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Feed-in tariffs for promoting solar PV: progressing from calculated to 

market determined feed-in tariffs 

William Paul Bell, University of Queensland 

John Foster, University of Queensland 

Abstract 

The International Energy Agency has observed that nearly all countries now offer, or are 

planning, feed-in tariffs (FiTs) for solar PV but the debate has shifted from ‘if or how to 

implement a FiT’ to ‘how to move to a self-sustaining market post FiT’.  The aim of this 

paper is to explain how a sustainable FiT can be designed for residential solar PV 

installations, focusing on the case of ‘solar rich’ Australia.  Solar PV is approaching price 

parity at the retail level where the electricity price charged includes both transmission and 

distribution costs, in addition to the wholesale price.  So the economic rationale for paying a 

FiT premium above market rates to achieve dynamic efficiency is no longer warranted.  

Socially, FiTs can be a problem because they tend to exacerbate social inequality by 

providing a transfer of wealth from poorer to richer households.  Environmentally, FiTs can 

also fall short of their full potential to cut emissions if they lack ‘time of day’ price signals 

that reflect movements in the wholesale price. 

We provide a framework in which a sustainable FiT can be designed that positively addresses 

all three areas of concern: social, environmental and economic.  This framework identifies 

the market failures that exist in the residential solar PV electricity market, which include 

exacerbating inequity, poorly targeting myopic investment behaviour, inadequate 

transmission and distribution investment deferment price signals and inappropriate infant 

industry assistance.  We argue that these market failures require addressing before the market 

can operate in an allocatively efficient manner. 

The sustainable FiT that we propose would lead to improvements in environmental, social 

and economic factors.  The resultant transmission and distribution investment deferment 

would meet both environmental and economic objectives.  Directly providing finance for 

solar PV installations would address both social equity and investment myopia.  We argue 

that introducing appropriate pricing signals for solar PV installations via would be in the 

ongoing interest of all stakeholders.  It is time to progress from FiTs focused on dynamics 

efficiency to a sustainable FiT that emphasises allocative efficiency as an explicit goal. 
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1 Introduction 

The International Energy Agency (IEA 2011, p. 33) observes that nearly all countries now 

offer or are planning FiTs for solar PV but debate has shifted from ‘if or how to implement a 

FiT’ to ‘how to move to a self-sustaining market, post FiT’.  Additionally, the IEA (2011, p. 

33 ) acknowledges internationally FiTs have been poorly designed or poorly controlled, 

resulting in explosive markets, profiteering, political interference, over-reliance on imports, 

market collapses, business closures and so on.  However there is now a wealth of information 

available worldwide to policymakers regarding the impact of various designs of FiT schemes 

and how and when to adjust tariffs to avoid overheated markets.  For example, Couture and 

Gagnon(2010), Timilsina, Kurdgelashvili and Narbel (2012) Solangi et al. (2011), Gipe 

(2011) and Zahedi (2009, 2010) provide an extensive and current discussion of FiTs. 

Previous and current FiTs have been found to be a source of four market failures: 

• exacerbating inequity (Garnaut 2008; Nelson, Simshauser & Kelley 2011); 

• poorly targeting myopic investment behaviour (APVA 2011a, 2011b); 

• inappropriate infant industry assistance (Farrell 2011); and 

• lacking transmission and distribution investment deferment price signals (Futura 

2011; PwC 2011).  

Under the guise of an infant industry argument, many countries have implemented FiTs to 

establish a domestic PV industry.  This policy has been overly successful causing a cross 

subsidy via electricity prices that has resulted in: inequity to favour the top four (richest) 

quintiles over the lowest (poorest) quintile (ABS 2012b); challenges to policy credibility; 

poorly targeted  industry assistance; failure to connect with transmission investment 

strategies.  In addition, in countries with state based FiT policies, such as Australia, Canada 

and the US, there has been inconsistent gross or net FiTs calculation between states (DSIRE 

2012; REN21 2011; Wong 2008; Zahedi 2010).  This inconsistency between states presents 

suboptimal allocative efficiency in distribution of solar PV and additional administrative and 

learning costs. 

Our focus here is on residential solar PV installations because three features together 

differentiate them from other forms of renewable energy: 

• they are embedded within the distribution network; 

• there are many small suppliers without market power dealing with a few retailers; 

and  

• suppliers are too small to offer bids in the electricity market. 

We identify problems with the existing FiTs using a sustainability framework and then 

propose solutions.  First, we discuss the investment myopia and social inequality problems 

that exist in existing FiT schemes and we explain why indexed interest free loans can directly 

address these issues.  Next, we discuss price signal issues with existing FiT schemes and how 

an alternative price signalling system can be designed to achieve a sustainable FiT. This 

includes real time and locational pricing to guide investment deferment in distribution and 

transmission and to improve energy conservation. 
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The implications of adopting a sustainable FiT are: 

• steadier growth in the solar PV industry rather than the boom bust cycles that have 

ensued from numerous government regulatory changes required to keep up with 

the rapidly changing technology and decreases in prices; 

• a more equitable arrangement by removing the cross subsidy from non-owners to 

owners of solar PV units; and 

• more environmental protection potential to defer investment in distribution and 

transmission and to reduce CO2 emissions. 

2 A sustainability framework 

A sustainable FiT (see Figure 1) must positively address three factors: social progress, 

environmental protection and economic growth (IUCN 2006).  The laws of physics and the 

ability for our environment to cope ultimately determine a limit to economic growth but in 

the interim innovations provide an avenue for economic growth through energy efficiency 

and less harmful energy production, such as, demand side management and solar PV 

(Beinhocker 2006). 

Figure 1: Sustainability framework 

 

 

 

 

 

 

(Source: IUCN 2006) 

From an environmental perspective, roof top solar PV installations appear ideal, as they 

produce electricity with low life cycle emissions and help to defer investment in distribution 

and transmission.  However, seen within a broader context, there are social and economic 

issues that require addressing.  The US corn to ethanol biomass industry provides a useful 

illustration of social and economic problems that can arise when seemingly ideal 

environmental policies are implemented.  The recent episode of the US government subsiding 

corn for ethanol production increased the price of corn, which is a staple diet for many poor 

people in Central America.  This ethical dilemma of using food crops or arable land to 

produce biomass is an undesirable outcome.   Fortunately, rooftop solar PV installations do 

not pose such serious ethical problems.  However, Garnaut (2011, p. 15) discusses how those 

consumers receiving FiTs are being cross-subsidised by other consumers, generally on lower 

incomes.  In agreement, Nelson, Simshauser and Kelly (2011) have estimated the household 

impact of FiTs by income groupings and conclude that wealthier households are clear 
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beneficiaries and the effective taxation rate for low income households is three times higher 

than that paid by the wealthiest households.  Therefore both the current FiT and the US 

government’s corn to ethanol subsidies are socially regressive.  The primary motive for 

introducing FiTs for solar PV and subsidies for corn to ethanol is to reduce GHG, which 

benefits everyone and justifies schemes to leverage private money for the public good.  

However, the implementation is socially regressive. 

In addition to ethical considerations, Stebbins (2011) reports that there has been a farm price 

bubble in the Corn Belt created by the US government subsidies, which is proving politically 

difficult to manage, as rural communities become accustomed to higher wages and profits.  

So this well intentioned US government policy has unintentionally created ethical 

conundrums grounded in a maladaptive political economic dynamic. This provides a warning 

to those trying to implement infant industry legislation without a clear exit strategy that 

prevents such legislation becoming a permanent fixture.  A strong case can be made that there 

are many parts of the emergent renewable energy sector that require R&D and initial 

assistance for commercialisation.  But rooftop solar PV installations are no longer in the  

infant industry stage because residential rooftop solar PV is near market parity (Watt 2011), 

that is the cost of electricity from solar PV is approaching the costs of electricity from coal 

generators plus transmission and distribution costs.  However Watt (2011) does concede that 

parity may be insufficient to induce investment in solar PV as people expect a much quicker 

payback on capital than  net present value calculations would indicate.  This myopic 

investment behaviour and other non-market barriers have to be addressed in any new policy 

initiative. 

