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Abstract

In this study we investigated several most popular Loss Given Default (LGD) models (LSM, Tobit,

Three-Tiered Tobit, Beta Regression, In�ated Beta Regression, Censored Gamma Regression) in order to

compare their performance. We show that for a given input data set, the quality of the model calibration

depends mainly on the proper choice (and availability) of explanatory variables (model factors), but not

on the �tting model. Model factors were chosen based on the amplitude of their correlation with historical

LGDs of the calibration data set. Numerical values of non-quantitative parameters (industry, ranking,

type of collateral) were introduced as their LGD average. We show that di�erent debt instruments depend

on di�erent sets of model factors (from three factors for Revolving Credit or for Subordinated Bonds to

eight factors for Senior Secured Bonds). Calibration of LGD models using distressed business cycle periods

provide better �t than data from total available time span. Calibration algorithms and details of their

realization using the R statistical package are presented. We demonstrate how LGD models can be used

for stress testing. The results of this study can be of use to risk managers concerned with the Basel accord

compliance.
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1 Introduction

The goal of Loss Given Default (LGD) modelling is to produce simulated LGDs close to and as
correlated with historical LGDs. Di�culties with modelling depend directly on the speci�cs of
the data used and on the limitations of the models.
In recent years, the importance of modelling LGD has increased signi�cantly. The LGD model
development, calibration, and implementation strategies have been analysed and summarized in
several publications (Gupton, 2005), (Schuermann, 2004).
The predictive power of any LGD model depends, �rst of all, on proper choice (and availability)
of the model input parameters obtained from obligor's information. These (predictive) variables
were analyzed and used for LGD model calibration in many publications. For example, the
nine-factor model was analysed in (Gupton and Stein, 2002), the survey of LGD model factors
is presented in (Friedman and Sandow, 2003). A case study of the modelling of bank loan
LGDs where the primary factors (the period of loan origination, quality of the collateral, the
loan size, and the length of the relationship with the obligor) were identi�ed (Chalupka and
Kopecsni, 2009). The link between default and recovery rates was investigated in (Altman
et al., 2003), (Altman et al., 2004), (Altman, 2006a), (Altman, 2006b). The incorporation of the
dependence between probabilities of default and recovery rates investigated by (Bade et al., 2011)
demonstrated some improvement of the LGD model. A signi�cant impact of the uncertainty of
model parameters on estimated LGDs was demonstrated in (Luo and Shevchenko, 2010). The
in�uence of the length of the LGD workout process on the level of estimated LGD can be
signi�cant, as shown in (Gurtler and Hibbeln, 2011).
The LGD models based on the linear regression approach can be found in (McDonald and
Mo�tt, 1980) (the Tobit model), (Huang and Oosterlee, 2012) (Beta regression model), (Pereira
and Cribari-Neto, 2010) (In�ated beta regression), (Sigrist and Stahel, 2010), (Sigrist and Stahel,
2011) (censored Gamma regression). Authors of (Altman and Kalotay, 2010) used mixture of
distributions to model LGD. The beta-component mixture for modelling LGD and CDS rates as
model variables was successfully used in (Baixauli and Alvarez, 2010). The bimodal structure
of the LGD distribution was modelled by a mixture of two beta distributions (Hlawatsch and
Ostrowski, 2011). The LGD model in the merton-structured credit risk framework was also
investigated in (Jacobs Jr., 2011).
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The portfolio credit risk model dependent on LGD was developed in (Hillebrand, 2006) and
compared with several alternative LGD models. Calibration methods for LGD models applied
to mortgage markets can be found in (van der Weija and den Hollandera, 2009). The results
in (Bellotti and Crook, 2012) contain comparison of several models (Tobit, decision-tree model,
beta transformation, fractional Logit, and the Least Square method). They demonstrated the
importance of the inclusion of macroeconomic conditions (interest rates, unemployment levels,
and earning index) for the LGD model stress testing. The paper (Yang and Tkachenko, 2012)
proposes some empirical approaches for EAD/LGD modeling and provides technical insights
into their implementation. Validation techniques and performance metrics for loss given default
models were introduced by (Li et al., 2009).
An attempt to develop analytic formulas for downturn LGD estimation was done by (Barco,
2007). The downturn LGDs were considered as a 1/1000-year event with account of correlated PD
and LGD. The paper by (Rosch and Scheule, 2007) developed a framework to stress sensitivities
of risk drivers, and therefore a credit portfolio losses.
Given results of all the above research publications, the main question for a practitioner remains:
what is the best model for LGD estimation? The goal of our research is to provide comparative
tests of popular LGD estimation models, to analyze their performance, to calibrate the models
on di�erent data subsets, and, in addition, to provide recommendations on how test results can
be used for the stress testing of LGDs.
We do not include data manipulation techniques. Based on some examples, we show how models
can become sensitive to the choice of data.

2 Methodologies

The LGD models, analyzed and compared in this paper, are based on several di�erent linear
regression algorithms. A short description of the models is summarized in this section.

Censored Least Square Method

Given known historical LGD values ⃗LGD∗, coe�cients xk are derived using the Least Square
Method (LSM) by minimizing the following object function:

min
x⃗

∑

i

(yi(x⃗, r)− LGD∗

i )
2

(1)

with

yi(x⃗, r) = x0 +

n
∑

k=1

xk · rik (2)

where

rik is the kth predictive parameter for ith counterparty ,

xk is the coe�cient for kth predictive parameter ,

x0 is a constant ("intercept").

