the relevant information set in this case combines 𝒜e with the information delivered by
the forecast. This suggests an extension of the notions of auto-calibration and ideal
calibration: a forecast 𝐹 is calibrated from the examiner’s point of view if it coincides
with 𝐺(·|𝒜e, 𝐹 ), which is the conditional distribution of 𝑌 given 𝒜e and 𝐹 .

The information which the forecaster reports to the examiner can be limited. If the
forecaster reports only quantiles and forecast intervals then we deal with an extended
version of PIT-calibration. If the forecaster reports only probabilities for some fixed
intervals then we deal with an extended version of marginal calibration.

This considerations do not undermine the general framework, but provide a refine-
ment. For example, to test forecast calibration the examiner can still use the relevant
moment conditions discussed in Section 3.

2.3 Forecast calibration and forecast sharpness

Forecast sharpness is a characteristic which reflects the degree of forecast definiteness,
the concentration of a forecast distribution (Gneiting et al., 2007). One way to visualize
this feature is to consider the forecast interval corresponding to a forecast distribution.
For example, if an expert declares that by the end of the year EUR/USD rate will surely
be in the range 1.39–1.41, it would be a rather sharp prediction. If he declares an interval
0.5–2.0, then the forecast is very vague. On the one hand, the user of the forecast would
prefer to have a very sharp prediction, but on the other hand correct calibration is also
important. When producing too sharp a forecast the expert risks to exaggerate the extent
of his confidence which can lead to surprises for the forecast user (often not very pleasant).

In Gneiting et al. (2007) a conjecture was stated that the problem of finding a good
forecast can be viewed as the problem of maximizing sharpness subject to calibration.
It can be shown that the conjecture is actually true provided that a vague “calibration”
notion is replaced by auto-calibration.

First, for a proper scoring rule 𝑆(𝐹, 𝐹 ) can be viewed as a measure of sharpness of
a forecast 𝐹 . For a proper scoring rule −𝑆(𝐹, 𝐹 ) is a concave11 function of 𝐹 and thus,

11Function S(F1, F2) is linear in the second argument as the Stieltjes integral with respect to this
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according to DeGroot (1962), can be viewed as a measure of uncertainty of a probability
distribution 𝐹 . For the logarithmic scoring rule −𝑆(𝐹, 𝐹 ) is the familiar Shannon’s
entropy measure.

Second, for an auto-calibrated forecast we have E𝑆(𝐹, 𝑌 ) = E𝑆(𝐹, 𝐹 ), i.e. the expected
score of an auto-calibrated forecast equals its expected sharpness.12

This means that auto-calibrated forecasts can be compared on the basis of the levels
of their expected sharpness. The ideal forecast is the sharpest of all auto-calibrated
forecasts, because it is characterized by the greatest expected score.

Another intuitively expected property of well-calibrated forecasts is that the more
complete information has the forecaster, the sharper is the forecast which he can poten-
tially produce. Suppose 𝒜1 is a “richer” information set than 𝒜2, that is, 𝒜1 contains all
the information of 𝒜2 and maybe some additional useful information (formally, 𝒜2 ⊂ 𝒜1).
Let 𝐺1 = 𝐺𝒜1

be the ideal forecast based on 𝒜1 and 𝐺2 = 𝐺𝒜2
the ideal forecast based

on 𝒜2. Then13

E𝑆(𝐺1, 𝑌 ) = E𝑆(𝐺1, 𝐺1) ≥ E𝑆(𝐺2, 𝑌 ) = E𝑆(𝐺2, 𝐺2).

If a forecast is not auto-calibrated, then its sharpness can be deceiving. Let 𝑑 denote
a divergence indicator (generalized distance) between distributions 𝐹1 and 𝐹2 defined as

𝑑(𝐹2, 𝐹1) = 𝑆(𝐹1, 𝐹1)− 𝑆(𝐹2, 𝐹1).

The divergence 𝑑(𝐹2, 𝐹1) is non-negative, if the rule 𝑆 is proper. It is zero when the two
distributions coincide. For the logarithmic scoring rule 𝑑 is the Kullback–Leibler distance.
In general the expected score of a (possibly miscalibrated) forecast 𝐹 can be decomposed
as follows:

E𝑆(𝐹, 𝑌 ) = E𝑆(𝐺F , 𝐺F )− E𝑑(𝐹,𝐺F ),

where 𝐺F is the conditional distribution function of 𝑌 given 𝐹 . The first term can be
interpreted as the expected sharpness of the forecast 𝐺F , which is a “recalibrated” version
of forecast 𝐹 , while the second term relates to the divergence between 𝐹 and 𝐺F , i.e. it is
a measure of miscalibration of the forecast 𝐹 with respect to the information contained
in itself.14

