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Abstract 

 

The article examines a differentiated-products duopoly model where the firms make entry 

decisions to two markets and then choose prices. The effects of product differentiation and entry 

costs are analyzed in two games: with and without price discrimination between the markets. 

Allowing price discrimination encourages more entry and tends to reduce prices and profits and 

to increase consumer welfare in both markets. The model suggests that firms might be better off 

if they agree not to price discriminate between different markets. It also suggests that when the 

market is not a natural monopoly, regulators should consider the effects of universal service 

requirements on entry before adopting them, because entry might be discouraged by such 

requirements, leading to less competitive markets.  
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1. Introduction 

Many firms serve more than one market, either because they sell more than one product, or 

because they operate in more than one geographic location (or both). While in most cases the 

firm is free to choose different prices in its different markets, sometimes it is unable or unwilling 

to price discriminate between its markets. There are several potential reasons why the firm might 

be unable to price discriminate between markets. One reason is regulation: in 

telecommunications, railroad transportation and postal services, for example, the government 

often imposes a universal service requirement that includes a condition that the price in the rural 

market cannot exceed that in the urban market (Anton et al., 2002).  

A second source of cross-market price constraints is anti-dumping provisions in 

international trade, which involve a comparison of prices across countries (see Prusa, 1994). A 

third reason why firms may not be able to price discriminate is arbitrage. This is particularly 

relevant when the various markets represent different geographic locations rather than different 

products. If the price difference is high enough, consumers may purchase in a market other than 

their geographic location. Alternatively, other firms may take advantage of the arbitrage 

opportunity, purchasing in the cheap market and selling in the more expensive one. Competition 

between the arbitraging firms will then drive the higher price down until it gets to the lower price 

(plus transportation costs), and the producer will also have to lower its price in the expensive 

market in order to sell. 

Finally, the firms may themselves act to tie their hands and eliminate their ability to price 

discriminate between markets if they benefit from doing so (the model indeed suggests they do). 

For example, if national advertisement for a Big Mac promises to sell it for $2.99, McDonald’s 

stores in various locations must all choose this price; the firm can thus self-impose a constraint 

not to price discriminate among different locations by advertising in national channels. Firms can 

also commit not to price discriminate by including most-favored-customer clauses in their 

contracts. If a firm offers such clauses to all its customers, it cannot price discriminate at all 

because all its customers will be entitled to get the lowest price.  

How does the existence of cross-market price constraints affect the equilibrium? A few 

articles address this question. Leontief (1940) was the first to develop the theory of multi-market 

monopoly. More recently, Armstrong and Vickers (1991) showed that consumers prefer uniform 

pricing when regulation caps the monopoly’s average revenue. More closely related to the 
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current article are the studies that look on the effects of cross-market price constraints in 

oligopoly. DeGraba (1987), for example, analyzes the effects of most-favored-customer clauses 

in the sales contracts of a national firm on its competition with local firms. Armstrong and 

Vickers (1993) analyze a model in which an incumbent firm faces entry in one of its two 

markets, and show that banning price discrimination tends to encourage more entry and to reduce 

prices. Anton et al. (2002) analyze a model in which two firms who serve an urban market bid 

for entry to a rural market (the winner is the firm that is willing to accept a lower subsidy), under 

the constraint that price in the rural market cannot exceed the equilibrium price in the urban 

market.1  

The current article also analyzes a duopoly with cross-market price constraints, but it 

introduces several important changes from previous models. It allows both firms to enter both 

markets, and entry to both markets is simultaneous, and is not subsidized by a regulatory agency. 

The article also analyzes the effects of product differentiation and entry costs on equilibrium 

entry and pricing. In addition, the article compares the equilibrium with and without price 

discrimination, and reaches the opposite conclusion to that of Armstrong and Vickers (1993): 

banning price discrimination in the model presented here actually tends to discourage entry and 

to increase equilibrium prices. The idea that price discrimination can intensify competition and 

lower prices in imperfect competition appeared also in Corts (1998). In Corts’ model, however, 

this is the result of asymmetries in the demand functions of the two consumer groups, while here 

this result comes from the effect that allowing price discrimination has on entry decisions (Corts 

does not consider entry).  

This comparison between the equilibria with and without the ability of firms to price 

discriminate is of great importance for both governmental regulators and for the firms 

themselves. Regulators are interested in this question because they want to know how requiring 

firms to charge the same price in urban and rural areas affects prices and consumer welfare in the 

different markets. Firms are interested in this question because they can affect their own ability 

to price discriminate between markets, as was discussed above. 

                                                 

1
 Additional related theoretical contributions include Bulow et al. (1985), Lal and Matutes (1989), Bernheim and 

Whinston (1990) and Phillips and Mason (1996). 
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While a monopoly is better off having fewer constraints, and therefore better off being 

able to price discriminate, with oligopoly firms are sometimes better off being constrained 

because their rivals are also constrained and because of the strategic effects of the constraints. 

This turns out to be the case here: firms are better off not being able to price discriminate. 

Interestingly, while the constraint imposed is on pricing, firms prefer the game without price 

discrimination not because of its effect on prices but because of the equilibrium entry decisions. 

In contrast, consumers in both markets prefer the game with price discrimination. This implies 

that if the market is not a natural monopoly, the common wisdom that suggests that imposing 

equal prices in two markets (e.g. rural and urban) benefits at least one of them is not necessarily 

correct once we account for the effects of this restriction on entry. This conclusion has to be 

taken cautiously, however, especially when the markets are not symmetric; the last section 

discusses this point in more detail.  

 

 

2. The model 

Two firms that sell differentiated products compete in prices, and competition takes place 

potentially over two markets, denoted by A and B. There is no substitutability between the two 

markets, so the firms compete only in the markets to which both entered. These two markets may 

be an urban area and a rural area, or day hours and night hours, or two distinct geographic 

locations and so on. The extent of product differentiation between the firms is the same in both 

markets. The game unfolds in two stages: in the first stage, each firm decides to which markets 

to enter: 0 (none), A, B, or AB (both). In the second stage, the firms choose prices. I first assume 

that each firm can choose only one price, that is, it cannot price discriminate between the markets 

to which it entered in the first stage. I later relax this assumption and compare the results with 

and without the assumption.  

