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Abstract

Demichelis and Polemarchalis (2007) highlighted the role played by the fre-
quency of trade on the degree of indeterminacy of equilibrium in economies
of overlapping generations. Assuming that time has a �nite starting point
and extends into the in�nite future, they prove that the degree of indeter-
minacy increases with the number of periods in the life-span of individuals,
which is assumed to be deterministic. We show that this result does not hold
when individual longevity is represented by an exponential survival function:
the degree of indeterminacy depends on individual preferences and monetary
policy but is independent of the frequency of trade.
Keywords: Overlapping generations � Perpetual youth model � Determinacy
� Continuous time � Discrete time
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1 Introduction

The indeterminacy of the competitive equilibrium in economies of overlap-

ping generations is a crucial issue for the design of monetary and �scal policies

(Bénassy, 2009). In an economy populated with agents living for two periods

and trading one commodity, it is well known that indeterminacy is of degree

one: only the level of prices is indeterminate while the in�ation rate is de-

terminate. It has been argued that increasing the number of traded goods

increases the degree of indeterminacy in a truncated economy (Geanakoplos

and Polemarchakis, 1991), but this property does not generalize to a model

with many agents and general preferences (Kehoe and Levine, 1984). Most

notably, Kehoe et al. (1991) prove the local uniqueness of the equilibrium

if dated consumption goods are gross substitutes at all price ratios in the

neighborhood of the steady state. Uniqueness means that the number of

stable eigenvalues exactly equals the number of initial conditions describing

the distribution of �nancial assets among generations at the initial date of

the economy.

In recent articles, Demichelis (2002) and Demichelis and Polemarchalis

(2007) reassessed the role played by the number of generations in the de-

terminacy issue by focussing on the number of periods in the life-span, or

equivalently on the frequency of trade among generations. In the most in-

teresting case, such that time has a �nite starting point and extends into

the in�nite future, they prove its in�uence on the degree of indeterminacy.

Indeed, the algebra shows that the number of eigenvalues whose modulus is

lower than one monotonously increases with the frequency of trade. However,

according to the authors, despite the fact that the equilibrium equation in

prices is linear, this counting of equations and unknowns does not necessar-
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ily imply an increase in the degree of indeterminacy. Using the convergence

property of their discrete time model to its continuous time counterpart,

they claim that the indeterminacies that appear in discrete time vanish in

continuous time as solutions are time-shifts of a single path. Indeterminacies

are hence a by-product of the discretization of the economy and is not com-

parable to those occurring with stochastic models (as e.g. in Nakajima and

Polemarchakis, 2005).

In this paper, we study the same economy as the one considered by

Demichelis and Polemarchakis (2007) except for the assumption made on

individual longevity that is not anymore deterministic but characterized by

an exponential survival function. We build a discrete time model similar

to Farmer et al. (2011) and prove that it converges, when the frequency of

trade is in�nite, to the pure exchange economies� extensions of the Blanchard

(1985) continuous time model. It is indeed known since Weil (1989) that the

degree of indeterminacy is one in such a framework. The derivation of the

equilibrium prices in the discrete time model allows us to claim that the de-

gree of indeterminacy is independent of the frequency of trade. Moreover,

the system is invariant by time-shift. The di¤erence between Demichelis and

Polemarchakis results and ours can be explained by the fact that the dif-

ference equation that characterize the equilibrium price dynamics remains

of order 1. We are aware (d�Albis and Augeraud-Véron, 2007, 2009, 2011)

that using a Poisson process to describe the survival function eases a lot the

computation of the model and think that generalizing our results to realis-

tic mortality patterns is a promising avenue of research (Azomahou et al.,

2009). This simplicity, nevertheless, allow us to compute the closed form so-

lutions of the dynamics and to extend Demichelis and Polemarchakis (2007)

study to monetary equilibrium and CRRA preferences. We show that issuing
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money may reduce the degree of indeterminacy while CRRA preferences may

increase it.

The paper is organized as follows: in Section 2, the discrete time model

is presented and the exact solution for the price dynamics is given. The

degree of indeterminacy is computed by distinguishing classical and monetary

equilibria. Extensions of our results are given in Section 3. In Section 3.1,

we show that the equilibrium of the discrete time model uniformly converges

to its continuous time counterpart, while we consider, in Section 3.2, the

extension to CRRA preferences. Concuding remarks are proposed in Section

4 and some proofs are gathered in Section 5.

