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 Abstract 

In many applications, e.g., safety, security, biology, medicine, and pattern recognition, it 
is rare that a single variable is sufficient to represent all aspects of activity, risk, or re-
sponse. Since complex systems tend to be neither linear, nor hierarchical in nature, but 
correlated and of unknown relative importance, the assumptions of traditional multivari-
ate statistical methods can often not be justified on theoretical grounds. Establishing va-
lidity through empirical validation is not only problematic, but also time consuming. This 
paper proposes the use of u-statistics for scoring multivariate ordinal data and a family of 
simple non-parametric tests for analysis. The scoring method is demonstrated to be appli-
cable to scoring profiles of Olympic medals, adverse events of different severity, and side 
effects of different category. It is then applied to identifying determinants (genomic 
pathways) that best correlated with complex responses to an intervention (treatment of 
psoriasis). 

Key words: multivariate, rank test, isotonic regression, hierarchical data, gene expres-
sion, overall benefit 
 

1. INTRODUCTION 

When analyzing complex phenomena by means of statistical methods, a single measure 
does often not appropriately reflect all relevant aspects to be considered, so that several 
measures of influences and/or outcomes need to be considered. Sometimes the definite 
measure is not easily obtained, so that a set surrogate measures has to be evaluated. At 
other times, e.g., when the aim is to ameliorate a complex phenomenon, a definitive 
measure may not even exist. Such problems may arise in many applications, such as as-
sessment of quality-of-life, face recognition, identification of terror attacks, low and high 
level gene expression analysis, and improvements of database security.  

In our first example, we will focus first on a familiar situation, the ranking of countries 
based on the number of Olympic gold, silver, and bronze medals. Of course, this example 
could easily be generalized to other applications, where measures with different grades of 
severity are to be integrated, such as grave, severe, and (relatively) benign side effects of 
medical treatment or indications of imminent terrorist attacks. Our second example will 
draw on experiences in the field of medicine, although methods for integrating measures 
for gene expression along biological pathways could also be applied to indicators of 
problems along the a line of transmission or the sequential steps of manufacture. We will 
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focus on the effect of treatment on chronic diseases, in general, and psoriasis, in particu-
lar. Psoriasis is a skin disease caused by activation of multiple cell types including kerati-
nocytes, vascular cells, and various types of leukocytes. Treatment efficacy can be meas-
ured by histological criteria, by intradermal expression of inflammatory cytokines, or by 
clinical characteristics, such as redness (vascular response) and scaling (keratinocyte re-
sponse). Since the advent of micro arrays and RT-PCR, researchers are now interested in 
genes whose expression is controlled in a concerted fashion and related to the response.1  

Most multivariate methods are based on the linear model, either explicitly, as in regres-
sion, factor, discriminant, and cluster analysis, or implicitly, as in neural networks. One 
scores each variable individually on a comparable scale, either present/absent, low/inter-
mediate/high, 1 to 10, or z-transformation, and then defines a global score as a weighted 
average of these scores. In other words, data are interpreted as points in a Euclidian space 
of (independent) dimensions. The number of dimensions is reduced by assuming the di-
mensions to be related by a specific function of known type (linear, exponential, etc.), al-
lowing one to determine for each point the Euclidian distance from a hyperspace. 

While mathematically elegant and computationally efficient, this approach has shortcom-
ings when applied to real world data. Since the relative importance of the variables, the 
correlation among them, and the functional relationship of each variable with the im-
measurable latent factor ‘efficacy’, ‘safety’, ‘risk’, or ‘overall usefulness’ are typically 
unknown, construct validity2 cannot be established on theoretical grounds. Instead, one 
needs to resort to empirical ‘validation’, choosing weights and functions to provide a rea-
sonable fit with a ‘gold standard’ when applied to a sample. While this allows for a com-
parison between studies where the researchers agreed to use the same scoring system, the 
diversity of scoring systems used attests to the subjective nature of this process. 

As an alternative, hierarchical procedures have been proposed, where subjects are or-
dered based on a ‘primary’ variable first, and only if this fails, a ‘secondary’ variable is 
considered. While this may seem less subjective at first, it also has shortcomings. Often, 
variables can be graded, although there is no absolute hierarchy. For instance, one may 
count the number of grave, severe, and (relatively) benign events observed during a given 
period. If there were just one additional grave event in one subject, one may find it unrea-
sonable that the other subject is considered less affected, regardless of the number of se-
vere (yet not grave) events experienced.  

Even when the assumptions of the linear model regarding the contribution to and the rela-
tionship with the underlying immeasurable factor are questionable, it is often reasonable 
to assume that each variable has at least an ‘orientation’, i.e., that, if all other conditions 
are held constant, an increase in this variable is either ‘good’ or ‘bad’. The direction of 
this orientation can be known (hypothesis testing) or unknown (selection procedures). In 
genetics, for instance, having more ‘abnormal’ alleles may increase the risk (or magni-
tude) of a disease phenotype. In genomics, a higher expression of several related genes 
may indicate increased disease activity. When screening for security risks, more indica-
tors for atypical behavior may raise concern to a higher level, in face or voice recogni-
tion, more indicators being similar may increase the likelihood of correct identification. 

When we were faced with the analysis of anal vs. vaginal contacts as risk factors for sex-
ual transmission of HIV,3 we presented a partial ordering for dealing with graded and un-
graded variables, which allowed to incorporate preexisting knowledge that anal contacts 
carry more risk without having to ignore the number of vaginal contacts reported. Using 
the marginal likelihood principle with this partial ordering, we developed a non-
parametric method to assess the overall risk of HIV infection based on different types of 
behavior3 or the overall protective effect of barrier methods against HIV infection.4 More 
recently, we applied this approach to assessing immunogenicity in cancer patients.5 In 
short, one determines all rankings compatible with the partial ordering of the observed 
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multivariate data and then computes a vector of scores as the average across these rank-
ings. While this constituted the first objective approach to the analysis of multivariate or-
dinal data, because it did not rely on questionable assumptions, it lacked computational 
efficiency. The computational effort required could be prohibitive even for moderately 
sized samples, so that approximate solutions had to be sought. 

Here, we propose a closely related approach based on u-statistics,6 which is computation-
ally more efficient. With this approach, individual analyses can often be performed even 
using spreadsheet software and screening for optimal subsets of explanatory variables be-
comes feasible without the restrictions imposed by commonly used hierarchical strate-
gies. We then demonstrate, how this method leads to a family of simple non-parametric 
statistical tests for comparing treatments with respect to several ordinal outcomes, some 
of which may be graded. For censored data, the resulting tests reduce to those of 
GEHAN,7, 8 SCHEMPER,9 FINKELSTEIN-SCHOENFELD10 and MOYE11. The proposed family of 
tests applies to stratified designs with two or more treatments, including the WILCOXON/ 
MANN-WHITNEY (WMW) test12, the KRUSKAL-WALLIS test,13 and the FRIEDMAN test.14 It 
also allows for SCHEFFÈ-type multiple comparisons.15 

The scoring mechanism and the test are introduced in Section 2. In Section 3, we will 
demonstrate, how the proposed scores can be utilized within the framework of familiar 
nonparametric tests. Sections 4 and 5 illustrate the use of the test for two different exam-
ples. The first example details the application of the procedure for a scoring system. We 
have chosen Olympic medals, because of this example allows for a discussion of tradi-
tional hierarchical scoring systems10, 11 in a particularly familiar setting. We will illustrate 
the shortcomings of these scoring systems, while demonstrating how knowledge about a 
grading of variables can be accommodated within the proposed u-statistics framework. 
We will then turn to the analysis of a study in psoriasis, where a treatment response is 
first scored based on both clinical and histological outcomes and then genomic pathways 
are sought, which best correlate with the overall treatment response. 

 

2. U SCORES FOR MULTIVARIATE ORDINAL DATA 

Our aim is to first develop a computationally efficient procedure to score multivariate or-
dinal data. We then present simple non-parametric tests for comparing these scores be-
tween groups, with an option for stratification and paired comparisons. We will not make 
any assumptions regarding the functional relationships between variables and the latent 
factor, except that each variable has an orientation, i.e., that if all other variables are held 
constant, an increase in this variable is either ‘good’ or ‘bad’. 

