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1 Introduction

Investors supposedly tradeoff expected return against the risk of an asset in composing

their portfolios. What constitutes risk can be viewed in different ways. Traditionally,

risk is often captured by the variance of the returns. An alternative view focuses on the

downside risk. In the banking industry and among professional investors, downside risk

has gained popularity through the Value-at-Risk (VaR) concept. In this paper, we study

the properties of downside tail risk of assets selected by safety-first investors. Safety-

first investors care foremost about meeting a minimum risk constraint before maximizing

expected returns.

It is first argued that the tail risk of assets can be represented by a shape and scale

parameter in the case that the return distribution is heavy tailed. Given this, we show

that safety-first investors with a low risk tolerance only invest in the asset with the

largest tail shape parameter, i.e. asset with the thinnest tail. At the same time, assets

can differ regarding the tail scale, as this can be compensated for in the expected return.

The equilibrium priced derived from the scale heterogeneity is as that in the safety-

first analysis of Arzac and Bawa (1977). We are able to achieve more specific results

in comparison to methods utilizing the Chebyshev bound, which incorporates a mean-

variance analysis.

Empirical research has shown that the tail risk of equity is heavier than that tail risk

implied by the normal distribution, see, e.g., Mandelbrot (1963) and Jansen and De Vries

(1991). Heavy-tails refer to the fact that the tail region of the distribution function

exhibits a power law decay, as opposed to the exponential decay of the Gaussian distri-

bution. Mathematically, denote the return of a financial asset by R, with the distribution

function F (x) = Pr(R ≤ x). The distribution function F is heavy-tailed if its left tail

can be approximated by a power law as

F (−x) = Pr(R ≤ −x) ∼ Ax−α, as x → ∞, (1.1)

where α is the tail shape parameter, commonly referred to as the tail index, and A
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indicates the scale of the distribution.1 In contrast to the Gaussian distribution, hetero-

geneity in the downside tail risk of a heavy-tailed distribution is manifest via differences

in the tail shape and scale of the distribution.

We develop an asset pricing model based on the safety-first utility to show that when

investors exhibit a sufficiently low tolerance for tail risk, the tail index, α, of equity returns

traded on the same market are cross-sectionally homogeneous. This is called the tail index

equivalence hypothesis. We prove this result under a first-order tail risk approximation

as in (1.1), then with a further extension under a second-order approximation on the

left tail of the distribution function F . Under the second-order approximation, we also

show that if investors exhibit a moderate tolerance for tail risk, the shape parameters of

the tail distribution may nevertheless differ across different assets. When the tail index

equivalence hypothesis holds, the heterogeneity in the downside tail risk of asset returns

is then attributed to that in the scale of the tail distribution. In this case, we show that

the equilibrium expected return differences compensate for heterogeneity in the scales.

The tail index equivalence hypothesis has been adopted in some theoretical works on

portfolio diversification with heavy-tails as a starting assumption. For example, Fama

and Miller (1972) consider symmetric stable distributions for modeling the distribution of

asset returns. Assuming that the tail shape is invariant, they consider the scale parameter

as the only heterogeneous risk parameter in the model. Similarly, Hyung and de Vries

(2002) apply the Pareto distribution assuming a constant tail index across assets. More

recent works incorporate dependence across assets by assuming a constant tail index

cross-sectionally, see, e.g. Hyung and de Vries (2005, 2007); Ibragimov and Walden

(2008); Zhou (2010). In all aforementioned studies, there is no theoretical justification

on the assumption of tail index equivalence or non-equivalence for that matter. The

only weak evidences on the tail index equivalence hypothesis are provided in empirical

literature, see, e.g Jansen and De Vries (1991), Loretan and Phillips (1994) and Jondeau

and Rockinger (2003). In this paper, we provide an economic argument behind this

remarkable equivalence.

1The power law approximation belongs to the Fréchet type of domain of attraction as in Extreme
Value Theory, see e.g. Embrechts et al. (1997) and De Haan and Ferreira (2006).
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The fundamental setup of our model is based on the safety-first utility, which empha-

sizes the asymmetric preference of investors towards loss aversion over upside potential;

see, e.g. Roy (1952)2 Arzac and Bawa (1977). formalize the safety-first utility in a lexico-

graphic form. Safety-first investors initially minimize the probability that their portfolio

return falls below a minimum desired threshold. Only after that is achieved, they seek

to maximize expected return.

Instead of fixing a loss level, we use an equivalent downside risk measure, the VaR

by fixing the probability level of an extreme loss. For a given probability level, the VaR

is defined as the threshold value such that losses on a portfolio are only exceeded with

that probability. For a safety-first investor, to control that the probability of portfolio

return falls below a minimum desired threshold, it is equivalent to constrain that the

Value-at-Risk (VaR) of the portfolio is below a threshold level. Since the downside tail

of a heavy-tailed distribution can be approximated as in (1.1), for low p, the VaR at a

probability level p has an explicit approximation as

V aRp(R) ≈ (
A

p
)

1
α .