The LGD for the debt facility i is estimated as:

LGDi(x⃗, r) = max [0,min [1, yi(x⃗, r)]] (3)
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Censored Linear Regression (Tobit) Model

The Tobit LGD model is based on the latent "loss" parameter zi for each debt facility i
(see(McDonald and Mo�tt, 1980)):

zi = yi + ϵ(σ) (4)

Here: ϵ(σ) is a normally distributed random driver with standard deviation σ, yi(x⃗, r) is the
linear combination of explanatory variables rik as in (2).
The latent loss variable zi is a normally distributed random value with expected value of yi and
standard deviation of σ. Therefore, the probability of realization of LGDi = s can be expressed
through the standard Gaussian function g(·) as follows:

1

σ
√
2π

exp

[

−
1

2

(

s− yi
σ

)2
]

≡
1

σ
· g
(

s− yi
σ

)

(5)

Assuming that all s ≤ 0 correspond to LGD = 0 and that all s ≥ 1 correspond to LGD = 1 we
can de�ne the probability function Pi(x) for LGD as follows:

Pi(x) =











P
(0)
i if x ≤ 0

1
σ
· g
(

x−yi

σ

)

if 0 < x < 1

P
(1)
i if x ≥ 1

(6)

Where

P
(0)
i =

1

σ
·
∫ 0

−∞

g

(

z − yi
σ

)

dz = N
(

−
yi
σ

)

(7)

P
(1)
i =

1

σ
·
∫

∞

1

g

(

z − yi
σ

)

dz = N

(

−
1− yi
σ

)

(8)

Where N() is a standard normal cumulative distribution function.

The probability function (6) can be also presented in a more convenient form

Pi(z) = P
(0)
i · δ(z) + P

(1)
i · δ(z − 1) +

1

σ
· g
(

z − yi
σ

)

· (1− δ(z)− δ(z − 1)) (9)

where δ() is the standard delta-function.

Note that the probability (6) is also the function of model coe�cients xk (k = 0 : n ) and of the
LGD volatility σ which are the subjects of the model calibration. Expected LGD for ith debt

facility is calculated as E[LGDi] =
∫ 1

0
z · Pi(z) · dz. The result is

E[LGDi] = P
(1)
i + (1− P

(0)
i − P

(1)
i ) · yi + σ

[

g
(yi
σ

)

− g

(

−
1− yi
σ

)]

. (10)

The cumulative LGD probability can be calculated using (6) as Q(LGDi) =
∫ LGDi

0
Pi(z) dz :

Qi(LGD) =















P
(0)
i if LGD = 0

N
(

LGD−yi

σ

)

if 0 < LGD < 1

1 if LGD = 1

(11)

4



The ηth percentile of the modelled LGDs (LGD
(η)
i ) is the solution of the equation Qi(LGD) = η.

LGD
(η)
i =











0 if η < P
(0)
i

yi + σ ·N−1(η) if P
(0)
i < η < 1− P

(1)
i

1 if η > 1− P
(1)
i

(12)

The calibration of the Tobit model consists in �nding model coe�cients xk (k = 0 : n ) and
LGD volatility σ by best �t of the model (with predictive parameters rik) to historical data
LGDi (k = 1 : n, i = 1 : J). If we consider the input data sample as a set of independent
"measurements" then the best model �t is obtained by maximizing the total probability of
getting this input data set:

P̂ (x⃗, σ) =

J
∏

i=1

Pi(LGDi) (13)

which is equivalent to minimization of the following objective function

Φ(x⃗, σ) = −
J
∑

i=1

logPi(LGDi) (14)

For numerical optimization we employ the Broyden�Fletcher�Goldfarb�Shanno (BFGS) method
(for solving non-linear optimization problems without constraints).
The linear dependence of the function (2) on explanatory variables rkj may not be su�cient to
describe the cause-e�ect link of LGDj to rkj . It is possible to increase �exibility of the model
by including a quadratic term, such that

yi(x⃗, r) = x0 +
n
∑

k=1

(

x2k−1 · rik + x2k · r2ik
)

(15)

Note that number of model coe�cients for the nonlinear Tobit model is 2n+ 1.

Censored Linear Regression Three-Tiered Tobit Model

Since processes causing LGD to be zeroes or ones may have a di�erent nature compared to
processes where 0 < LGD < 1, we introduce in this section a three-tiered model. The LGD
estimator is introduced in this case in the following linear form:

y
(0)
i (x⃗, r) =

n
∑

k=1

xk · rik + xn+2 (16)

y
(c)
i (x⃗, r) =

n
∑

k=1

xk+n+2 · rik + x2n+4 (17)

y
(1)
i (x⃗, r) =

n
∑

k=1

xk+2n+4 · rik + x3n+6 (18)
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where components of the model coe�cient vector x⃗ have the following meaning:

x⃗ =



































































x1...n coe�cients for the LGD = 0 model

xn+1 σ0 for the LGD = 0 model

xn+2 intercept for the LGD = 0 model

x(n+3)...(2n+2) coe�cients for modeling 0 < LGD < 1

x2n+3 σ for the 0 < LGD < 1 model

x2n+4 intercept for the 0 < LGD < 1 model

x(2n+5)...(3n+4) coe�cients for the LGD = 1 model

x3n+5 σ1 for the LGD = 1 model

x3n+6 intercept for the LGD = 1 model

(19)

This LGD model is based on the following probability function for an ith facility:

Pi(z) =



















p
(0)
i if z = 0

κ
σ
g

(

z−y
(c)
i

σ

)

if 0 < z < 1

p
(1)
i if z = 1

(20)

where






























p
(0)
i = N

(

−y
(0)
i

σ0

)

p
(1)
i = κ ·N

(

− 1−y
(1)
i

σ1

)

κ = N

(

y
(0)
j

σ0

)[

N

(

− 1−y
(1)
i

σ1

)

+N

(

1−y
(c)
i

σ

)

−N

(

−y
(c)
i

σ

)]

−1

(21)

Here κ is a normalization factor.

The model coe�cients x⃗ can be found as a result of the maximization of the following log-
likelihood function:

H(x⃗) =
∑

i

logP i(LGDi) (22)

Using calibrated model coe�cients one can estimate expected LGDs:

LGDi = p
(1)
i + y

(c)
i κ

[

N

(

1− y
(c)
i

σ

)

−N

(

−
y
(c)
i

σ

)]

+ σκ

[

N

(

y
(c)
i

σ

)

−N

(

1− y
(c)
i

σ

)]

(23)

In�ated Beta Regression Model

The In�ated Beta Regression LGD model (Pereira and Cribari-Neto, 2010) is based on the
following probability function for an ith facility:

P i(z) =











P i
0 if z = 0

(1− P i
0 − P i

1) · f(z;µj , ϕi) if 0 < z < 1

P i
1 if z = 1

(24)

where

f(z;µj , ϕi) =
Γ(ϕi)

Γ(µiϕi)Γ((1− µi)ϕi)
zµ

iϕi
−1(1− z)(1−µi)ϕi

−1 (25)
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with 0 < µi < 1 and ϕi > 0 (µi being the mean value).