Throughout this paper, the index j will be used for groups and the index k for subjects 
within each group. Thus, each combination (jk) characterizes one subject. Whenever this 
does not cause confusion, we will identify subjects with their vector of 1L ≥  observa-
tions to simplify the notation.  

For the proposed scoring mechanism, each subject ( ){ }1 1, , ; 1,
’, ,

jjk jk jkL j p k mx x x = ==
� �

� is 
compared to every other subject in a pairwise manner. For stratified designs, these com-
parisons will be made within each stratum only. When the observed outcomes can be as-
sumed to be correlated with an unobservable latent factor, a partial ordering16 among the 
subjects is easily defined. If the second of two subjects has values at least as high among 
all variables 1, , L=� � , but higher in at least one variable, it will be called ‘superior’: 

 1, , 1, ,{ }
jk j k L jk j k L jk j k

x x x x x x′ ′ ′ ′ ′ ′= =< ⇔ ∀ ≤ ∧∃ <
" � " " " � " "

. (1) 

If univariate observations ( 1L = ) are all different, subjects can be ordered (Figure 1a). If 
ties, i.e., identical observations, are present, two cases need to be considered. Ties may be 
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due to the underlying phenomenon. Often, however, they are caused by discretization or 
by observing a discrete surrogate variable for a continuous phenomenon. In both cases, 
there are three possibilities for each pair of subjects. In the former case, they are ‘<’, ‘>’, 
or ‘=’ (Figure 1b), in the latter, where ties reflect some ambiguity,17 they are ‘<’, ‘>’, or 
‘≅’ (Figure 1c). Intervals, however, can only be ordered, if they are disjoint, thus their 
pairwise order may be undetermined. In Figure 1d, it is not known, if the event happening 
between the first and the third cut-off point (1..3) was, in fact, earlier than the event hap-
pening between the second and the third (2..3). The same rationale applies to several 
( 1L > ) variables (Figure 1e). In either case, the ordering may becomes ‘partial’, rather 
than ‘complete’. For interval censored data, the order between two subjects is undeter-
mined if 1 2jk j kx x ′ ′< . For multivariate data, the order between two subjects is undeter-
mined if jk j kx x ′ ′<" "  for some variable � , while jk j kx x′ ′ ′ ′>" "  for another variable ′� . 
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Figure 1: Orderings: a) simple, b) exact, c) inexact, d) interval, e) multivariate. 

 

We will call this partial order ‘weak’, as compared to its ‘strong’ cousin 

. 1, ,{ }
jk j k L jk j k

x x x x′ ′ ′ ′=⇔ ∀ <
" � " "

�  (2) 

Many partial orderings can be defined, provided that they are transitive, i.e., that 
( ) ( ) ( )a b b c a c< ∧ < ⇒ < . Since both (1) and (2) treat all variables evenly, we will call 
these partial orderings ‘regular’. The weak regular ordering is the natural ordering for 
discrete variables. At first sight, the strong ordering may seem to be more appropriate for 
discretized variables, because the true order of the observations discretized into a tie is 
unknown. If each variable is presumed to be a surrogate for the same latent factor, how-
ever, the strong regular ordering has an undesirable feature. The more variables are in-
cluded, the more likely it is that at least one of them is tied, i.e., the more pairwise order-
ings would become undetermined. If, on the other hand, one would make the assumption 
that the ordering is adaptive hierarchical, i.e., that ties are broken by untied variables, 
then one obtains the weak partial ordering also for discretized variables. Thus, the weak 
regular partial ordering (1) will be called ‘natural’ for applications where each variable 
can be assumed to be a surrogate for the same underlying latent factor. 

Even though a partial ordering does not guarantee that all subjects can be ordered on a 
pairwise basis, they can all be scored. Let I  be an indicator function, i.e., 

( )
1 if

I 0 if  and  cannot be ordered

0 if

j k jk

j k jk j k jk

j k jk

x x

x x x x

x x

′ ′

′ ′ ′ ′

′ ′

 <
< = 
 >

 

One can then assign a scores u(xjk) to each subject xjk by simply counting the number of 
subjects being inferior and subtracting the number of subjects being superior 

 ( ) ( ) ( )u I I
jk j k jk j k jkj k j k

x x x x x′ ′ ′ ′′ ′ ′ ′
= < − >∑ ∑  (3) 

Figure 1d and e already suggests that interval-censored and multivariate ordinal data can 
be treated in a similar fashion. To further clarify the relation between censored and multi-
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variate data, it is convenient to consider the most general case, interval censored observa-
tions. Such data may arise when the exact date of an event is not known, but the event is 
known to have happened after date 1jkx and before date 2jkx . Right-censored data are a 
special case ( 2 1jk jkx x= : event, 2jkx = ∞ : censoring). With this interpretation, pairs of 
subjects can be ordered, if their intervals do not overlap, or, equivalently, if both time 
points in one subject are earlier than both time points in the other subject: 

{ } { } ( ) ( ){ }2 1 max min
jk j k jk j k jk j k

x x x x x x′ ′ ′ ′ ′ ′< ⇔ < ⇔ <
" " " "

. 

Subjects, whose intervals overlap, cannot be ordered and, thus, this ordering is partial. 

From the third part of this equivalence, it is easy to see that the same partial ordering 
could be applied to situations, where a measurement is made several times and subject A 
is considered less affected than subject B if all measurements of subject A are lower than 
each of the measurements of subject B. Depending on the circumstances, one might al-
ternatively compare subjects based on the average or medians, which yields the 
WILCOXON/MANN-WHITNEY test based on the within-subject averages or medians: 

{ } ( ) ( ){ }avg avg
jk j k jk j k

x x x x′ ′ ′ ′< ⇔ <
" " " "

, { } ( ) ( ){ }med med
jk j k jk j k

x x x x′ ′ ′ ′< ⇔ <
" " " "

. 

If the sequence in which the measurements was taken provides useful information, one 
can look at the distribution by comparing the within-subject order statistics: 

{ } ( ) ( ){ }1 1 L Ljk j k jk j k jk j k
x x x x x x′ ′ ′ ′ ′ ′< ⇔ < ∧ ∧ <� . 

In summary, u statistics can be used whenever a partial ordering can be defined that 
meaningfully reflects how the observed variables relate to the latent factor. 

Some applications may ask for specific partial orderings. For instance, when estimating 
the signal value for a particular gene on a microarray from a probe set of pairs of perfect 
and mis-matches, several parametric and semi-parametric (‘robust’) methods have been 
proposed. A mis-match (MM) differs from a perfect match (PM) in that a single nucleo-
tide is exchanged for its WATSON-CRICK complement to estimate the non-specific portion 
of the binding. With low expression levels it is to be expected that random errors in xk,MM 
and xk,PM result in ,PM ,MMk kx x< . To allow for a linear model be used based on the loga-

rithms of the differences, it has been suggested by one manufacturer, Affymetrix,18 to arti-
ficially decrease xk,MM of such probe pairs to a heuristically motivated level that ensures 
each difference to be positive. Of course, this causes a severe bias for genes with low ex-
pression levels, because even a gene that is not expressed at all is guaranteed to yield a 
positive estimate. When using u statistics, this bias can easily be overcome by employing 
the following partial ordering: 

{ } ( ) ( ){ },PM ,PM ,MM ,MMk k k k k k
x x x x x x′ ′ ′< ⇔ < ∧ − < − . 

From this, one selects the pair with a score of zero as the most ‘typical’, or, if necessary, 
the average or median among those closest to zero. As this guarantees ‘outliers’ to be ex-
cluded, the believed need for taking logarithms has been overcome. If one is now to re-
quest that this estimate be non-negative, the resulting bias would be much lower than if 
one decreases xk,MM for each pair where ,PM ,MMk kx x< . 