2 A discrete time framework

The model closely follows Demichelis and Polemarchakis (2007) except for

individual longevity, which is uncertain and characterized by an exponential

survival function, and for the introduction of an unbacked asset. The econ-

omy is stationary, the distribution of the fundamentals being invariant with

calendar time, and there is one commodity available at each date, which

can not be stored or produced. Overlapping generations may trade using

consumption-loans and �at money.

The time is discrete, has a �nite starting point and extends into the

in�nite future: 0; (1=n) ; :::; (t=n) ; ::: where t 2 N and n 2 [1;+1). The unit

of time is given by 1=n: the standard discrete-time framework is given for

n = 1; while shorter time-paths are obtained by increasing n.

2.1 Agents� optimal behavior

Let us consider at date t=n an agent who was born at date �=n, where

t � max f� ; 0g. The duration of life is uncertain and, as in Blanchard (1985),
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the age at death is supposed to follow a Poisson process: at date t=n, the

agent has a probability to be alive at date (t+ s) =n equals (1� �=n)s, with

� 2 (0; n). The hazard rate of death, �=n, depends on the length of a period

but, the life expectancy at any given age, which is written:

1X

s=1

s

n

�

n

�
1�

�

n

�s�1
=
1

�
; (1)

is a constant independent of n. Increasing n permits to increase the number

of periods an agent may expect to live without modifying the life expectancy.

Demichelis and Polemarchakis (2007) use a similar trick for a deterministic

life-span.

The agent consumes a quantity of goods c (� ; t;n) and derives some utility

from the discounted �ow of future consumption. The intertemporal utility

at date t=n is written as:

1X

s=0

�
1�

�

n

�s�
1�

�

n

�s
ln c (� ; t+ s;n) ; (2)

where �=n stands for the discount factor, which is assumed to be such that

(1� �=n) (1� �=n) < 1 in order to keep the objective function �nite.

At date t=n, the agent receives a positive endowment of goods, denoted

e (t;n), that is age-independent. It is assumed that the expected �ow of

future endowments is normalized:

1X

s=0

�
1�

�

n

�s
e (� + s;n) = 1; (3)

in order to keep the endowment distribution independent of changes in the

unit of time.

The agent has access to competitive asset markets, where consumption

loans and �at money may be exchanged (Samuelson, 1958), and to competi-

tive annuity markets (Yaari, 1965). The intertemporal budget constraint at
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date t=n is written as:
1X

s=0

�
1�

�

n

�s
p (t+ s;n) c (� ; t+ s;n) � p (t;n) a (� ; t;n) + w (t;n) ; (4)

where p (t;n) is the level of prices, a (� ; t;n) are the assets holdings, and

w (t;n) is the human wealth de�ned as follows:

w (t;n) =
1X

s=0

�
1�

�

n

�s
p (t+ s;n) e (t+ s;n) : (5)

To compute the optimal choices, it is important to distinguish agents born

before the initial date of the economy from those born after. At the initial

date of the economy, asset holdings, a (� ; 0;n) for � 2 Z�; are given, while

initial holdings are supposed to be zero after the initial date: a (� ; � ;n) = 0

for � 2 N+.

Lemma 1. Let

� =

�
1�

�
1�

�

n

��
1�

�

n

���1
: (6)

For t 2 N and � 2 Z�, the optimal consumption and asset holdings are:

p (t;n) c (� ; t;n) =
�
1� �

n

�t
��1 [p (0;n) a (� ; 0;n) + w (0;n)] ;

p (t;n) a (� ; t;n) =
�
1� �

n

�t
[p (0;n) a (� ; 0;n) + w (0;n)]� w (t;n) ;

(7)

while for t 2 N and � 2 N+, they worth:

p (t;n) c (� ; t;n) =
�
1� �

n

�t��
��1w (� ;n) ;

p (t;n) a (� ; t;n) =
�
1� �

n

�t��
w (� ;n)� w (t;n) :

(8)

Proof. See Section 5. �

We see that the initial distribution of assets holdings, a (� ; 0;n) in�u-

ences the optimal behavior of agents born before the initial date of the econ-

omy. Optimal paths (7) and (8) can be computed for any sequence of prices

fp (t;n)gt2N ; perfectly anticipated by the agents. The equilibrium conditions

presented below aim at �nding the sequences that prevail at the equilibrium.
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2.2 Aggregate variables and equilibrium