3 Investment myopia, irrational exuberance and social inequity 

The Australian PV Association (APVA 2011b) and Watt (2011) discuss how solar PV has 

reached grid parity.  Electricity can now be generated on residential rooftops at the same 

price as coal generation plus transmission and distribution costs. However, parity seems to be 

insufficient to ensure the appropriate economic level of residential solar PV uptake because 

people suffer investment myopia with regard to the returns from long term investments, such 

as the 25-30 year life of a PV unit.  This is not uncommon in the case of long term 

investments because of the uncertainty involved. For example, in the case of PV panels, 

people are uncertain as to whether the cost of PV units is going to continue to fall 

significantly and, therefore, it may be rational just to defer the investment decision until later, 

even though the investment looks attractive from a net present value perspective.  

Yates and Mendis (2009) and Williams (2011) discuss the sensitivity of demand for solar PV 

installation to interest rates and after financing considerations and clearly observe the 

presence of investment myopia.  A similar kind of long term investment myopia that has been 

well researched is superannuation. This has spurred government intervention in the form of a 

complex array of policies including tax breaks for both voluntary contributions and 

compulsory contributions.  Similarly, the Australian government has intervened to remedy 

myopia in the uptake of tertiary education by offering indexed interest free student loans, 
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repayable through the income taxation system, to provide equity and to acknowledge the 

positive externalities of education. 

Origin Energy (2007) argued for interest free loans to promote efficient energy investments 

to address positive externality and equity concerns.  Sunders, Gross and Wade (2012) discuss 

the socially regressive aspects of the Renewable Heat Incentive in the UK and how low 

interest loans for low income households could address the issue.  A similar argument can be 

made for interest free loans for investments in solar PV.  In trying to address  equity and 

investment myopia issues, the use of tax breaks tends to favour  richer households over  

poorer, while making interest free loans, with repayments based on the ability to pay similar 

to the Australian student loan scheme (HECS), is a much more equitable way to address 

investment myopia.  Additionally, a loan is more appropriate form of assistance, as there is an 

incentive for the prospective buyer to consider the solar PV installation as an investment 

requiring a cost benefit analysis rather than a means to obtain a tax break.  Additionally, loans 

for these long term investments are appropriate candidates for the revenue generated from 

carbon pollution reduction schemes.  In Australia the schemes is called “The clean energy 

package” from the Department of Climate Change and Energy Efficiency (DCCEE 2011).  

Furthermore, identifying which transmission and distribution lines are nearing their 

maximum capacity would yield locational priorities for lending to target transmission and 

distribution investment deferment. 

People usually pay for their solar PV installation by increasing their house mortgage.  This is 

appropriate in the case of long term investments such as solar PV. The RECs make the cost of 

installation more affordable.   This approach works for house owners but not for renters.  The 

fact that proportionately more low income individuals rent houses goes some way to account 

for the highest (richest) quintile having twice the rate of solar PV installations compared with 

the lowest (poorest) quintile, see Table 1  and Table 2.   The situation is similar for solar hot 

water.  Unfortunately, ABS (2012b) only provides data for the state of Victoria that is seen in 

Table 1 but the assumption is made that the other states in the NEM would follow a similar 

quintile pattern. 

Table 1: Solar energy use in dwelling in Victoria Oct 2011 

Equivalised 
household income 

quintiles 

Solar photo-
voltaic panels 

Solar hot 
water 

     Lowest  3.1 3.8 

     Second 5.5 5.0 

     Third 5.8 6.4 

     Fourth 5.6 6.7 

     Highest 6.2 6.8 

     Total 5.4 5.6 

(Source: ABS 2012b) 

Table 2: Mean equivalised disposable household income per week by tenure and landlord type  

Owner 
without a 
mortgage 

Owner 
with a 

mortgage 

Renter Other 
tenure 
type 

All 
households 

State/territory Private Other Total 
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housing 
authority 

landlord landlord 
type 

renters 

793 957 408 772 812 729 852 848 

(Source: ABS 2011b) 

The low solar PV penetration in the lowest quintile is due to the dual problem of low income 

and rental accommodation.   Trying to address this poverty trap with subsidised loans is 

insufficient. A solution is required that acknowledges the tenant-landlord relationship and the 

consequent misalignment of benefits and costs.   Targeting fuel poverty in this group through 

solar PV installations not only addresses equity but makes effective use of solar PV, as 

individuals on low incomes are likely to spend more time at home during the day (Clark & 

Hay 2012). Clark and Hay (2012) discuss the feasibility of implementing renewable energy 

within the public rental housing sector where social equity concerns provide a rational.  In 

contrast, the profit motive of the private rental sector provides a deterrent that is more 

difficult to overcome.   

Thus, the state and territory housing authorities should be required to directly support 

installation of solar PV and solar hot water.  This action has become imperative given the 

recent moves to deregulate the domestic tariff in Australia, to protect the most financially 

vulnerable in society, see Table 2 .  The installation of solar PV, along with smart meters, 

would aid acceptance of the time of use tariffs. However, Table 3 shows that the state or 

territory housing authorities hold a small and diminishing proportion of the rental 

accommodation.  In contrast, the proportion of private rental accommodation is increasing.  

This is associated with an overall increase in the proportion of people living in rental 

accommodation.   

Table 3: Percentage of household types by tenure and landlord type  

 
1994
–95 

1995
–96 

1996
–97 

1997
–98 

1999
–00 

2000
–01 

2002
–03 

2003
–04 

2005
–06 

Owner Without 
mortgage 

41.8 42.8 41.3 39.5 38.6 38.2 36.4 34.9 34.3 

With 
mortgage 

29.6 28.1 28.3 30.9 32.1 32.1 33.1 35.1 35.0 

Renter State/territory 
housing 
authority 

5.5 6.0 5.6 5.8 5.8 5.0 4.9 4.9 4.7 

Private 
landlord 

18.4 19.0 20.4 20.0 19.9 21.0 22.0 21.2 22.0 

 Total renters 25.7 26.9 27.9 27.2 27.2 27.4 28.2 27.6 28.5 

All households 100 100 100 100 100 100 100 100 100 

(Source: ABS 2011a) 

So, addressing ways of encouraging solar PV installations in private rental accommodation is 

a priority than in state or territory housing authority accommodation.  Because the renter 

enjoys all the benefits of reduced electricity bills, there is no incentive for the renter or 

landlord to install solar PV.  A higher rent could be charged but, again, long term investment 

myopia tends to dominate.   
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The shift in demand for rented accommodation has been met by increasing private 

investments in rental properties.  This has been spurred by negative gearing, which allows 

losses to be set against other income, and capital gains legislation that allows investors to 

keep a larger portion of the capital gain.  The resulting rise in  house prices has made housing 

less affordable for those on lower incomes and has sustained the expectation of ever rising 

capital gains amongst investors.  These dynamics provided the conditions for a housing 

bubble which, in Australia, has been followed by only a minor slow down. 

Addressing the conundrum of the misaligned incentives for solar PV installation in a landlord 

–tenant relationship has been exacerbated by the irrational exuberance (Schiller 2000) of a 

housing bubble.    Traditional economics has been spectacularly unsuccessful in 

understanding bubble conditions for instance the recent Global Financial Crisis.  The 

traditional economic prescription for such a misalignment of incentives in this relationship is 

to focus on property rights and price signals assuming unbounded rationality but this alone is 

inadequate given irrational exuberance and investment myopia.  However, a discussion of 

price signals in an idealise world does provide a good starting point before addressing 

irrational exuberance and investment myopia.   

The landlord is the natural owner of a fixed capital asset on a house such as a solar PV 

installation.  As such, the landlord sells all the electricity generated to a retailer.  This 

provides the landlord with the incentive to optimise the size of the installation, given the 

gross feed-in tariff, as discussed below in section 6.1.  The advantage for tenants is that they 

do not pay for the TUoS and DUoS charges for electricity consumed from the solar PV 

located on their rental accommodation, which is also discussed further in section 6.1.  