When searching for genetic contribution to a disease there are three reasons for the need 
of multivariate analyses. The first is that the disease gene may be at some distance from 
the closest marker locus. Thus, both neighboring marker loci may contain information 
about the disease locus. We will call two adjacent markers a marker ‘interval’. Secondly, 
a disease gene may contain several marker loci, allowing to distinguish between genetic 
variants differing in pathologic potency. Alternatively, a set of related genes (promoter, 
etc.) may be located in close proximity, so that each marker in a sequence of markers 



KNUT M. WITTKOWSKI  (9/27/2003) -6- 

contributes information about a sequence of genes contributing to the same phenotype. 
We will call a set of consecutive markers a ‘haplotype’. Finally, a phenotype may be 
caused by genes being several markers apart, or even on different chromosomes. We will 
call a set of haplotypes causing a phenotype an ‘epistatic set’. The need for a special par-
tial ordering arises from the specific meaning of the term ‘interval’ in this context.  
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Figure 2: Partial orderings of genetic evidence for an interval between two markers to contain a 
disease gene G, left: inbred strains, right: outbread strains. Numbers indicate the number of 
notes that are smaller, greater, or exactly tied. Nodes within boxes are comparable only with 
nodes connected through a dashed line or through the lines connecting the box, but not among 
each other. 

 

Let A  and B  denote the low- and high-risk allele, respectively. One may then scores 
each marker as 0AA = , 1AB = , and 2BB = . With a traditional, linear model approach 
one might adjust the score for heterozygous markers between 0 and 2 to linearize the 
relationship between the score and the assumed risk. If the two alleles were 
multiplicative, for instance, one might chose 2 1.41AB = ≈ . Second, one might 
compute a haplotype score as the weighted average of these marker scores. The pitfalls of 
this approach are obvious. First, the risk of heterozygous subjects compared to 
homozygous subjects of either type is typically unknown. Second, even with markers 
spaced at equal distance in terms of cM, several adjacent markers in a highly conserved 
region are not more informative as either of them. In a region with more variation, 
additional markers provide more information. With u statistics, we do not need to make 
any assumptions regarding the functional relationship between sets of markers and the 
latent factor ‘risk’, except that each marker is assumed to have a monotonous relationship 
with risk, i.e. that ( ) ( ) ( )r AA r AB r BB≤ ≤ . Intervals can then be partially ordered 
(Figure 2) and these interval scores can then be handled in the manner described above. 

In the linear model (Euclidian space) two objects A and B can be ordered with respect to 
their distance from a reference X by assessing the absolute size of their difference from 
this reference. For ordinal variables, however, the magnitude of a difference has no mean-
ing and, thus, ‘distance’ cannot simply be defined in terms of the absolute size of a differ-
ence, as in the linear model. If at least some of the variables lack orientation, we will use 
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3. ASYMPTOTICS AND TEST STATISTICS 

When MANN-WHITNEY,19 in 1947, proposed their version of what is now known as the 
WILCOXON12/MANN-WHITNEY test, it was one of the first uses of u-statistics. HOEFFDING 
formalized this concept in 1948 for the one-sample case6 and in 1951, LEHMANN consid-
ered the two sample case. Here, we quote from the latter paper with only minor adjust-
ments with respect to notation and a few simplifications, as did GEHAN7, 8 in 1965: 

Theorem (HOEFFDING/LEHMANN/GEHAN): Let { } 11 1, ,k k m=X
�

and { } 22 1, ,k k m=X
�

be inde-

pendently distributed random vectors, and ( )t ,k k ′x x  a real-valued function. Let a u-

statistic of kernel t  be defined as 

( )1 2

1 2

1
1 21 1

t ,
m m

k km m k k
U ′′= =

= ∑ ∑ x x . 

If { }1 2E t( , )X X , { }2
1 2E t ( , )X X , and 1 2limm m m

+ →∞  exist, then 

( )( ) ( )0E N 0,1
m

m U U
++ →∞− → . 

For univariate data, kernels often are an indicator function, e.g., 1 2 1 2t( , ) I( )x x x x= <  

Note that the observations xk were allowed to be multivariate. In the last section of his 
paper, LEHMAN even pondered tests for several variables, but only for testing the hy-
potheses of independence and symmetry. When GEHAN7, 8 applied u statistics to censored 
observations, however, he viewed them as univariate observations (xjk1: time under 
study), accompanied by an indicator of precision (xjk2 = 1: event, xjk2 = 0: censoring), 
rather than as multivariate data. (To avoid the notational difficulties related to ties, we as-
sume for the moment a continuous scale.) In 1990, LEE explicitly stated that “there is 

nothing in the above theory that requires [the random variables to take values in � ], 

and in fact they may take values in any suitable space.”20 p.7 Even so, the potential of u-
statistics for the analysis of multivariate data has yet to be fully realized. 

Since stratifying the data to allow for scores be computed separately among more compa-
rable blocks of subjects often reduces error variance, we will allow for designs, where 
subjects are stratified into blocks 1, ,i n= � . Then a test statistic can be constructed from 

1
ijM

ij ijkk
U u== ∑ based on the vector 1

1i
iMi += ∑T U  as a quadratic form 0W −′= T V T , 

where 0
−V  is a generalized inverse of the variance-covariance matrix of T under the null 

hypothesis, as described in reference.15 The hypothesis of interest is tested by comparing 
W to a 2χ  distribution with 1p −  degrees of freedom. 

For uncensored data, this test reduces to a stratified rank test with marginal likelihood 
block weights,15 in general, and for binary data to the stratified MCNEMAR21 test,22 as a 
replacement for the TDT.23 For censored data, the unstratified version of this test reduces 
to GEHAN’s7, 8 and SCHEMPER’s9 generalizations of the WILCOXON/MANN-WHITNEY and 
KRUSKAL-WALLIS

13 tests, with additional longitudinal measures, to the test proposed by 
FINKELSTEIN-SCHOENFELD.10 The latter paper also proposed a version for stratified de-
signs based on (FS)

ii
= ∑T U . Since this version does not normalize scores to reflect dif-

ferences in block size, 15, 24 however, it applies only for designs with equal block sizes.  
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4. APPLICATION 1: 

RANKING SUBJECTS BY PROFILES OF GRADED EVENTS 

Risk indicators can often be graded by severity. For instance, one might consider the fre-
quency of different types of attempts to break a fire wall (sophisticated, less sophisti-
cated, trivial) as indicators of an attack on a computer system, the frequency of reported 
prescriptions by type (prescription, non-prescription) as an indicator of an emerging epi-
demic, the frequency anal, vaginal, and oral contacts as indicators for the risk of HIV 
transmission,3 or the number of grave, severe, and (relatively) benign side effects or ad-
verse events as an indicator or risks associated with a treatment. Here, we will consider 
countries and their medal counts from the 2002 Winter Olympics in Salt Lake City, Utah. 
Several competing approaches are currently used to rank countries by their medal counts, 
with different rankings publish in different media based on the same medal counts. We 
will demonstrate that the results based on u statistics cover a ‘middle ground’, but, more 
importantly, that they allow for a ranking being determined that is independent of any 
subjective weights assigned to the different types of medals. 

A total of n = 25 countries Ci won at least one medal at the 2002 Winter Olympics. Four 
different weighting schemes are commonly used: 

Identical:  IScr g s b= + +  

Linear:  3 2 1LScr g s b= + +  

Exponential:  2 1 02 2 2EScr g s b= + +  

Hierarchical:   ( ) ( )max max maxi i i i i iHScr b s g b s b= + +            

where a ceiling x    is an arbitrary integer larger than x . 

Hierarchical weighting schemes are often introduced in a different fashion. Subjects are 
to be ranked first by the most important criterion (here: gold medals). Variables of lower 
importance are only used if subjects are tied based on variables of higher importance. 
Since no weights are explicitly assigned, this seems to avoid some of the shortcomings of 
linear model weighting schemes. By rewriting hierarchical weighting schemes in the 
above fashion, however, they are seen as merely a special case of linear model weighting 
schemes. Since no country had more than 100 medals in any category, 100 can be used 
here as the ceiling. Table 1 gives the medal counts and the different rankings for above 
four linear model weighting schemes (uniform, linear, exponential, hierarchical). 

Figure 3 shows how the scoring methods affect the ranking of the countries. In this ex-
ample, the weighting schemes agree only for the most extreme cases, Germany, Slovenia, 
and Belarus. The difference in ranks may be as high as 6.5 (Austria) and 7.0 (Sweden).  