Each agent belongs to a large cohort of identical agents. Therefore even

though longevity is stochastic, there is no aggregate uncertainty. The law

of large numbers applies, and thus, the size of each cohort is decreasing

at rate �=n. Then, at date t=n, the size of the cohort born at date �=n is

(
=n)N (� ;n) (1� �=n)(t��) where 
=n > 0 is the birth rate for the unit of

time 1=n and N (� ;n) is the size of the population at date �=n. Since a new

cohort is born at each date, the latter is obtained by summing over birth

dates the size that each cohort reaches at date t=n:

N (t;n) =



n

tX

�=�1

N (� ;n)

�
1�

�

n

�t��
: (9)

Let us assume that the population is stationary and normalized to 1. Using

the previous equation, one obtains that the birth rate equals the hazard rate

of death. We hence assume 
 = � hereafter.

The aggregate counterpart of any individual variable is obtained by sum-

ming over cohorts. Hence, the aggregate assets at date t=n, denoted A (t;n),

are given by:

A (t;n) =
�

n

tX

�=�1

�
1�

�

n

�t��
a (� ; t;n) : (10)

Similarly, the aggregate endowment at date t=n is given by:

�

n

tX

�=�1

e (t;n)

�
1�

�

n

�t��
= e (t;n) : (11)

Assuming that e (t;n) is constant over time, we use (3) to conclude that

e (t;n) = �=n and, consequently, that the human wealth write:

w (t;n) =
�

n

1X

s=0

�
1�

�

n

�s
p (t+ s;n) : (12)
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The goods are perishable but may be traded across cohorts. It is never-

theless necessary that aggregate consumption equals aggregate endowment

at each date t=n. This condition is satis�ed if and only if:

tX

�=�1

�
1�

�

n

�t��
c (� ; t;n) = 1: (13)

By replacing equations (7) and (12), the condition (13) is rewritten:

p (t;n) =

p (0;n) A(0;n)�

n

+
1P

s=0

�
1� �

n

�s
p (s;n) + �

n

tP

�=1

1P

s=0

(1��

n)
s

p(�+s;n)

[(1� �

n)(1�
�

n)]
�

�
��
1� �

n

� �
1� �

n

���t : (14)

where � is given by (6). Equivalently, by changing the order of summation,

(14) writes:

p (t;n) =

h
p (0;n)

�
1 + A(0;n)

�

n

�
+
P1

i=1 x (i; t) p (i;n)
i

�
��
1� �

n

� �
1� �

n

���t ; (15)

where:

x (i; t) =

�
1�

�

n

�i
2

41 +
�

n

minfi;tgX

�=1

�
1�

�

n

��2� �
1�

�

n

���
3

5 : (16)

This latter equation is similar to the one studied by Demichelis and Pole-

marchakis (2007) except that we allow aggregate assets to be di¤erent from

zero. However, the main di¤erence lies in the fact that equation (15) can be

rewritten as the following di¤erence equation:

p (t+ 2;n) =

�
2�

�

n

�
p (t+ 1;n)�

�
1�

�

n

�
p (t;n) : (17)

Equation (17) is simple to study (there are two stationary in�ation rates: 0

and ��=n) but, as it will be shown below, it may be misleading to consider

it alone. To avoid confusions, one should also use the equilibrium condition

on the assets market.

7



On the asset markets, it is supposed that a Central Bank issues a non

negative quantity M of �at money at date 0 and nothing afterwards. The

money is distributed to agents that are alive at date t=n = 0. The equilibrium

condition on the assets market is:

p (t;n)A (t;n) =M for all t 2 N; (18)

where the aggregate assets are obtained by replacing equation (8) in (10) and

rearranging using the condition on the goods market (15), such that:

p (t;n)A (t;n) =
�

n

"

�p (t;n)�

1X

s=0

�
1�

�

n

�s
p (t+ s;n)

#

: (19)

The equilibrium condition on the asset market characterizes current prices

p (t;n) as a function of future prices. By construction, any sequence of prices

satisfying it also satisfy the equilibrium condition on the goods market. It

rewrites more simply as follows:

p (t+ 1;n) =

�
1�

�

n

�
p (t;n)�

M�
1� �

n

�
�
: (20)

Let us �nally notice that neither p (0;n) nor A (0;n) are given but, through

the equilibrium condition on the assets market, their product is known.

We de�ne an intertemporal equilibrium as a sequence of positive prices

fp (t;n)gt2N that satis�es equation (20). According to Polemarchakis (1988),

an equilibrium has K degree of indeterminacy if the set of distinct equilibria

constains a K dimensional open set1. Using these two de�nitions, we may

summarize what we obtained above in the following proposition.