Each market entered entails a fixed cost of entry, F, and the marginal cost of production 

is zero. The inverse demand in each market takes the form:2 

                                                 

2
 The two markets in the model are symmetric. It could be an interesting exercise to examine asymmetric markets as 

well, but in this model the analysis turns out to be too complex to be traceable if we add parameters to capture the 

asymmetry between the markets (e.g. in the fixed cost of entry, the demand function, and the marginal cost). Since 
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pi
s = 10 – qi

s – dqj
s     i = 1, 2;  j = 2, 1;  s = A, B. 

 

The parameter d ∈ [0, 1) measures the extent of product differentiation: when d approaches one, 

an increase in qj or in qi have almost the same effect on pi, meaning that the two firms sell very 

close substitutes. When d is zero, qj has no effect on pi, meaning that the goods sold by the two 

firms are not substitutes at all. Intermediate values of d represent an intermediate extent of 

product differentiation; notice, however, that a higher value of d corresponds to less product 

differentiation.3   

A nice characteristic of this inverse demand function is that it applies to both a monopoly 

and a duopoly in the market. It is immediate to see that if firm i is a monopoly in market s, the 

resulting demand is qi
s = 10 – pi. If both firms enter a market s, combining the inverse demand 

functions and solving for quantities in terms of prices yield the demand functions:  

 

qi
s = max{[10(1 – d) + dpj – pi]/(1 – d2), 0}  i = 1, 2;  j = 2, 1;  s = A, B. 

 

 

3. The equilibria in the second stage 

To find the subgame-perfect Nash equilibrium of the game, I proceed by solving the game 

backwards. There are a few cases to analyze in the second stage, depending on the entry 

decisions made in the first stage: 

                                                                                                                                                              

the main results do not depend on a knife-edge case, however, they should be qualitatively similar also with 

asymmetric markets as long as the asymmetry is not too big. 

3 The demand function is a specific form of the linear function pi
s = α – βqi

s – dqj
s. In order to simplify the analysis 

and the presentation of the results, I wanted to minimize the number of varying parameters, so I substituted α = 10 

and β = 1. The results of the model are qualitatively similar with other linear demand specifications (i.e. different 

values of α and β) because (1) the value of α changes the profits in the market in a similar way to a change in the 

fixed cost F; and (2) the value of β changes the profits in the market and the extent of product differentiation, but 

these two effects are already captured by letting F and d vary. Using a general demand function without assuming a 

specific functional form is not possible because we need specific values of the profits following each pair of entry 

decisions in order to find the equilibrium in the first stage (i.e. the optimal entry decisions). 
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Case 1: Each firm operates at most in one market, and no market is served by both firms 

This case occurs when one of the following occurs: (1) both firms do not enter at all; (2) one firm 

enters one market and the other firm does not enter at all; or (3) each firm enters a different 

market. Since each active firm serves only one market and it does not face competition in this 

market, each active firm chooses the monopoly price, pm = 5 (m for “monopoly”). The quantity 

sold in each active market is the monopolistic quantity, qm = 5, and the firm’s profits are πm = 25 

− F. 

 

Case 2: One firm is a monopoly in both markets 

Since the markets are symmetric, the optimal price is again pm = 5, resulting in quantity of 5 in 

each market and in total profits of 2πm = 50 − 2F for the active firm. 

 

Case 3: Both firms enter either the same market or both markets  

Proposition 1: The equilibrium in Case 3 is characterized by p1 = p2 = 10(1 – d)/(2 – d) ≡ pc, and 

q1
A = q2

A = q1
B = q2

B = 10/(2 − d)(1 + d) ≡ qc
.  

Profits per firm are π1 = π2 = 200(1 − d)/(2 − d)2(1 + d) ≡ πc if each firm enters both markets, and 

πc/2 = 100(1 − d)/(2 − d)2(1 + d) if each firm enters only one market (the same one). 

Proof: Combining the solutions to the profit maximization problems of the two firms yields 

these results immediately and is omitted to conserve space.  

 

Case 4: One firm enters both markets and the other firm enters only one market 

For notational convenience, let us assume that firm 1 enters both markets and firm 2 enters 

market A only.  

 

Proposition 2: There is no equilibrium in which the firm that enters both markets finds it 

optimal to sell eventually only in one market (so in any equilibrium of Case 4, q1
A > 0). 

Proof: see Appendix.  

 

Proposition 3: When the goods are very close substitutes (d > 0.8263), there is no pure-strategy 

equilibrium in the game, unless we assume that a firm that enters a market must choose a price 
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that results in a strictly positive quantity in that market. When d ≤ 0.8263 (or when d > 0.8263 

but we make the above assumption), equilibrium prices, quantities, and profits are given by: 

p1
*

 = 10(–3d2 – d + 4)/(8 – 5d2),  

p2
* = 10(d3 – 3d2 – 2d + 4)/(8 – 5d2), 

q1
A = 10(d4 + 2d3 − 4d2 − 3d + 4)/(5d4 − 13d2 + 8), 

q1
B = 10(−2d2 + d + 4)/(8 − 5d2),  

q2
A = 10(d3 − 3d2 − 2d + 4)/(5d4 − 13d2 + 8), 

π1 = (q1
A + q1

B)p1
* − 2F ≡ πb (b for “big” firm), and 

π2 = q2
Ap2

* − F ≡ πs (s for “small” firm). 

Proof: see Appendix. 

 

Since there is no pure-strategy equilibrium in Case 4 when d > 0.8263, we cannot attach 

payoffs to the firms when the entry decisions are (AB, A) or similar ones and we cannot find the 

equilibrium in the two-stage game. There are two ways to proceed. One is to assume that d ≤ 

0.8263, implying that the goods of the two firms are not very close substitutes. Alternatively, we 

can assume that once a firm declares that it enters a certain market, it must choose a price that 

results in a strictly positive quantity in this market. A possible justification for imposing such 

restriction (in addition to the technical reason) is that the firm harms its reputation (with respect 

to both competitors and customers) when it enters a market but then chooses such high prices 

that it does not sell at all.  