From the VaR approximation, we observe that once the tail indices differ, for extremely

low probability level p, the asset with a lower tail index will always have a higher VaR. In

addition, the VaRs corresponding to different tail indices are at incomparable levels when

the probability level p tends to zero. This serves as the general intuition for the tail index

equivalence hypothesis: by considering rather low probability level p, the differences in

VaRs can not be compensated by expected returns. We formalize this intuition into our

theoretical analysis.

The paper is organized as follows. In Section 2, we provide the theoretical model on

tail index equivalence under first-order and second-order tail approximations. In Section

3, we derive the equilibrium prices of assets under the tail index equivalence hypothe-

2The modeling of downside risk aversion was also investigated by Markowitz (1959) where he suggests
the use of semi-variance, as opposed to variance, since it captures only the downside losses. Kahneman
and Tversky (1979) use a behavioral approach arguing that agents weigh gains and losses differently.
More recently, work by Harvey and Siddique (2000) and Ang et al. (2006) explore firm-level downside
risk by using co-skewness in equity returns and downside betas, respectively.
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sis and show that heterogeneous scale parameters of asset returns are compensated by

expected return. Section 4 concludes the paper.

2 Theory

2.1 Investors with Safety-First Utility

Safety-first preference, first introduced by Roy (1952), assumes that an investor seeks

to maximize the expected return subject to a downside risk constraint. Arzac and Bawa

(1977) formalize this approach by introducing lexicographic safety-first utility as follows.

Suppose an investor has total wealth Wt at time t. The investor can borrow or lend at

a risk-free rate rf and invest in a set of assets with prices Pt at time t. Here Pt denotes

the vector of asset prices. The investor chooses to construct a portfolio consisting of the

risky assets with portfolio holding indicated by ω and the risk-free investment indicated

by b, where b can be either positive (lending) or negative (borrowing). Being safety-first,

the investor considers the probability that the value of his portfolio at time t+1 is below

a critical level s. Then, the safety-first investor solves the following utility maximization

problem by choosing (ωT , b):

max{π, µ}, s.t. ωTPt + b = Wt,

where

π = 1 if ζ = Pr(ωTPt+1 + brf ≤ s) ≤ p

π = 1− ζ, otherwise,

and

µ = E[ωTPt+1 + brf ].

Here, the lexicographic preference order is captured by max{π, µ} as investors first con-

sider assets such that the probability of having a low wealth at time t+1, ζ, is low. If ζ is

below the admissible probability level p, then the preference is towards a high expected

return µ.
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Note that if Wtrf > s, the case π = 1 can always be achieved by investing sufficiently

on the risk-free asset. In that case, the utility maximization problem becomes a maxi-

mization problem on the expected return with the constraint that ζ ≤ p. The constraint

can be further written as

p ≥ Pr(ωTPt+1 + brf ≤ s) = Pr(
ωTPt+1

ωTPt

≤
s− brf
Wt − b

)

= Pr(Rt ≤ rf +
s−Wtrf
Wt − b

− 1), (2.1)

where Rt =
ωTPt+1

ωTPt
−1 denotes the return of the risky portfolio. The probability constraint

(2.1) is equivalent to a VaR constraint:

V aRp(R) ≤ −

(

rf +
s−Wtrf
Wt − b

− 1

)

.

The utility optimization problem consequently turns to be a maximization problem of the

expected return subject to a VaR constraint. Hyung and de Vries (2012) show that the

expected return maximization with a VaR constraint is analogous to the mean-variance

portfolio selection approach of Markowitz (1959): the VaR replaces the variance as the

risk measure.

In the rest of the paper, we consider safety-first investors to be maximizing the ex-

pected return under a VaR constraint. Furthermore, we assume that safety-first investors

cross-sectionally hold homogeneous concerns on the admissible probability level p that

can vary over time.

2.2 Tail Index Equivalence: First-Order Tail Approximation

In this section, we show that the shape parameter that characterizes the tails of asset

returns must be equal when p is an extremely low admissible probability level. We start

with considering two risky assets only.

Suppose the returns of two assets, R1 and R2, both follow heavy-tailed distributions

as in (1.1). Denote the tail indices of R1 and R2 by α1 and α2, with respective scale
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parameters A1 and A2. In the case of α1 6= α2, we assume 1 < α1 < α2 without loss of

generality3. Consider a linear portfolio, R, as

R = ω1R1 + ω2R2, ω1, ω2 > 0,

where ω1 and ω2 are the weights assigned to asset 1 and 2, respectively. If R1 and R2

are independent, it immediately follows from Embrechts et al. (1997) that if α1 < α2,

the tail index of R is dominated by the lower tail index, α1. Zhou (2010) shows that this

result also holds in case of tail dependence in most finance models, e.g., the Capital Asset

Pricing Model (CAPM). The tail distribution of R can be approximated as follows

Pr(R ≤ −x) ∼ ωα1
1 A1x

α1 , as x → +∞.