The principle of maximizing sharpness subject to calibration which was considered
here is difficult to apply in practice, because achieving perfect auto-calibration of a fore-
cast may prove too challenging. However, this principle provides a useful insight into the
essence of probabilistic forecasting. In particular, it is clear that the advantage of using
proper scoring rules is that they provide the right balance of sharpness and calibration in
forecast comparison. If other—not proper—scoring rules are used for forecast evaluation,
then the forecaster would have an incentive to report miscalibrated, for example, too
sharp forecasts.

argument. Therefore S(Fα, Fα) = αS(Fα, F1) + (1 − α)S(Fα, F2) ≤ αS(F1, F1) + (1 − α)S(F2, F2) for
Fα = αF1 + (1− α)F2 and α ∈ [0, 1].

12Indeed, for a non-random distribution function H define T (H) = E[S(H,Y )|F ] = S(H,GF ). Then
T (H) = S(H,F ) since F = GF (we assume that F is auto-calibrated). By the substitution property of the
conditional expectation T (F ) = S(F, F ) since F is σ(F )-measurable. Taking unconditional expectation
yields E[S(F, Y )] = E[T (F )] = E[S(F, F )].

13See Holzmann and Eulert (2011) for a proof. Similar results for discrete outcome can be found in
DeGroot and Fienberg (1983) and Bröcker (2009).

14This partitioning for the dichotomous outcomes and the Brier score was developed in Sanders (1963).
Bröcker (2009) extended it to the case of an arbitrary discrete distribution and an arbitrary proper scoring
rule.
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3 Moment-based calibration testing

3.1 The general idea of moment-based calibration testing

In practice it is convenient to express the calibration conditions in the form of moment
conditions. A realization of a complete probabilistic forecast defines a probability mea-
sure for outcomes, which can be used to calculate various moments. If the forecast is
calibrated and coincides with a conditional distribution function, then the corresponding
conditional moments can be expressed in terms of the moments calculated from the gen-
erated probability measures. One can replace theoretical moments by sample ones based
on a series of forecasts and see how far the result is from what should be in theory. This
allows to develop various types of diagnostic tests for forecast calibration. Many of the
tests and criteria of calibration/efficiency developed in the literature can be shown to fall
within this approach.

Suppose that in theory under calibration the expectation of 𝑧 must be zero: E𝑧 = 0.
We can obtain the values of 𝑧 for a series of realizations of forecast functions 𝐹1, . . . , 𝐹N

and a series of outcomes 𝑦1, . . . , 𝑦N and calculate the corresponding sample moment 𝑧 =∑︀N

i=1
𝑧i/𝑁 . If 𝑧 is far from zero, then we can conclude that the forecast is miscalibrated.

To test the moment conditions we can use the usual 𝑡-ratios 𝑧/𝑠𝑒(𝑧). The most subtle
aspect here is adequate calculation of the standard error 𝑠𝑒(𝑧). In the examples below the
usual heteroskedasticity and autocorrelation consistent (HAC) standard errors are used.
If this is done correctly and the forecast is well-calibrated, then this statistic is asymp-
totically distributed as 𝑁(0, 1). An extension to the multivariate case—simultaneous
testing of several moment conditions—is straightforward and is familiar from the GMM
framework: a 𝑡-ratio is replaced by a quadratic form and the distribution is chi-square.
For the orthogonality conditions discussed below testing could be conveniently done by
means of ordinary 𝐹 -statistics from auxiliary regressions provided that heteroskedasticity
and serial correlation are not an issue. However, auxiliary regressions are by no means
necessary for testing of moment conditions.15

3.2 Testing for PIT-calibration

PIT-calibration of a density forecast can be tested by comparing sample moments of
the PIT values with the corresponding moments of the 𝑈 [0, 1] distribution. Consider a
function 𝑘 = 𝑘(𝑝) taking a probability 𝑝 ∈ [0, 1] as its argument and define

𝜅 = E𝑘(𝑃 ) for 𝑃 ∼ 𝑈 [0, 1].

If a forecast 𝐹 is PIT-calibrated, then

E𝑘(𝐹 (𝑌 ))− 𝜅 = 0.

In particular, using this notation we can write the condition that the probability of
the event 𝐹 (𝑌 ) ≤ 𝛼 is 𝛼 as mentioned above in the discussion of PIT-calibration. To do
this, take

𝑘 = I{𝑝 ≤ 𝛼}, 𝜅 = 𝛼. (1)

15For example Berkowitz (2001) and Clements and Taylor (2003) propose likelihood ratio tests based
on auxiliary regressions. The tests are not robust to serial correlation. In general this would not lead to
the asymptotic chi-square distribution.
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Next, consider a central forecast interval with the coverage probability 𝛽. If 𝐹 is a
forecast distribution function, then the interval is of the form

[𝐹−1(1/2− 𝛽/2), 𝐹−1(1/2 + 𝛽/2)].