Comparing the prices that result from the various entry decisions and analyzing them 

numerically show that for all d ∈ (0, 1) we have the following relationship: pm = 5 > p1
* > p2

* > 

pc, where p1
* and p2

* are the prices of the big and small firm, respectively (assume that firm 1 

chooses AB and firm 2 chooses A). The intuition for this result is as follows: the derivative of 

firm 1’s profits in its monopolistic market with respect to p1 when evaluated at p1 = 5 is zero 

(since pm maximizes profits in a monopolistic market), while in the shared market (B) it is 

negative (since the optimal price against p2 is smaller than pm), so the big firm chooses a price 

p1
* that is smaller than pm. The reason that p1

* > p2
* is that the big firm has a cross-market 

consideration that the small firm does not have. When the big firm reduces its price in market A, 

it must also reduce it in market B, and since its price is already below pm, this reduces its profits 

from market B. As a result, the big firm is less willing to cut its price than the small firm, and p1
* 
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> p2
*. Finally, to explain why p2

* > pc, suppose that we have firm 1 in both markets and firm 2 in 

market A and now firm 2 enters also market B. Firm 1 no longer protects market B by choosing a 

high price, because this market is not monopolistic anymore, so it reduces its price. This implies 

p1
* > pc. The intuition why also p2

* > pc is that when d > 0, prices in duopolistic markets are 

strategic complements: the optimal price for each firm is increasing in the price of its rival (this 

can be seen easily in the systems of equations in the proofs of Proposition 1 and Proposition 3). 

Consequently, the price reduction of firm 1 causes firm 2 to reduce its price once firm 2 enters 

market B, resulting in pc < p2
*. 

 

 

4. The equilibria in the two-stage game 

The payoff table for the various entry decisions in the first stage is depicted in Table 1.  

 

Table 1: Payoff matrix when price discrimination is not allowed 

             Firm 2 

Firm 1 

0 A B AB 

0 0, 0 0, 25 – F 0, 25 – F 0, 50 – 2F 

A 25 – F, 0 0.5πc, 0.5πc 25 – F, 25 – F  πs, πb 

B 25 – F, 0 25 – F, 25 – F  0.5πc, 0.5πc πs, πb 

AB 50 – 2F, 0 πb, πs πb, πs πc, πc 

 

The first column and row depict the markets entered by firms 1 and 2, respectively. The first 

payoff in each cell is that of firm 1. 

 

The notation in what follows is similar to that in the table: for example, (A, AB) means that firm 

1 enters market A and firm 2 enters both markets. Clearly, the table is symmetric. I assume F < 

25 (the monopoly profit net of the fixed cost of entry is positive). Since the monopoly profit is 

the maximum that can be earned in each market, it follows immediately that πc ≤ 50 – 2F,  πb ≤ 

50 – 2F, and  πs ≤ 25 – F  (the inequalities hold with equality only when d = 0). 

We can see that the candidates for an equilibrium in the two-stage game are of four types: 
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(1) Each firm enters a different market: (A, B) or (B, A). I call this type the “niches equilibrium.”  

(2) One firm enters both markets and the other firm enters just one market: (A, AB); (B, AB); 

(AB, A); (AB, B). I denote this type as a “big & small equilibrium” (the big firm is the one that 

enters both markets). 

(3) Both firms enter both markets (AB, AB). This is the “competitive equilibrium.” 

(4) One firm enters both markets and the other firm remains inactive, the “winner-takes-all 

equilibrium”: (AB, 0) or (0, AB). 

4.1. Conditions for each type of equilibrium to occur 

(1) Niches equilibrium, e.g. (A, B): three conditions have to be simultaneously met for (1) to be a 

Nash equilibrium: (1a) 25 – F ≥ 0, which is satisfied by the assumption F < 25; (1b) 25 – F ≥ 

0.5πc, which is satisfied since πc ≤ 50 – 2F; and (1c) 25 – F ≥ πb.    

Notice that πb|d = 0 = 50 – 2F, because a firm that enters both markets when the competitor has a 

totally differentiated product earns monopoly profits in each of the markets. In addition, πb is 

decreasing in d, so we can expect condition (1c) to be satisfied for values of d above a certain 

threshold.4 The numerical analysis shows that this is indeed the case, where the critical value of d 

above which (A, B) is a Nash equilibrium is decreasing in F.   

 

(2) Big & small equilibrium, e.g. (AB, A): all the following conditions have to be met 

simultaneously for (2) to be a Nash equilibrium: (2a) πb ≥ 0; (2b) πb ≥ 0.5πc; (2c) πb ≥ 25 – F; 

(2d) πs ≥ πc; and (2e) πs ≥ 0. Conditions (2a), (2b) and (2c) ensure that the firm that enters both 

markets cannot gain from deviation; conditions (2d) and (2e) ensure that the other firm has no 

profitable deviation. Whenever (2c) is true, (2a) and (2b) are also true, so conditions (2c), (2d) 

and (2e) are necessary and sufficient for (2) to be an equilibrium.  

 

                                                 

4 ∂πb/∂d = {(p2 − 10)(1 − d2) + 2d[(10 − p1) − d(10 − p2)]}/(1 − d2), where firm 1 is the “big” firm. The denominator 

is positive; the numerator is equal to 2d(10 − p1) + (p2 − 10)(1 + d2). The first term is positive while the second is 

negative, and 1 + d2 > 2d (since 1 + d2 − 2d = (1 − d)2 > 0). Since p2
* < p1

* (this can be easily seen from Proposition 

3), the negative term is bigger in absolute value than the positive term, implying that ∂πb/∂d < 0.  
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(3) Competitive equilibrium (AB, AB): the conditions for (3) to be an equilibrium are: (3a) πc ≥ 

0; and (3b) πc ≥ πs. 

 

(4) Winner-takes-all equilibrium, e.g. (AB, 0): the active firm cannot do any better, but the 

inactive firm has no profitable deviation only if: (4a) πs ≤ 0; and (4b) πc ≤ 0. 