Comparing the U.S. to Norway highlights a shortcoming of hierarchical weights. The 
U.S. has almost twice as many silver and bronze medals as Norway. Yet, for Norway to 
have a single gold medal more than the U.S. is sufficient to put Norway in front. The 
same description (one gold medal more vs. half the number of silver and bronze medals) 
holds true for Estonia vs. Sweden. Yet, given the absolute numbers, one might argue that 
one silver and three bronze medals do not compensate for the lack of a gold medal, i.e., 
that the hierarchical weighting scheme is most appropriate for this comparison. In gen-
eral, however, weighting hierarchically is not appropriate when it would be desirable to 
allow the lower importance variables to ‘overwrite’ the order of the higher importance 
variables. On the other hand, as the cases U.S. vs. Norway and Estonia vs. Sweden have 
shown, any fixed set of weights may be difficult to justify. Nonetheless, the higher value 
of gold vs. bronze medals should be reflected when scoring countries.  
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Table 1: Medals won at the 2002 winter Olympics in Salt Lake City by country with scores and 
ranks for different linear model weighting schemes. �

Country  g s b  IScr IRg  LScr LRg  EScrERg  HScr HRg  MnRg MxRg dRg 

Germany 1216 7 35 1.0 75 1.0  87 1.0  121607 1.0 1.0 1.0 .0
Norway 11 7 6 24 3.0 53 3.0  64 3.0  110706 2.0 2.0 3.0 1.0
U.S.A. 1013 11 34 2.0 67 2.0  77 2.0  101311 3.0 2.0 3.0 1.0
Canada 6 3 8 17 4.0 32 5.0  38 5.0  60308 5.0 4.0 5.0 1.0
Russia 6 6 4 16 5.5 34 4.0  40 4.0  60604 4.0 4.0 5.5 1.5
Italy 4 4 4 12 7.0 24 7.0  28 6.5  40404 7.0 6.5 7.0 .5
France 4 5 2 11 8.5 24 7.0  28 6.5  40502 6.0 6.0 8.5 2.5
Austria 2 4 10 16 5.5 24 7.0  26 8.0  20410 12.0 5.5 12.0 6.5
Switzerland 3 2 6 11 8.5 19 9.5  22 9.5  30206 10.0 8.5 10.0 1.5
Netherlands 3 5 0 8 10.5 19 9.5  22 9.5  30500 9.0 9.0 10.5 2.5
Finland 4 2 1 7 12.0 17 11.0  21 11.0  40201 8.0 8.0 12.0 4.0
China 2 2 4 8 10.5 14 12.0  1612.0  20204 13.0 10.5 13.0 2.5
Croatia 3 1 0 4 14.5 11 13.0  1413.0  30100 11.0 11.0 14.5 3.5
Korea 2 2 0 4 14.5 10 14.0  1214.0  20200 14.0 14.0 14.5 .5
Estonia 1 1 1 3 17.0 6 17.0  718.0  10101 17.0 17.0 18.0 1.0
Sweden 0 2 4 6 13.0 8 15.0  816.0  204 20.0 13.0 20.0 7.0
Australia 2 0 0 2 21.0 6 17.0  816.0  20000 15.5 15.5 21.0 5.5
Spain 2 0 0 2 21.0 6 17.0  816.0  20000 15.5 15.5 21.0 5.5
Great Britain 1 0 2 3 17.0 5 19.0  619.0  10002 18.0 17.0 19.0 2.0
Bulgaria 0 1 2 3 17.0 4 20.5  421.0  102 21.0 17.0 21.0 4.0
Czech Rep. 1 0 1 2 21.0 4 20.5  520.0  10001 19.0 19.0 21.0 2.0
Poland 0 1 1 2 21.0 3 22.5  322.5  101 22.5 21.0 22.5 1.5
Japan 0 1 1 2 21.0 3 22.5  322.5  101 22.5 21.0 22.5 1.5
Slovenia 0 0 1 1 24.5 1 24.5  124.5  1 24.5 24.5 24.5 .0
Belarus 0 0 1 1 24.5 1 24.5  124.5  1 24.5 24.5 24.5 .0

Legend: g/s/b: Number of gold, silver, and bronze medals, respectively. IScr/IRg, LScr/LRg, EScr/ERg, 
HScr/HRg: Scores and ranks for identical (1:1:1), linear (3:2:1), exponential (4:2:1), and hierarchical 
(10000:100:1) weighting, respectively. MnRg/MxRg: Minimum and maximum among the four ranks. Shad-
ing indicates examples discussed in the text. 

 

Figure 3: Comparison of the four rankings of countries by medal profiles based on the linear 
model (Table 1). 
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The above discussion demonstrates the importance of making correct assumptions when 
devising a scoring scheme. Here, we know that gold medals have an additional, yet un-
known, value over silver medals, and silver medals an additional value over bronze med-
als. The partial ‘medal’ ordering for such composite variables can be easily defined: 

( ) ( )

{ } { } { }

{ } { } { }
and

, , , ,

i i i i i i i i i i i ii medals i

i i i medals i i i i i i i i i i i i i i i

g s b g s b g s g s g gC C

g s b g s b g s b g s b g s g s g g

′ ′ ′ ′ ′ ′′

′ ′ ′ ′ ′ ′ ′ ′ ′

 + + ≥ + + ∧ + ≥ + ∧ ≥ >  ⇔ ⇔ 
> + + > + + ∨ + > + ∨ ≥  
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Of course, one can obtain the same ordering by describing the success of a county 
through three derived cumulative variables, the total number of medals ([≥]B), the total 
number of silver and gold medals ([≥]S), and the total number of gold medals (G). Since 
these derived variables are now ungraded, the partial ordering of the countries can then 
be obtained by applying the natural ordering (1).  

From this point on, i.e., after obtaining the derived variables, there is nothing specific 
about Olympic medals in the analysis. In a clinical scenario, by analogy, one might as-
sume that the rows in Table 1 and Table 2 indicating patients instead of countries. The 
variables G, S, and B could then be thought not only as describing the cumulative counts 
of other graded variables, such as adverse events, but also as being direct counts of un-
graded variables, such as gastrointestinal, sleeping, and breathing problems, respectively. 
In either case, the ordering of such profiles is only ‘partial’, because there may exist pairs 
of subjects that cannot be ordered. Austria and Switzerland, for instance, cannot be or-
dered. Even subjects that cannot be ordered may receive different u scores, because u 
scores are based on the pairwise order of each subject with respect to all other subjects. 

The (mid) rankings URng based on the u statistic scores UScr for the data in Table 1 are 
given in Table 2. Ties (countries having the same rank) can be classified into two catego-
ries.17 Australia and Spain form ‘inexact’ ties, because they have the same pairwise order-
ings with respect to all other countries. Great Britain, however, though having the same 
score, can be ordered with respect to Bulgaria and Estonia, while Australia and Spain 
cannot. Thus, these ties are merely ‘circumstantial’. Table 1 shows how the different scor-
ing methods affect the ranking of the countries. Austria and Finland, for instance, are 
ranked 6:12 with identical weighting or 12:8 with hierarchical weighting. 

Table 2: UStat and MrgL Ranking of Countries based on the data in Table 1.  