Under PIT-calibration the probability that 𝑌 belongs to this interval is equal to 𝛽.
An outcome 𝑦 is in this interval if and only if the PIT value 𝐹 (𝑦) is in the interval
𝐶β = [0.5− 0.5𝛽, 0.5 + 0.5𝛽]. Therefore, here one can take

𝑘 = I{𝑝 ∈ 𝐶β}, 𝜅 = 𝛽. (2)

If 𝐹 (𝑌 ) is distributed as 𝑈 [0, 1], then the inverse normal transform (INT) of this
variable has the standard normal distribution:

Φ−1(𝐹 (𝑦)) ∼ 𝑁(0, 1),

where Φ−1(·) is the inverse of the standard normal distribution function. Instead of
moments of the PIT values one can use moments of the INT values. For example, the
INT values must have zero mean:

𝑘 = Φ−1(𝐹 (𝑌 )), 𝜅 = 0.

3.3 Testing for marginal calibration

Let 𝑚(𝑦) be some function of an outcome 𝑦 and denote

𝜇(𝐹 ) = E𝑚(𝑌 ) for 𝑌 ∼ 𝐹.

Then under marginal calibration

E𝑚(𝑌 )− 𝜇(𝐹 ) = 0,

that is, 𝜇(𝐹 ) is an unbiased forecast of 𝑚(𝑌 ). In particular, 𝑚 = 𝑦, 𝜇 = mean(𝐹 ) allows
to test for mean unbiasedness of 𝐹 .

For example, if 𝐹 is the distribution function of the outcome 𝑌 , then 𝐹 (𝑦0) is the
probability of the event 𝑌 ≤ 𝑦0. The corresponding moment condition can be tested with

𝑚 = I{𝑦 ≤ 𝑦0}, 𝜇 = 𝐹 (𝑦0),

which directly corresponds to the definition of marginal calibration. More generally, if 𝐶
is some fixed interval for the outcome, then we can use

𝑚 = I{𝑦 ∈ 𝐶}

and
𝜇 = P(𝑌 ∈ 𝐶) for 𝑌 ∼ 𝐹.
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3.4 Testing for auto-calibration

From the theory of point forecasting it is known that the expectation conditional on the
information set 𝒜 is the forecast which is optimal in mean-square sense among the forecast
based on 𝒜 (e.g. Bierens, 2004, pp. 80–81). This forecast satisfies an orthogonality
condition: the prediction error is uncorrelated with any random variable based on 𝒜.16

There are also extensions to the case of general cost functions (e.g. Granger, 1999).
In Mitchell and Wallis (2011) an idea was put forward that calibration of probabilistic
forecasts can be tested by verifying similar orthogonality conditions. We demonstrate
that this idea lends itself to further generalization.

Let 𝑘 and 𝜅 have the same meaning as above and let 𝑙(𝐹 ) be a function of a distribution
function 𝐹 . If forecast 𝐹 is auto-calibrated, then we have a conditional restriction on the
moments

E[𝑘(𝐹 (𝑌 ))− 𝜅|𝐹 ] = 0,

which implies the orthogonality condition

E[(𝑘(𝐹 (𝑌 ))− 𝜅) 𝑙(𝐹 )] = 0 (3)

for any function 𝑙. This means that any function 𝑘 of the PIT values is not correlated with
any function 𝑙 of the forecast distribution function. Here 𝑙 can be some characteristics of
the forecast distribution such as the mean or median.

By the same logic, for 𝑚 and 𝜇 having the same meaning as above

E[𝑚(𝑌 )|𝐹 ] = 𝜇(𝐹 )

and
E[(𝑚(𝑌 )− 𝜇(𝐹 )) 𝑙(𝐹 )] = 0.

This means that the forecast error for the point forecast 𝜇(𝐹 ) derived from 𝐹 is not corre-
lated with any other feature 𝑙 of 𝐹 . An example of a test using this type of orthogonality
conditions can be found in Clements (2004), where it was applied to evaluation of the
SPF probabilistic forecasts.

To test auto-calibration of a forecast one can also use more general moment conditions.
Consider a function 𝑟 = 𝑟(𝑦, 𝐹 ) taking an outcome 𝑦 and a distribution function 𝐹 as its
arguments and denote

𝜌(𝐹 ) = E𝑟(𝑌, 𝐹 ) for 𝑌 ∼ 𝐹.