This result holds regardless of the dependence structure between R1 and R2. Thus,

V aRp(R) ∼ ω1

(

A1

p

)1/α1

as p → 0. (2.2)

From a tail risk perspective, (2.2) implies that only the asset with the heavier tail

determines the tail risk of the portfolio. We compare this to an alternative investment

strategy of only holding the thinner-tailed asset (asset 2). In this case, the VaR is

approximated by (A2

p
)1/α2 . As p → 0, ω1(A1/p)1/α1

(A2/p)1/α2
→ ∞. Hence, the difference in tail

indices leads to a difference in the asymptotic levels of the V aR. At sufficiently low risk

tolerance levels, this will ultimately overshadow the difference in expected returns. In the

following theorem we claim that for sufficiently small p, regardless the expected returns,

a portfolio which invests a positive fraction in the asset with the heavier tail, even a

small fraction, is not sufficiently compensated by the expected return, compared to solely

investing on the thinner tailed asset.

Theorem 2.1 Suppose the distributions of the asset returns R1, R2 follow the approxi-

mation in (1.1), with respective tail indices 1 < α1 < α2, scale parameters A1, A2, and

3The assumption guarantees that the expected returns are finite.
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expected returns µ1, µ2 > rf > 0, where rf is the return on a risk-free asset. Then,

as p → 0, a safety-first investor will hold a portfolio consisting of only asset 2 and the

risk-free asset.

Proof. We first show that, for any given portfolio consisting of the two risky assets and

the risk-free asset, with sufficiently low probability level p, there always exists another

portfolio consisting of the thinner-tailed asset (asset 2) and the risk-free asset, such that

this alternative portfolio has the equivalent expected return, but a lower VaR level.

The fraction of wealth invested in two risky assets are ω1, ω2, where ω1, ω2 > 0. The

remainder, 1 − ω1 − ω2, is then invested on the risk-free rate. Thus, the return of the

safety-first investor’s portfolio R is

R(ω1, ω2) = ω1R1 + ω2R2 + (1− ω1 − ω2)rf

= rf + ω1(R1 − rf ) + ω2(R2 − rf ).

Since the heavy-tail property is location-invariant, the excess returns R1−rf and R2−rf

follow heavy-tailed distributions with tail indices α1, α2 and scales A1, A2, respectively.

From (2.2), for low p, the VaR of R is approximately

V aRp(R) ≈ rf + ω1

(

A1

p

)1/α1

.

Alternatively, consider a second portfolio, R′, which contains only the thinner tailed

risky asset along with the risk-free asset with nevertheless the same expected return:

R′(ω1, ω2) =

(

1− ω1
µ1 − rf
µ2 − rf

− ω2

)

rf +

(

ω1
µ1 − rf
µ2 − rf

+ ω2

)

R2

= rf +

(

ω1
µ1 − rf
µ2 − rf

+ ω2

)

(R2 − rf ).

It is straightforward to verify that E(R′) = E(R). For low p, the VaR of the alternative
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portfolio R′ can be approximated as

V aRp(R′) ≈ rf +

(

ω1
µ1 − rf
µ2 − rf

+ ω2

)(

A2

p

)
1
α2

.

From α1 < α2, we get that

lim
p→0

ω1(A1/p)
1/α1

(

ω1
µ1−rf
µ2−rf

+ ω2

)

(A2/p)1/α2

= lim
p→0

ω1A
1/α1

1
(

ω1
µ1−rf
µ2−rf

+ ω2

)

A
1/α2

2

p1/α2−1/α1 = +∞.

Thus, for sufficiently low p, we have that V aRp(R′) < V aRp(R).

To summarize, for any portfolio based on a linear combination of both heavy-tailed

assets and the risk-free asset, R(ω1, ω2), if the admissible probability p is sufficiently low,

there exists an alternative portfolio containing only the thinner tailed asset and the risk-

free asset, R′, which has equal expected return and lower downside tail risk. Thus the

VaR of portfolio R′ is strictly below the threshold in the VaR constrain. Since the VaR

of R′ is a continuous function with respect to the weight on asset 2, we can increase the

weight on asset 2 with a small marginal increment to construct a third portfolio R∗, such

that R∗ still satisfies the V aR constraint. Meanwhile, since µ2 > rf , the portfolio R∗ has

a strictly higher expected return than R′, i.e. E(R∗) > E(R′) = E(R). Based on the

safety-first utility function, the investor will strictly prefer R∗ to R. This completes the

proof of the theorem.