Country g s b G S B G N U C R I F A S N F C C K E S A S G B C P J S B #< #> UScr URng
Germany 12 16 7 12 28 35 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 24 0 12 1.0
Norway 11 7 6 11 18 24 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 1 11 2.5
U.S.A. 10 13 11 10 23 34 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 1 11 2.5
Canada 6 3 8 6 9 17 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 3 9 4.5
Russia 6 6 4 6 12 16 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 3 9 4.5
Italy 4 4 4 4 8 12 -1 -1 -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 5 6 6.5
France 4 5 2 4 9 11 -1 -1 -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 5 6 6.5
Austria 2 4 10 2 6 16 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 13 5 4 8.0
Switzerland 3 2 6 3 5 11 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 7 4 9.5
Netherlands 3 5 0 3 8 8 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 7 4 9.5
Finland 4 2 1 4 6 7 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 13 7 3 11.0
China 2 2 4 2 4 8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 12 10 1 12.0
Croatia 3 1 0 3 4 4 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 11 10 1 13.0
Korea 2 2 0 2 4 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 0 1 1 1 1 1 1 1 1 1 10 13 -2 14.0
Estonia 1 1 1 1 2 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 1 7 14 -4 15.5
Sweden 0 2 4 0 2 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 1 0 1 1 1 1 5 12 -4 15.5
Australia 2 0 0 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 5 14 -5 18.0
Spain 2 0 0 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 5 14 -5 18.0
Great Britain 1 0 2 1 1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 6 15 -5 18.0
Bulgaria 0 1 2 0 1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 1 1 1 1 4 17 -7 20.0
Czech Rep. 1 0 1 1 1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 0 1 1 1 1 4 18 -7 21.0
Poland 0 1 1 0 1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 2 21 -10 22.5
Japan 0 1 1 0 1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 2 21 -10 22.5
Slovenia 0 0 1 0 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 23 -12 24.5
Belarus 0 0 1 0 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 23 -12 24.5

12 11 10 6 6 4 4 2 3 3 4 2 3 2 1 0 2 2 1 0 1 0 0 0 0

28 18 23 9 12 8 9 6 5 8 6 4 4 4 2 2 2 2 1 1 1 1 1 0 0

35 24 34 17 16 12 11 16 11 8 7 8 4 4 3 6 2 2 3 3 2 2 2 1 1  
g/s/b: Number of gold, silver, and bronze medals, respectively. 
G/S/B: Number of gold, gold or silver, and total medals, respectively. 
G/N/U/…: Matrix of pairwise orderings. 
#</#>: Number of less/more successful countries. 
UScr/URng: Scores and ranks by U statistics.  
 

Both the scores based on u statistics and the earlier scores based on the marginal likeli-
hood are valid. While MrgL scores utilize slightly more information than UStat scores, 
computation of MrgL scores is computationally intensive. 25 ranks, for instance, can be 
arranged in 25! = 1×2×3×4×…×25 = 1.5×1025 permutations. Even with testing 1 000 000 
permutations per second, this would require 500 billion years. Both scoring systems yield 
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similar results, however, because the lattice structures are topologically equivalent, i.e., 
the nodes, the edges, and their direction are the same. In particular, the same pairs of 
countries are considered exact ties (Norway/USA, Canada/Russia, Italy/France, Switzer-
land/Netherlands, Australia/Spain, Poland/Japan, Slovenia/Belarus) and, thus, given iden-
tical ranks. Under the different linear models, however, the rank ratio for countries within 
an exact tie may differ. In the above example, the Helvetia:Holland rank ratio ranges 
from 8.5:10.5 to 10:9. Inexact ties, however, may be affected. Replacing UStat scores by 
MrgL scores gives Sweden an advantage over Estonia, while eliminating the difference 
between Bulgaria and Czech Republic. 

 

5. APPLICATION 2:  RELATING COMPLEX OUTCOMES TO 

ACTIVITY PATHWAYS 

5.1. Introduction 

When trying to identify the factors that, by working together, cause a complex phenome-
non such as quality-of-life, overall safety, or overall security, or, at least, allow to predict 
it, we are faced with several problems. First, most complex phenomena cannot be ‘meas-
ured’ in the traditional sense, because of the lack of a physical scale. Instead, we are 
faced with several indicators. While it is often reasonable to assume that ‘more’ is 
‘worse’ for each of them, it may not be easy to determine, how much ‘more’ is how much 
‘worse’. Once the effect has been scored, we can identify the set of independent variables 
that indicate the most likely pathway or constellation causing the complex phenomenon. 
Again, a ‘measure’ has to be found to describe the contribution of several factors.  

Table 3: Knowledge, data, and intermediate results for the psoriasis example. 
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Legend: Beneath the header row with variable names, this table is organized in three horizontal sections, as de-
scribed.25 To conserve space, only relevant items are included. The top section contains the knowledge avail-
able before the data was conducted; 6,8: SI units, &: causality (6: stratum, 2: observation), 6: scale level 
(2&: ordinal/continuous, $&: absolute/continuous). Independent and dependent variables are separated by a 
double line. The second section contains the data, while the bottom section describes the actions to be per-
formed on the data. Each row describes a separate action and the area of derived variables is shaded. The 
first actions are transformations; 5$=: rank of averaged z-scores, 8�8P: univariate/multivariate u-score. 
“<��” indicates that the polarity of these dependent variables is known to be positive, i.e., that higher values 
are indicative of more inflammatory activity. The independent variables are supposed to have a monotonous 
influence of unknown polarity (0��) on the variables to be selected by the 7HVW indicator. 

Psoriasis is a complex inflammatory disease characterized by hyperproliferation of 
keratinocytes and accumulation of activated T-cells in the epidermis and dermis of le-
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sions. Treatments with various immunomodulatory or -suppressive agents (e.g., cyc-
losporine and methotrexate) have a therapeutic index, which precludes long-term treat-
ment. Therefore, there is an ongoing interest in reducing toxicity through targeting cells 
mediating this disease more specifically. Use of specific antibodies could decrease or in-
hibit the inflammatory process by blocking activation of T-cells and/or the extravasation 
of leukocytes.26 Below, we demonstrate how this goal can be achieved by utilizing u sta-
tistics twice, first to score patients with respect to profiles of clinical outcome variables, 
and then to score various subsets of cytokines to identify the pathway by which the par-
ticular agent exerts its anti-inflammatory activity. The data is shown in Table 3, where the 
lower part outlines the transformations and analyses described below in detail. 

 

5.2. Scoring patients by clinical outcome 

Disease improvement in treatment of psoriasis is not easily quantified. The PASI (Psoria-
sis Area Severity Index) and its variants, while frequently used, are crude measures at 
best. It is computed by scoring thickness, redness, and scaling on a scale from 0 (none) to 
4 (exceptionally striking) for four body areas independently. The sum of these scores is 
then multiplied by the size of the area (legs: 40%, trunk: 30%, arms: 20%, head:10%) and 
a score for the estimated percentage of skin involved from 0 (none) to 6 (90-100%). 
These weighted sums of individual scores are then added to an overall score. One charac-
teristic of the linear model is that the difference between slight and no redness, for in-
stance, is assumed to have the same meaning as the difference between moderate and 
striking scaling. In the absence of more rational approaches, the PASI has been widely 
used, although it’s shortcomings are well-known. For instance, the accumulation of layers 
of dead skin cells (scaling), can make it difficult to see the redness underneath. Con-
versely, with extreme inflammation, scale may be non-adherent and, thus, lesions may 
appear relatively scale-free. Then, when treatment reduces inflammation, scaling can in-
crease somewhat paradoxically, even though disease activity improves. 

One of the major strengths of studying psoriasis as an inflammatory model is the poten-
tial to measure therapeutic improvement by more objective criteria. At The Rockefeller 
University, we have previously defined and categorized clinical response endpoints 
through immunohistochemical techniques for a large number of standard and experimen-
tal therapies,27-29 so that this is now a well established technique. In this phase I study, re-
sponses were measured after treatment as expression of K16 mRNA (Km), epidermal 
thickness (ET), and K16 histology (KH, 0: negative, 1: positive). The first goal here is to 
score patients with respect to their overall clinical outcome. 

The scores of individual variables (UKm to UKH, Table 3) differ, and none of them stands 
out as ‘the best’. When following traditional approaches based on the linear model, one 
might derive at a response score by computing the average z-scores of Km and ET and of 
Km, ET, and KH. Since the proposed approach is non-parametric, we will assume that 
these scores were then analyzed by non-parametric tests, i.e., we present the ranks of 
these linear model scores (columns Z2 and Z3, respectively, of Table 3). For patients MM 

to DV, the linear combination ( ) ( )( )( )2 rank avg z , zZ Km ET=  has ranks that are outside 

of the range spanned by rank( )KmU Km=  and rank( )ETU ET= . Looking at the effect of 

adding K16 histology to form an overall response score 

( ) ( ) ( )( )( )3 rank avg z , z , zZ Km ET KH=  highlights this problem with linear model 

scores. Adding KH reverses the order of patients AR and JR, even though K16 histology 
was positive for both. The reason for this undesirable behavior is that the assumptions of 
the linear model, which are implicitly made when (a) computing z-scores and (b) averag-
ing them, are not justified here. 
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Table 4: Computation of u scores U2 for Km and ET (left) and U3 for Km, ET, and KH (right). 
Patients are ordered by the u scores. Adding variable KH reverses the order of patients JN and 
PR. Dashed lines separate blocks of patients that can be independently scored. The dashed 
box in the right diagram indicates an (inexact) tie. In the left diagram, patients PR and JR, in 
contrast form an accidental tie only. 