Table 2 describes how the above conditions translate into conditions about the value of d given 

different value of F. 

 

Table 2 specifies how conditions (1c), (2c), (2d), (2e), (3a), (3b), (4a) and (4b) translate into 

conditions about the value of d, for different F-values.5 

4.2. The equilibria for different values of d and F 

Table 3 and Figure 1 present the equilibria for different values of F and d, under the assumption 

that a firm that enters a market must choose a price that results in a strictly positive quantity. The 

alternative assumption, that d ≤ 0.8263, gives the exact same equilibria, except that the equilibria 

for values of d above 0.8263 are irrelevant anymore.  

 

                                                 

5 Some of the conditions are just the counterparts of others, but presenting them all makes it easier to see the 

conditions for each type of equilibrium. 
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Table 2: Conditions for different types of equilibria 

 

 Niches 

equilibrium

E.g. (A, B) 

Big & small equilibrium 

E.g. (AB, A) 

Competitive 

equilibrium  

(AB, AB) 

Winner-takes-all 

equilibrium 

E.g. (AB, 0) 

F 1c:πb≤25–F  2c:πb≥25–F  2d:πs≥πc  2e:πs≥0  3a:πc≥0  3b:πs≤πc  4a:πs≤0 4b:πc≤0 

0 d ≥ 0.8263 d ≤ 0.8263 d ≥ 0.9121 d < 1 d < 1 d ≤ 0.9121 N/A N/A 

1 d ≥ 0.8127 d ≤ 0.8127 d ≥ 0.8756 d ≤ 0.9925 d ≤ 0.9794 d ≤ 0.8756 d ≥ 0.9925 d ≥ 0.9794 

5 d ≥ 0.7463 d ≤ 0.7463 d ≥ 0.7597 d ≤ 0.9533 d ≤ 0.8824 d ≤ 0.7597 d ≥ 0.9533 d ≥ 0.8824 

10 d ≥ 0.6267 d ≤ 0.6267 d ≥ 0.6091 d ≤ 0.8624 d ≤ 0.7175 d ≤ 0.6091 d ≥ 0.8624 d ≥ 0.7175 

15 d ≥ 0.4487 d ≤ 0.4487 d ≥ 0.4276 d ≤ 0.6178 d ≤ 0.4906 d ≤ 0.4276 d ≥ 0.6178 d ≥ 0.4906 

20 d ≥ 0.2209 d ≤ 0.2209 d ≥ 0.2143 d ≤ 0.2495 d ≤ 0.2291 d ≤ 0.2143 d ≥ 0.2495 d ≥ 0.2291 

24 d ≥ 0.0410 d ≤ 0.0410 d ≥ 0.0408 d ≤ 0.0417 d ≤ 0.0412 d ≤ 0.0408 d ≥ 0.0417 d ≥ 0.0412 

25 d ≥ 0 d = 0 d ≥ 0 d = 0 d = 0 d = 0 d ≥ 0 d ≥ 0 

 

 

 

Table 3: Equilibria for different values of d and F 

 

F Niches 

equilibrium  

E.g. (A, B) 

Big & small 

equilibrium  

E.g. (AB, A) 

Competitive 

equilibrium 

(AB, AB) 

Winner-takes-all 

equilibrium 

E.g. (AB, 0) 

0 [0.8263, 1) None [0, 0.9121] None 

1 [0.8127, 1) None [0, 0.8756] [0.9925, 1) 

5 [0.7463, 1) None [0, 0.7597] [0.9533, 1) 

10 [0.6267, 1) [0.6091, 0.6267] [0, 0.6091] [0.8624, 1) 

15 [0.4487, 1) [0.4276, 0.4487] [0, 0.4276] [0.6178, 1) 

20 [0.2209, 1) [0.2143, 0.2209] [0, 0.2143] [0.2495, 1) 

24 [0.0410, 1) [0.0408, 0.0410] [0, 0.0408] [0.0417, 1) 

25 [0, 1) 0 0 [0, 1) 
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The cells in the table present the values of d for which there exists an equilibrium of the type 

written in the first row, for the value of F that appears in the left column. 

 

Figure 1: Equilibria for various values of d and F
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As the table and figure show, several types of equilibria exist, depending on the values of 

d and F. For example, when F = 5, values of d below 0.7463 yield the competitive equilibrium; 

there are both niches and competitive equilibria when 0.7463 ≤ d ≤ 0.7597; when 0.7597 < d < 

(AB, AB) 

(AB, AB); 

(A, B) 

(AB, 0); (A, B) 
(A, B) 

(AB, A) 
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0.9533, the resulting equilibrium is of the niches type; and when 0.9533 ≤ d < 1 both the niches 

and the winner-takes-all equilibria exist. The main results regarding the entry decisions in 

equilibrium can be summarized as follows:  

When d is small, competition is soft due to significant product differentiation, so each 

firm enters both markets in equilibrium. When the products become close substitutes (i.e. d 

increases) and competition becomes more intense, each firm finds its own niche (by entering a 

different market) in order to avoid head-to-head competition. When F is large or the products are 

close substitutes, however, in addition to the niches equilibrium there is a winner-takes-all 

equilibrium. The higher F is, the more differentiated the products can be and still sustain the 

winner-takes-all equilibrium. In addition, the higher is the fixed cost of entry to a market, the 

more likely are the firms to find different niches and not to compete: the competitive equilibrium 

(AB, AB) is replaced by the niches equilibrium, (A, B) or (B, A), beginning at lower values of d.  

It is interesting to notice that for some values of d and F there is more than one type of 

equilibrium for the game. In addition, even though the game is completely symmetric, there are 

values of F and d for which there are asymmetric equilibria with different entry decisions and 

different profits for the two firms. The big & small equilibrium, however, occurs only for a very 

narrow range of d-values.  