Investment myopia can be addressed by subsidised loans targeted at landlords.  But we know 

that loans in isolation have already proved unsuccessful in the UK’s green policy program.  

The irrational exuberance effect can be addressed by appealing to the landlord’s desire for 

capital gains by making houses without solar PV ineligible for tax free capital gains.  

Consideration needs also to be given to the fact that some houses are unsuitable for solar PV.  

The carrot and stick approach to investment myopia and irrational exuberance, respectively, 

could encourage an increased uptake of solar PV in the private rental accommodation.   

4 Conundrum: policy credibility versus social inequality 

The ABS data discussed in the previous section supports Garnaut (2011, p. 15) and Nelson, 

Simshauser and Kelly (2011) observation that richer households receiving FiTs are cross-

subsidised by poorer households.  So, there is a policy dilemma: maintaining policy 

commitments and credibility can exacerbate social inequity.  One resolution to this policy 

dilemma, without disrupting the market, would be to maintain FiTs fixed permanently in 

nominal terms to those consumers contracted, so inflation would erode the FiT overtime 

(Garnaut 2008).  But this politically easy solution only attenuates social inequality.  

Generally the methods used to date to adjust calculated FiT have been disruptive.  Abrupt 

closures of schemes and large reductions in FiTs have been common.  For instance the 
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Queensland government closed it generous FiT to new applicants in mid-2012.  The 

replacement FiT has been set close to the wholesale price.  This is a politically easy solution 

that is inoffensive to those voters already receiving the generous FiT but perpetuates social 

inequality by effectively locking it in for many years to come.  Compounding this social 

inequity, an abrupt solution is economically poor because a sudden large drop in the FiT 

stalls the growth of an emergent solar PV industry.  A FiT subsidised directly by government 

lacks the regressive aspect of funding the subsidy via a surcharge on electricity tariffs. 

5 Infant industry support and solar PV’s parity with retail tariffs 

A key issue in the assessment of the economic viability of solar PV energy supply is the 

trajectory of future cost per kWh.  All new technologies follow S-shaped diffusion curves 

that can usually be tracked by a nonlinear logistic or a Gompertz function, see Figure 2. 

Figure 2: Diffusion of innovation 

 
(Based on: Rogers 1962) 

As the volume of adoption rises, unit costs fall, usually approximately log linearly 

(exponential).  There are four reasons for this: economies of scale in production, the 

accumulation of experience in production and marketing, the introduction of incremental 

innovations and growth in demand for products using the technology.  Figure 3 shows the so 

called ‘experience curve’ for PV modules for the period 1975-2011.  The ‘experience curve’ 

is also known as the ‘learning curve’.   There is a well-developed literature on forecasting 

future diffusion paths based on observations in the early phase of the diffusion curve.  

Similarly, forecasts of future unit costs have been conducted using early phase cost data (see 

Alberth (2008) for a recent study of several cases, including solar, Nemet (2006) deals 

specifically with PV). 

Logistic 

function 

(S ) 
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Figure 3: The PV Module experience curve, 1976-2011 

 
(Source: Bazilian et al. 2012) 

Universally, unit costs fall significantly but this introduces something of a dilemma for a 

potential buyer. When is the best time to buy? When production volume is small and unit 

price is high, only ‘enthusiasts’ tend to buy, either for ethical reasons or to impress others as 

an affluent ‘first mover’ that can afford the high price. So, if the development of a technology 

is widely viewed as a social or environmental priority, it is vital that, in the early 

developmental phase, significant ‘infant industry’ subsidies are offered both to encourage 

purchase of products using the technology and to make producers feel secure enough to 

invest in expanding production. There is no ‘futures market’ in technologies, so both buyers 

and sellers have to be compensated for taking their respective risks in what is an uncertain 

context. 

In addition, the decision to buy requires consideration of both the residential retail price and 

the solar intensity.  Figure 4 shows the residential power prices and solar intensity for 

different countries.  The horizontal axis shows the solar intensity and the vertical axis the 

residential electricity prices.  The blue and purple curves are the Levelised Cost of Energy 

(LCOE) or parity lines for 2012 and 2015 respectively.  The parity lines curve downwards 

with an increases in solar intensity, as countries with higher solar intensity reach parity at 

lower residential power prices.  The countries sitting above the line have reached parity and 

the countries below have yet to reach parity.   For instance Denmark, sitting above the blue 

2012 LOCE line with the highest domestic power price, had reach parity well before 2012 

despite having the second lowest solar intensity.  In contrast Saudi Arabia with the third 

highest solar intensity is predicted not to reach parity until well after 2015 because its 

domestic power price is nearly the lowest in world.  The assumptions used in Figure 2 

include  a 6% weighted cost of capital (interest rate on finance), fully installed system cost of 

$3.01/watt for 2012 in blue curve and $2.00/watt for 2015 in the purple curve, 0.7% per year 
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module degradation, annual operations and maintenance cost equating to 1% of capital 

expenditure. 

Figure 4: Residential PV price parity – residential power prices versus LCOE  

 

(Source: Chase 2012) 

Figure 4 illustrates that parity will occur at different time at different locations.  However, 

Figure 4 cannot reflect the full complexity of the relationship.  For instance many countries 

such as Australia and Canada span large latitude; consequently, there is a large disparity in 

solar intensity between and within each state, territory or province.  Each state really requires 

a separate representative circle.  For example, California and Texas have been identified in 

Figure 4.   The high level of solar radiation in Australia makes the equivalent solar PV panel 

more productive than in most other countries.  According to Figure 4 Australia has already 

reach parity but the actual situation is more complex. 

The complexity of calculating parity at different levels of solar intensity is compounded by 

four factors: innovation, carbon pricing, fossil fuel prices and the LCOE calculating method. 

First incremental innovations increase the efficiencies of distributed PV collectors very 

significantly and unit costs will come to out-perform coal-based power station generated 

electricity in terms of consumer price. However, the technological variety within the coal 

fired generation fleet must be recognised and the opportunity cost of their fuel.  It will take 

solar PV much longer to reach LCOE with coal fired generators in cases where coal is too 

low a quality for export or lacks access to export ports.  We know that the unit price of coal 

generated electricity has shown little historical decline in recent years, consistent with it 

being a mature technology.  The rapid innovation and decrease in the price of PV requires 

that any future LCOE calculations model the decrease in PV prices.  In Figure 3 we identified 

the learning curve effect operating in the solar PV module industry.   Australia now lacks 

solar cell production, so can look internationally to secure the cheapest panels without 

concern about destroying domestic production.  Additionally, the commodity boom has 

EMEA = Europe, Middle East, Africa 
ASOC = Australasia 
AMER = Americas 
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pushed up Australia’s exchange rate, making the importation of solar panels cheaper.  All 

these factors have to be taken into account to calculate a realistic LCOE. 

Second the introduction of a carbon price or a tax will raise the unit cost of coal-based power 

upwards, shifting the countries in Figure 4 upwards and bringing the crossover to parity 

forward.  The imposition of a fixed carbon price of $23/tCO2 as of July 2012 has induced an 

8.9% increase in residential electricity prices in Australia as predicted by Wild, Bell and 

Foster (2012). 

Third, electricity prices in Australia are sensitive to the upward movement in fossil fuel 

prices, as Australia has a very high reliance on fossil fuel generation, but moderating this 

sensitivity to international coal prices is the portion of Australia’s coal unsuitable for export, 

as discussed above. 

Fourth there are differing approaches to calculating LCOE.  Brazilian et al.  (2012) discuss 

the comprehensive and vexing literature on LCOE.  So, it is sensible to think in ranges rather 

than point estimates.  Figure 4 conveys a sense of a price range but it is still clear that solar 

PV becomes viable in different countries at different times.   