ID Km ET DR MG DV JN PR JR AR MM CG JA JS CC PO U2 ID Km ET KH DR MG DV PR JN JR AR MM CG JA JS CC PO U3

DR 4771 637 0 1 1 1 1 1 1 1 1 1 1 1 1 12 DR 4771 637 1 0 1 1 1 1 1 1 1 1 1 1 1 1 12

MG 2013 361 -1 0 1 1 1 1 1 1 1 1 1 1 1 10 MG 2013 361 1 -1 0 1 1 1 1 1 1 1 1 1 1 1 10
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JS 194 103 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 -8 JS 194 103 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 -8

CC 50 142 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 -9 CC 50 142 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 -9
PO 36 115 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 -11 PO 36 115 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 -11
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Figure 4: Partial order of bivariate (Km, ET) and trivariate (Km, ET, KH) observations (Table 3). 
Vertical position determined by u-scores (Table 4) U2 (left) and U3 (right). Crossed out bold 
lines indicate pairwise orderings being invalidated and dotted lines indicate those becoming 
relevant when KH=0 is added for patient JN. 

U scores are less sensitive to adding a highly correlated binary variable, as one would ex-
pect. Only by coincidence is U2 is the average of UKm and UET. However, if variables 
have a linear relationship with the underlying latent factor, are of known relative impor-
tance, and have a fixed correlation, u scores are expected be close to the ranks of aver-
ages weighted for relative importance and correlation. 

Looking at the effect of adding K16 histology highlights how u scores differ from linear 
model scores. Table 4 shows that adding K16 histology reduces the number of pairwise 
orderings within the center block of patients JN, PR, JR, AR, and MM. In fact, the subset 
(JN, JR, AR) turns into an inexact tie of indistinguishable patients. Figure 4 illustrates 
that K16 histology affects neither the complete ordering of the top block of patients (DR, 
MG, DV) nor the partial ordering of the bottom block of patients (CJ, JA, CC, PO, JS). 
Within the center block, however, adding KH=0 to patient JN renders the pairs (JN, AR) 
and (JN, PR) unordered, so that the bold connections in Figure 4a are no longer valid. 
Still, DV is larger than AR and PR, and JN is larger than the bottom block. Thus, these 
pairwise orderings, which had previously been inherited through association, are now be-
coming explicit and are indicated by dashed lines. As a result, JN, JR, and AR now have 
the same superiors and inferiors, i.e., they form an inexact tie. In Figure 4b, the patients 
are ordered according to the (fewer) pairwise relations based on the set of three variables. 
Thus, in contrast to average z-scores, which can seem to be counter-intuitive, scores 
based on u statistics are easily interpreted. 
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Moreover, as can also be seen from the definition, u-scores are invariant to scale trans-
formations (logarithms, weights, etc.). Finally, adding highly correlated variables has lit-
tle effect on the results. If the K16 histology for patient JN had been positive, or the re-
sults for patients AR, PR, and MM had been negative, the additional variable would not 
have affected the results at all. 

 

5.3. Scoring genomic pathways 

The variations among patients in their response to treatments can now be used to better 
characterize the genes directly regulated by the various experimental antibodies. Thus, to 
gain a better understanding of the potential of cytokines and receptors to contribute to in-
flammation in psoriatic lesions, we have studied mRNA levels for relevant family mem-
bers by RT-PCR. We hypothesize that a major inflammatory pathway in psoriasis is regu-
lated by Type 1 T-cells (Th1 & Tc1 subsets). In this case, IL-12 stimulates IL-12R+ T-
cells to produce γ-interferon (defining Type 1 T-cells). In turn, γ-interferon acts on kerati-
nocytes to induce synthesis of, among others, IL-8. Hence, we can define one functional 
pathway as IL-12 → γ-interferon → IL-8. In some patients, however, IL-4 mRNA levels 
changed in a way that was unrelated to the type 1 genes, suggesting a possible alternative 
response axis as γ-interferon → STAT1. 

In the phase I study described here, inflammatory activity was measured as mRNA ex-
pression levels of interleukin-12 (IL12), interferon-γ (IFNg), interleukin-8 (IL8), iNOS, 
and Stat1. In addition, we measured the concentration of epidermal CD3+ cells (ECD3). 
The second step in our analysis now is to describe differential gene expression changes in 
patients and to relate these changes to clinical outcomes as scored above. Since the re-
sponse on these pathways appear to be controlled by increased mRNA expression for 
each of their products, expression measures for individual products can be combined into 
‘profiles’, which can then be used to create ‘pathway scores’ for type 1 inflammatory 
genes. Of course, the concept of ‘pathway scores’ pertains to gene expression measures 
derived from both RT-PCR and expression arrays. Thus, we were interested in identifying 
pathways of inflammatory processes30 that explain best differences in multivariate re-
sponses to anti-inflammatory antibodies that bind to T-cell surface proteins. 

In the first four rows of the bottom block of Table 3, the dependent variables to be scored 
are indicated by ‘Y’ and the column for the resulting u-scores by ‘U’ (univariate) and 
‘Um’ (multivariate), respectively. As each variable is known to have a positive correlation 
with disease activity (more is worse), the ‘polarity’ is set to ‘+’. If one variable had a 
negative correlation (more is better), one would indicate this by setting the polarity to ‘-’ 
and the sign of the outcome would be changed before the u-scores are computed. 

Clearly, activity profiles along a pathway can be scored in essentially the same fashion as 
response profiles, except for one additional level of complexity. When scoring responses, 
it was reasonable to assume that we know, whether ‘more’ is ‘better’ or ‘worse’. With ac-
tivity, this is not necessarily true. If treatment were to shift activity from one pathways to 
the other ‘alternative’, less effective pathway, ‘better’ effects may be associated with less 
activity along the former pathway and more activity along the other. On the other hand, if 
pathways are synergistic, more activity on either pathway may be ‘worse’. Thus, one may 
wish to allow for various combinations of signs (polarities) to be associated with each set 
of activity variables. In the bottom line of Table 3, the ‘0’ associated with each independ-
ent variable indicates that the polarity is allowed to vary, i.e., for each subset all possible 
combinations of polarities are to be considered. 
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5.4. Correlating Activity Pathways with Response Profiles 

At the bottom line of Table 3, the response scores computed above are interpreted as de-
pendent variables to determine, which set of pathway variables, when taken together, best 
explains the response outcomes. Testing for a monotone relationship, as indicated by as-
signing ‘M’ to the independent variables, implies SPEARMAN rank correlation. The output 
of the program is given in Table 5. For each set of independent variables, Table 5 con-
tains one row. Within each of these sets, the all polarities are considered independently 
for each response variable and the result for the polarity giving the best correlation is 
given. 

U-scores of K16 mRNA expression (RKm) and epidermal thickness (RET) have the 
highest correlation with a pathway score consisting of IL12, iNOS, and epidermal CD3+ 
cells (RKm: 0.789 – 0.790 when IL12 is also included, RET: 0.789). When K16 mRNA 
and epidermal thickness are evaluated together, the highest correlation (0.815) is seen for 
the same set of inflammatory factors. That the correlation is higher for the combination 
than for each variable alone further supports the standing hypothesis that changes in these 
three inflammatory factors affect both response characteristics in a ‘concerted action’. 
K16 histology is remarkably different. Including K16 histology in the response profile 
reduces the correlation for the set (IL12, iNOS, ECD3), although only marginally from 
0.815 to 0.814. For RKH alone, however, a higher correlation (0.849) is seen for a differ-
ent set of inflammatory factors (IFNg, iNOS, Stat1). Interestingly, for sets of inflamma-
tory factors to have a high correlation with K16 histology, a high level of IL12 expression 
has to be considered ‘protective’ as indicated by the ‘1’ in the polarity column [,9].  