Theorem 2.1 shows that in a market with two risky assets and a risk-free asset, as

the admissible probability level in the safety-first utility tends to zero, the asset with a

lower tail index will not be traded in any optimal portfolio. Thus, only the one with a

higher tail index will be traded. This can be extended to a market with multiple assets:

the assets that share the maximum tail index will be traded, whereas other assets with

lower tail indices will not be traded. Hence, we conclude that, in an economy populated

by safety-first investors exhibiting a low risk tolerance, all assets that are traded must

share the same tail index. We call this the “tail index equivalence hypothesis”.
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2.3 Tail Index Equivalence: Second-Order Tail Approximation

Above, we have established the “tail index equivalence hypothesis” under the assump-

tion that investors’ admissible probability tends to zero, i.e. p → 0. This assumption may

not reflect the utility of an actual safety-first investor, because investors have downside

tail risk concerns with a small, but nevertheless positive, admissible probability. Said

otherwise, the risk tolerance may not be so low as to drive all assets with a lower tail

index out of the market. To analyze the preferences of investors with a low, but not tend-

ing to zero, admissible probability, we need to quantify the accuracy of the first-order

approximations. This is achieved by considering the second-order approximation of the

left tail of the asset return distribution.

Similar to the proof in Subsection 2.2, we start by considering a market consisting of

two risky assets and a risk-free asset. We assume that the left tail region of the distribution

functions on the two asset returns follow heavy-tailed distributions as before, but now

with a second-order approximation: for i = 1, 2,

Pr(Ri ≤ −x) ∼ Aix
−αi [1 + Bx−γi ], as x → +∞. (2.3)

This approximation applies to most of the standard distribution with heavy tails, e.g., the

Student-t distribution. Here γi and Bi are called the second-order index and the second-

order scale. To simplify the second-order approximation on the tail of the distribution

function of the portfolio, we first assume that R1 and R2 are independent.

The following theorem shows that if the admissible probability p is sufficiently low,

the asset with a lower tail index, i.e. the heavier tail, will not be traded in the market,

whereas for a sufficiently high probability level, both asset may be included in the optimal

portfolio.

Theorem 2.2 Suppose distributions of the two asset returns R1, R2 follow second-order

approximation as in (2.3). Denote the expected returns of R1 and R2 as µ1, µ2 > rf .

Suppose the tail indices satisfy 1 < α1 < α2. Then, there exists a positive probability

p∗ > 0, such that for p < p∗, a safety-first investor with admissible probability level p
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only invests in the asset 2 and the risk-free asset; for p > p∗, a safety-first investor with

admissible probability level p may invest in both assets.

Proof. We start with a portfolio R that assigns weights ω1, ω2 and 1 − ω1 − ω2 to the

three assets. The portfolio return can be written as

R = ω1R1 + ω2R2 + (1− ω1 − ω2)rf

= rf + [ω1(µ1 − rf ) + ω2(µ2 − rf )]

[

ω
R1 − rf
µ1 − rf

+ (1− ω)
R2 − rf
µ2 − rf

]

=: rf + [ω1(µ1 − rf ) + ω2(µ2 − rf )] [ωX1 + (1− ω)X2]

where ω =
ω1(µ1−rf )

ω1(µ1−rf )+ω2(µ2−rf )
∈ [0, 1]. Since X1 =

R1−rf
µ1−rf

and X2 =
R2−rf
µ2−rf

share the

same expectation 1, varying the parameter ω will not change the expected return of the

portfolio R. Hence, to obtain the optimal portfolio, the safety-first investor can first

minimize the VaR of X = ωX1 + (1 − ω)X2 with the optimal solution ω∗. The investor

can then scale up the VaR of the portfolio by choosing [ω1(µ1 − rf ) + ω2(µ2 − rf )], such

that it achieves the boundary of the VaR constraint. This gives the optimal portfolio for

maximizing the safety-first utility. Hence, to prove the theorem, it is only necessary to

show that there exists a p∗ such that for p < p∗, ω∗ = 0, while for p > p∗, ω∗ > 0 may

occur.

The second-order approximation in (2.3) on Ri leads to a similar approximation on

the left tail part of the distribution function of Xi =
Ri−rf
µi−rf

. The (first-order) tail index

remains as αi, while the second-order index is min(γi, 1) and the first-order and second-

order scales Ai and Bi may differ. Without loss of generality, we still use the notations

Ai, γi and Bi as the first-order scale, the second-order index and scale for Xi.

We use the second-order approximation of the VaR of X = ωX1+(1−ω)X2 provided

in Hyung and de Vries (2007). The approximation depends on the comparison between

α2 −α1 and min{γ1, 1}. Here we analyze the case α2 −α1 < min{γ1, 1}. The other cases

are similar, but simpler. If 1 < α1 < α2 and α2 − α1 < min{γ1, 1}, then for a sufficiently
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small probability p > 0, the VaR of X at a probability level p is given as

V aRp(ω) ≈























(A2

p
)1/α2 [1 + B2

α2
(A2

p
)−γ2/α2 ] if ω = 0

ω(A1

p
)1/α1 [1 + (1−ω

ω
)α2 1

α1

A2

A
α2/α1
1

pα2/α1−1] if ω ∈ (0, 1)

(A1

p
)1/α1 [1 + B1

α1
(A1

p
)−γ1/α1 ] if ω = 1.