The debate in the literature over LCOE is not central to this paper but sufficient to say at 

some stage parity will be reached, if not already, and this will vary given the solar intensity 

and the four factors already discussed.  The calculation of the exact point in time would be 

onerous given all the possible variables and is fickle give the rapid changes in technology.  

But the parity concept remains important to the theme of the paper because it is a tipping 

point at which the diffusion of technology accelerates without the need for subsidy.  This 

accelerated diffusion without subsidy is conditional on the choosing correct institutional 

arrangements and pricing structure to reach a market determined feed-in tariff.  The other 

important aspect of this tipping point is that continuation of a calculated feed-in tariff after 

parity raises at least two problems.  First any miscalculations in FIT become amplified by a 

larger and accelerating installed base, which requires either an accelerating budget 

commitment or more rapid re-adjustments in the calculated FiT.   This is the situation in 

Australia.  Rapid adjustments to the calculated FiT because of budget blow outs have 

destabilised the solar PV market.   The second problem is the possibility that the calculated 

FiT has been reduced too much, stifling potential future growth in the solar PV.   

Table 1 compares the pros and cons of calculated and market determined FiTs.  Our basic 

premise is that calculated FiTs are required to enable the PV industry to reach dynamic 

efficiency and enable economy of scale and learning economies.  Calculated FiTs have been 

successful at achieving these goals.  However after parity, a calculated FiT can be 

maladaptive inducing a rapidly expanding base and allocative efficiency becomes more 

appropriate to deal with this.  Liebreich, Chase and Bazilian (2012) discuss how the current 

policy-making is inadequate to ensure intelligent integration of cheap solar into a complex 

power grid.  The following sections review current policy operating in the Australian 

National Electricity Market (NEM) to inform the development of a market determined feed-

in tariff for solar PV to reach its full economic, environmental and social potential.  
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Table 4 Comparing the pros and cons of calculated and market determined FiTs 

Calculated FiT Market determined FiT 

Dynamic efficiency Allocative efficiency 

Infant industry support prior to parity Rapid response to expansion after parity 

Policy uncertainty and lags induce market 
instability which are exacerbated after parity 

Market failure and institution arrangement 
require addressing for solar PV to reach its 
full potential 

6 Developing price signals to further reduce emissions and to 

maintain solar PV market growth 

Designing a market or developing appropriate price signals to reduce emissions and to 

maintain solar PV industry growth requires explicit consideration of the institutional 

arrangements that can impede the effectiveness of the market mechanism.  This section 

focuses on price signals and highlights institutional impediments as they arise.  

Lessar and Su (2008) propose market based FiTs using a two-part tariff consisting of a 

capacity payment that is determined through an auction process, and an energy payment that 

is tied to the spot market price of electricity.  There are a number of differences between large 

scale and residential solar PV that warrant alternative arrangements for their feed-in tariffs.  

Wood and Muller (2012) provide a comprehensive discussion of the use of a reverse auction 

for large scale solar PV capacity.  A reverse auction involves would-be sellers making lower 

bids to undercut other bidders to provide a good or service to a buyer.  These are unsuitable 

for small scale solar PV for three reasons: inequity; the transaction costs involved for 

numerous participants in the auctions; and the logistical cost of maintaining numerous FiT 

rates.  There is also an option to bid for supplying a given capacity to a market to overcome 

the need for individuals to bid to market.  However, this would require coordination costs to 

setup contracts between the individual solar PV owners and the intermediary. 

The reminder of this section is devoted to developing appropriate price signals for residential 

solar PV.  In contrast to Lessar and Su (2008), we stress the importance of price signals for 

the cost of transmission use of service (TUoS) and distribution use of service (DUoS) as well 

as the spot market price of electricity.  Additionally, this section’s focus on residential solar 

PV differs to other broader studies on FiTs for large scale renewable generation in Timilsina, 

Kurdgelashvili and Narbel (2012), Solangi et al. (2011) and Wood and Mullerworth (2012).  

The Australian Energy Market Commission (AEMC 2012) is currently reviewing Demand 

Side Participation (DSP) within the Australian National Electricity Market (NEM).  As part 

of the DSP review,  Futura (2011, pp. 27-8)  argued that it helps to manage demand via three 

routes: 

• peak load management; 

• whole of load management; and  

• distributed resources, including solar PV. 

Ideally a price signal should:  
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• allow a business to recover at least the costs of providing a good or service, thus 

facilitating long term sustainable service provision; and 

• provide a signal to consumers to consume only where the value of consumption is 

more than the social cost of production 

Using such a price signal, a householder with a solar PV installation is both a business and a 

consumer.  Such price signals alone fail to address social equity and investment myopia, as 

discussed in previous sections.  The market needs careful design to ensure the right price 

signals are produced for all participants in the market to receive a fair allocation of the wealth 

generated by solar PV panels and to maximise the reduction in emissions. 

There is an asymmetry in market power between the many residential owners of small solar 

PV units and a few retailers, or a single retailer in some states.  Left to the free market, 

without intervention, retailers using their market power to maximise their profits could 

reduce the return on investment on solar PV to the householder to the point where the 

residential solar PV market ceases to grow and fails to reduce emissions further.   

The Independent Pricing and Regulatory Tribunal of New South Wales (IPART 2011) 

investigated the potential for retailers to use market power to fix prices for power generated 

by solar PV below a fair price.  Their finding were that 7.7c/kWh was a fair price and that 

retailers were offering between 6 to 8c/kWh.  Table 5 shows a breakdown of average 

Australian retail price of a unit of electricity for 2009-10.  What the regulator considers a fair 

price is only the wholesale electricity price and no payments for transmission or distribution 

deferment. 

Additionally, network service providers (NSP) base their profits on their capital investment, 

so solar PV installation, with its ability to defer investment in transmission and distribution 

and exacerbate underutilisation of the existing infrastructure during the day, is in direct 

conflict with the profit motive of NSPs.  These environmental and market failures warrant 

government intervention to determine a fair share of the generated wealth and to ensure 

appropriate price signals exist.  The following sections discuss distorted price signals and 

their remedy. 

6.1 Gross versus Net Feed in Tariff 

There is debate over whether a FiT should be paid for the net or the gross contribution of 

power to the distribution grid.  Farrell (2011, p. 33) discusses the major drawback of net 

metering, which is to encourage optimization of the size of a solar array for on-site load 

rather than maximising the solar array.  The economic argument favours gross; this way the 

investor optimises the size of the solar PV installation to match the wider economics 

conditions prevailing on the grid at the point of connection.  Under the gross payment method, 

the householder pays the retail rate for the total electricity consumed whether sourced from 

the grid or from their own generator. This provides an incentive for the customer to conserve 

electricity and maintains a profit motive for the retailer.  



Page 15 

A further problem with using a net FiT on accumulation meters is pricing the production of 

electricity from the solar PV unit and the consumption of a unit of electricity equally 

regardless of time of production or consumption.  This situation is exacerbated where 

exported power is paid more than the prevailing tariff because this introduces an incentive to 

reduce use during sunlight hours to enable export, which amplifies the residential evening 

peak.  Section 6.3 discusses a resolution to this problem. 

The question arises ‘what is a fair payment for the contribution to the grid from residential 

solar PV?’   

Table 5 shows a breakdown of the cost components of the retail price of electricity to 

households as an average of the Australian retail prices.   These prices are only indicative and 

used to aid the discussion.  As with LCOE calculations, electricity prices and their exact 

breakdown into components can be a vexed subject. 

Table 5: Breakdown of the average Australian retail price of a unit of electricity for 2009-10 

Component cents/kWh Percentage 

FiT, RET and energy saving 
schemes  

0.94 5.0%  

Retail margin 2.93 15.1% 

Distribution (DUoS) 6.68 34.5% 

Transmission (TUoS)  1.42 7.3% 

Energy (Wholesale) 7.41 38.2% 

Total 19.38 100.0% 

(Source: PwC 2011, p. 14) 

Paying solar PV owners at least the wholesale price of the electricity is obvious.  This already 

is happening according to the Independent Pricing and Regulatory Tribunal of New South 

Wales (IPART 2011).  However, this price signal could be improved by using time of supply 

to reflect the variation in the wholesale price of energy over the course of the day at each 

node in the NEM.  Time of supply pricing is discussed further in section 6.2 and 6.3. 