Another interesting point is that while prices and profits are weakly decreasing in d given 

a pair of entry decisions, the equilibrium profits and prices are not. For example, consider the 

case F = 5. As we increase d from zero, equilibrium prices and profits decrease. When we reach 

d-values in the range of [0.7463, 0.7597], there are both the competitive and the niches 

equilibria, so equilibrium prices and profits are not unique. When we increase d further, 

however, the niches equilibrium becomes the unique equilibrium, and results in higher prices and 

profits than those in the competitive equilibrium for values of d above a certain threshold. In the 

niches equilibrium each firm enjoys monopoly profits in one market, and therefore prices and 

profits do not change as d increases further.6 For example, with F = 5, the niches equilibrium 

                                                 

6 When d ≥ 0.9533 the winner-takes-all equilibrium also becomes possible in addition to the niches equilibrium. The 

profits and prices of the niches equilibrium remain the same and the niches equilibrium remains an equilibrium of 

the game, though it is not the unique equilibrium anymore. Under the winner-takes-all equilibrium prices are still the 
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takes over the competitive equilibrium around d = 0.76. Profits in the niches equilibrium for d = 

0.76 are similar to those in the competitive equilibrium at d = 0.49, and therefore equilibrium 

profits for d ∈ [0.76, 1) are higher than those for d ∈ [0.49, 0.76]. Prices in the niches 

equilibrium are the monopoly prices and therefore are higher than those of the competitive 

equilibrium for all d > 0. The analysis for other values of F is similar. 

 

 

5. Price discrimination is bad for firms and good for consumers 

So far we did not allow the firms to price discriminate between the markets. How does the 

equilibrium change if we allow price discrimination? This question is of great importance to both 

governmental regulators and the firms. To answer this question, let us analyze the same model 

but now allow the firms to price discriminate between the two markets. Consider the equilibrium 

in the second stage. When neither firm enters more than one market, the ability to charge 

different prices is irrelevant and therefore the equilibrium is unchanged (pm = 5 is the price in all 

active markets). When one firms enters both markets and the other firm remains inactive, the 

active firm chooses the same price (pm = 5) in both markets because the markets are symmetric, 

so the equilibrium is the same as before. When both firms enter markets A and B, they both 

choose pc in both markets because of the symmetry between the markets and the equilibrium is 

as before.  

The only case in which this game differs from the previous one is when one firm enters 

both markets and the other enters only one market. Now, the big firm charges pm = 5 in the 

market in which it is a monopoly, and both firms charge pc in the other market. Notice that now 

the condition d ≤ 0.8263 is irrelevant, since the large firm never wants to sell zero quantity in a 

market it entered once price discrimination is allowed. The payoff matrix for different entry 

decisions is presented in Table 4.  

 

                                                                                                                                                              

monopoly prices and profits are the monopoly profits, except that one firm makes the entire profits rather than the 

two firms splitting them as in the niches equilibrium. 
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Table 4: Payoff matrix when price discrimination is allowed 

 

             Firm 2 

Firm 1 

0 A B AB 

0 0, 0 0, 25 – F 0, 25 – F 0, 50 – 2F 

A 25 – F, 0 0.5πc, 0.5πc 25 – F, 25 – F  0.5πc,  

25 − F + 0.5πc 

B 25 – F, 0 25 – F, 25 – F  0.5πc, 0.5πc 0.5πc,  

25 − F + 0.5πc 

AB 50 – 2F, 0 25 − F + 0.5πc, 

0.5πc 

25 − F + 0.5πc, 

0.5πc 

πc, πc 

 

The first column and row depict the markets entered by firms 1 and 2, respectively. The first 

payoff in each cell is that of firm 1. 

 

It is easy to see that whenever πc > 0, the unique equilibrium is the competitive 

equilibrium, (AB, AB). When πc < 0, the equilibria have a monopoly in both markets, either as a 

niches equilibrium or as a winner-takes-all equilibrium. When πc is exactly equal to zero, all four 

types of equilibria are possible (niches, big & small, competitive, and winner-takes-all). Notice 

that now the only condition for the competitive equilibrium to occur is πc ≥ 0 (condition (3a) in 

the previous section) whereas previously we also needed condition (3b), πs ≤ πc. Moreover, the 

set of d-values that satisfy condition (3b) is a proper subset of the set of d-values that satisfy 

condition (3a), for a given F. This implies that the competitive equilibrium is more likely to 

occur (it occurs under a broader range of parameter values) when price discrimination is allowed. 

Except for the knife-edge case of πc = 0, the big & small equilibrium cannot occur now. 

The intuition why this equilibrium is virtually eliminated is the following (assume that firm 1 

enters markets A and B, and firm 2 enters only A): without price discrimination, firm 1 chooses a 

price that is above pc because this price also applies to market B where firm 1 would like the 

price to be as close to pm > pc as possible. Firm 2 therefore benefits from a softer competitor in 
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market A7; by entering market B, firm 2 eliminates the incentive of firm 1 to price higher than pc, 

and therefore firm 2 faces tougher competition and reduced profits in market A. This incentive of 

firm 2 to avoid entry to market B is eliminated once price discrimination is allowed, because 

now the price in market A is pc anyway. Consequently, if it is profitable for firm 2 to be in 

market A when firm 1 enters both A and B, then firm 2 is better off entering both A and B, 

because this doubles its profits.  

For simplicity, since the big & small equilibrium is virtually eliminated now, and since 

even in the previous game it occurred only for a very narrow region of parameter values, let us 

concentrate on the other forms of equilibria. When πc < 0 the equilibrium is either the niches 

equilibrium or the winner-takes-all equilibrium, so prices in both markets are pm, each market is 

served by only one firm, total quantity in each market is qm = 5, and the sum of the profits of the 

two firms is 50 − 2F (these characteristics of the niches and winner-takes-all equilibria also hold 

when price discrimination is not allowed). Whether these profits go to only one firm or to both 

firms equally is not of much interest for our purposes now, so it does not matter much whether 

the equilibrium is of the niches type or the winner-takes-all type. In the previous game, however, 

there was a large region in which only the niches equilibrium exists, and whenever the winner-

takes-all equilibrium exists so does the niches equilibrium, so it is more convenient to take the 

niches equilibrium when both equilibria exist. Consequently, we limit attention to the symmetric 

equilibria, of the competitive and the niches type. 