Hyung and de Vries (2007) prove that V aRp(ω) is a continuous and convex function of ω

on (0, 1). Hence, there exists a unique interior solution ω̃ which minimizes V aRp(ω) on

the set (0, 1). Since α1 < α2, we have that
V aRp(0)
V aRp(1)

→ 0 as p → 0, which implies that there

exists a threshold p̂, such that for p < p̂, V aRp(0) < V aRp(1). Thus, to check whether

ω̃ minimizes V aRp(ω) on ω ∈ [0, 1], we only need to compare V aRp(ω̃) with V aRp(0).

We show that there exists a p∗ ≤ p̂ such that for p < p∗, V aRp(ω̃) > V aRp(0), and for

p > p∗, the relation V aRp(ω̃) < V aRp(0) may hold. This will complete the proof of the

theorem.

We first show the second half of the statement. Note that V aRp(1−) :=

lim
ω→1−

V aRp(ω) = (A1

p
)1/α1 . Since the parameters determining V aRp(0) and V aRp(1−)

are unrelated, with a proper combination of the parameters, V aRp(1−) < V aRp(0) may

hold for some p̃, which implies by convexity that V aRp(0) > V aRp(1−) > V aRp(ω̃).

Since V aRp(0)
V aRp(1−)

is an increasing function of p, we conclude that if V aRp(0) > V aRp(ω̃)

holds for some p̃, it holds for any p > p̃.

Next, we prove the first half of the statement by finding the threshold p∗ such that

for p < p∗, V aRp(ω̃) > V aRp(0). We start by studying some properties of the function

ω̃ = ω̃(p). Since ω̃ is the optimal solution for the minimization of V aRp(ω) on (0,1), it

satisfies that ∂V aRp(ω)
∂ω

|ω=ω̃ = 0. Write

V aRp(ω) = ω

(

A1

p

)1/α1

[1 + f(ω, p)],

where f(ω, p) is defined as follows

f(ω, p) = (
1− ω

ω
)α2

1

α1

A2

A
α2/α1

1

pα2/α1−1.
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Then, the first-order condition is equivalent to

1 + f(ω̃, p) + ω̃
∂f

∂ω
|ω=ω̃ = 0,

which can be further simplified to

f(ω̃, p)

[

α2

1− ω̃
− 1

]

= 1. (2.4)

We first show that as p → 0, ω̃(p) → 0. This is proved by contradiction. Suppose

lim sup
p→0

ω̃(p) = c > 0. It implies that there is a sequence pm → 0, ω̃(pm) → c, as

m → ∞. From the definition of f and given 1 < α1 < α2, we get that as m → ∞,

f(ω̃(pm), pm) → 0 and 1
1−ω̃(pm)

f(ω̃(pm), pm) → 0. This is in contradiction with (2.4).

Hence, as p → 0, necessarily ω̃(p) → 0.

Next, we compare V aRp(ω̃) with V aRp(0) as

Θ(p) :=
V aRp(ω̃)

V aRp(0)
= ω̃

(A1/p)
1/α1

(A2/p)1/α2

1 + f(ω̃, p)

1 + B2

α2
(A2

p
)−γ2/α2

,

=
1− ω̃

α
1/α2

1

(

α
1/α2

1

ω̃

1− ω̃

(A1/p)
1/α1

(A2/p)1/α2

)

1 + f(ω̃, p)

1 + B2

α2
(A2

p
)−γ2/α2

,

=
1− ω̃

α
1/α2

1

(f(ω̃, p))−1/α2
1 + f(ω̃, p)

1 + B2

α2
(A2

p
)−γ2/α2

.

Together with equation (2.4), we get that

Θ(p) =
α2

α
1/α2

1

(

α2

1− ω̃
− 1

)1/α2−1
1

1 + B2

α2
(A2

p
)−γ2/α2

.

By taking p → 0, together with ω̃(p) → 0, we get that

lim
p→0

Θ(p) =
α2

(α2 − 1)1−1/α2

1

α
1/α2

1

=

(

α2 − 1

α1

)1/α2−1
α2

α1

> 1.

Therefore, there exists a p∗ such that for p < p∗, Θ > 1, which implies that ω∗ = 0. This

corresponds to the conclusion that the optimal portfolio for a safety-first consists of the

risky asset 2 and the risk-free rate only.
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Theorem 2.2 shows that there is threshold p∗ such that if safety-first investors consider

an admissible probability p < p∗, they only invest on the risky asset with the higher tail

index. Conversely, for p > p∗, the optimal portfolio may consist of both risky assets.

By extending Theorem 2.2 to a multiple-asset market, with the same reasoning as in

Subsection 2.2, we conclude that with a sufficiently low admissible probability level,

all assets traded in the market must share the same tail index, i.e. the “tail index

equivalence hypothesis” remains valid. However, if the admissible probability level is at

a more moderate level, the “tail index equivalence hypothesis” may not apply. In such a

case, the investment universe may comprise assets with different tail indices. This would

allow for different asset classes such as stocks and bonds.

We compare the two theorems obtained under the first-order and second-order tail

approximation. The general conclusions are similar. However, the main difference is that

the theorem under the second-order approximation is proved for a range of low p rather

than requiring p → 0. This leads to different economic interpretations. The result in

Theorem 2.1 shows that under the first-order approximation, any portfolio based on two

risky assets is dominated, in the case of safety-first utility, by another portfolio consisting

of the asset with the higher tail index and the risk-free rate only for sufficiently low p.