Proposition 1. At the intertemporal equilibrium, prices satisfy for t 2 N :

p (t;n) =

�
1�

�

n

�t 

p (0;n)�
M

��
n
� 1

!

+
M

��
n
� 1

: (21)

1A K dimentional open set is the image of a continuously one to one function with
domain an open neighborhood in K�dimensional Euclidian space.
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The degree of indeterminacy is thus at most one and is independent of a

change in the frequency of trade.

Proof. Equation (21) is the exact solution of the linear equation (20). Prices

at date t=n are a function of time and p (0;n). This implies that the degree

of indeterminacy is one if p (0;n) is unknown and zero otherwise. Moreover,

a change in n has no impact on the degree of indeterminacy. �

Let us point out that all sequences given by (21) do no constitute an

equilibrium as prices should be positive. This constraint is important to

assess whether the equilibrium exists and is unique. Indeterminacy can be

discussed by considering four cases depending on the availability of �at money

in the economy and on the various parameters values. We present these cases

below in four corollaries. But whatever the case considered, we see that the

frequency of trade plays no role as it does not a¤ect the order of the di¤erence

equation (20).

Corollary 1. Suppose that M = 0. Prices, which initial level p (0;n) is not

determined, decrease at the constant rate ��=n.

Proof. Set M = 0 in equation (21). �

Using Gale (1973)� typology, this case corresponds to a classical equilib-

rium with zero aggregate asset holdings. Individual consumption is constant

over the life cycle but, contrarily to the two-period life-span model, there

exists some trade on the asset market. Using equations (7), (8), and (12) we

see that cohorts who were already born at the initial date of the economy

consume at each period t=n a quantity �=n+ a (� ; 0;n) =�, which represents

their endowment and the net present value of their asset holdings. Those

being initially in debt consume less than their endowment and �nance the
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over consumption of those who initially had positive assets holdings. Con-

versely, the cohorts who were born after the initial date t = 0 consume the

endowment they receive at each date and do not hold any assets over their

life. The initial price p (0;n) is not determined at equilibrium and there is a

one parameter family of solutions for p (t;n).

Let us now consider the cases where �at money was issued at date 0.

Corollary 2. Suppose that M > 0 and � > 0. Prices, which initial level

p (0;n) is in�nite, decrease at the constant rate ��=n but remain in�nite for

all t.

Proof. Let us proceed by contradiction: if p (0;n) is �nite, limt!+1 p (t;n) =

M= (��=n� 1), which, using the de�nition of � given in (6), is negative.

Hence, there exists t0 � 0 such that p (t;n) < 0 for all t � t0. Consequently,

any sequence starting with p (0;n) <1 cannot be a equilibrium. In order to

deal with in�nite p (0;n), let us introduce the change in variable: z (t;n) =

[p (t;n)�M= (��=n� 1)]�1, which permits to rewrite (21) as follows:

z (t;n) =

�
1�

�

n

��1
z (0;n) : (22)

If p (0;n) is in�nite, one has z (0;n) = 0 and, using (22), z (t;n) = 0 for all

t. We conclude that p (t;n) is in�nite for all t. Moreover, the in�ation rate

computed using (21) writes:

p (t+ 1;n)

p (t;n)
� 1 =

� �
n

1 + M

(1� �

n)
t

[(��n�1)p(0;n)�M]

: (23)

Using the fact that p (0;n) is in�nite permits to conclude. �

The considered case is a classical equilibrium such that the pure discount

rate, �=n, is greater than the population growth rate, which is here set to

zero. By comparing it to the one described in Corollary 1, we see that the
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introduction of �at money permits to eliminate the indeterminacy in prices.

One may think it is odd to consider that in�nite prices are determinate

and may prefer to rewrite the equilibrium dynamics as an equation in real

aggregate assets (as e.g. in Woodford, 1984), which would worth zero at each

date t. In real terms the money is never valued: M=p (t;n) = 0 for all t. The

prices growth rate remains the same as in the case without money, which

implies that agents behaviors are the same as above.

Corollary 3. Suppose that M > 0 and � < 0. Prices, which initial level

p (0;n) is not determinate, either converge to +1, or are constant.

