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Abstract

Markov chain theory is proving to be a powerful approach to bootstrap highly nonlinear

time series. In this work we provide a method to estimate the memory of a Markov chain (i.e.

its order) and to identify its relevant states. In particular the choice of memory lags and the

aggregation of irrelevant states are obtained by looking for regularities in the transition prob-

abilities. Our approach is based on an optimization model. More specifically we consider two

competing objectives that a researcher will in general pursue when dealing with bootstrapping:

preserving the “structural” similarity between the original and the simulated series and assuring

a controlled diversification of the latter. A discussion based on information theory is developed

to define the desirable properties for such optimal criteria. Two numerical tests are developed

to verify the effectiveness of the method proposed here.
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1 Introduction

In the financial literature, starting from the tests on efficient market hypothesis and the technical

analysis (e.g., Brock et al., 1992; Sullivan et al., 1999), bootstrap procedures have been applied

intensively to solve a wide variety of problems. Following such a spread interest, several method-

ological contributions have appeared to improve the initial bootstrap method advanced by Efron

(1979), even if the basic idea remains unchanged (e.g., see the methodological discussion on the

classical bootstrap methods in Freedman, 1984; Freedman and Peters, 1984; Efron and Tibshirani,

1986, 1993). In particular, the heart of the bootstrap consists of resampling some given observations

with the purpose of obtaining a good estimation of statistical properties of the original population.

However, an important restriction to the classical bootstrap methods is that the original population

must be composed of independent identically distributed observations. In the case of time series

taken from the real life, this condition is hardly true. When such hypothesis is not true, a theoretical

model for the data is required and the bootstrap is then applied to the model errors.

A new group of bootstrapping methods has been advanced to reduce the risk of mis-specifying the

model. To this group belong the so called block, sieve, and the local methods of bootstrapping (see

Bühlmann, 2002, for a comparison of these methods). The methods are nonparametric, and assume

that observations can be (time) dependent.

This category of literature has increased in a relatively recent period of a new method of bootstrap-

ping based on Markov chain theory. The major advantage of this approach is that it is entirely

data driven, so that it can smoothly capture the dependence structure of a time series, releasing a

researcher from the risk of wrongly specifying the model, and from the difficulties of estimating its

parameters.

The limitation connected to Markov chains is of course that they are naturally unsuitable to model

discrete-valued processes. This is an unfortunate situation, since several phenomena in many areas

of research are often modeled through continuous-valued processes. In the economic and financial

literature, there are plenty of cases of continuous-valued processes showing complex behaviors, where

observations appear to depend nonlinearly from previous values. It is well known that in the finan-

cial markets, next to technological and organizational factors, psychology and emotional contagion

introduce complex dynamics in driving the expectations on prices (e.g., think to the terms popular

in the technical analysis such as “psychological thresholds”, “price supports”, “price resistances”,

etc.). In such cases, guessing the correct model for complex continuous-valued stochastic processes

is highly risky.

To overcome this risk, a researcher in the need of bootstrapping or simulating a continuous-valued

stochastic process could in principle resort to partitioning its support, obtaining a discretized version

of it, and then apply Markov chain bootstrapping or simulation techniques to model brilliantly any

arbitrary dependence structure. Such a powerful solution has however a major difficulty, that is
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how to organize an efficient partition of the process support. Indeed in the absence of some guide,

fixing arbitrarily a partition excessively refined or raw involves different kinds of drawbacks, ranging

from insufficient diversification of the simulated trajectories to unsatisfactory replication of the key

features of the stochastic process.

In this paper we develop an original general approach to determine the relevant states and the mem-

ory (i.e. the order) of a Markov chain, keeping in mind the major problems connected to applying

Markov chain bootstrapping and simulation to continuous-valued processes.

There is a wide literature which has dealt with the analysis of states and memory of a Markov chain

for resampling purposes, which we review in the following section. It is quite important to notice

that such literature has mainly focused on the estimation of the order of a Markov chain more than

it has done to discriminate the relevant states, and this is due to the fact that Markov chains are

discrete-valued processes, where the states are usually taken as equally important.