Note that the admissible probability level p ensures such a statement varies according

to the initial portfolio based on the two risky assets. Hence, based on this theorem, we

conclude the “tail index equivalence hypothesis” only by taking p → 0. Per contrast, in

Theorem 2.2, we prove that by first fixing a low admissible probability level p as p < p∗,

any portfolio based on the two risky assets will be dominated by the “corner solution”.

In other words, the “corner solution” dominates other portfolios uniformly as opposed

to the point-wise dominance in Theorem 2.1. Therefore, although we also require the

admissible probability level to be low, we do not have to consider the limit case in order

to establish the “tail index equivalence” hypothesis. The second theorem is thus more

appealing in characterizing the real situation in the market.
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3 Heterogeneity in the scale parameter

In Section 2, we show that if safety-first investors have a low admissible probability,

they only invest in assets that share the highest value of tail index in their optimal

portfolio. In other words, the “tail index equivalence” hypothesis holds: assets traded

in the same market must share the same tail index. Suppose the tail index equivalence

hypothesis holds. The next step in studying the cross-section of downside tail risk then

regards the scale parameters. Is there a “scale equivalence hypothesis” as well? In this

section, we show that even if the safety-first investors have a low admissible probability, it

is still possible to have heterogeneity in the scales. Such heterogeneity can be compensated

by differences in expected returns. We further derive the equilibrium prices of asset

returns with heterogeneous scale parameters. The result is in accordance with that in

Arzac and Bawa (1977).

Suppose all assets share the same tail index, any portfolio constructed from these

assets will then have the same tail index, regardless the dependence structure among the

asset returns, see Zhou (2010). We first show that when safety-first investors construct

their optimal portfolios the relative proportion of risky assets is invariant with respect

to investors’ wealth and downside risk concerns. The relative proportion only depends

on the characteristics of asset returns, more specifically, the scales and the dependence

structure among them. This is the first step to derive the equilibrium prices as in Arzac

and Bawa (1977).

Consider an investor who constructs a weighted portfolio from N assets. Let Ri de-

note the return of the asset i with expected return µi. Suppose Ri follows a heavy-tailed

distribution as in (1.1) with tail index α and scale Ai, i = 1, ..., N . As discussed in Sub-

section 2.1, a safety-first investor seeks to maximize the expected portfolio returns with

a downside risk constraint. Given an admissible probability of failure p, the optimization
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problem can be stated as

max
{ωi}

N
∑

i=1

ωiµi + (1−
N
∑

i=1

ωi)rf

s.t.

V aRp(P ) ≤ T,

ωi ≥ 0, for i = 1, ..., N,

where V aRp(P ) is the VaR of the portfolio P =
N
∑

i=1

ωiRi+(1−
N
∑

i=1

ωi)rf . To calculate the

VaR, we apply the theory on aggregating heavy-tailed distributions with the same tail

index.

Given that all assets share the same tail index, Zhou (2010) shows the portfolio re-

turn P follows a heavy-tailed distribution with tail index α and scale AP =: A(ω1, ..., ωN),

where A(ω1, ..., ωN) is a function of the weights ωi ≥ 0, i = 1, ..., N , the scales of asset

returns and the dependence structure among the asset returns. Moreover, it is a homo-

geneous function with degree α, i.e. for any constant c,

A(cω1, ..., cωN) = cαA(ω1, ..., ωN).

Then the VaR of the portfolio P can be approximated as

V aRp(P ) =

(

AP

p

)
1
α

=

(

A(ω1, ..., ωN)

p

)
1
α

.

We solve the optimal portfolio problem in two steps as in Subsection 2.3. First, we

solve a scale minimization problem for portfolios with a fixed expected return. We show

that the solution exists and is unique. Then we prove that the optimal portfolio for a

safety-first investor can be obtained by scaling up the weights of the optimal portfolio

solved from the scale minimization problem.

Without loss of generality we consider portfolios with a fixed expected return C, i.e.
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N
∑

i=1

ωiµi + (1−
N
∑

i=1

ωi)rf = C, and try to solve the following optimization problem:

min
ωi

A(ω1, ..., ωN)

s.t.
N
∑

i=1

ωiµi + (1−
N
∑

i=1

ωi)rf = C.