Let us denote by dp the critical d-value above which the competitive equilibrium does not 

exist anymore in the current game (p for price-discrimination), and similarly, this critical value in 

the previous game as dn (n for no-price-discrimination). Since the d-values that satisfy condition 

(3b) are a proper subset of the values that satisfy condition (3a), it follows that dp > dn. For 

example, with F = 5 we have dp = 0.8824 and dn = 0.7597, and with F = 15 we have dp = 0.4906 

and dn = 0.4276. Since the competitive equilibrium occurs when d ∈ [0, dg] (g = p or n 

depending on the game), this means that the competitive equilibrium is more likely to occur 

when price discrimination is allowed.  

                                                 

7 The result that a firm becomes a softer competitor when it enters two markets and its rival enters only one is 

analogous to the results in the models of Armstrong and Vickers (1993) and Anton et al. (2002). 
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Conditional on the entry decisions being the same, in the symmetric equilibria the firms 

choose the same prices and obtain the same profits in both games (with and without price 

discrimination). The only thing that matters to the firms is therefore the type of equilibria. For 

low values of d and F the firms prefer the competitive equilibrium to the niches equilibrium, 

because it enables them to extract profits in two markets rather than one, competition is not 

intense, and fixed costs of entry are low. When F or d increase, however, the firms start to derive 

more profits in the niches equilibrium than in the competitive equilibrium because the former 

saves costs of entry to an additional market and avoids head-to-head competition. The question 

is, for the values of d and F for which price discrimination results in the competitive equilibrium 

and no-price-discrimination results in the niches equilibrium, what do the firms prefer?  

The answer is that the firms prefer the niches equilibrium in this case, meaning that they 

prefer the game without price discrimination. The reason is as follows: the values of d and F for 

which the equilibria in the two games differ are those for which 0 ≤ πc < πs (this can be seen from 

conditions (3a) and (3b)). Since πs < 25 − F, it follows that πc < 25 − F in these cases; therefore, 

the firms prefer the niches equilibrium (with profits of 25 − F for each firm) to the competitive 

equilibrium.  
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Table 5: Equilibrium prices, quantities and profits in both games (for F = 5) 

 No price discrimination Price Discrimination allowed 

 

d Price 

Total 

quantity 

Profit 

(each firm) Price 

Total 

quantity 

Profit 

(each firm)

0.00 5.00 10.00 40.00 5.00 10.00 40.00 

0.04 4.90 9.81 38.06 4.90 9.81 38.06 

0.08 4.79 9.65 36.22 4.79 9.65 36.22 

0.12 4.68 9.50 34.46 4.68 9.50 34.46 

0.16 4.57 9.37 32.78 4.57 9.37 32.78 

0.20 4.44 9.26 31.15 4.44 9.26 31.15 

0.24 4.32 9.16 29.57 4.32 9.16 29.57 

0.28 4.19 9.08 28.03 4.19 9.08 28.03 

0.32 4.05 9.02 26.50 4.05 9.02 26.50 

0.36 3.90 8.97 24.99 3.90 8.97 24.99 

0.40 3.75 8.93 23.48 3.75 8.93 23.48 

0.44 3.59 8.90 21.96 3.59 8.90 21.96 

0.48 3.42 8.89 20.41 3.42 8.89 20.41 

0.52 3.24 8.89 18.83 3.24 8.89 18.83 

0.56 3.06 8.90 17.20 3.06 8.90 17.20 

0.60 2.86 8.93 15.51 2.86 8.93 15.51 

0.64 2.65 8.97 13.74 2.65 8.97 13.74 

0.68 2.42 9.02 11.86 2.42 9.02 11.86 

0.72 2.19 9.08 9.87 2.19 9.08 9.87 

0.76 5.00 5.00 20.00 1.94 9.16 7.74 

0.80 5.00 5.00 20.00 1.67 9.26 5.43 

0.84 5.00 5.00 20.00 1.38 9.37 2.92 

0.88 5.00 5.00 20.00 1.07 9.50 0.18 

0.92 5.00 5.00 20.00 5.00 5.00 20.00 

0.96 5.00 5.00 20.00 5.00 5.00 20.00 

0.9999 5.00 5.00 20.00 5.00 5.00 20.00 
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Table 5 presents the equilibrium price, profits per firm, and total quantity (the sum over 

the two firms) in each market when F = 5.8 We can see that for low values of d the two games 

yield the same equilibrium (the competitive equilibrium). For some higher values of d, however, 

price discrimination results in the competitive equilibrium while no-price-discrimination yields 

the niches equilibrium; as argued above, for these d-values, profits (and prices) are higher 

without price discrimination. Finally, when d is very large, the niches equilibrium takes over also 

with price discrimination and once again the two games have the same equilibrium.  

Interestingly, while the constraint relaxed in the second game is on pricing, firms prefer 

the game without price discrimination not because of its effect on prices but because of the 

equilibrium entry decisions.9 Notice that this preference was derived when comparing the 

symmetric equilibria in both games, and in these equilibria the prices in both games are the same. 

The preference for the game without price discrimination is therefore only a result of the firms 

preferring the niches equilibrium to the competitive equilibrium, that is, a preference for the 

entry decisions that this game yields. Allowing price discrimination encourages more entry, and 

thus acts to increase competition and reduce prices, benefiting consumers and hurting the firms. 

While the firms prefer not to be able to price discriminate, consumers prefer to allow 

price discrimination because they prefer the competitive equilibrium to the niches equilibrium, 

since the former results in lower prices and higher total quantity. Notice that the consumers in 

both markets are better off with price discrimination. The implications of this result for 

regulation policy and firm strategy are discussed in the next section. 

 

6. Discussion and conclusion 

The result that firms are worse off and all consumers better off when price discrimination 

between the markets is possible (whenever the equilibria with and without price discrimination 

differ) is of importance for both firms and governmental regulators. This result implies that firms 

                                                 

8
 When F changes, profits change and the equilibrium for different d-values may change; conditional on the type of 

equilibrium, however, prices and quantities do not depend on the value of F.  