Proof. There exists �p (0; n) � M= (��=n� 1) > 0, such that the equilibrium

exists for all p (0;n) � �p (0;n), and does not exist otherwise (as the prices

would be negative). For all p (0;n) > �p (0;n), the in�ation rate, given by

(23), converge to��=n. For p (0;n) = �p (0;n), we see with (21) that p (t;n) =

�p (0;n). �

In this case, which is such that the pure discount rate is lower than

the population growth rate, the introduction of money does not eliminates

price indeterminacy. There exists a family of paths that are such that prices

converge to in�nity and whose growth rate is also indeterminate as it depends

on p (0;n). Conversely, aggregate assets converge to zero, which means that

money is not used in the long run. However, there also exists a particular

value for p (0;n) such that prices, and aggregate asset holdings, are constant.

It de�nes a steady-state that is locally determinate as a unique sequence

of prices reaches it. The in�ation rate being zero, this path corresponds

to the Golden Rule, where individual consumptions and asset holdings are

increasing with age.

Corollary 4. Suppose that M > 0 and � = 0. Prices, which initial level
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p (0;n) is in�nite, are constant.

Proof. Using l�Hospital� Rule, one obtains that for � = 0, equation (21)

rewrites as follows:

p (t;n) = p (0;n)� t
�
n
M

�
1� �

n

� : (24)

If p (0;n) is �nite, one has: limt!+1 p (t;n) = �1. Consequently, any

sequence starting with p (0;n) < 1 cannot be a equilibrium. In order to

deal with in�nite p (0;n), let us introduce the change in variable: z (t;n) =

1=p (t;n), which permits to rewrite (24) as follows:

z (t;n) =
1

p (0;n)� t
�

n
M

(1��

n)

: (25)

We conclude that z (t;n) = 0 for all t and that p (t;n) are in�nite for all t.

Finally, we use (23) to conclude that prices are constant. �

This last case, which is sometime named the coincidental equilibrium in

the literature, features a Golden Rule equilibrium where the aggregate real

assets are zero. As in Corollary 2, prices are determined even though they

are in�nite for all t.

In the above four cases, we have seen that the price indeterminacy is

at most of degree 1, which is due to the fact that the equilibrium can be

characterized by a di¤erence equation of order one. Moreover, all paths can

be obtained from another one by a time-shift. This latter property, which

is also found by Demichelis and Polemarchakis (2002) in the case without

money, can be formally de�ned as follows. Let p (t) = f (p0; t) be a one-

parameter family system with p0 = p (0). Trajectories are invariant by time

shift if for all t1 2 N one has: f (t; f (t1; p0)) = f (t+ t1; p0) ; for all t 2 N.

Lemma 2. The equilibrium is invariant by time shift.
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Proof. Using (21), one may compute:

f (t+ t1; p0) =

�
1�

�

n

�t+t1  

p (0;n)�
M

��
n
� 1

!

+
M

��
n
� 1

; (26)

and:

f (t; f (t1; p0)) =

�
1�

�

n

�t+t1  

p (0;n)�
M

��
n
� 1

!

+
M

��
n
� 1

; (27)

which permit to conclude. �

3 Extensions

We assess the robustness of our results by considering the extensions to the

continuous time limit and to a higher degree system. The latter being ob-

tained by considering a more general utility function.

3.1 The continuous time limit

The continuous time version of the model presented above is similar to Blan-

chard (1985) and, except that we do not allow for population growth, to

Buiter (1988) and Weil (1989). This extension derives the equilibrium prices

and demonstrates the uniform convergence of the equilibrium computed in

discrete time to its continuous time counterpart.

Time has a �nite starting point: 0 � t < +1: An agent born at date

� has a probability to be alive at date t equals e��(t��), where � > 0 is

the hazard rate. Consequently, life expectancy is 1=� whatever the age of

the agent. Consumption at age t � � is denoted c (� ; t) and the endowment

received at date t is e (t).