This suggests that K16 histology is related to a different pathway than K16 mRNA ex-
pression and epidermal thickness, a pathway which may be independent of IL12. For in-
stance, K16 histology may reflect effects that preceded the effects measured by acute 
K16 mRNA expression. Thus, the rows in Table 5 are sorted by column R2, on which the 
following results will focus. Adding either IFNg, iNOS, or Stat1 to the IL12-iNOS, 
ECD3 pathway reduces the correlation marginally, but including all six inflammatory 
agents reduces the correlations from 0.815 to 0.692. Eliminating either IL12 or iNOS 
lowers correlations to a similar degree, but eliminating ECD3 from the pathway has a 
small effect on the correlation (0.741). Thus, the data suggests IL12 and iNOS as the 
most relevant indicators of anti-inflammatory activity in psoriasis. 

Interestingly, IL12, by itself, has a very low correlation with U2, the correlation of 0.480 
being the second lowest among all pathways. The correlation of iNOS alone (0.582) is 
only the third highest with respect to R2. If one had selected the inflammatory parameters 
based on univariate correlations, the average of the RKm and RET scores, one would 
have chosen (IL8, Stat1) with a correlation of only 0.661, rather than (IL12, iNOS) with a 
correlation of 0.741. Notably, the set selected by screening all possible sets of inflamma-
tory factors (IL12, iNOS) was disjoint from the set that would have been selected by uni-
variate methods (IL8, Stat). Which pathway to choose has tremendous implications for 
biological processes. One would predict that both Stat-1 and IL-8 mRNA could be trans-
mitted by the Stat-1 transcription factor activated by IFNg. However, a set including IL-
���������	
�������
����������� ������
���-4 as transcription factors. 

As an alternative to the exhaustive search through all sets of inflammatory factors, one 
might have employed a hierarchical approach. In a typical decision tree, one would have 
first selected the most important factor in univariate analysis, which, in this, case, is 
Stat:0.613 > max(IL12: 0.480, IFNg: 0.238, IL8: 0.590, iNOS: 0.582, ECD3: 0.541). 
Among the bivariate sets including Stat, one would have selected Stat/IL8: 0.716 > 
max(Stat/IL12: 0.624, Stat/ECD3: 0.699, Stat/iNOS: 0.673, Stat/IFNg: 0.567). Thus, a hi-
erarchical analysis would have had no advantage over the simple univariate analysis. 



KNUT M. WITTKOWSKI  (9/27/2003) -16- 

Table 5: Selected pathways of inflammatory genes and number of CD3+ cells in the epidermis, 

and correlation of their multivariate (1–6 variables) inflammation u scores with multivariate (1–3 

variables) u score for response (see Table 3 for variable names and response u scores) sorted 

by response score U2. Right part: The highest correlation per column is indicated in bold, all 

correlations at least as high as the smallest among them (0.789) are shaded. Left part: Path-

ways with the highest correlation with U2 by multivariate u-scores, forward selection, and uni-

variate analysis are boxed. The pathways with the next highest correlations by bi- and univari-

ate correlation are shaded. 

Pathway Correlation with Response ...
IL12 IFNG IL8 INOS STAT ECD3 UKm UET UKH U2 U3

IL12 INOS ECD3 0.789 0.789 0.676 0.815 0.814
IL12 IL8 INOS ECD3 0.790 0.773 0.663 0.808 0.806
IL12 INOS STAT ECD3 0.765 0.726 0.696 0.771 0.778
IL12 IL8 INOS STAT ECD3 0.763 0.705 0.656 0.758 0.765
IL12 IFNG INOS ECD3 0.704 0.741 0.668 0.747 0.742

IL8 INOS ECD3 0.715 0.727 0.750 0.745 0.767
IL12 IFNG IL8 INOS ECD3 0.711 0.727 0.660 0.743 0.737
IL12 INOS ---- 0.755 0.678 0.662 0.741 0.735
IL12 INOS STAT 0.768 0.657 0.658 0.736 0.734
IL12 IL8 INOS STAT 0.765 0.659 0.653 0.736 0.733

IL8 INOS STAT 0.742 0.668 0.754 0.729 0.741
IL12 IL8 INOS 0.733 0.667 0.649 0.723 0.717

IL8 STAT 0.739 0.647 0.589 0.716 0.705
IL8 INOS 0.710 0.673 0.729 0.714 0.723
IL8 INOS STAT ECD3 0.704 0.677 0.745 0.713 0.736

INOS STAT ECD3 0.707 0.664 0.816 0.708 0.751
IL12 ---- STAT ECD3 0.706 0.655 0.573 0.703 0.700
IL12 IFNG INOS STAT ECD3 0.688 0.671 0.684 0.702 0.708

STAT ECD3 0.704 0.650 0.676 0.699 0.728
IL8 STAT ECD3 0.699 0.653 0.606 0.699 0.705

IL12 ECD3 0.691 0.657 0.423 0.696 0.679
---- INOS ECD3 0.663 0.677 0.813 0.692 0.741

IL12 IFNG IL8 INOS STAT ECD3 0.692 0.647 0.675 0.692 0.698
...

IFNG INOS STAT 0.614 0.605 0.849 0.630 0.672
IL12 STAT 0.662 0.546 0.512 0.624 0.602

STAT 0.654 0.533 0.619 0.613 0.630
IFNG IL8 STAT ECD3 0.579 0.579 0.640 0.598 0.610

IL12 IFNG IL8 STAT ECD3 0.608 0.541 0.556 0.594 0.595
IFNG IL8 ECD3 0.523 0.625 0.565 0.593 0.598

IL12 IFNG STAT ECD3 0.590 0.557 0.590 0.592 0.604
IL8 0.588 0.555 0.371 0.590 0.556

IL12 IL8 0.603 0.540 0.293 0.590 0.540
INOS 0.577 0.549 0.825 0.582 0.630

...
IL12 0.505 0.423 0.124 0.480 0.424

IFNG 0.176 0.286 0.412 0.238 0.258  
 

6. DISCUSSION 

Multivariate ordinal data are frequently used to assess semi-quantitative characteristics, 
such as risk profiles (genetic, genomic, security) or similarity of pattern (faces, voices, 
behaviors). Traditional approaches for combining different measures into a utility func-
tion or by estimating a common parameter of a joint model require that a relative weight 
be assigned to each measure. This occurs explicitly when scores are computed as linear 
combinations of specific functions of the variables, 31 e.g., ( ) ( )( ) ( )j j

i i ii
s w f x= ∑y . Typi-

cally, neither the choice of a family f
(j) transformation functions (linear, exponential, 

polynomial, …), nor a specific family member fi
(j), nor the choice of weights wi is easily 

justified. With physical models, these choices may be justified on theoretical grounds. 
Often, however, the complexity of the system makes such a justification problematic. If 
an inappropriate model is chosen an analysis based on such a utility function may be mis-
leading. “This is not very reassuring considered that most models are chosen for their 

mathematical convenience rather than their biological plausibility”.32 p.1352f Other ap-
proaches make such assignment implicitly through a hierarchical decision strategy.11, 32 

When fitting linear models, variables are frequently added or dropped sequentially. For 
instance, one may look for the most ‘significant’ variable in univariate analyses first, and 
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then add more variables in a ‘step-up’ fashion. Such a strategies, however, may not even 
come close to the optimum, as we have demonstrated. Tree based approaches (CART33), 
are an alternative, where subjects are separated by the most significant variable first, and 
each subset is then separated by another subset-specific variable. While this may result in 
easily communicated decision strategies, step-functions are not more easily justified on 
theoretical grounds than linear, exponential, or polynomial functions. 