Given P i
0, P

i
1, µ

i, and ϕi, one can calculate (using (24)) probabilities P i(LGDi) of getting LGDi

values. In order to establish a connection between explanatory variables rik of debt facilities and
expected facility LGDs, the following four linear predictors are introduced:

log
P i
0

1− P i
0

= a0 +
n
∑

k=1

x0
kr

i
k (26)

log
P i
1

1− P i
1

= a1 +
n
∑

k=1

x1
kr

i
k (27)

log
µj

1− µj
= aµ +

n
∑

k=1

xµ
kr

j
k (28)

log
ϕi

1− ϕi
= aϕ +

n
∑

k=1

xϕ
kr

i
k (29)

Here vectors x⃗(0,1,µ,ϕ) and a(0,1,µ,ϕ) are model coe�cients and intercepts, respectively. The
model calibration consists of �nding coe�cients and intercepts by maximizing the following log-
likelihood (objective) function:

H =
∑

i

log(P i(LGDi)) (30)

Using calibrated model one can estimate expected LGD for an ith debt facility:

E[LGD]i =

∫ 1

0

zP i(z)dz = P i
1 +

1− P i
0 − P i

1

(1 + exp(−(aµ +
∑n

k=1 x
µ
k · rik)))

(31)

The log-likelihood function (30) can be split as follows:

H = H01 +Hβ (32)

where H01(x⃗
(0), x⃗(1)) and Hβ(x⃗

(µ), x⃗(ϕ)) can be optimized independently:

H01 =

LGDi=0
∑

i

log(P0(x⃗
(0))) +

LGDj=1
∑

i

log(P1(x⃗
(1)))

+

0<LGDi<1
∑

i

log(1− P0(x⃗
(0))− P1(x⃗

(1)))

(33)

Hβ =

0<LGDi<1
∑

i

log f(LGDi; x⃗
(µ), x⃗(ϕ)) (34)

The In�ated Beta Regression model was tested using the R-coded function developed by Yashkir
Consulting.
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Beta Linear Regression Model

If 0 < LGD < 1 then P0 = P1 = 0, reducing the problem to a general Beta Regression Model
(34)1. This model (34) can be also used if all LGDs are scaled as LGD∗ = LGD · (β − α) + α
, calibration performed using LGD∗ , and values of LGD∗

est (estimated on the basis of this
calibration) are scaled back as LGDest = (LGD∗

est − α)/(β − α). The Beta Regression Model
was tested using the BetaReg library function of the R statistical package.

Censored Gamma Linear Regression Model

The Censored Gamma LGD model (Sigrist and Stahel, 2010) is based on the following probability
function for an ith facility:

Pj(z; ξ, α, θi) =











Ψ(ξ, α, θi) if z = 0

γ(z + ξ, α, θi) if 0 < z < 1

1−Ψ(1 + ξ, α, θi) if z = 1

(35)

where
{

γ(u;α, θi) =
1

θiΓ(α)
uα−1e

−
u
θi (gamma distribution)

Ψ(u;α, θi) =
∫ u

0
γ(x;α, θi)dx (cumulative gamma distribution)

(36)

with u > 0, α > 0, and θi > 0.

Given ξ, α, and θi, using (35), one can calculate probabilities Pi(LGDi) of getting LGDi values.
In order to establish a connection between explanatory variables rik of debt facilities and expected
facility LGDs, the following linear predictors are introduced:











logα = α∗

log ξ = ξ∗

log θi = x0 +
∑n

k=1 xkr
i
k

(37)

Here xk are model coe�cients (including the intercept x0). The model calibration involves
�nding coe�cients and parameters α∗, ξ∗ by maximizing the following log-likelihood (objective)
function:

H(ξ∗, α∗, x⃗) =
∑

i

logPi(LGDi; ξ, α, θi) (38)

Using the calibrated model one can estimate expected LGD for an ith debt facility:

E[LGD]i =

∫ 1

0

zPj(z; ξ, α, θi)dz (39)

=α · θi (Ψ(1 + ξ, 1 + α, θi)−Ψ(ξ, 1 + α, θi))

+ (1 + ξ) (1−Ψ(1 + ξ, α, θi))− ξ (1−Ψ(ξ, α, θj))

The Censored Gamma Regression model was tested using the R-coded function developed by
Yashkir Consulting.

1One can replace, for example, LGDs = 0 with LGDs = ϵ and LGDs = 1 with LGDs = 1− ϵ where ϵ ≪ 1

8



3 Data, Explanatory Variables and Correlation Analysis

Data used for LGD model calibration

The data set All Data represents all available data in an internal or an external database used
for the LGD model development and calibration. In our analysis, All Data is the S&P LossStats
data (2011 update, 4275 cases) of defaulted facilities. Only results of analysis based on this data
are presented in this paper.
The Peaks Data is the LGD data related to the time periods of the business cycle when the
number of defaults and losses is signi�cantly higher than the average default and losses values.
We chose years 1990−1991 as the Peak 1, years 2001−2002 as the Peak 2, and years 2008−2009
as Peak 3. All three peaks have distinctly high levels of defaults and losses (shown in Fig.1,
based on the recent report from S&P (Standard&Poor's, 2012)). During peaks of the cycle,
global market and credit conditions are di�erent from the quiet periods of the cycle, therefore,
the most important predictive factors are correlated at a higher level with the historical LGD
data collected for these time periods.

Figure 1: Total Debt Outstanding and Total Number of Defaults

Methods discussed in this paper were tested on four data sets: All Data, Bankruptcy Data,
Peaks Data, and Bankruptcy and Peaks Data. All Data represents all available LGD
data in the data set. The Bankruptcy Data includes only bankruptcy data cases from All
Data. We have considered and have used separately All Data and Bankruptcy Data. The
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Bankruptcy and Peaks Data represents the bankruptcy data from the peak periods.