An agent born at date � > 0 maximizes at date t � � :
Z 1

t

e�(�+�)(s�t) ln c (� ; s) ds; (28)
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subject to:
Z 1

t

e��(s�t)p (s) c (� ; s) ds � p (t) a (� ; t) + w (t) ; (29)

where p (t) and w (t) respectively denote the price and the human wealth

at date t, a (� ; t) denotes the assets accumulated at age t � � and � > ��

denotes the discount rate. The human wealth satis�es:

w (t) =

Z 1

t

e��(s�t)p (s) e (s) ds: (30)

Initial and terminal conditions write: a (� ; �) = 0 and limt!+1 p (t) a (� ; t) �

0. The optimal consumption path satis�es:

p (t) c (� ; t) = (� + �)w (�) e��(t��); (31)

while the optimal assets holding are given by:

p (t) a (� ; t) = w (�) e��(t��) � w (t) : (32)

Conversely, an agent born at date � � 0 and still alive at date 0, maxi-

mizes at date t � 0 the objective function (28) subject to (29), a (� ; 0) given,

and limt!+1 p (t) a (� ; t) � 0. The optimal consumption path satis�es:

p (t) c (� ; t) = (�+ �) [p (0) a (� ; 0) + w (0)] e��t; (33)

while the optimal assets holding are given by:

p (t) a (� ; t) = [p (0) a (� ; 0) + w (0)] e��t � w (t) : (34)

The population is stationary and the birth rate is �. The aggregate en-

dowment is constant, and satis�es: e (t) = �. The equality between aggregate

demand and aggregate endowment now writes:
Z t

�1

e��(t��)c (� ; t) d� = 1; (35)
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while the equilibrium on the asset market writes:

p (t)

Z t

�1

e��(t��)a (� ; t) d� =M: (36)

By replacing (31) and (33) in (35) and using (30) and (36), we obtain the

equilibrium equation for prices:

p (t) = (�+ �)

�
M +

Z 1

0

e��sp (s) ds

�
e�(�+�)t (37)

+(� + �)�

Z t

0

e�(�+�)(t��)
�Z 1

�

e��(s��)p (s) ds

�
d� ; (38)

which is the continuous time counterpart of (14). Similarly, replacing (32)

and (34) in condition (36) and using (38), one obtains:

p (t)

(�+ �)
�

Z 1

t

e��(s�t)p (s) ds =M; (39)

from which we deduce the equilibrium prices.

Proposition 2. At the intertemporal equilibrium, prices satisfy for t 2 R+ :

p (t) =

�
p (0) +

� (�+ �)

�
M

�
e��t �

� (�+ �)

�
M: (40)

Proof. Di¤erentiating (39) with respect to time gives:

p0 (t) = ��p (t)� � (�+ �)M; (41)

whose solution is (40). �

Lemma 3. As n! +1, p (t;n) converges uniformly to p (t).

Proof. The proof proceed showing that (21) converges to (40) when n! +1.

We use
�
1� �

n

�t
� e�

�

n
t and limn!+1 1= (��=n� 1) = � (� + �) =�. Let us

denote t0 = t=n and M 0 =M=�; we obtain that:

lim
n!+1

p (t;n) = e�
�

n
t0
�
p (0) + �

�
� + �

�

�
M 0

�
� �

�
� + �

�

�
M 0: � (42)
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As Demichelis and Polemarchakis (2007), we proved that the discrete

time model converges to its continuous time counterpart when the frequency

of trade is in�nite. The degree of indeterminacy is unchanged.

3.2 CRRA utility function

Let us now consider that the intertemporal utility at date t=n writes:

1X

s=0

�
1�

�

n

�s�
1�

�

n

�s
c (� ; t+ s;n)1�

1

� � 1

1� 1
�

; (43)

where � 2 (0; 1)� (1;+1) stands for the elasticity of intertemporal substi-

tution.

By computing the individual consumptions and aggregating them over

cohorts, one obtains the following price dynamics that satisfy the equilibrium

condition on the goods market:

p (t;n)� =

p(0;n)A(0;n)
�

n

+
P1

s=0

�
1� �

n

�s
p (s;n)

P1
j=0�

(j�t)p (j;n)1��
+

tX

�=1

�
n

P1
s=0

�
1� �

n

�s
p (� + s;n)

�(��t)
P1

j=0�
jp (� + j;n)1��

;

(44)

where � =
�
1� �

n

�� �
1� �

n

�
, which satis�es lim�!1

P1
j=0�

j = �. This equa-

tion generalizes (14) for any � 2 (0; 1)�(1;+1). Aggregating the individual

asset holdings, and replacing equation (44), one obtains the following equi-

librium condition on the asset market:

M =
�

n

"

p (t;n)�
1X

s=0

�sp (t+ s;n)1�� �
1X

s=0

�
1�

�

n

�s
p (t+ s;n)

#

; (45)

which generalize (19). This equation does not rewrite as a tractable di¤erence

equation but the dynamics can be studied using the following change in

16



variables:

y (t;n) = p (t;n)� ; (46)

x (t;n) =

1X

s=0

�
1�

�

n

�s
p (t+ s;n)1��

�
1�

�

n

��s
; (47)

which permit to write a two-dimensional dynamic system:

Lemma 4. The sequence of prices that satis�es (45) is the solution of:

8
>><

>>:

y (t+ 1;n) =
�
1� �

n

��
�
y (t;n)� M

x(t;n)�y(t;n)
1��
�

�

x (t+ 1;n) = ��1
h
x (t;n)� y (t;n)

1��

�

i (48)

Proof. See Section 5. �

In system (48), neither y (0;n) nor x (0;n) are given, except in the case

� = 1 where the latter is a constant. The system is then one dimensional

and is the same as (20). We also immediately see that in the case such that

aggregate assets holdings worth zero, i.e. forM = 0, that the price dynamics

are the same as those described in corollary 1. For M > 0, we deduce from

Lemma 4 that the degree of indeterminacy is still independent of a change

in the frequency of trade but is now at most 2. The knowledge of p (0;n),

which gives y (0;n), is not su¢cient as x (0;n) will not be known. We now

propose a phase diagram analysis2 that permit to perform a global analysis

of the dynamics.

Let us �rst suppose that the pure discount rate is greater than the popu-

lation growth rate: � > 0: It can be shown that there is no steady-state and

that the isocline Iy, which represents the locus such that y (t+ 1;n) = y (t;n),

is always lower than the isocline Ix, which represents the locus such that

2The technical derivation of the diagrams can be found in Section 5.
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x (t+ 1;n) = x (t;n). The Figures 1 represent the phase diagrams for di¤er-

ent values of �, which in�uence the shape of Ix.

Figures 1. Phase diagrams for � > 0.
about here

We see from Figures 1 that, for all � 6= 1, there exist an in�nity of ad-

missible pairs (y (0;n) ; x (0;n)) that initiate a trajectory of positive prices

satisfying (48). Asymptotically, prices are in�nite. Contrarily to the case

� = 1, described in Corollary 2, the emission of money does not eliminate

indeterminacy, which is of degree two.

We now consider the case such that the pure discount rate is greater than

the population growth rate: � < 0: It can be shown that there exists a unique

steady-state, which is an unstable focus for � < 1 and an unstable node for

� > 1. The Figures 2 represent the phase diagrams for di¤erent values of �.

Figures 2. Phase diagrams for � < 0.
about here

We conclude that for � < 1, the equilibrium trajectory exists and is unique:

the initial pair (y (0;n) ; x (0;n)) jumping to its steady-state value, while all

other con�gurations lead to negative prices. Conversely, for � > 1, in addition

to the steady-state solution, there are an in�nity of possible trajectories that

features positive prices converging to the in�nity. This latter case is thus

similar to the case � = 1, described in Corollary 3 except that the degree

of indeterminacy is two, while the former implies that the equilibrium is

determinate.

4 Conclusion

In this article, we developed a simple overlapping generations model that

permits to easily compute the degree of indeterminacy of equilibrium paths.
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We showed that this degree may increase with the dimension of the dy-

namic system. In Demichelis and Polemarchakis (2007), the assumption of

bounded lifespans implies that the dimension of the system increases with

the frequency of trade, while it is not the case with the survival function

we consider. However, considering a more general utility function, namely

a CRRA one rather than a logarithmic one, has been shown to increase the

degree of indeterminacy. This increase is not an artifact of the discretization

and does not vanish in continuous time. However, the degree of indetermi-

nacy in large dimension dynamical systems is still an issue: with logarithmic

preferences, Demichelis and Polemarchakis (2007) were able to evaluate the

modulus of the eigenvalues and to conclude at the continuous time limit when

the number of eigenvalues becomes in�nite. This method cannot be applied

to any mixed-type functional di¤erential equation and further researches are

needed in order to get general results.