9
  Depending on the values of d and F, this preference can be either weak or strict. The same applies to the 

discussion in the rest of this and the next paragraphs. 
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may be better off if all of them commit to avoid price discrimination between markets. Since the 

actual interaction between firms takes place over multiple periods, it is easy to construct models 

of repeated interaction where the firms initially agree not to price discriminate between the 

markets, and if one firm ever deviates and charges different prices in its markets, other firms 

retaliate by price discriminating in all future periods, leading to less favorable equilibria for all 

firms. With discount factors above a certain threshold, the equilibrium in the repeated game will 

then be that firms do not price discriminate. Interestingly, in the model presented here the ability 

to deviate will not even be profitable, because once firms believe that other firms are not price 

discriminating, the equilibria are virtually always symmetric, and in these equilibria no firm 

gains from price discriminating.  

A simple way to commit not to price discriminate is to advertise prices in broad channels 

that apply to more than one market, such as national TV or magazines. If Gap advertises in 

national magazines that a certain jacket costs $99.90, this commits the company to charge the 

same price in every location.  

Many firms in various industries, such as fast-food restaurants and other chain 

restaurants, retail stores, and automobile manufacturers, often charge the same prices in various 

locations that differ significantly in terms of both their demand functions and costs (e.g. rent in 

an urban area is much more expensive than in a rural area). Since there is no regulatory 

constraint to charge the same price in different locations in these cases, the prevalence of 

uniform pricing is puzzling. While there are probably alternative explanations for this puzzle, the 

model provides a possible explanation why firms prefer not to price discriminate. 

Another implication of the model is for regulation. Regulators often require firms in 

certain industries (such as railroad transportation, telecommunications and postal services) to 

charge the same price in urban and rural areas (this is known as universal service requirements), 

while the firm would rather charge a higher price in the rural areas. The presumption is that this 

requirement benefits the rural market that would otherwise have to pay a higher price. If the 

market in question is not a natural monopoly, the model suggests that the regulator should 

consider the effects of disallowing price discrimination on entry (and consequently competition) 

before adopting a certain policy, and that cross-market price constraints may discourage entry. 

However, it remains a question for future research whether both consumer groups can benefit 

from allowing price discrimination when significant asymmetries exist between the markets (as 
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is usually the case when universal service requirements are imposed). When the asymmetry in 

the markets is big, the firms would probably find it optimal to charge a much higher price in the 

rural market. While entry considerations could still play a role, they might be dominated by the 

asymmetry in the markets, and consequently disallowing price discrimination would benefit 

consumers in the rural market (though it will probably hurt consumers in the urban market). 

Until further research suggests to what extent the results here are robust to asymmetries between 

the markets, one should not infer from the model that universal service requirements hurt the 

rural consumers.  

 

Appendix 

Proof of Proposition 2: Clearly firm 1 sells a positive quantity in the market in which it is a 

monopoly, market B. To show that it also sells positive quantity in the other market, assume by 

contradiction that there is an equilibrium in which firm 1 finds it optimal not to sell in market A 

(i.e. firm 1 chooses p1 high enough, denoted by p1h, so that 10(1 – d) + dp2 – p1h ≤ 0). Then it 

must be the case that p1h = pm = 5, otherwise firm 1 can deviate and choose p1 = 5, doing no 

worse in market A (since q1
A (p1h) = 0, the firm’s profits from market A cannot be any lower), 

and strictly better in market B (this follows from strict concavity of profits from market B in p1). 

To proceed, recall that qi
s = max{[10(1 – d) + dpj – pi]/(1 – d2), 0}. Since p1h = 5 and q1

A = 0, it 

follows that [10(1 – d) + dp2 – 5] ≤ 0. The effect of decreasing p1 (to something slightly less than 

5) depends on whether this inequality binds or not. We therefore need to consider two cases: 

Case 4A:  If 10(1 – d) + dp2 – 5 = 0 (so p2 = 10 – 5/d), then any increase in p2 or a decrease in p1 

yields q1
A > 0. However, an increase in p1 or a decrease in p2 leaves q1

A unchanged (q1
A = 0), so 

we are in a point of discontinuity of the first derivatives of q1
A (and therefore of π1) with respect 

to p1 and p2 and we have to be specific whether we consider the derivatives from the right or 

from the left. For a decrease in p1 the total profits of firm 1 in markets A and B are:  

π1 (p1 ≤ 5; p2 = 10 − 5/d) = p1[10(1 – d) + dp2 – p1]/(1 − d2) + p1(10 − p1). 

We then get ∂π1/∂p1 (from the left) (p1 = 5) = [10(1 – d) + dp2 – 2p1]/(1 – d2) + 10 – 2p1 = −5/(1 − d2), 

where the second equality follows from p1 = 5 and 10(1 – d) + dp2 – p1 = 0. Since −5/(1 − d2) < 

0, it follows that firm 1 can increase its profit by decreasing p1, so this cannot be an equilibrium.  
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Case 4B: If q1
A = 0 and Case 4A does not occur, it must be that 10(1 – d) + dp2 – p1 < 0, which 

implies (using p1 = 5, which still holds) p2 < 10 – 5/d < 5. In this case, for a small change in p2 

(in either direction), firm 2 remains a monopoly in market A, and therefore for any p2 < 10 – 5/d 

we have π2 = p2(10 – p2) and ∂π2/∂p2 = 10 – 2p2 > 0. This means that firm 2 can increase its 

profits by increasing its price a little, so this cannot be an equilibrium either. It follows that no 

equilibrium with q1
A = 0 exists (when firm 1 enters markets A and B, and firm 2 enters market A 

only).             Q.E.D. 