Auto-calibration of a probabilistic forecast 𝐹 is equivalent to the condition

E𝑟(𝑌, 𝐹 ) = E𝜌(𝐹 )

for any 𝑟.
For example, consider some interval 𝐶 = 𝐶(𝐹 ) defined for a distribution function 𝐹

and its theoretical coverage

𝑎 = 𝑎(𝐹 ) = P(𝑌 ∈ 𝐶) for 𝑌 ∼ 𝐹.

Then we can test auto-calibration with 𝑟 = I{𝑦 ∈ 𝐶} and 𝜌 = 𝑎, where both 𝐶 and 𝑎
can vary with 𝐹 (while under PIT-calibration 𝛼 is fixed and under marginal calibration
𝐶 is fixed).

16These conditions were utilized in the rational expectations literature. Shiller (1978), p. 7:
“. . . Expected forecast errors conditional on any subset of the information available when the forecast
was made, are zero. . . Hence, the forecast error . . . is uncorrelated with any element of It [the set of
public information available at time t]”.
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3.5 Testing for calibration with respect to an information set

Ideal calibration of 𝐹 with respect to 𝒜 is a stronger property and requires

E[𝑟(𝑌, 𝐹 )|𝒜] = 𝜌(𝐹 )

for any 𝑟. This conditional property is equivalent to unconditional orthogonality

E[(𝑟(𝑌, 𝐹 )− 𝜌(𝐹 ))𝑊 ] = 0

for any 𝑊 depending on 𝒜.17

In particular, for the PIT values we have

E[𝑘(𝐹 (𝑌 ))|𝒜] = 𝜅

and the corresponding orthogonality condition is given by

E[(𝑘(𝐹 (𝑌 ))− 𝜅)𝑊 ] = 0.

For example, one can define

𝑘 = I{𝑝 ≤ 𝛼}, 𝜅 = 𝛼

and test ideal calibration with respect to 𝒜 by testing the lack of correlation between the
indicator variable I{𝐹 (𝑌 ) ≤ 𝛼} for 𝛼 ∈ (0, 1) and any function 𝑊 depending only on the
available information 𝒜.18 Note that if

E[I{𝐹 (𝑌 ) ≤ 𝛼}|𝒜] = 𝛼

for any 𝛼 then 𝐹 is calibrated with respect to 𝒜.19

Marginal calibration can also be strengthened along this lines:

E[𝑚(𝑌 )|𝒜] = 𝜇(𝐹 )

and
E[(𝑚(𝑌 )− 𝜇(𝐹 ))𝑊 ] = 0.

Thus, 𝜇 must be the conditional expectation of 𝑚(𝑌 ) given 𝒜. Consequently, 𝜇 must
be an unbiased point forecast of 𝑚 and the prediction error must be uncorrelated with
any variable 𝑊 constructed from the available information 𝒜. For example, one can take
𝑚 = I(𝑦 ≤ 𝑦0), 𝜇 = 𝐹 (𝑦0) for some fixed 𝑦0. If P(𝑌 ≤ 𝑦0|𝒜) = E[I(𝑌 ≤ 𝑦0)|𝒜] = 𝐹 (𝑦0)
for any real 𝑦0 then 𝐹 = 𝐺𝒜 by the definition of 𝐺𝒜, i.e. 𝐹 is calibrated with respect to
𝒜.

17That the two conditions are equivalent is a well-known property of the conditional expectation. Let
E = r(Y, F ) − ρ(F ). From the conditional unbiasedness E[E|𝒜] = 0 when W is 𝒜-measurable we have
E[EW |𝒜] = E[E|𝒜]W = 0, and thus E[EW ] = 0. To see that the conditional unbiasedness follows from
the unconditional orthogonality let W = I(A) for an arbitrary A ∈ 𝒜.

18Christoffersen (1998) proposed a similar condition for testing for conditional coverage of an interval
forecast.

19For an invertible non-random distribution function H we have P(H(Y ) ≤ α|𝒜) = E[I{H(Y ) ≤
α}|𝒜] = E[I{Y ≤ H−1(α)}|𝒜] = GA(H

−1(α)). Thus, by the substitution property of the conditional
expectation when F is 𝒜-measurable P(F (Y ) ≤ α|𝒜) = E[I{F (Y ) ≤ α}|𝒜] = GA(F

−1(α)). Further,
GA(F

−1(α)) = α for each α is equivalent to F = GA.
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To generalize this approach consider a function 𝑔(𝑦, 𝐹, 𝑤) taking an outcome 𝑦, a
distribution function 𝐹 and some additional variable 𝑤 as its arguments. Define

𝛾(𝐹,𝑤) = E[𝑔(𝑌, 𝐹, 𝑤)] for 𝑌 ∼ 𝐹.