Zhou (2010) shows that the function A(ω1, · · · , ωN) is strictly convex in [0, 1]N , i =

1, ..., N . By choosing a low level of C, for example C < min1≤i≤N {µi − rf}, we get that

the area
N
∑

i=1

ωiµi + (1 −
N
∑

i=1

ωi)rf = C is a convex subset of [0, 1]N . From the convex

optimization theory, there exists a unique interior solution, (ω∗
1, · · · , ω

∗
N), which solves

the scale minimization problem. More specifically, the solution (ω∗
1, · · · , ω

∗
N) satisfies the

first-order conditions as follows:

∂

∂ωi

(

A(ω1, ..., ωN)− λ

(

N
∑

i=1

ωiµi + (1−
N
∑

i=1

ωi)rf − C

))

= 0,

for i = 1, 2, · · · , N , where λ is the Lagrange multiplier. Denote the partial derivatives as

ai(ω1, ..., ωN) =
∂

∂ωi
A(ω1, ..., ωN), for i = 1, 2, · · · , N . The first-order condition, for any

1 ≤ i ≤ N , is then written as

ai(ω
∗
1, · · · , ω

∗
N) = λ(µi − rf ). (3.1)

It implies that for any i and j,

ai(ω
∗
1, · · · , ω

∗
N)

aj(ω∗
1, · · · , ω

∗
N)

=
µi − rf
µj − rf

, (3.2)

which is independent of λ. Because the function A(ω1, . . . , ωd) is homogeneous of degree

α, its partial derivatives, ai, are thus homogeneous functions with degree α − 1. Hence

the relation (3.2) determines the relative proportion among ω∗
i .

Next, we go back to the original optimization problem for safety-first investors. To

construct the optimal portfolio, a safety-first investor will assign weights (ω̃1, · · · , ω̃N)
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to the risky assets, while borrowing or lending 1 −
∑N

i=1 ω̃i in the risk-free asset. Then

(ω̃1, · · · , ω̃N) must satisfy the following first-order conditions:

∂

∂ωi

(

N
∑

i=1

ωiµi + (1−
N
∑

i=1

ωi)rf − η

(

(

A(ω1, ..., ωN)

p

)1/α

− T

))

= 0,

for i = 1, · · · , N , where η is the Lagrange multiplier. Together with the VaR constraint,

we simplify the first-order conditions to get that

ai(ω̃1, · · · , ω̃N)

A(ω̃1, · · · , ω̃N)
=

α

ηT
· (µi − rf).

Hence, for any i and j, ai(ω̃1,··· ,ω̃N )
aj(ω̃1,··· ,ω̃N )

=
µi−rf
µj−rf

, which is independent of η and T . Because

these conditions are identical to (3.2), we conclude that the relative proportion among

ω∗
i is equivalent to that of ω̃i, i.e.

(ω̃1, · · · , ω̃N) = l(ω∗
1, · · · , ω

∗
N).

The constant l is determined by the VaR constraint as l =
(

A(ω∗

1 ,...,ω
∗

N )

p

)−1/α

T .

To summarize, we have shown that the optimal portfolio for a safety-first investor

can be obtained by scaling up the weights of the optimal portfolio solved from a scale

minimization problem. Notice that (ω∗
1, · · · , ω

∗
N) only depends on the characteristics of

the assets. Hence, the relative proportion of assets held in any portfolio of safety-first

investor are homogeneous, even if the admissible probabilities and VaR constraints are

heterogeneous. In other words, denote Rm =
∑N

i=1 ω
∗

i Ri
∑N

i=1 ω
∗

i

as a market portfolio. Any optimal

portfolio for a safety-first investor is obtained by scaling the market portfolio with proper

borrowing and lending. This is in accordance with the asset pricing theory in Arzac and

Bawa (1977).

Next, we derive the equilibrium price for each risky asset Ri. Firstly, for the market

portfolio, we have that

E(Rm) =

∑N
i=1 ω

∗
i µi

∑N
i=1 ω

∗
i

=
C − (1−

∑N
i=1 ω

∗
i )rf

∑N
i=1 ω

∗
i

=
C − rf
∑N

i=1 ω
∗
i

+ rf .
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For each individual asset, the expected return is derived from (3.1). Because the function

A is homogeneous with degree α, we have that

N
∑

i=1

ωiai = αA.

Combining with the first-order conditions in (3.1), we get that

λ

N
∑

i=1

ω∗
i (µi − rf ) = αA(ω∗

1, · · · , ω
∗
N),

where (ω∗
1, · · · , ω

∗
N) is the solution of the scale minimization problem. Together with the

expected return constraint, we get that λ =
αA(ω∗

1 ,··· ,ω
∗

N )

C−rf
. Together with (3.1), we relate

the expected returns of each asset with the optimal portfolio weights as

ai(ω
∗
1, · · · , ω

∗
N) = αA(ω∗

1, · · · , ω
∗
N)

µi − rf
C − rf

.

This gives the equilibrium price of Ri as

µi − rf =
ai(ω

∗
1, · · · , ω

∗
N)

αA(ω∗
1, · · · , ω

∗
N)

(C − rf ) = β∗
i (E(Rm)− rf ).

where β∗
i = ai

αA
|ωi=ω∗

i
·
∑n

i=1 ω
∗
i .

We show that the equilibrium price is in accordance with the result in Arzac and

Bawa (1977). Under the safety-first utility, Arzac and Bawa (1977) show that

E(Ri) = rf + βi(E(Rm)− rf ),

where βi =
∂V aRp(Rm)

∂ωi
|ωi=ωm,i

V aRp(Rm)
, i = 1, · · · , N. and ωm,i are the weights for the market

portfolio. In our case ωm,i =
ω∗

i
∑N

i=1 ω
∗

i

.