 

Proof of Proposition 3: From Proposition 2 it follows that in any equilibrium of Case 4, p1 is 

chosen such that q1
A > 0. Conditional on q1

A > 0, firm 2’s profits are given by: π2 = q2
Ap2 – F = 

[10(1 – d) + dp1 – p2]p2/(1 – d2) – F. Firm 1’s profits are π1 = (q1
A + q1

B)p1 – 2F = {[10(1 – d) + 

dp2 – p1]/(1 – d2) + 10 – p1}p1 – 2F. It is easy to verify that the second-order conditions are 

satisfied, and therefore the candidates to be equilibrium prices are given by the relevant first-

order conditions. Solving them and substituting into the demand functions yield: 

p1
*

 = 10(–3d2 – d + 4)/(8 – 5d2),  

p2
* = 10(d3 – 3d2 – 2d + 4)/(8 – 5d2), 

q1
A = 10(d4 + 2d3 − 4d2 − 3d + 4)/(5d4 − 13d2 + 8), 

q1
B = 10(−2d2 + d + 4)/(8 − 5d2), and 

q2
A = 10(d3 − 3d2 − 2d + 4)/(5d4 − 13d2 + 8). 

So far we have just proved that if there is a pure-strategy equilibrium in Case 4, it must 

involve these prices, but not that these prices are in fact an equilibrium. The reason that solving 

the first-order conditions does not yet yield an equilibrium is that their derivation was based on 

the implicit assumption that q1
A > 0; now we have to consider how incorporating the possibility 

of q1
A = 0 changes the analysis. For p1

* and p2
* to constitute an equilibrium, we have to verify 

whether q1
A that results from p1

* and p2
* is strictly positive, and consider whether charging a 

price that results in q1
A = 0 is better than pi

* for either firm.10  

                                                 

10 Firm 1 can make q1
A = 0 by charging a high price; Firm 2 can make q1

A = 0 by charging a low price in some cases 

(when such a low price is still above zero). Notice that Proposition 2 suggested that q1
A = 0 cannot be part of an 

equilibrium, but it does not imply that charging price that results in q1
A = 0 cannot be a profitable deviation for one 

of the firms. 
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Step 1: Do the candidate equilibrium prices result in q1
A > 0? 

We obtained that q1
A = 10(d4 + 2d3 − 4d2 − 3d + 4)/(5d4 − 13d2 + 8). The denominator is 

equal to (8 − 5d2)(1 − d2) and is therefore strictly positive. The numerator is equal to 10[(1 − 

d2)(−d2 − 2d − 3) − d + 7]. Notice that d2 + 2d + 3 < 6, so the term in brackets is strictly positive 

and therefore q1
A > 0.  

 

Step 2: Is firm 2 better off charging a price that results in q1
A = 0? 

The derivation of p2
* implies that it is optimal conditional on q2

A = [10(1 – d) + dp1 – 

p2]/(1 – d2). In some cases, however, firm 2 may become a monopoly by charging p2 low 

enough, and then its demand becomes q2
A = 10 – p2.

11 The derivative of q2
A with respect to p2 

when both firms sell positive quantities is –1/(1 – d2) and when only firm 2 sells positive 

quantity we get ∂q2
A/∂p2 = −1. In addition, q2

A is continuous in p2.
12 So when firm 2 

contemplates the effect of reducing p2, it either does so accurately, or it overestimates the 

increase in the quantity it will sell (this occurs when the reduction in p2 results in firm 2 

becoming a monopoly). Thus, firm 2 weakly overestimates the benefits from reducing its price. 

Therefore, understanding the true nature of its demand could only lead to a higher price of firm 

2, but any price higher than p2
* also results in q1

A > 0, so firm 2 is not better off charging a price 

that leads to q1
A = 0.  

 

Step 3: Is firm 1 better off charging a price that results in q1
A = 0? 

The best firm 1 can do conditional on q1
A = 0 is to charge the monopoly price pm = 5, to 

obtain the maximum revenues in market B, since it has no revenues in market A anyway when 

                                                 

11
  These cases occur when  [10(1 − d) + dp2 – p1] = 0 can be obtained with p2 > 0 given p1

*, implying [p1
* – 10(1 – 

d)]/d > 0. Substituting for p1
* and rearranging shows that this happens when −5d3 + 2d2 + 7d − 4 > 0, which implies 

d ∈ (0.6434, 1). So when d < 0.6434 firm 2 cannot be a monopoly, and when d > 0.6434 we have to show that firm 

2 is better off charging p2
* and being a duopoly than reducing its price so much that it becomes a monopoly. 

 
12
 The only p2 in which q2

A may be discontinuous is the p2 such that for prices above it firm 2 is not a monopoly and 

for prices below it firm 2 becomes a monopoly. This p2 is given by p2 = [p1 – 10(1 − d)]/d, or equivalently, p1 = 

[10(1−d) + dp2]. Substituting this p1 into q2
A = [10(1 – d) + dp1 – p2]/(1 – d2) yields q2

A = 10 – p2, which shows that 

indeed q2
A is continuous in p2 (it has a kink but not a discontinuity in p2 = [p1 – 10(1 − d)]/d). 
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q1
A = 0.13 Firm 1’s profits are then 25 − 2F. When firm 1 charges p1

* its profit is given by (q1
A + 

q1
B)p1

* − 2F. Substituting for q1
A, q1

B and p1
* and solving shows that firm 1 wants to deviate 

from p1
* to pm whenever d > 0.8263. Therefore, for d > 0.8263, p1

* and p2
* do not constitute an 

equilibrium. But p1 = pm and p2
* do not constitute an equilibrium either, because p2

* is no longer 

optimal against pm. By proposition 2, there is no pure-strategy equilibrium with q1
A = 0, but the 

only candidate equilibrium with q1
A > 0 fails as well. Therefore, when d > 0.8263 there is no 

pure-strategy equilibrium in the game, and when d ≤ 0.8263 the equilibrium is given by p1
*, p2

*, 

and the resulting quantities q1
A, q1

B and q2
A (see above).14 In addition, if we assume that a firm 

that enters a market must choose a price that results in a strictly positive quantity in that market, 

the problem of firm 1 deviating from p1
* to prices that result in q1

A = 0 is eliminated and the 

analysis then suggests that p1
*, p2

*, q1
A, q1

B and q2
A are then the equilibrium prices and 

quantities.           Q.E.D. 
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