In addition, the solar PV unit delivers electricity directly into the distribution grid without the 

requirement for transmission, so a payment for the deferred cost of transmission is warranted.  

This is approximated by the current TUoS charges.  However, the potential for deferment 

only occurs when the lines are near or at peak load.  So, payment for deferment is only 

justifiable during these periods.  Again, this requires time of supply metering. 

Section 6.3 below discusses the impracticability and disparity between the current TUoS and 

DUoS charges and the Long Run Marginal Cost (LRMC) to act as a price signal to reflect the 

deferred cost of transmission.  Section 6.4 introduces the concept of gross and net demand to 

frame discuss of the implications of distributed non-scheduled supply on shifting net peak 

demand and exacerbating underutilisation of the network. 

Furthermore, the household will consume some or all of the electricity produced by the solar 

PV unit, so payment for the deferred cost of distribution is warranted for this self-produced 

Self-generated and 

consumed electricity 

Excess electricity 

contributed to the 

gird 
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and consumed electricity.  This is approximated by the current DUoS charges.  However, 

deferment only occurs when the lines are near or at peak load.  So, payment for deferment is 

only justifiable during these periods.  Again, this requires time of supply metering.  Section 

6.3 discusses issues with the existing DUoS and TUoS charges.  

The above FiT preserves the retailer’s profit margin and creates the right price signals for 

maximizing the size of solar PV installations and for deferment of TUoS and DUoS.  The 

proposed remuneration for solar PV can accommodate other forms of non-scheduled supply 

such as cogeneration, energy storage and future developments in supply.  This method 

requires itemising charges for TUoS and DUoS on invoices and peak periods.  However, the 

wholesale price for electricity, the cost of TUoS and DUoS and peak periods will vary over 

time and between locations.  These factors would require addressing with real time pricing.  

However, almost all new solar PV connections are net metered and lack time of supply 

monitoring.  They just measure total volume of export.  The exceptions are in Ausgrid’s 

distribution area and in Victoria where smart meters have been installed.   

6.2 Real time pricing, smart meters and FiTs 

There is a requirement for smart meters to enable real time pricing to provide efficient price 

signals for electricity produced by solar PV and for electricity consumed by the household.  

However there is a lack of incentive for retailers and NSP to install smart meters (PwC 2011, 

p. 47) since smart meters provide customers with feedback on their consumption of electricity, 

heightening their awareness and encouraging them to reduce demand or shift demand to a 

non-peak period, which, in turn, reduces the retailer’s profit.  Additionally, smart meters can 

help ameliorate peak-loads which drive the expansion of the network linked to the profits of 

the NSPs. 

Figure 5 compares the normalised direct solar intensity against the highest peak demand day 

over the period 2007 to 2011 for 5 nodes in the NEM.  These five demand nodes in the NEM 

are chosen because they are the closest nodes to the only Australian weather stations that 

provide half hourly solar intensive reading within the NEM.  Table 6 matches the weather 

station with the nodes in Figure 5.  The nodes Rockhampton, Melbourne and Adelaide and 

their weather stations at their local airports provide a good match.  However, the node 

Canberra and its closest weather station at Wagga Wagga are about 200 km apart and the 

node George Town and its closest weather station Cape Grim are about 250 km apart.  This 

separation must be considered when interpreting Figure 5. 

Table 6 Matching the NEM nodes and weather stations that provide half hourly solar data 

Node Weather station 

Rockhampton, Queensland Rockhampton Aero 

Canberra, ACT Wagga Wagga 

Melbourne, Victoria Melbourne Airport 

Adelaide, South Australia Adelaide Airport 

George Town, Tasmania Cape Grim 

 

The day with the highest peak demand is selected to assess the capability of solar PV to meet 

peak demand to justify payment for network investment deferment.  It should be noted that 
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demand in Figure 5 represents that met by scheduled and semi-scheduled generators or net 

demand.  Gross demand would be met by non-scheduled and aforementioned generators.  

Solar PV contributes to non-scheduled generation.  Consequently these figures underestimate 

the potential contribution of solar PV, as the installed solar PV has already modified these net 

demand curves.  The difference between net and gross demand is becoming more significant 

as the penetration of non-scheduled supply increases.  Section 6.4 discusses this issue futher. 

Figure 5 Comparing normalised direct solar intensity to the highest peak demand day in 2007-2011 at 5 nodes in the 

NEM 

Rockhampton, Queensland – 11 Dec 2009 

 
Canberra, ACT – 17 Jul 2007  

 

Melbourne, Victoria – 29 Jan 2009 

 
Adelaide, South Australia – 31 Jan 2011 

 

George Town, Tasmania – 22 May 2008 

 
(Sources: BoM 2012b; Wild & Bell 2011) 

In Figure 5 we show that solar PV electricity production matches the daily electricity demand 

of cycle of commerce and industry in the summer months with a more modest contribution in 

winter.  This cyclic match between commercial electricity demand and solar PV supply 

requires real time pricing and smart meter installations to provide the solar PV with 

appropriate recompense.  This cyclic match contrasts with baseload electricity from fossil 

fuel generators that are required to maintain minimum stable operating levels 24 hours a day.  
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The minimum stable operating level has two negative aspects.  First it puts an effective floor 

on the minimum level of carbon emission reductions that can be secured.  Second this 

minimum level produces overnight negative spot prices (Pierce 2011), which drives out other 

forms of generation and in particular makes wind generation, which is often most productive 

at night, less economically viable.  The replacement of electric hot water cylinders that 

provide overnight load traditionally met with coal generation, with solar hot water will 

exacerbate the situation. 

Currently in Australia transmission and distribution investments are made to ensure that peak 

demand is met.  Smith and Hargroves (2007) state that in Victoria the transmission system 

has to be 20 per cent bigger to meet peak demand for 1 per cent of the year.  Over the past 

decade or so, growth in peak electricity demand in most of the states has grown at a faster 

rate than the increase in average annual demand.  This is particularly an issue in South 

Australia.  Spikes in peak demand only occur a few times during the year on extremely hot 

summer days when air conditioners are being run in households in addition to other 

appliances at the same time that the commercial and industrial sectors are consuming 

maximum power.  Since climate change is expected to produce more heatwaves, rising peak 

electricity demand could compromise system reliability without massive new transmission 

infrastructure investments.  Alternatively improvements in energy efficiency and demand 

side participation could help ameliorate and smooth demand. Energy efficiency 

improvements include non-electrical options such as efficient building.  Demand side 

participation includes education and incentives, such as time of use billing, time of supply 

payments for non-scheduled supply, such as solar PV and battery storage, and load 

management, such as cycling of air conditioners (Honeywell 2013; Peakrewards 2013). 

Futura (2011, p. 53) discusses, how in summer, distribution network load peaks occur around 

4 pm to 7 pm.  However, solar PV output is about 30% of nominal rated capacity at 4 pm, 

which provides a modest contribution to moderating this residential peak in demand.  In 

winter, PV output is negligible during residential network load peaks.   Introducing real time 

price signals would provide an incentive to solar PV owners to consider energy storage 

systems to save energy for use during the more expensive peak time, which would help to 

defer investments in distribution and transmission.   As an alternative, the price signal could 

provide an incentive to face the panels due west, so they generate later into the afternoon.   

Clearly, from Figure 5 there is justification for remuneration for solar PV to act to defer 

investment in transmission and distribution during the summer months in the late afternoon 

when air conditioners are at peak use.  Furthermore, the peak demand periods at each demand 

region or node differs, so identification of a period suitable for remuneration of TUoS and 

DUoS charges for each node is required. 