Explanatory Variables/Factors

The explanatory variables were chosen based on how they are correlated with the LGDs based on
the collected historical data. The proper choice of data and instrument types are very important
for good performance of the models, therefore, the model calibration was tested for several groups
based on instrument types.
The following main �ve factors (explanatory variables) were used: Ranking (de�nes rank in the
capital structure, the more senior the instrument, the higher the recovery rate), Debt Cushion
(amount/percentage of debt below a defaulted instrument), Principal Above (amount of debt
above a defaulted instrument), E�ective Interest rate (prepetition rate at the time the last
coupon was paid), and Spread.
We introduce also three additional factors (dependence on industry, on the type of collateral,
and on the facility ranking): Industry mean LGD, Collateral mean LGD, Ranking mean
LGD.
The choice of additional factors makes the model dependent on industry, collateral type, and
ranking, for which no numerical predictive parameters are available. These additional factors
were calculated as the mean of all LGD values for a given industry, for a given collateral type,
and for a given ranking. For example, Industry Mean LGD is the mean value of all LGDs
for the cases related to a speci�ed industry. This value is added as an additional factor to all
cases belonging to the speci�ed industry. The same was done for Collateral Mean LGD and
Ranking Mean LGD. The Collateral Mean LGD depends on a type of the collateral and
it de�nes the mean of all cases for this type of collateral.

Correlation Analysis

To identify factors that a�ect LGDs the most, their correlations were investigated and the results
are presented in Table 1 and Table 2.
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Table 1: Correlation between factors and LGD (All Data, for di�erent instruments)

Ranking Debt Principal E�ective Spread Industry
Cushion Above Interest Rate meanLGD

Senior Unsecured Bonds -0.056 -0.071 -0.023 0.243 0.267 0.399

Revolving Credit 0.061 -0.299 0.027 -0.016 0.035 0.193

Term Loan 0.180 -0.347 0.191 0.016 0.059 0.208

Sr. Subordinated Bonds -0.043 -0.143 0.087 -0.024 0.038 0.269

Subordinated Bonds -0.004 0.023 0.019 -0.133 -0.144 0.205

Senior Secured Bonds 0.146 -0.403 0.202 0.146 0.173 0.281

Jr. Subordinated Bonds 0.268 0.043 -0.273 0.215 -0.007 0.516

Other 0.713 -0.652 0.589 0.280 0.545 0.260

All Instruments 0.348 -0.442 0.367 0.227 0.359 0.272

Collateral Ranking Original Principal Acclaimed Total
mean LGD mean LGD Amount Default Amount Amount Debt

Senior Unsecured Bonds 0.000 -0.078 0.132 0.001 0.147 -0.102

Revolving Credit 0.188 0.060 0.096 0.092 n/a 0.076
Term Loan 0.187 0.176 0.032 -0.009 n/a -0.065
Sr. Subordinated Bonds 0.106 -0.019 0.001 0.054 0.062 -0.053
Subordinated Bonds -0.010 0.008 0.118 -0.022 0.048 0.091
Senior Secured Bonds 0.209 0.158 0.027 0.017 0.066 -0.133

Jr. Subordinated Bonds 0.000 0.173 0.337 -0.058 0.135 0.224

Other 0.761 0.617 0.755 0.604 n/a 0.840

All Instruments 0.507 0.458 0.364 0.065 0.020 0.132

If all instrument types are considered together, the correlation between Instrument type mean
LGDs with all LGDs is equal to 0.5103.

Table 2: Peak Data (years 1990− 1991; 2001− 2002; 2008− 2009), correlation between factors
and LGD

Ranking Debt Principal E�ective Spread Industry
Cushion Above Int.Rate meanLGD

Senior Unsecured Bonds -0.076 -0.006 -0.016 0.301 0.315 0.484

Revolving Credit -0.032 -0.345 0.105 -0.153 0.071 0.262

Term Loan 0.050 -0.278 -0.044 -0.065 0.118 0.326

Sr. Subordinated Bonds 0.092 -0.221 -0.034 -0.164 -0.022 0.141

Subordinated Bonds 0.040 -0.038 0.127 -0.119 -0.135 0.162

Senior Secured Bonds 0.328 -0.463 -0.011 0.211 0.211 0.255

Jr. Subordinated Bonds 0.235 -0.088 0.286 -0.194 -0.225 0.310

Other 0.664 -0.699 0.596 0.815 0.919 0.676

All Instruments 0.292 -0.421 0.321 0.228 0.386 0.322

Collateral Ranking Original Principal Df. Acclaimed Total
mean LGD mean LGD Amount Amount Amount Debt

Senior Unsecured Bonds 0.000 -0.096 0.083 0.062 0.166 -0.058
Revolving Credit 0.181 -0.035 0.234 0.214 n/a 0.148

Term Loan 0.187 0.035 0.062 0.031 n/a -0.052
Sr. Subordinated Bonds 0.035 0.108 0.062 0.004 0.047 -0.034
Subordinated Bonds 0.091 0.025 -0.051 0.023 0.065 0.140

Senior Secured Bonds 0.312 0.323 0.133 0.100 0.193 -0.197

Jr.Subordinated Bonds 0.000 0.105 -0.070 -0.043 0.179 0.142

Other 0.935 0.638 0.472 0.568 n/a 0.586

All Instruments 0.441 0.298 0.059 0.053 0.140 0.012
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In the case of Peak Data, if all instrument types are considered together, the correlation be-
tween Instrument type mean LGDs with all LGDs is equal to 0.470. The comparison of the
correlation level when using All Data and when using Peak Data, demonstrates the following:

1) Correlations of historical LGDs with Industry Mean LGD (mean of historical LGDs for a
speci�ed industry) are high for all instruments (from 14% to 68%),
2) Changes in correlation level are clearly seen when comparing All Data correlation results
and Peak Data correlation results. The absolute values of correlation are higher for the Peak
Data results. For example, Revolving Credit correlation with Debt Cushion is equal to -0.299
when using All Data, and it is equal to -0.345 when using Peak Data,
3) The signi�cance of Spread, E�ective Interest rate and Total Debt factors increases during
cycle peaks (as expected) due to the in�uence of macroeconomic conditions increasing in cycle
peaks.