Calibration of a forecast 𝐹 with respect to 𝒜 is equivalent to the moment condition

E[𝑔(𝑌, 𝐹,𝑊 )|𝒜] = 𝛾(𝐹,𝑊 )

or
E𝑔(𝑌, 𝐹,𝑊 ) = E𝛾(𝐹,𝑊 )

for any such 𝑔 and any 𝑊 depending on 𝒜.20

Consider an example of conditions of this more general type. The idea is to test
calibration of one forecasting method against another one.21 Suppose that we want to
test whether 𝐹1 is well-calibrated and 𝐹2 is an alternative forecast, both based on 𝒜. For
a proper scoring rule 𝑆 and two (non-random) distribution functions 𝐹1, 𝐹2 define

𝑔 = 𝑆(𝐹2, 𝑌 )− 𝑆(𝐹1, 𝑌 ).

Then we have
𝛾 = 𝑆(𝐹2, 𝐹1)− 𝑆(𝐹1, 𝐹1).

Consequently, for two forecasts 𝐹1, 𝐹2 based on 𝒜 under the assumption that 𝐹1 is
calibrated with respect to 𝒜 we have

E[𝑆(𝐹2, 𝑌 )− 𝑆(𝐹1, 𝑌 )] = E[𝑆(𝐹2, 𝐹1)− 𝑆(𝐹1, 𝐹1)]. (4)

Below we call this moment condition relative forecast calibration (RFC). A test which is
based on it would have power against an alternative that 𝐹2 is calibrated with respect to
𝒜, because then

E[𝑆(𝐹2, 𝐹2)− 𝑆(𝐹1, 𝐹2)] + E[𝑆(𝐹1, 𝐹1)− 𝑆(𝐹2, 𝐹1)] > 0,

if the scoring rule is strictly proper.
A pair of reciprocal RFC-based tests (𝐹1 against 𝐹2 and 𝐹2 against 𝐹1) can help to

judge possible gains from combining two forecasts.

20Denote γ0(Ĥ,H,w) = E[g(Y,H,w)] for Y ∼ Ĥ, where Ĥ,H are non-random distribution functions.
First, by the properties of the conditional expectation, conditional distribution function GA can be used
to calculate the conditional expectation with respect to 𝒜: E[g(Y,H,w)|𝒜] = γ0(GA, H,w). Second, by
the substitution property, the 𝒜-measurable random elements F and W can be treated as fixed inside the
conditional expectation with respect to 𝒜 and thus E[g(Y, F,W )|𝒜] = γ0(GA, F,W ). Third, if F = GA,
then γ0(GA, F,W ) = γ0(F, F,W ) = γ(F,W ). Consequently, when F is calibrated with respect to 𝒜, we
have E[g(Y, F,W )|𝒜] = γ(F,W ). The converse can be obtained by setting W = I(A), g = I(y ≤ y0)w
and γ = F (y0)w for an arbitrary A ∈ 𝒜 and an arbitrary real y0.

21This example parallels the equal forecast accuracy test based on the difference of the logarithmic
scores (or Kullback–Leibler information criterion, KLIC; see Amisano and Giacomini, 2007; Mitchell and
Wallis, 2011).
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Table 1: Definitions of six forecasts of AR(2)

Ideal 𝑁(𝜙1𝑌t−1 + 𝜙2𝑌t−2, 1)
Climt 𝑁(0, 𝜎2

Y )
AR1 𝑁(𝜌1𝑌t−1, 𝜎

2
1)

AR2 𝑁(𝜌2𝑌t−2, 𝜎
2
2)

Combo 0.5𝑁(𝜌1𝑌t−1, 𝜎
2
1) + 0.5𝑁(𝜌2𝑌t−2, 𝜎

2
2)

Unfocus 0.5𝑁(𝜙1𝑌t−1 + 𝜙2𝑌t−2, 1) + 0.5𝑁(𝜙1𝑌t−1 + 𝜙2𝑌t−2 + 𝜏t, 1),
where 𝜏t = −1 or 1 with equal probabilities

Note: 𝜌1 = 𝜙1/(1− 𝜙2), 𝜌2 = 𝜙1𝜌1 + 𝜙2,
𝜎2
Y = 1/(1− 𝜙1𝜌1 − 𝜙2𝜌2), 𝜎

2
1 = (1− 𝜌21)𝜎

2
Y , 𝜎2

2 = (1− 𝜌22)𝜎
2
Y

4 Example: Forecasting of an autoregressive process

The first illustration of the ideas is an artificial simulation example taken from Mitchell
and Wallis (2011). It relates to forecasting of AR(2) series 𝑌t = 𝜑1𝑌t−1+𝜑2𝑌t−2+ 𝜀t with
independent Gaussian disturbances 𝜀t ∼ 𝑁(0, 1). Six forecasts are compared.