The AEMC (2009, p. v) considers fixed priced tariffs for retail customers a risk to the NEM, 

so it recommends more flexible pricing for retail customers to reflect  movements in 

wholesale prices coupled with  a national customer protection scheme to be introduced prior 

to the commencement  of flexible pricing.  A flexible retail consumer price reduces the risk 

for the electricity companies but the customer is at risk of significantly increased electricity 
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bills without suitable education and feedback mechanisms.  This risk necessitates protection 

for vulnerable consumers and education of consumers aided with in-house displays or 

internet portals on electricity usage.  The World Energy Council (WEC 2010) has evaluated 

the residential smart meter policies of Victoria and claims that the lack of a promised in-

house-display and of protective measures for the most financially vulnerable has  caused 

dissatisfaction amongst customers, which led to a moratorium on real time pricing.  Section 

6.3 further discusses the Victorian experience leading to the moratorium.  

The transaction costs of real time pricing require consideration against alternatives such as 

adjusted futures contract price during peak periods, charged on an annual or quarterly basis.  

Futures contracts would be much easier to implement and cheaper than using smart meters to 

provide real time pricing as there are expenses associated with the smart meter installations 

and the associated software and hardware to integrate the consumer, retailer and NSP.  But 

offsetting this expense is the fact that smart meters offer many other features than just real 

time pricing.  For instance meter readers are no longer required and there is the added ability 

to bill monthly. Budgeting for smaller monthly bills is easier than for larger quarterly bills, 

which helps to reduce defaults on payments.  Additionally, real time pricing provides a much 

sharper price signal than futures contracts.  Sharper pricing encourages adaptation of the 

NEM as well as linking usage to payment more immediately.  

The AEMC’s (2011) Transmission Framework Review discusses further option of charging 

for DUoS and TUoS.  Our main contention is that, whatever option is selected, the price 

signal be as clearly transmitted to the customer as possible.  Section 6.3 discusses DUoS and 

TUoS charges in more detail. 

6.3 Time of use and locational price signal for TUoS and DUoS  

Figure 6 shows the 16 nodes in a transmission line topology of Australian Capital Territory 

and New South Wales.  These nodes serve three functions: 

• Demand - the node represents an area or region of demand. 

• Supply - the node represents the connection point for non-distributed generators. 

• Transmission - two nodes represent the connection points. 

Figure 6 represents the topology of the network rather than geographic distance.  

Geographically the demand is an area, the generators are points and the transmission lines are 

lines.  However, settlement prices are regionally based rather than from the finer granularity 

of node based pricing, although node based pricing does occur.  The AEMC (2011) proposes 

nodal pricing as one of five options in the transmission framework review. 
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Figure 6 Stylised New South Wales transmission line topology of 16 nodes 
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The ‘marginalist’ approach to optimization is frequently used to provide a theoretic basis for 

pricing.  Applying marginalism to pricing the transmission and distribution of electricity is 

challenging.  Nevertheless a discussion of marginalism informs the development of a pricing 

structure for TUoS and DUoS when making judgements over feasible pricing schedules given 

the metering available.  Using the marginalist approach a firm maximises profit by supplying 

at marginal cost.  Applying this theory presents two problems: 

• NSP are regulated monopolies; and 

• practical difficulties measuring and implementing the marginal cost. 

The NSP are regulated monopolies and as such must provide pricing schemes within the 

national electricity rules of Australia, which can accommodate long run marginal costing but 

there are constraints on application, such as the annual rate of change at each location.  But 

the national electricity rules could be modified to further accommodate the marginalist 

methodology.  

Addressing the marginal cost of NSP requires consideration of short run marginal costs and 

long run marginal costs (LRMC).  In the short run, one variable is held fixed.  The fixed 

variable is capacity.  In the long run all variables can change, including building more 

capacity to relieve congestion.  The challenge is to develop a pricing structure for congestion 

to allow short run marginal costing.  The AEMC’s (2011) transmission framework review 

recognises a need to address complex problems of this sort and have identified the need for a 

framework based on the interrelationship among the following five factors: 

• the nature of network access 

• network charging 

• congestion 

• transmission planning 

• connections 

There are merits for charging LRMC.  LRMC is the cost required to increase capacity to 

carry an extra unit of electricity at peak demand.  In contrast, the LRMC during off peak time 

is effectively zero as load is easily carried within the existing infrastructure that is a sunk cost.  

This LRMC method for pricing TUoS and DUoS has implications for pricing solar PV output, 

as discussed in section 6.1, where payments for deferred TUoS and DUoS are modest.  

However, there are two major advantages to charging DUoS and TUoS fees that closely 

follow the LRMC methodology.  The first is to encourage customers to reduce load during 

peak times. The second is spurring customers with solar PV to install battery storage because 

the LRMC methodology increases the differential between peak and off-peak electricity 

prices.  Battery storage is currently uneconomic but having the correct price signals in place 

readies the NEM for battery storage solutions and encourages their eventual diffusion across 

the grid. 

However, applying LRMC has two drawbacks.  There would be times when there was 

insufficient revenue generated to recover operating costs and extremely lumpy pricing would 
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prove unacceptable to customers.  Then a question arises “What pricing schemes can address 

the two drawbacks of LRMC but retain the price signal provided by LRMC?” 

PwC  (2011, p. 23) discusses the importance of pricing TOUS and DUoS independently of 

wholesale electricity cost as pass through may not provide a good signal for network costing, 

given that peak wholesale prices do not always correlate with high demand periods.  PwC 

(2011, p. 28) reviews the current TUoS and DUoS pricing schemes in the NEM and finds 

differences amongst the jurisdictions on two dimensions: clarity of the price signal passed 

through the retailer from the NSP to the consumer; the quality of the initial price signal, 

which  is limited by the metering type.  

Table 7 compares the pass-through quality amongst the different states in the Australian 

National Electricity Market (NEM), with the exception of Victoria.   Only Queensland and 

Tasmania lack the ideal direct pass through to customers.  Direct pass through of network 

costs suits arrangements for solar PV payments, as discussed in section 6.1.  Victoria has 

been unregulated from 1 Jan 2009, so is excluded from the comparison.  

Table 7 Comparison of clarity of pass through of network costs 

Queensland New South 
Wales 

Australian 
Capital Territory 

South Australia Tasmania 

Pass onto 
retailers 

Direct pass 
through to 
consumers 

Direct pass 
through to 
consumers 

Direct pass 
through to 
customers 

Transmission cost 
pass through but 
distributor and 
retailer the same 
entity so less 
transparent.   

(QCA 2009) 

The quality of the initial price signal or current pricing structures for TUoS and DUoS are 

limited by three forms of metering: 

• accumulation; 

• interval; and 

• smart meters. 

Accumulation meters restrict the options for TUoS and DUoS pricing structures to: flat tariff; 

and inclining block. 

The flat tariff lacks a price signal to customers to restrain use during peak periods.  In 

addition, customers that use electricity in off peak periods cross subsidise those customers 

using the electricity during peak period.  As discusses in section 6.1, customers with solar PV 

are paid a flat rate for their contribution to the grid.  Where the FiT is the same as the 

domestic tariff, there is little incentive to conserve electricity during peak time.  This situation 

is exacerbated when the FiT is a multiple of domestic tariff as people can make more money 

by shifting their demand to periods outside production time of the solar PV.  This increases 

the cross subsidy from the lowest income quintile to the four highest income quintiles. 
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In comparison, with the inclining-block tariff, customers are charged on the quantity of 

electricity used.  This pricing scheme is an improvement over the flat tariff because 

customers who use larger quantities of electricity tend to have more or larger air conditioners.  

Air conditioners, in particular, add to demand during domestic peak periods.  This peak 

demand drives increased investment in transmission and distribution infrastructure.  

Customers with solar PV undermine the mute price signal provided by inclining block, as 

solar PV reduces the accumulation meter reading of the quantity of electricity used, which 

may well move the customer onto a cheaper block rate even if the customer is a heavy user of 

electricity and air conditioners. 