5 Proofs

Proof of Lemma 1. The proof is standard. For � 2 Z� and t 2 N, the agent

maximizes (2) subject to (4) and a (� ; 0;n) given. The Lagrangian writes:

L (� ; t;n) =

1X

s=0

�
1�

�

n

�s�
1�

�

n

�s
ln c (� ; t+ s;n) + �p (t;n) a (� ; t;n)

+�

"

w (t;n)�
1X

s=0

�
1�

�

n

�s
p (t+ s;n) c (� ; t+ s;n)

#

: (49)

The �rst order conditions on c (� ; t+ s;n) write:
�
1� �

n

�s

c (� ; t+ s;n)
� �p (t+ s;n) = 0; for all s = 0; 1; ::: (50)

The "Keynes-Ramsey" equation can thus be easily derived:

c (� ; t+ s+ 1;n)

c (� ; t+ s;n)
=

�
1�

�

n

�
p (t+ s;n)

p (t+ s+ 1;n)
: (51)
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Replace (50) in (4) to compute the Lagrangian multiplier:

� =
1

1�
�
1� �

n

� �
1� �

n

� 1

p (t;n) a (� ; t;n) + w (t;n)
; (52)

and replace it in (50) to obtain:

c (� ; t+ s;n) =

�
1� �

n

�s �
1�

�
1� �

n

� �
1� �

n

��
[p (t;n) a (� ; t;n) + w (t;n)]

p (t+ s;n)
:

(53)

At date t=n = 0, the optimal consumption is:

c (� ; 0;n) =

�
1�

�
1� �

n

� �
1� �

n

��
[p (0;n) a (� ; 0;n) + w (0;n)]

p (0;n)
: (54)

The �rst equation in (7) is obtained using (51) and (54). Replacing (7) in

(53) gives the �rst equation in (8).

For � 2 N+ and t 2 N+, the agent maximizes (2) subject to (4) and

a (� ; � ;n) = 0. Equation (53) still holds, but the initial consumption writes:

c (� ; � ;n) =

�
1�

�
1� �

n

� �
1� �

n

��
w (� ;n)

p (� ;n)
; (55)

from which the second equation in (7) is deduced. Replacing the latter in

(53) gives the second equation in (8). �

Proof of Lemma 4. This proof presents simple computations made to trans-

form (45) in a two dimensional dynamic system. Equation (45) can be rewrit-

ten as:

M =
�

n

"
p (t+ 1;n)�

p (t;n)�
p (t;n)�

P1
s=0�

sp (t+ s;n)1�� � p (t;n)

�

�

P1
s=0

�
1� �

n

�s
p (t+ s;n)� p (t;n)
�
1� �

n

�

#

; (56)

or, equivalently:

M = [z (t;n)� 1] p (t;n)

 

1�
p (t+ 1;n)�

p (t;n)�
�
1� �

n

��

!

; (57)
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where

z (t;n) = p (t;n)��1
1X

s=0

�sp (t+ s;n)1�� : (58)

Thus:

z (t+ 1;n) =
p (t+ 1;n)��1

p (t;n)��1
z (t;n)� 1�
1� �

n

� �
1� �

n

� : (59)

Using the changes in variables, (46) and (47), one obtains (48). �

Phase diagrams of Section 3.

The isocline Iy, which represents the locus such that y (t+ 1;n) = y (t;n),

is described by the equation x = � (y), where � is given by:

� (y) = �
M

y

�
1� �

n

��

1�
�
1� �

n

�� + y
1��

� : (60)

As � (y) has the same sign of �0 (y) y2, we obtain the following con�guration.

For � > 0, �0 (y) > 0, for � < 0 and � > 1; �0 (y) < 0 and for � < 0 and

� < 1; there exists a unique minimum to � (y).

The isocline Ix represents the locus such that x (t+ 1;n) = x (t;n). It is

given by:

x =
y
1��

�

(1� �)
: (61)

For � < 1; Ix is the graph of an increasing function, which is convex for

0 < � < 1=2 and concave for 1=2 < � < 1. For � > 1; Ix is the graph of a

decreasing function.

Figures 1 and 2 represent the isocline for the various combinations of pa-

rameters. Let us now turn to the analysis of the existence and local stability

of steady-states. they solve:
8
<

:

y
1

� = �M (1��)

(1��

n)��
x = �M

y
1

(1��

n)��
(62)

There is no positive (x; y) if � > 0, and there is a unique positive (x; y) if

� < 0. This steady state is an unstable focus if � < 1 and an unstable node if
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� > 1. The latter case can be seen from the phase diagram, while the former

can be shown by computing the Jacobian matrix:

J =

2

6
4

��
1� �

n

��
+

1��

�
(1��)(1�(1� �

n)
�

)
�

�
y2(1�(1� �

n)
�

)
2

(1� �

n)
�

M

�1��
�

y
1�2�
�

�
1
�

3

7
5

and its determinant, which worth: D = 1= (1� �=n) > 1 and implies that

the modulus of eigenvalues are larger than 1.
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Figures 2
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