The correlation level analysis demonstrates that sets of signi�cant factors (explanatory variables)
are di�erent for di�erent instruments (Table 3). In this table, the most signi�cant explanatory
variables are marked for each instrument. They were chosen based on the criteria that absolute
values of correlations exceed 10%.

Table 3: Marked cells: absolute values of correlations(factor,LGD) exceed 10%

Ranking Debt Principal E�ective Spread Industry Collateral Ranking
Cushion Above Int. Rate mean LGD mean LGD mean LGD

Revolving Credit
Term Loan
Sr.Unsec. Bonds
Sr.Sec. Bonds
Sr.Sub. Bonds
Sub. Bonds
Jr.Sub. Bonds

The Spread Data was not always available, therefore, we did not include Spread into the calibra-
tion of models. Based on the similarity of the factor sets, there are three groups of instruments
that should be calibrated together:
Group A: Term Loan and Revolving Credit,
Group B: Senior Unsecured,
Group C: Senior Secured Bonds, Senior Subordinated Bonds, Subordinated Bonds, and Junior
Subordinated Bonds.
Note, that for testing purposes, we considered Senior Secured Bonds separately, but the obtained
results did not show visible improvement in calibration criteria.

4 Comparative Model Analysis

Criteria for the Methodology Analysis

The Goodness-of-Fit and the model LGD Correlation were chosen as the criteria for the method-
ology performance analysis. As a measure of Goodness-of-Fit (G) we use the following parameter
(often called "the coe�cient of determination")

G = 1−
MSE

varLGD
(40)

12



whereMSE is the mean square error (model versus historical LGD), and varLGD is the variance
of the input data. The interpretation of the Goodness-of-Fit parameter G is as follows. For a
"naïve" model, where predicted values of the model LGD are equal to the mean historical LGD,
we would have MSE = varLGD and G = 0 (the model "�t" is not better than "naïve" model).
On the other hand, if a model provides prediction such that MSE ≪ varLGD (ideal case) then
G ∼ 1 (a very good �t). Using MSE as a criterion of the �t quality might be misleading. In the
following sections we will use the G parameter as a criterion for comparison of di�erent models
(values of MSE and/or values of mean absolute error (MAE) are presented for convenience).
The model LGD Correlation (ρ), de�ned as the correlation between historical and simulated
LGDs, is also used for model comparison.

Calibration Details

This section describes the procedures, the R-functions used, and speci�c calibration approaches.
Codes for Tobit, In�ated Beta, and Gamma Reg models were developed by Yashkir Consulting
using the statistical R package. Additional applications were developed in Python.

Least Square method: The library function in R provides solving of the problem (1)

Q = lsfit
(

r, L⃗, ...
)

(41)

where r is the matrix of explanatory variables for a given set of defaulted cases, and L⃗ is the
vector of observed LGDs. From the output object (list) Q we �nd the following: the coe�cient

vector x⃗ = Q1 (including intercept x0), the array of residuals δ⃗ = Q2, and the modelled LGD
Li − δi for the ith case.

Object function minimization: The library function in R provides solving of the problem
(14) (Tobit model):

Q = optim (z⃗,Φ(z⃗), ...) (42)

From the output object (list) we �nd the coe�cient vector z⃗ = (x⃗, σ) = Q1 .

Maximization of the log-likelihood function: The library function in R provides solving of
the problem (22) (Three-Tiered Tobit model):

Q = optim (x⃗,−H(x⃗), ...) (43)

From the output object (list) we �nd the coe�cient vector x⃗ = Q1 .

Maximization of the log-likelihood function for Beta Regression: The library function
in R provides solving of the problem (34):

Q = betareg(FORMULA, link = ”logit”, data = DATA) (44)

where FORMULA is the following string: ”LGD ∼ N1 + N2 + ...” and DATA is the table
containing input data in the following format:

Table 4: Input data

N1 N2 ... LGD

V11 V12 ... LGD∗
1

V21 V22 ... LGD∗
2

... ... ... ...
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where Ni (predictive variable names) and LGD are column headers; Vji and LGD∗

j are corre-

sponding numerical values for every jth transaction 2. From the output object (list) Q we �nd
the following: the coe�cient vector x⃗ = Q1 (including intercept x0), and the array of residuals

δ⃗ = Q2.

The modelled LGD for ith case is LGDmod
i =

LGD∗

i −δi−α

β−α
. In general, an LGD of any jth

transaction is estimated as

LGDj =
1

1 + e−yj
(45)

with the predictor

yj = x0 +
∑

k

xk · rjk (46)

Term Loan and Revolving Credit (Group A)

Results of the methods performance are presented below for the Instrument Group A (Term
Loan and Revolving Credit) 3.

Table 5: Instrument Group A (Factors: Debt Cushion , Industry mean LGD, Collateral mean
LGD)

Data All Data Peak Data Bankruptcy Bankruptcy
Model data peaks data
Tobit
G = 0.1538 0.2242 0.1768 0.2167

MAE = 0.1977 0.2246 0.2123 0.2282
ρ = 0.3932 0.4745 0.4215 0.4666

Least Square
G = 0.1658 0.2341 0.1893 0.2280

MAE = 0.2021 0.2262 0.2157 0.2294
ρ = 0.4072 0.4838 0.4349 0.4772

In�ated Beta
G = 0.1568 0.2254 0.1817 0.2157

MAE = 0.2036 0.2325 0.2201 0.2352
ρ = 0.3955 0.4798 0.4274 0.4691

BetaReg
G = 0.1615 0.2311 0.1857 0.2251

MAE = 0.2085 0.2305 0.2214 0.2337
ρ = 0.4062 0.4836 0.4340 0.4771

GammaReg
G = 0.1537 0.2239 0.1767 0.2164

MAE = 0.1976 0.2245 0.2122 0.2281
ρ = 0.3932 0.4743 0.4215 0.4664

The best �t for these instruments was obtained using LSM and BetaReg. Two important obser-
vations can be made for the case of Term Loans and Revolving Credits:

1) The best �t for all sets of data was achieved by using Least Square Method (LSM),

2Values LGD∗
j are scaled values of real LGDs as follows: LGD∗

j = LGDj ∗ (β − α) + α to ensure that
0 < α ≤ LGD∗

j ≤ β < 1.
3Revolving line of credit is an agreement by a bank to lend a speci�c amount to a borrower, and to allow

that amount to be borrowed again once it has been repaid. Term loan is a bank loan to a company, with a �xed
maturity and often featuring amortization of principal. If this loan is in the form of a line of credit, the funds are
drawn down shortly after the agreement is signed. Otherwise, the borrower usually uses the funds from the loan
soon after they become available.
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2) The best �t was achieved on Peak Data using LSM and Beta Reg (Goodness-of-Fit is ap-
proximately 0.23 and Correlation is approximately 0.47).

In peak conditions of the cycle, the predictive power of the chosen facility parameters increases,
which results in higher values of Goodness-of-Fit and Correlations for Peak Data. This out-
come of comparative tests for di�erent calibration models clearly indicates that success of LGD
modelling depends mainly on availability (and proper choice) of explanatory variables and on
data quality, but not on �tting techniques.

Senior Unsecured (Group B)

Senior Unsecured transactions (Instrument Group B) do not have any collateral. According to
the correlation matrices (Table 1 and Table 2), main parameters that are highly correlated with
the historical LGDs are Industry Mean LGD and the E�ective Interest Rate4. Therefore, in case
of Senior Unsecured the main factor de�ning the LGD level at default is the industry cluster to
which the facility belongs.

4E�ective Interest Rate, as by the S&P de�nition is the prepetition rate at the time the last coupon was
paid; �xed rate for �xed-coupon instruments, and the �oating rate used at the time of default for �oating-rate
instruments.
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Table 6: Instrument Group B (Factors: Industry mean LGD, E�ective Interest Rate (EIR))

Data All Data Peak Data Bankruptcy Bankruptcy
Model Data Peaks Data
Tobit

Industry.meanLGD
G = 0.1460 0.2220 0.2146 0.2692
ρ = 0.3894 0.4783 0.4710 0.5297

Industry.meanLGD and EIR
G = 0.1691 0.2479 0.2423 0.3021
ρ = 0.4180 0.5048 0.4994 0.5601

Least Square
Industry.meanLGD

G = 0.1595 0.2350 0.2295 0.2856
ρ = 0.3985 0.4836 0.4782 0.5332

Industry.meanLGD and EIR
G = 0.1825 0.2627 0.2562 0.3208
ρ = 0.4264 0.5115 0.5054 0.5653

In�ated Beta
Industry.meanLGD

G = 0.1562 0.2199 0.2206 0.2658
ρ = 0.4000 0.4871 0.4816 0.5379

Industry.meanLGD and EIR
G = 0.1775 0.2463 0.2471 0.2963
ρ = 0.4279 0.5161 0.5086 0.5681

BetaReg
Industry.meanLGD

G = 0.1574 0.2335 0.2275 0.2843
ρ = 0.3972 0.4831 0.4774 0.5334

Industry.meanLGD and EIR
G = 0.1808 0.2614 0.2548 0.3193
ρ = 0.4255 0.5112 0.5052 0.5653

GammaReg
Industry.meanLGD

G = 0.1457 0.2216 0.2142 0.2686
ρ = 0.3893 0.4783 0.4709 0.5296

Industry.meanLGD and EIR
G = 0.1688 0.2474 0.2418 0.3013
ρ = 0.4179 0.5047 0.4994 0.5600

The Senior Unsecured case is su�ciently di�cult to model due to the fact that the strongest
dependency is only on Industry Mean LGDs. Two important observations can be made for the
case of Senior Unsecured:

1) The best �t for all sets of data is done again using Least Square Method (LSM),
2) The best �t was achieved on Bankruptcy Peak Data using LSM and Beta Reg (Goodness-
of-Fit is approximately 0.32 and Correlation is approximately is 0.57).

The dependency on Bankruptcy Peak Data shows that for bankruptcy cases in peak con-
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ditions of the cycle, the industry becomes even more important. It should be noted that for
this group of instruments, calibrated on Bankruptcy Peak Data, the Tobit and GammaReg
models also provide su�ciently good �t (Goodness-of-Fit is approximately 0.30, and Correlation
is approximately 0.56). For contracts with �xed interest rates (if default data contains this rate)
the E�ective Interest Rate can also be used for calibration.

Senior Secured, Senior Subordinated, Subordinated, and Junior Subordinated bonds
(Group C)

For the Instrument Group C (Senior Secured, Senior Subordinated, Subordinated, and Junior
Subordinated bonds), according to the correlation matrices (Table 1 and Table 2), the main
parameters that are highly correlated with the historical LGDs are: Debt Cushion, Principal
Above, E�ective Interest Rate, Industry Mean LGD, Collateral Mean LGD, Ranking Mean
LGD.

Table 7: Instrument Group C (Factors: Debt Cushion, Principal Above, E�ective Interest Rate,
Industry Mean LGD, Collateral Mean LGD, Ranking Mean LGD)

Data All Data Peak Data Bankruptcy Bankruptcy
Model Data Peaks Data
Tobit
G = 0.2420 0.2086 0.3818 0.3361
ρ = 0.4998 0.4633 0.6235 0.5858

Least Square
G = 0.2520 0.2161 0.3904 0.3429
ρ = 0.5017 0.4633 0.6245 0.5843

In�ated Beta
G = 0.2406 0.2012 0.3660 0.3192
ρ = 0.4995 0.4623 0.6223 0.5872

BetaReg
G = 0.2500 0.2123 0.3877 0.3358
ρ = 0.5013 0.4605 0.6235 0.5794

GammaReg
G = 0.1998 0.2141 0.2955 0.2772
ρ = 0.4551 0.4714 0.5515 0.5383

The Instrument Group C model strongly depends on Debt Cushion, Principal Above, Industry
mean LGD, Collateral mean LGD, Ranking mean LGD. The E�ective Interest Rate also can be
used if available. Two important observations can be made for this case:

1) The best �t for all sets of data is done again using Least Square Method (LSM),
2) The best �t was achieved on Bankruptcy Data using LSM and Beta Reg (Goodness-of-Fit
is approximately 0.39, and Correlation is approximately 0.63).