1. Ideal, the ideal forecast which takes into account all available information, i.e. 𝑌t−1

and 𝑌t−2;

2. Climt, the “climatological” forecast which does not use 𝑌t−1 and 𝑌t−2 and is repre-
sented by the unconditional distribution;

3. AR1, using only 𝑌t−1;

4. AR2, using only 𝑌t−2;

5. Combo, a combined forecast, which is a convex combination of AR1 and AR2 with
equal weights;

6. Unfocus, an “unfocused” forecast containing extraneous noise 𝜏t.

Table 1 gives the corresponding formal description. The actual data-generating process is
represented by the ideal forecast. In this example there is no need to estimate parameters
as they are known. Here only the Case (2) of Mitchell and Wallis (2011) with 𝜑1 = 0.15,
𝜑2 = 0.2 is considered. The length of the series is 𝑇 = 150 if not specified otherwise.

In Table 2 the row labeled “Expected score” shows approximate expected logarithmic
scores obtained by Monte Carlo simulations. As might be expected, the ideal forecast
has the highest expected score. The unfocused forecast shows the worst result, followed
by the climatological forecast. Forecasts AR1, AR2 on average are worse than their
combination Combo.

The expected score shows the asymptotic potential of a forecast which becomes visible
when the number of observations tends to infinity. It cannot be available in a practical
forecasting situation. When a series of forecasts is not very long, imperfect forecasts can
obtain higher average scores than the ideal forecast.

The row labeled “% best” shows the percentage of experiments in which the corre-
sponding model had the highest average logarithmic score when using 𝑇 = 150 observa-
tions. The ideal forecast was the best with the probability of about 2/3. This moderately
large value is explained by small values of the two autoregression coefficients (𝜑1 = 0.15,
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Table 2: Statistics for six forecasts of AR(2)

Ideal Climt AR1 AR2 Combo Unfocus
Expected score −1.418 −1.456 −1.438 −1.430 −1.425 −1.529
% best 66.5 1.2 6.8 12.2 13.2 0.1
% best, 1500 98.6 0.0 0.0 0.1 1.3 0.0
𝑧 ×mean test 4.5 — 4.5 4.3 17.4 99.8
∆𝐿 test vs. Ideal — 45.7 32.5 25.4 16.9 90.9
RFC test vs. Ideal — 92.6 78.3 62.4 25.8 100.0
RFC test vs. Climt 5.5 — 4.9 5.0 0.7 100.0
RFC test vs. AR1 4.7 62.7 — 40.2 3.3 100.0
RFC test vs. AR2 3.4 86.6 58.6 — 9.4 100.0
RFC test vs. Combo 4.2 86.8 48.6 31.3 — 100.0
RFC test vs. Unfoc 3.9 37.0 17.8 9.9 6.0 —

Note: The table is based on 5000 simulations. The figures for the tests are

percentages of rejection at 5% asymptotic significance level using the standard

normal quantiles. The test statistics are t-ratios with Newey–West HAC standard

errors and lag truncation 4. “% best, 1500” corresponds to 10 times longer series

(T = 1500). 𝑆(𝐹2, 𝐹1) functions for mixtures of normals needed for RFC
statistics are computed by Monte Carlo with 100 simulations.

𝜑2 = 0.2), which makes the true data generating process rather close to AR1, AR2 and
Combo alternatives in terms of the expected logarithmic score. With 𝑇 = 1500 the ideal
forecast dominates the other ones (see row labeled “% best, 1500”). One can see that the
average score is a sensible criterion for model selection which behaves in a predictable
way.

The unfocused forecast deserves special attention. Unconditionally it is PIT-
calibrated and thus has PIT values distributed as 𝑈 [0, 1] (cf. Table II of Mitchell and
Wallis, 2011). Also the PIT series are serially independent (cf. Table III of Mitchell and
Wallis, 2011). However, the forecast is not marginally calibrated and, as a consequence,
is not auto-calibrated, which can be easily detected using a test of orthogonality between
the INT values 𝑧t = Φ−1(𝐹t(𝑦t)) and the mean of the forecast distribution. It is labeled
“𝑧 ×mean test” in Table 2. For an auto-calibrated forecast we have E[mean(𝐹t)𝑧t] = 0,
which is an orthogonality condition of the form (3). The table shows that this condition
is rejected in almost 100% of experiments in the case of the unfocused forecast.