Both inclining block and flat tariffs cause cross substitution of costs from customers with 

solar PV to customers without solar PV, because the tariffs lack a ‘time of use price’ signal.  

Furthermore, a retailer’s margin is calculated on the quantities displayed on accumulation 

meters.  This quantity is reduced for customers with solar PV, causing an additional cross 

substitution cost from solar PV owners to non-owners, as retailers try to maintain their profits.  

In Section 2 we discussed how this situation is inequitable.  Furthermore, the cross 

substitution is a symptom of a poor price signal and poor economics.  Both these tariffs, when 

used with accumulation meters, present an unsustainable FiT for solar PV.  A remedy is real 

time pricing that requires replacing accumulation meters with interval or smart meters (EY 

2011, p. 4; Futura 2011, p. 4; PwC 2011, p. 5) 

In Victoria and New South Wales, where interval or smart meters are installed, there are 

TOU tariffs with peak, shoulder and off-peak prices and in some cases seasonally adjusted 

TOU (STOU) tariffs.  These TUoS and DUoS tariffs provide the basis for a more sustainable 

FiT.  However, developing a TOU or STOU tariff requires consideration of the fact that the 

demand load profile differs for each node and between seasons.  However, as PwC (2011, p. 

5) pointed out, there are limitations to the extent that TUoS and DUoS charges for residential 

and small business customers can fully reflect their locational characteristics due to the 

complexity and logistical costs associated with developing locational specific charges. 

6.4 Network underutilisation, NSP remuneration and other non-

scheduled supply 

There are grounds to conclude that the suggested payments in Section 6.1 for deferred DUoS 

and TUoS are unjustifiable after comparing the net peak demand and solar intensity in Figure 

5.  But this conclusion assumes that DUoS and TUoS charges are fixed and considers solar 

PV purely in isolation.  There are a number of factors when considered together make the 

suggested payment scheme in the paper most appropriate to address excessive NSP charge 

concerns raised by consumer advocates (Choice 2012). Additionally, these factors provide a 

sense of urgency to put the suggested scheme in place. 

• the network underutilisation problem exacerbated by both solar PV and climate 

change 

• perverse remuneration structure for NSP in the NEM stifling a more LRMC basis for 

TUoS and DUoS charges to incentivise DSM 

• other forms of non-scheduled supply needing fair remuneration, such as 
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o cogenertation/trigeneration 

o energy storage 

o new distributed energy innovations 

• framing effect of gross and net peak demand and peak demand as a moving target 

Bell, Wild and Foster (2013) investigate the transformative effect of unscheduled generation 

by solar PV and wind generation on net electricity demand.  The non-scheduled generation is 

calculated using the Australian Bureau of Meteorology (BoM 2012a) half hourly solar 

intensity, temperature and wind speed data, the Australian Clean Energy Regulator (CER 

2012) small generation unit (SGU) installations by postcode and the Australian Bureau of 

Statistics (ABS 2012a) postcode to statistical area translation.   

Figure 7 compares the daily average gross and net demand for 2007 and 2011 for the NEM.  

The net demand is met by scheduled and semi-scheduled generation and gross demand by the 

aforementioned plus non-scheduled generation from solar PV and wind generators.   

Figure 7: Comparing daily average gross and net demand for 2007 & 2011 

 
(Bell, Wild & Foster 2013) 

The net and gross demand for 2007 is almost the same because the amount of non-scheduled 

generation is trivial on 2007.   The amount of non-scheduled wind generation is trivial 

compared solar PV generation.  Noticeable is the overall decrease in net demand from 2007 

to 2011.  This decrease in demand is significant as it reduces the revenue base for NSPs, 

which implies an increase in DUoS and TUoS charges per unit of electricity to cover their 

existing capital costs and repair and maintenance.  There are many causes for this decrease in 

demand but in this paper we are interested in the fact that the installation of new solar PV can 

explain a marked portion of the decreases in net demand from 2007 to 2011.  The amount of 

solar PV installed in 2012 roughly doubles the amount installed in 2011.  Solar PV is going 
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to contribute to further underutilisation of the network and further erode the revenue base of 

NSPs.  In Figure 7, the decrease in overnight demand can be explained by solar hot water 

displacing the electric hot water cylinders.  Again this effect is expected to continue and 

further undermine the revenue base for NSPs. 

Additionally, Bell and Wild (2013) find that the effect of climate change on electricity 

demand causes further underutilisation.  This will exacerbate the underutilisation already 

caused by solar PV.  Bell and Wild (2013) model the effect of climate change on electricity 

demand from 2009 to 2030 and find that the rate of increase in peak demand exceeds the rate 

of increase in total demand.  Peak demand drives investment in new infrastructure and the 

rate of total demand is less than total demand, so climate change will increase the cost of 

network provision per unit of electricity. 

Furthermore, the regulatory environment in Australia exacerbates the underutilisation 

problem.  The regulatory investment test for transmission (RIT-T) requires that new 

investment is built to meet peak demand.  The profits of the NSPs are calculated on their 

capital expenditure, which encourages them to build more infrastructure.  If peak demand 

increases, the NSPs are legally obliged to build more infrastructures to accommodate the 

demand and the NSPs profit from accommodating the demand.  This is a perverse dynamic 

from both climate change and economic perspectives.  This remuneration calculation needs to 

be changed to align the profit motive of the NSPs with DSM.  This can be achieved by 

making the utilisation of the existing infrastructure a business objective of the NSP.  To this 

end focusing the DUoS and TUoS tariffs on periods of peak demand would help defer further 

investment in infrastructure and aid DSM.  As previously noted the ability for solar PV to 

ameliorate the current peaks in net demand is modest but alternative non-scheduled 

generation such as co-generation would benefit from the scheme outlined in section 6.1.  

Additionally, the scheme provides appropriate price signals for the diffusion of energy 

storage technologies, such as batteries, into the NEM.  The eventual deployment of Electric 

Vehicles (EVs), with their large battery storage, could aid DSM if the appropriate TOU and 

TOS price signals are in place. Without these price signals, EVs will exacerbate the existing 

peak demand problem in the NEM. 

It must be noted that solar PV has already addressed some peak demand problems.  Bell, 

Wild and Foster (2013) investigate the significance of framing the discussion of demand in 

terms of gross and net when considering the effect of non-scheduled solar PV and wind on 

peak demand.  Figure 8 and Figure 9 use the same data as Figure 7 above but present the data 

by the 50 demand nodes or regions in the NEM.  See Wild and Bell (2011) for demand node 

diagrams.  Figure 8 shows the distribution of the peak loads by time of day for the maximum 

peak loads from 2007 to 2011 at each node in the NEM.  At 15:00 the disparity between 

gross and net demand shows the success of non-scheduled solar PV and wind generation in 

addressing peak demand.  However at 17:00 when framing the discussing in terms of net 

demand non-scheduled generation appears less effective at addressing peak demand.  The net 

demand analysis, however, misses the point that non-scheduled generation has already 

addressed some peak demand issues and by doing so makes the remaining peaks in net 

demand peaks appear more prominent. 
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Figure 8: Distribution by time of day of the maximum peak loads from 2007 to 2011 at each node in the NEM 

 
(Source: Bell, Wild & Foster 2013) 

Figure 9 shows the distribution of the peak loads by year for the maximum peak loads from 

2007 to 2011 at each node in the NEM.  The frequency of maximum peaks for net demand 

between the years 2011 and 2009 shows the greatest disparity.  Using net demand to frame 

the discussion could misattribute the decline to mild weather in 2011 compared to 2009.  

Using a gross demand analysis shows that much of the decline in the frequency of peak 

demand is attributable to non-scheduled solar PV and wind generation. 