The dependency on chosen factors and Bankruptcy Data shows the importance of the proper
choice of main factors. It should be noted that for this group of instruments, the Tobit model also
provides su�ciently good �t (Goodness-of-Fit is approximately 0.38, and Correlation is approx-
imately 0.62) on Bankruptcy Data. The results from In�ated Beta provide also su�ciently
good �t (Goodness-of-Fit is approximately 0.37, and Correlation is approximately 0.62). The
results show that the factors were well chosen. The inclusion of the E�ective Interest Rate does
not change the Goodness-of-Fit and Correlation.
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5 Calibration Examples with the Best Fitting Results

The results presented in this section are the best �t as described above. The marker (***) in
Tables 8, 9, 10, indicates the most important factors. Results show that chosen factors for all
three groups were properly chosen and are the important factors for the simulation.

Term Loans plus Revolving Credit (Group A)

The best �t was obtained with Peak Data using LSM and Beta Reg. It should be noted (in
addition to the criteria used) that the mean of the historical LGDs (equal to 0.247) and the mean
of the simulated LGDs (equal to 0.250 for LSM, and equal to 0.258 for BetaReg) are very close.
This is a supporting factor for the models' results.

Table 8: Results for the best �t for cases of Term Loans and Revolving Credit

Term Loans and Revolving Credits
BetaReg, Peaks Data Least Square, Peaks Data

Parameter Coe�cients Pr(>|z|) Parameter Coe�cients
(Intercept) -1.40 < 2e-16 *** (Intercept) -0.19

Debt Cushion -0.70 4.22e-16 *** Debt Cushion -0.35
Industry meanLGD 2.57 < 2e-16 *** Industry meanLGD 1.25

Collateral meanLGD 0.78 7.21e-04*** Collateral meanLGD 0.39
G = 0.2311 0.2341

MAE = 0.2305 0.2262
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Figure 2: Modelling results for calibration on the Term Loans plus Revolving Credit data (G =
0.2341, MAE = 0.2262)

Figure 3: Model LGD versus historical LGDs (All
Data, LSM, G = 0.1658, ρ = 0.4072)

The historical LGDs and the model sim-
ulated LGDs (LSM model) are presented
in Figure 2, left. In this graph the histori-
cal LGDs (solid line) and simulated LGDs
(dots) are plotted as function of case num-
bers (all cases are sorted by their histor-
ical LGD values). In case of a perfect
model the estimated LGDs (dots) would
follow the historical LGDs (line). In the
reality, the linear regression model used
provides a lower �tting quality as seen in
Figure 2, left. The advantage of this pre-
sentation of results is that one can clearly
see what are limitations of chosen set of
explanatory variables: LGD is overesti-
mated for low historical LGDs and is un-
derestimated for high historical LGDs.
Another method of visual representation
of calibration results is shown in Fig-
ure 3 (estimated LGDs versus historical
LGDs). The better model �tting would
correspond to model LGDs concentrated
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around the diagonal line.
The histogram of the simulated LGDs is presented on Figure 2, right. The simulated LGD values
are concentrated around the mean LGD value.

Senior Unsecured (Group B)

The best �t was obtained for Bankruptcy Peak Data using LSM and Beta Reg. In addition
to the �tting quality criteria used, it is worth mentioning that the mean of the historical LGDs
(equal to 0.5617) and the mean of the simulated LGDs (equal to 0.5616 for LSM, and is equal
to 0.5583 for BetaReg) are very close. This is a supporting factor for the models' results.

Table 9: Results for the best �t for Senior Unsecured cases

Senior Unsecured, Bankruptcy Peak Data
BetaReg Least Square

Parameter Coe�cients Pr(>|z|) Parameter Coe�cients
(Intercept) -1.38 < 2e-16 *** Intercept -0.21

E�ective.Interest.Rate 5.85 1.67e-07 *** E�ective.Interest.Rate 2.94
Industry.meanLGD 2.34 < 2e-16 *** Industry.meanLGD 1.22

G = 0.3193 0.3208
MAE = 0.2564 0.2507

Limited �exibility of modelling of Senior Unsecured LGDs is due to the fact that only Industry
Mean LGD has signi�cant importance for these instruments. The chosen factors are all shown
as important.
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Figure 4: Fitting results for Senior Unsecured data set (G = 0.3208, MAE = 0.2507)

The historical LGDs and the model simulated LGDs (model LSM) are presented in Figure 4,
left. Simulated LGD histogram is presented in Figure 4, right. There is concentration of the
simulated values around the mean value as expected. Simulated LGDs (dots) re�ect the general
trend of historical LGDs (solid line).

Senior Secured, Senior Subordinated, Subordinated, and Junior Subordinated Bonds
(Group C)

The best �t for Bankruptcy Data was obtained using LSM and Beta Reg models. Note that
the mean of the historical LGDs (equal to 0.6178) and the mean of the simulated LGDs (equal
to 0.6190 for LSM, and is equal to 0.6123 for BetaReg) are very close.
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Table 10: Results for the best �t for the Instrument Group C

Bankruptcy Data
BetaReg Least Square

Parameter Coe�cients Pr(>|z|) Parameter Coe�cients
(Intercept) -0.98 < 2e-16 *** Intercept 0.06

Principal Above 0.23 0.00129 ** Principal Above 0.16
Debt Cushion -0.72 8.0e-14 *** Debt Cushion -0.36

E�ective Interest Rate -0.51 0.43069 E�ective Interest Rate -0.24
Industry mean LGD 1.55 3.9e-16 *** Industry mean LGD 0.76

Collateral mean LGD 1.47 < 2e-16 *** Collateral mean LGD 0.81
Ranking.meanLGD -0.19

G = 0.3877 0.3904
MAE = 0.2381 0.2335

All chosen factors, except EIR, are shown as important.