Combo, which is a weighted combination of forecast AR1 and AR2, is marginally cal-
ibrated as a mixture of marginally calibrated forecasts. However, it is not PIT-calibrated
(as is often the case for similarly constructed combined forecasts, cf. Gneiting and Ran-
jan, 2011) and, as a consequence, is not auto-calibrated. The results of 𝑧 × mean test
confirm that this forecast is not auto-calibrated (although the rejection rate is not very
large).

For other forecasts there are no signs of miscalibration according to 𝑧 × mean test.
Indeed, Ideal, AR1 and AR2 forecasts are all auto-calibrated.

To test calibration of the forecasts against each other I employ a relative forecast
calibration test based on the RFC property (4). It uses the logarithmic scoring rule. The
test is designed as one-sided to increase its power, because the test statistic is expected to
be positive in situations when the alternative forecast can potentially be used to improve
the forecast tested for calibration. Notable are the results of AR1 vs. AR2 and AR2 vs.
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AR1. The tests would frequently suggest the usefulness of combining the two models.
The test against the ideal forecast can be seen to have high power. It can be compared
to an equal predictive ability test based on the difference of the attained average scores
∆𝐿t = 𝑆(𝐺t, 𝑦t)− 𝑆(𝐹t, 𝑦t) in the spirit of Amisano and Giacomini (2007) (labeled “∆𝐿
test vs. Ideal”). The later test is also implemented as one-sided to increase its power and
make it comparable with the RFC test. The comparison clearly favors the RFC test as
an instrument of identifying non-ideal forecasts.

5 Example: Forecasting a stock index

The second example is intended to show how the proposed framework can be utilized for
the task of evaluating forecasts of real-world time series. The data are daily close levels of
the Russian stock market index (RTSI) and span the period from 1995-09-01 to 2011-06-
08. The RTSI series is brought to stationarity by computing its growth rates in percent
𝑅t = (log𝑅𝑇𝑆𝐼t − log𝑅𝑇𝑆𝐼t−1) × 100. This provides a series of 4,209 observations.
The forecasted variable is the growth rate 10 periods ahead. Thus, at time 𝑡 a forecast
of 𝑦t+10 = 𝑅t+1 + · · · + 𝑅t+10 = (log𝑅𝑇𝑆𝐼t+10 − log𝑅𝑇𝑆𝐼t) × 100 is obtained. (The
ten-period horizon corresponds roughly to two weeks of physical time.) The following
forecasts are considered.22

1. The historical forecast based on the full history Hist(𝑡) uses all previously observed
10-period growth rates 𝑦10, . . . , 𝑦t. The historical observations are resampled to
obtain an ensemble of size 1000.

2. Hist(200) is also a historical forecast, but uses only a rolling span of the 200 most
recent observations 𝑦t−199, . . . , 𝑦t and does not use resampling.

3. ES forecast is based on exponential smoothing for volatility 𝜎2
t+1 = (1− 𝛿)𝑅2

t + 𝛿𝜎2
t

with the decay factor 𝛿 = 0.95 (RiskMetrics, 1996). The forecasting distribution is
given by 𝑁(0, 10𝜎2

t+1). The recursion for volatility starts from the sample variance
of the first 200 observations.

4. GARCH forecast is based on the standard GARCH(1,1)-t model (GARCH with
t distribution) with non-zero mean. The model is estimated recursively by the
maximum likelihood method. The forecasting distribution is represented by an
ensemble of 1000 simulated future trajectories.

All the forecasts are produced recursively for the forecasting period starting from the
200-th observation. They are compared by their observed averages of the CRPS. CRPS
can be calculated in O(𝑆 log 𝑆) operations needed for sorting if 𝐹t is represented by a
sample of size 𝑆 (Gneiting and Raftery, 2007). One advantage of the CRPS over the
logarithmic scoring rule is that it allows a forecast of a continuous random variable to be
a discrete distribution, which we have here.

The following statistics are summarized in Table 3.

1. “CRPS” is the average CRPS.

22The RTSI series exhibits significant first-order serial correlation, but its impact on 10-period-ahead
forecasts is small so the forecasts ignore it.