From our perspective, focusing on the relevant states is crucial if we want to consider the discretized

versions of complex continuous-valued processes. As mentioned previously, it is frequent in economic

and financial markets that some observed states, or combinations of them, are more relevant than

others in determining the future evolution of the process. In other words, not all the partitions of

the support of a continuous-valued process are suitable to capture the relevant information about its

dependence structure. Finding the optimal ones is therefore crucial to apply correctly the method-

ology of Markov chain bootstrapping and simulation. However bootstrapping requires to take care

of an aspect, which we deal with here explicitly and which is not as critical with simulation. In

Markov chain bootstrapping the probability to re-generate large portions of the original series is a

serious drawback, especially when the number of states and order of the Markov chain increase and

transition probabilities get close to unity (the limiting case is the repetition of the entire original

series). We deal with this diversification problem in our model.

The approach we propose in this paper is based on the joint estimation of the relevant states and

of the order of a Markov chain and consists of an optimization problem. The solution identifies the

partition which groups the states with the most similar transition probabilities. In this way the

resulting groups emerge as the relevant states, that is the states which significantly influence the

conditional distribution properties of the process. Furthermore, as we will show, our approach is

information efficient in the sense of Kolmogorov (1965), that is it searches for the partition which

minimizes the information loss. Our optimization problem includes also the “multiplicity” constraint

which controls for a sufficient diversification of the resampled trajectories.

Our work contributes to the literature on Markov chain bootstrapping in various ways.

Firstly, we develop a method to estimate the parameters of a Markov chain dedicated to bootstrap

via constrained optimization. When the threshold defining the multiplicity constraint is let to vary,

an efficient frontier obtains, whose properties provide a complete description of the optimal solu-
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tions.

Secondly, we propose a non hierarchical approach, which means that a non sequential search of the

order of the Markov chain is performed. More precisely, if some states are grouped at a given time lag

w, then they are not forced to stay together at farther time lags w+ r (with r > 0). This “freedom”

adds flexibility in modeling the dependence structure of a Markov chain and, to our knowledge, our

approach is the first in the literature on Markov chain bootstrapping and simulation to abandon

hierarchical grouping. Such a feature is not of secondary importance, since it allows to model a

Markov chain with non monotonically decreasing memory.

Thirdly, comparing to the bootstrap literature developed in econometrics and applied statistics, our

proposal treats states as if they were of qualitative nature, and the search of efficient partitions is

based only on transition probabilities. In other words, no distance between the values of the different

states is used in the decision of merging them. Again, this approach allows a higher flexibility in the

identification of the relevant states and an increased capacity to capture the dynamics of a Markov

chain.

Fourthly, this paper provides the theoretical grounds for Markov chain bootstrapping and simulation

of continuous-valued processes. To the best of our knowledge, this is the first attempt to extend

Markov chain bootstrapping and simulation in this sense. Our search for the relevant states supplies

the levels where the process modifies significantly its dynamics (i.e. its expected value, its variance,

etc.). Hence, it is designed to minimize the information loss deriving from aggregating the states,

so it helps maintaining highly complex nonlinearities of the original process.

Fifthly, we introduce two new non entropic measures of the disorder of a Markov chain process, and

we study their main properties.

The paper is organized as follows. Section 2 reviews the relevant literature on Markov chain boot-

strapping. Section 3 introduces the settings of the problem. Section 4 discusses some theoretical

properties of the criteria used here to select the optimal dimension of a Markov chain transition

probability matrix. Section 5 discusses some methodological issues. In Section 6 the criteria are

applied to two examples. Section 7 concludes.

2 A Bibliography Review on Markov Chain Bootstrapping

It is possible to group different contributions on resampling procedures based on Markov chain the-

ory.

A first major category is concerned with processes that are not necessarily Markov chains. A series

of stationary data is divided into blocks of length l of consecutive observations; bootstrap samples

are then generated joining randomly some blocks. The seminal idea appears first in Hall (1985)

for spatial data, has been applied to time series by Carlstein (1986), but has been fully developed
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starting with Künsch (1989) and Liu and Singh (1992). In Hall et al. (1995), Bühlmann and Künsch

(1999), Politis and White (2004), and Lahiri et al. (2007), the selection of the parameter l -a crucial

point of this method- is driven by the observed data.