We prove that, β∗
i = βi. From the VaR formula, we get that log V aRp(R) = 1

α
(logA−
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log p). By taking partial derivative on both sides and let ωi =
ω∗

i
∑N

i=1 ω
∗

i

, we get that

βi =
∂V aRp

∂ωi
|ωi=ωm,i

V aRp(Rm)
=

ai
αA

|ωi=ωm,i
.

Because the functions A and ai are both homogeneous function, but with different degree

α and α− 1, we finally get that

βi =
ai
αA

|ωi=ωm,i
=

ai
αA

|ωi=ω∗

i

(

∑N
i=1 ω

∗
i

)−(α−1)

(

∑N
i=1 ω

∗
i

)−α = β∗
i .

To conclude, we have shown that under the tail index equivalence hypothesis, scale

heterogeneity is possible across assets traded in the same market. The heterogeneity in

scales is priced by the expected return. Although expected returns may not compensate

for the differences in the tail index, these can be compensated for differences in the scales.

4 Conclusion

This paper addresses the question of how the downside tail risk of stock returns are

differentiated cross-sectionally. For stock returns with a heavy-tailed distribution, the

downside tail risk is determined by two parameters: the tail index and scale. We provide a

theoretical model to show that if safety-first investors consider sufficiently large downside

losses, then the distributions of asset returns share a homogeneous shape parameter.

We call this the “tail index equivalence” hypothesis. When the tail index equivalence

hypothesis holds, the equilibrium price of assets is related to the cross-section of tail

risks indicated by the scales. In other words, there is no “scale equivalence hypothesis”.

Conversely, we show that tail index equivalence hypothesis may fail, if investors consider

moderate downside losses only.

A direct consequence of our results is on portfolio diversification with heavy-tailed

assets. Once the tail index equivalence hypothesis holds, investors are able to diversify

their downside tail risk based on the scale of the distributions of stock returns. Compared
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with the asset pricing theory based on the mean-variance utility, our theory gives a similar

result: investors optimally choose a diversified portfolio to minimize the downside tail

risk measured by the portfolio scale. On the other hand, when the tail index equivalence

hypothesis fails, investors are not able to diversify away the tail risks in assets with heavier

tails. This differs from the classic asset pricing theory under the Gaussian framework.

Based on our theoretical result, there remains an empirical exercise to test the tail

index equivalence hypothesis. In addition, when the tail index equivalence does hold,

one may test whether the scale equivalence hypothesis fails as predicted by the theory.

Further, if the scales are heterogeneous, what are the firm-level determinants that can

differentiate such heterogeneity? These questions are left for future research.
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P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling extremal events for insurance

and finance, volume 33. Springer Verlag, 1997.

E.F. Fama and M.H. Miller. The Theory of Finance. Holt, Rinehart and Winston, New

York, 1972.

C.R. Harvey and A. Siddique. Conditional skewness in asset pricing tests. The Journal

of Finance, 55(3):1263–1295, 2000.

N. Hyung and C.G. de Vries. Portfolio diversification effects and regular variation in

financial data. Allgemeines Statistiches Archiv, 86:69–82, 2002.

N. Hyung and C.G. de Vries. Portfolio diversification effects of downside risk. Journal of

Financial Econometrics, 3:107–125, 2005.

N. Hyung and C.G. de Vries. Portfolio selection with heavy tails. Journal of Empirical

Finance, 14:383–400, 2007.

N. Hyung and C.G. de Vries. Simulating and calibrating diversification against black

swans. Journal of Economic Dynamics and Control, 2012.

R. Ibragimov and J. Walden. Portfolio diversification under local and moderate deviations

from power laws. Insurance: Mathematics and Economics, 42:594–599, 2008.

D.W. Jansen and C.G. De Vries. On the frequency of large stock returns: Putting booms

and busts into perspective. The Review of Economics and Statistics, pages 18–24, 1991.

22



E. Jondeau and M. Rockinger. Testing for differences in the tails of stock-market returns.

Journal of Empirical Finance, 10(5):559–581, 2003.

D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk.

Econometrica: Journal of the Econometric Society, pages 263–291, 1979.

M. Loretan and P.C.B. Phillips. Testing the covariance stationarity of heavy-tailed time

series: An overview of the theory with applications to several financial datasets. Journal

of empirical finance, 1(2):211–248, 1994.

B. Mandelbrot. The variation of certain speculative prices. The journal of business, 36

(4):394–419, 1963.

H. Markowitz. Portfolio selection: efficient diversification of investments. New Haven,

CT: Cowles Foundation, 94, 1959.

A.D. Roy. Safety first and the holding of assets. Econometrica, 20:431–449, 1952.

C. Zhou. Dependence structure of risk factors and diversification effects. Insurance:

Mathematics and Economics, 46(3):531–540, 2010.

23