16



Table 3: Forecasts of RTSI index

Hist(t) Hist(200) ES GARCH
CRPS –5.164 –5.168 –5.047 –5.038
Test 𝛼 –0.006 –0.003 –0.084*** 0.005

(0.019) (0.019) (0.020) (0.019)
Test 𝛽 0.131*** 0.039** –0.026 0.005

(0.018) (0.017) (0.015) (0.016)
RFC test vs. Hist(t) – 0.366*** 0.261*** 0.123***

(0.084) (0.054) (0.037)
RFC test vs. Hist(200) 0.357*** – 0.324*** 0.264***

(0.077) (0.083) (0.077)
RFC test vs. ES 0.493*** 0.566*** – 0.189***

(0.059) (0.096) (0.048)
RFC test vs. GARCH 0.374*** 0.525*** 0.207*** –

(0.046) (0.093) (0.047)

Note: Newey–West HAC standard errors with lag truncation 10 are

shown in brackets. Statistical significance at 5% (1%, 0.1%) level is

shown by * (**, ***). RFC tests are CRPS-based.

2. “Test 𝛼” is an unconditional PIT-calibration statistic based on (1) with 𝛼 = 0.5.
This statistic relates to the location as measured by the median of the forecasting
distribution.

3. “Test 𝛽” is an unconditional PIT-calibration statistic based on (2) with 𝛽 = 0.5.
This statistic relates to the coverage of the central 50% interval derived from the
forecasting distribution.

4. “RFC test vs. 〈method〉” is a one-sided RFC test, the same as in previous example,
but based on the CRPS.

The selection of the calibration tests is somewhat arbitrary. The proposed framework
allows to design many different tests, including other kinds of PIT-calibration tests. Such
tests are formal counterparts of visual inspection of PIT histograms, a method which is
frequently employed for evaluation of density forecasts.23

The example pertains to a typical practical situation when none of the compared
forecasts can be called “ideal”. All forecasts are not well-calibrated to different degrees
(Table 3). For example, Hist(𝑡) while having (unconditionally) correct location according
to “Test 𝛼” notably lack sharpness which is signaled by “Test 𝛽”: the actual values are
too seldom found in the tails. ES rigidly assumes zero mean which is not corroborated
by the observed data and accordingly “Test 𝛼” indicates a negative bias; note also the
skew of the histogram in Figure 1(a).

In general “GARCH” looks almost like a well-calibrated forecast if calibration is judged
on the basis of ordinary PIT-based criteria. The histogram of the PIT values at Fig-
ure 1(b) is not perfectly flat, but its unevenness is not very serious as confirmed by the
two PIT-calibration tests from Table 3. Also there are no serious signs of autocorrelation

23The problem with such histograms is that they can be potentially deceptive without appropriate
error bands.

17



(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1
(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

Figure 1: Histograms of the PIT values: (a) exponential smoothing, (b) GARCH

after lag 10 in both of the INT values 𝑧t = Φ−1(𝐹t(𝑦t)) and the absolute INT values |𝑧t|.
For example, the 11th autocorrelation coefficient is 0.078 for 𝑧t and −0.039 for |𝑧t|, while
asymptotic standard errors are 0.044 and 0.034 respectively.24

GARCH model is the leader in terms of the average CRPS level, followed closely by
exponential smoothing. However, all of the methods in pairwise comparisons by means of
RFC tests show significant miscalibration. For example, remarkably, GARCH is not able
to encompass exponential smoothing, which can be considered as its “cheaper” substitute.
The results show a potential for improving the forecasts by combining them.

6 Conclusion

Probabilistic forecasts provide much more information for economic decisions than con-
ventional point forecasts, so they have good prospects. Such forecasts should be more
widely adopted in practice of economic forecasting. When using probabilistic forecasts
it is desirable to rely on the fundamental concepts and theoretical properties. Some of
these concepts and properties are considered in this paper.

The paper argues that expected score maximization and the notion of a proper scoring
rule can be viewed as the implicit basis for evaluation of probabilistic forecasts. The
notion of calibration can be derived from this basis.

The paper highlights the difference between PIT-calibration and marginal calibration
of density forecasts and introduces the concept of auto-calibration which generalizes them.
Among other things, the concept of auto-calibration helps to derive the principle of
maximizing sharpness subject to calibration from expected score maximization.

The concept of auto-calibration is further generalized by the concept of calibration
with respect to an information set.

The different modes of calibration lead to different moment conditions, including or-
thogonality conditions. The idea of testing moment conditions leads to a general frame-
work for calibration testing. The framework can facilitate construction of various new
tests. An example is a new relative forecast calibration test (RFC test). Simulations
suggest that it can have high power as a mutual calibration testing procedure for pairs
of probabilistic forecasts.

24The Bartlett’s approximation for the variance of r11 is used which assumes no autocorrelation after
lag 10 and is given by (1 + 2r2

1
+ · · ·+ 2r2

10
)/T , where rk is the k-th autocorrelation coefficient.
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