In the Olympic medals example, we have demonstrated that hierarchical ranking also 
may have shortcomings, even when variables are graded. A different approach, also 
termed hierarchical, is to find the most ‘significant’ variable in univariate analyses first, 
and then add more variables in a ‘step-up’ fashion. This strategy may miss the optimal re-
sult and often does not even come close, as we have demonstrated in the psoriasis exam-
ple. A third class of method, also termed ‘hierarchical’, are tree based approaches, where 
subjects are separated by the most significant univariate criterion first, and each subset is 
then separated by a subset-specific variable next in the hierarchy. This approach, often re-
ferred to as CART,33 has the advantage of resulting in easily communicated decision 
strategies. Yet, the justification for a step-function is as questionable on theoretical 
grounds as the justification for a linear, exponential, or polynomial function. 

A frequently used attempt to resolve the dilemma of not having a theoretical justification 
for the model chosen is to use a ‘training set’ to determine transformations and weights 
that yield optimal results within this set, and then to check, if the results are ‘reasonably 
good’ when this specific scoring system is applied to an ‘evaluation set’. If not, one se-
lects another family and/or optimality criterion and tries again. Of course, a set of func-
tions and weights that seems to be ‘reasonably good’ in the evaluation set is not guaran-
teed to be optimal. Thus, it has also been suggested that “if [a] method is to be used, its 

statistical properties should be examined under different, biologically plausible, alterna-

tive distributions by simulation.”32 p.1352  

Aside from the lack of a theoretical justification, empirical validation faces practical 
problems. Many applications require the data to be analyzed in a timely fashion. Consider 
determining, whether current observations of a set of parameters suggests the onset of a 
terror and/or hacker attack. If one were to use a ‘training set’ to determine transforma-
tions and weights that yield ‘optimal’ results within this set, and then to check, if the scor-
ing system is ‘reasonably good’ when applied to an ‘evaluation set’, one would need to 
observe several terror attacks first to train the model (neural network, classification and 
regression tree, … ). Then, one would need to observe even more terror attacks to evalu-
ate the model. Unfortunately, nobody could guarantee that the terrorists are not changing 
their strategy over time, as implicitly required by this training/evaluation paradigm. 

Yet another approach34 relies on combining univariate test statistics35 either by forming 
an omnibus test or a linear combination of test statistics. With such approaches, however, 
only part of the information contained in the actual profiles is utilized when the data is 
reduced to univariate statistics and their covariance. 

The approach proposed here overcomes the limitations of the above approaches. The ad-
vantage of the proposed approach is that no additional assumptions need to be made and 
validated. Once making the initial transformations has incorporated available knowledge, 
the proposed scores are valid by construction, as long as each variable increases (or de-
creases) with the unobservable latent factor. Thus, no empirical evaluation is needed. 
Since no assumption regarding the functional form of the relationship is made, u scores 
are scale independent. Moreover, no assumptions need to be made regarding relative im-
portance of variables or correlation among the variables. Relative importance and correla-
tion do not even need to be constant, but may vary with the level of the underlying latent 
factor. If the variables describe different risk indicators, for instance, other variables may 
be relevant for low risk subjects, than for high-risk subjects. Adding a highly correlated 
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variable is unlikely to affect any of the existing pair-wise orderings and, thus, has little or 
no effect on the scores.  

The proposed approach encompasses several important special cases. Interval censored 
observations can be included by adding both ends of a time interval as individual vari-
ables. Thus, a single methodology, in some cases with specific partial orderings, can be 
used for the comprehensive analysis of many types of indicators, e.g., for quality, safety, 
security, or risk. If some variables should, in fact, be hierarchical, these variables can be 
collapsed in the traditional hierarchical fashion, where lower hierarchy variables are used 
for the sole purpose of breaking ties in variables at higher hierarchy. Whenever justifiable 
on theoretical grounds, the number of variables may be reduced by replacing some vari-
ables by min, max, median, or mean. If events with different grades of severity are 
counted, be it Olympic medals or adverse events, derived variables can be created that al-
low for this knowledge to be reflected. In short, one defines one variable that counts the 
total number of events, a second variable, that counts the number of events having at least 
grade 2, and so on. These variables of cumulative grade can then be ordered using the 
natural partial ordering. Interval censored observations can be included by adding the be-
gin and the end of the time interval as individual variables. When considered appropriate 
for the situation at hand, the number of variables may be reduced by replacing some vari-
ables by min, max, median, or mean. 

When dealing with other nonparametric method, the computational effort can be prohibi-
tive. The proposed method, however, is computationally simple. From (1), it is clear that 
the computational effort increases only linearly with the number of variables. Table 2 il-
lustrates an important feature of (3): Adding another subject means that the matrix in the 
center increases by one row and one column. Thus, the computational effort increases 
only with the square of the number of subjects.  

Having a highly efficient algorithm available allows the method to be used in two impor-
tant ways. First, individual analyses of relatively small data sets can be conducted in en-
vironments better suited for interactive inspection of the data and intermediate results. In 
the analysis of Olympic medals data, a commercially available spreadsheet program was 
used to compute u statistics, which can provide profound insight into the nature of the al-
gorithm and, thus, into the understanding of the results. Second, in screening situations 
(selection procedures), where a large number of combinations of variables is to be ana-
lyzed, computational limitations often restrict the points in the multivariate solution space 
that can be actually evaluated. Hierarchical methods are often employed, because they 
limit the number of situations to be considered, even though it is well known that such 
strategies may easily miss the optimal solution. Having a more efficient algorithm re-
duces the need for employing such sub-optimal strategies. In the analysis of psoriasis data 
we demonstrated how qualitatively different interpretations may result from an exhaus-
tive search compared to a hierarchical analysis. 

The same approach could be directly applied for the comprehensive analysis of other 
types of indicators, e.g., for quality, safety, security, or risk, as indicated in our recent 
work on interaction of venom components.36 Some situations may require specific partial 
orderings to be chosen. We have demonstrated the use of a particular problem specific 
partial ordering in the Olympic medal example and proposed partial orderings for genetic 
haplotypes, where the physical sequence of loci on a chromosome needs to be consid-
ered, in pattern recognition (e.g., face or voice recognition), where the directional dis-
tance of patterns from a reference needs to be minimized, and in signal value estimation 
from probe sets on cDNA arrays. 
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7. OUTLOOK 

Previous expert systems aimed at mimicking human decisions through combining uni-
variate heuristics by means of Bayesian law, neural networks, or fuzzy logic.37, 38 They 
have not been widely used, however, mainly for two reasons. First, the human experts of-
ten did not agree on the heuristical ‘certainty factors’ to be assigned to the univariate rules 
and, even if they did, they found the knowledge acquisition process cumbersome. Sec-
ond, the users did not understand how the certainty factors assigned to the univariate 
rules affected the multivariate decision process and, therefore, could not control this 
process. Having an intrinsically valid approach for multivariate data allows for revisiting 
the ‘expert system’ paradigm, this time allowing for more transparency (Figure 5).  
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Figure 5: An Expert System approach made possible through the availability of intrinsically 
valid methods allowing for multivariate ordinal data in selection of ‘similar’ subsets, data mining 
to identify categories/discriminators, positioning subjects relative to cases/controls, and ranking 
categories by evidence and consequences. 

Let us assume that a subject (e.g., patient) needs to be categorized (e.g., diagnosed). In 
the first step, the decision maker (e.g., physician) selects a set of characteristics consid-
ered relevant for this subject. Using u statistics for the first time, the system then selects 
from a main database a subset of reference subjects, which are ‘similar’ with respect to 
these characteristics. In a second step, the system uses data mining strategies based on u 
statistics to present the decision maker with a list of potential categories (e.g., diagnoses), 
consistent with the subject indicators (e.g., symptoms). Based on prior knowledge, the 
decision maker extends or curtails this list. The system then extracts reference popula-
tions for each of these potential categories from the ad hoc database and determines, 
which variables best discriminate between these populations. This profile of the subject 
data is then used to determine the sensitivity and specificity for each category. Finally, af-
ter the decision maker assigns relative risks and benefits to the different decisions, the 
system uses u statistics for the last time to rank decisions by their overall benefit. 

With this, we have closed an interesting loop. Earlier, we had suggested to use expert sys-
tems to improve statistical database management;39, 40 now we have demonstrated how to 
use statistical methods to improve expert systems. 
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