Figure 9: Distribution by year of the maximum peak loads from 2007 to 2011 at each node in the NEM 

 
(Source: Bell, Wild & Foster 2013) 
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So, non-scheduled solar PV and wind generation have already addressed gross demand peaks 

and continue to do so but there is a framing effect that focuses peoples’ attention on the now 

more prominent remaining net demand peaks.  The TUoS and DUoS charges need to be 

focused on the net peak demand periods to help deter demand and encourage supply.  

Targeting net demand peaks with higher TUoS and DUoS charges is an ongoing and shifting 

process to improve utilisation of the existing network.  The TUoS and DUoS charges 

discussed in section 6.1 are an integral part of an ongoing process to improve utilisation of 

the network.  The issues surrounding solar PV have motivated this paper but the solution is 

far more encompassing and applies to all form of non-scheduled supply and presents a 

dynamic pricing system to address net demand peaks. 

6.5 Implementing real time pricing and behaviour modification 

Futura (2011, pp. 13-5) reviews the effectiveness of various TOU pricing schemes across the 

NEM and finds that all the schemes cause residential customers to reduce demand in peak 

periods.  For instance Augrid (operating as EnergyAustralia) commissioned a comparative 

analysis of customers on TOU tariffs with those customers without TOU tariffs.  The results 

showed TOU induced a decrease of about 4% in the customers peak demand relative to their 

average demand.  In the Essential Energy trial, peak demand fell by 30% in response to 

Critical Peak Pricing (CPP) of about 38 cents per kWh.  Similarly, Endeavour Energy’s 

Western Sydney Pricing Trial found a 30-40% reduction in peak demand in response to a 

critical peak price of $1.67 per kWh.  CPP is invoked when a customer’s local sub-station is 

expected to reach its maximum load.  The customer is informed prior to the critical price 

period, usually a day ahead.  These CPP events happen a few times a year. 

Despite these positive results, a moratorium on TOU pricing was established in Victoria 

caused in part by the lack of promised IHDs and protection for the most vulnerable 

consumers.  The World Energy Council (WEC 2010, p. 31) discussed how the Australian and 

Victorian legislators paid considerable attention to the functionality of smart meters and cost 

benefit analysis but overlooked the customer engagement required to achieve peak load 

clipping.  Engagement requires a well-designed pricing structure in conjunction with 

education and innovative feedback interfaces.  Section 7 further discusses the problematic 

Victorian TOU and the smart meter rollout. 

The efficacy of feedback interfaces in trials with Dynamic Peak Pricing (DPP) in the NEM 

find that IHDs have limited impact on consumer response to real time pricing compared to 

customers without displays (Futura 2011, pp. 68-70).  The DPP differs from CPP in that 

customers can respond in real time to changes prices as demand peaks.  However the trial 

only compared a web interface with an IHD with a web interface without an IHD.  In contrast, 

Faruqui et al (2010) survey a dozen US and international sites and find that IHDs do induce 

customers to save on energy by an average of 7 per cent.  However, the evidence for demand 

response to real time pricing augmented with IHDs is limited to two sites in the survey.  

WEC (2010, p. 4) recommends that regulators calculate the impact of a smart meter rollout 

and new tariffs on vulnerable consumers.  There are at least four solutions to ameliorate the 

impact: 
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• offer a flat tariff to those on benefits; 

• increase payments to those on benefit support;  

• assistance with energy efficiency; or 

• assistance with the installation of solar PV. 

Recipients of benefit support and low income individuals are less likely to own power hungry 

appliances, so a flat tariff that lacks a price-signal to deter consumption during peak demand 

is less problematic than a flat tariff with more wealthy individuals.   

Increasing the payment to those on a benefit support to cover the increases in electricity 

prices induced by dynamic pricing has the advantage that the price-signal to defer electricity 

use during peak period remains.  If a beneficiary is willing to shift demand from peak periods, 

they could be better off under such an arrangement. 

Assistance with energy efficiency could come in three ways, providing assistance to replace 

appliances with more energy efficiency models, improving the thermal properties of the 

accommodation and education or advice on energy use.  However, the dual problem of low 

income and living in rental accommodation presents an issue when spending on improving 

the thermal properties of the accommodation or replacing appliances that are permanent 

fixtures such as air conditioning. 

Section 3 has already discussed the issue of installing solar PV on rental accommodation. 

7 Conclusion 

The motivation for this paper is to address issues surrounding the calculated feed-in tariffs for 

solar PV and proposing a process to determine a market based FiT.  However, the proposed 

process can equally be used to address remuneration for other forms of non-scheduled 

electricity supply including renewable energy generation, cogeneration, tri-generation and 

energy storage.  Importantly, the proposed pricing process readies the NEM for the diffusion 

of new technologies without necessitating new legislation to calculate a price for each 

technology.  Additionally, this market determined pricing process can be part of the fix to 

address the dramatic rise in Network Service Provider (NSP) charges in the NEM that 

consumer groups are advocating (Choice 2012; EUAA 2011). 

But back to the more specific focus on solar PV that originally motivated this paper.  

Sustainable feed-in tariffs for solar PV are at the confluence of social equity, environmental 

protection and economic growth.  The calculated feed-in tariffs used in the past have been 

successful in developing the solar PV industry but are becoming unsustainable as the industry 

nears or surpasses parity.  A market determined FiT is becoming more appropriate in a 

rapidly expanding market. However many governments, in reaction to budget blowouts, have 

drastically reduced the calculated FiT to the point where it may stifle the growth of the 

industry.  It is imperative that the Australian state governments change from calculated FiTs 

to market determined FiTs to help maintain their budgets and ensure the future growth of this 

important industry in addressing climate change.  The market failures and social inequities 
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that arise have been identified in this article and recommendations to address these issues 

have been made:   

• A national roll out of smart meters for time of use billing  

• Itemised billing for the TUoS and DUoS charges, wholesale electricity price and 

retailer margin and green components. 

• TOU charges for DUoS and TUoS passed through to the consumer as clearly as 

possible. 

• Gross feed-in tariffs for solar PV with payments based on time of supply 

o Payment for self-consumed electricity includes: wholesale electricity price 

plus DUoS and TUoS charges and carbon pricing.  

o Payment for electricity supplied to the grid includes: wholesale electricity 

price plus TUoS charges and carbon pricing.  

• The green charges other than carbon pricing (FIT, RET, and energy saving) to be 

spread across all electricity consumed, whether produced on site or taken from the 

grid.  This pricing scheme will help reduce cross subsidy. 

• The above payment schemes maintain a profit margin for retailers whether electricity 

is generated by residential solar PV or supply by conventional generators.  

• Change the profit basis for NSP from a percentage of CAPEX to grid utilisation to 

encourage DSP and other non-scheduled supply options such as batteries and 

cogeneration 

• State and territory housing authorises to install solar PV along with smart meters to 

help this most disadvantaged segment and aid acceptance of the change to TOU 

billing 

• Those in private rental housing, the second most disadvantaged group and growing 

segment 

o Subsidised loans for landlords to install solar PV to address investment 

myopia 

o Forfeiture of tax free exemption on capital gains on property without solar PV 

installations to address irrational exuberance (consideration needs to be given 

for rental properties unsuitable for solar PV) 

o The landlord receives payment for electricity supplied from the solar PV to the 

grid.  The payment to include: wholesale electricity price and carbon pricing.  

o The tenant receives the DUoS charges for electricity consumed from the 

rooftop solar PV and TUoS charges 

• The small-scale renewable energy certificate be retained until the market has reach 

parity and the market determined FiT tariffs are successfully in place          

The proposed price signals maintain a profit margin for the retailers, provide an incentive for 

NSP to engage in DSP, address the poverty trap for renters and incentivise landlords.  Lack of 

action in developing appropriate price signals for connected solar PV could well see some 

households disconnecting from the grid, once battery storage becomes more inexpensive.  

This situation would be economically suboptimal for the economy as a whole. 
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This case study should be useful for policymakers in other countries which have in place 

elements of the Australian National Electricity Market’s unique combination of features, 

including competitive gross pool wholesale market, common carriage and regulated tariffs. 
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