Figure 5: Fitting results for the Instrument Group C (G = 0.3904, MAE = 0.2335)

The historical LGDs (solid line) and the model simulated LGDs (dots, LSM model) are presented
in Figure 5, left. The histogram of simulated LGDs is shown in Figure 5, right. The results show
good agreement between the simulated and the historical LGDs. The "cloud" of simulated values
follows the historical LGDs.

Summary of Calibration Examples on All Data set
The results of our tests for the instrument groups A, B and C based on the All Data set are
presented in Table 11:
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Table 11: Summary of Calibration Examples on the All Data set

Root Mean Mean Goodness- Sample Number of
Square Error Absolute Error of-Fit size variables

Group A 0.2633 0.2021 0.1658 1605 3
Group B 0.3265 0.2785 0.1825 1175 2
Group C 0.3381 0.2852 0.2520 1275 6
(Yang and Tkachenko, 2012) Mixture 0.3273 0.2355 n/a 500 8

In the last row of Table 11, the results of the LGD "Mixture" model test by Yang and Tkachenko
(Yang and Tkachenko, 2012) are presented for comparison. In their tests, the authors explored
several models (Logit raw, HL logit, Logit, Least-squares logit, Naive Bayes, Mixture, and Neural
Network) and found that the "Mixture" model has the lowest �tting error. The results of our
tests provide a similar or better level of �tting errors.
Finally, as an example, we compare calibration results for groups A and C with a "naïve" model
where the "model" LGDs are de�ned as historical average LGD.

Table 12: Comparison of the linear regression model results with "naïve" model

Mean Absolute Error G

Group A
Linear Regression 0.2021 0.1658
"Naïve" model 0.2365 0.0006

Group C
Linear Regression 0.2852 0.2520
"Naïve" model 0.3549 0.0008

Results presented in Table 12 demonstrate clearly advantages of using the Goodness-of-Fit pa-
rameter G as a criterion for model comparison. For example, in case of the group A the MAE
changes from 23.65% to 20.21% only, but the Goodness-of Fit changes dramatically from 0.06%
to 16.58%.

6 Data Sensitivity and Stress Testing

Data Sensitivity Test

The example for the data set of Senior Unsecured cases was tested to demonstrate the sensitivity
of results to adjustments of the initial data. If the initial historical data was adjusted, for example,
by excluding all cases where LGDs are lower that 15% (taken into account that LGDs for this
instrument, in general, could not be low). After performing the model calibration (betaReg)
and the simulation of the LGDs we obtained the following results (see Figure 6). The �t is
better than for the case described for the general Senior Unsecured case (Correlation increased
from 0.52 to 0.54). This example shows that even small �ltering of the data made based on the
reasonable business assumptions could improve calibration results even for di�cult cases such as
Senior Unsecured.
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Figure 6: Results for Senior Unsecured with adjusted data, Bankruptcy Peak initial data (G =
0.2963, MAE = 0.1796)

Stress Testing for LGDs

The approach of the LGD stress testing comes naturally from the results of our analysis of models
and data. The stress test procedure is as follows:

1) Derive model coe�cients for peaks periods using the Peaks Data and/or data for each
peak separately. These coe�cients emphasize the peak of crisis period in the the business cycle
conditions.
2) Run simulations of All Data LGDs using these peak related coe�cients.

The resulting simulated LGDs provide predictions of the LGD levels in crisis (stress) conditions.
The simulation results with Bankruptcy Data coe�cients are presented on Figure 7.
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Figure 7: Stresstesting of LGDs: All Data calibration (solid line), Bankruptcy Data calibra-
tion (dots)

The simulation results for Bankruptcy Data coe�cients and Bankruptcy Peaks Data coef-
�cients are presented on Figure 8. The mean of simulated LGDs, based on All Data coe�cients,
is equal to 0.55; mean of simulated LGDs, based on Bankruptcy Data coe�cients, is equal
to 0.62; mean of simulated LGDs, based on Bankruptcy Peaks Data coe�cients, is equal to
approximately 0.66. Therefore, the average LGD increase, compared with the All Data LGD
level, is equal to 7% (calibration on Bankruptcy Data), and it is equal to 11% (calibration
on Bankruptcy Peak Data). The Bankruptcy Data results and Bankruptcy Peak Data
results are shown on Figure 8.
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Figure 8: Stresstesting of LGDs. The All Data calibration (solid line), Bankruptcy Data
calibration (solid thin line), Bankruptcy Peaks Data calibration (open dots).

Our approach for the estimation of downturn LGDs does not require any additional model
assumptions such as analytic approach by (Barco, 2007) or the parameter sensitivity approach
by (Rosch and Scheule, 2007). The approach naturally follows the chosen model calibration
procedure and the data choice.The downturn LGDs are estimated based on the chosen data
subset consistent with the downturn conditions in the business cycle. If a �nancial institution
does not have enough data for Peaks Data set, then the external data for peaks periods can be
used (following speci�c Basel II regulations). The external data that contains all available cases
provide the data for the peak/stress LGD calibration.

7 Conclusions

Several most popular LGD models (LSM, Tobit, Three-Tiered Tobit, Beta Regression, In�ated
Beta Regression, Censored Gamma Regression) were tested on real data in order to compare
their performance. Model factors were chosen based on the amplitude of their correlation with
historical LGDs of the calibration data set. Numerical values of non-quantitative parameters
(industry, ranking, type of collateral) were introduced as their LGD averages. It is shown that:

• For a given input data set, the model calibration quality depends mainly on the proper
choice (and availability) of explanatory variables (model factors), but not on the model
used for �tting
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• Di�erent debt instruments depend on di�erent sets of model factors (from three factors for
Revolving Credit or for Subordinated Bonds to eight factors for Senior Secured Bonds)

• Calibration of LGD models using distressed business cycle periods provide better �t than
the data from total available time span

• Calibration parameters obtained using distress business cycle periods can be productively
used for stress testing.

Calibration algorithms and details of their realization using the R statistical package are pre-
sented. The results of this study can be of use to risk managers concerned with the Basel accord
compliance.
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