Many variants of the block bootstrap method exist by now; standard references include Politis and

Romano (1992) for the blocks-of-blocks bootstrap, Politis and Romano (1994) for the stationary boot-

strap, and Paparoditis and Politis (2001a, 2002a) for the tapered block bootstrap. For a survey, see

Lahiri (2003). Despite the block based bootstrap methods have been developed to get over the

problem of dependence disruption, they only partially succeed in their goal. Indeed they pass from

the loss of dependency among data to that among blocks.

A second category relies to Markov chains (or processes) with finite states and faces explicitly the

problem of maintaining the original data dependency. Earlier approaches to bootstrap Markov

chains were advanced by Kulperger and Prakasa Rao (1989), Basawa et al. (1990), and Athreya and

Fuh (1992), and have been further investigated in Datta and McCormick (1992). This second group

is more closely related to our work, since it focuses on the transition probabilities of a stationary

Markov chain (or process), as we also do here. It is useful to distinguish some different approaches.

The sieve (Markov) bootstrap method was first advanced by Bühlmann (1997); it consists of fitting

Markovian models (such as an AR) to a data series and resampling randomly from the residuals.

This idea has been further developed in Bühlmann (2002), where the variable length Markov chain

sieve bootstrap method is advanced. This is an intriguing approach since in nature it happens that

only “some” sequences of states (i.e. paths) tend to reappear in an observed sequence more than

others and to condition significantly the process evolution. However this method proceeds in a hier-

archical way to search for the relevant paths, which can be a severe limitation when time dependence

is not monotonically decreasing.

Still in the framework of Markov processes, Rajarshi (1990) and Horowitz (2003) estimate the tran-

sition density function of a Markov process using kernel probability estimates. The idea of using

kernels is adopted also by Paparoditis and Politis (2001b, 2002b), which advance the so called local

bootstrap method. This method rests on the assumption that similar trajectories will tend to show

similar transition probabilities in the future. However it is not uncommon to observe empirical

contradiction to such hypothesis. Besides, the number of time lags to be observed to compare tra-

jectories has to be chosen arbitrarily.

Anatolyev and Vasnev (2002) propose a method (Markov chain bootstrap) based on a finite state

discrete Markov chain. Similarly to what we do here, the authors partition the state space of the

series into I sets (bins). While some interesting estimation properties of the bootstrap method are

shown, the bins are formed simply distributing the ordered values evenly in each of them. Besides,

an arbitrary number of time lags is also fixed to bound the relevant path length.

The approach called regenerative (Markov chain) block bootstrap has been initially developed by
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Athreya and Fuh (1992) and Datta and McCormick (1993), and has been further analyzed by Bertail

and Clémençon (2006, 2007). This method focuses on a chosen recurring state (atom) and the con-

secutive observations between departure from and return to the atom (cycle or block). Bootstrapping

is then accomplished by sampling at random from the observed cycles. This method reconciles the

gap between Markov chain bootstrapping procedures and block bootstrapping, with the important

difference that the cutting points (used to form the blocks) in the Markov chain approach are not

chosen at random, but are data driven. Besides, it does not need to explicitly estimate the transition

probabilities of the observed process. However this relies heavily on the identification of the atom,

which is unfortunately unknown.

The problem of estimating the relevant states and the order of a Markov chain process for boot-

strapping purposes can also be related to the information theory literature, with particular reference

to the data compression analysis. In general terms, data compression problems rely on flows of data

generated by a process with a finite alphabet, like a finite state Markov chain. The criteria adopted

for estimating the relevant parameters of a finite state process include, for example, the AIC (Akaike

Information Criterion, Akaike, 1970), the BIC (Bayesian Information Criterion, Schwarz, 1978), and

the MDL principle (Minimum Description Length principle, Rissanen, 1978). Each criterion consists

of two parts: an entropy-based functional and a penalty term depending on the number of parame-

ters, both to be minimized.

The link between bootstrapping and data compression analysis can be stated as follows. As already

stressed above, a key point in bootstrap problems consists in generating simulated series keeping

the relevant statistical properties of the original one and avoiding the risk of exactly replicating the

original series. Under the data compression theory point of view, the former aspect can be trans-

lated into the minimization of the entropy-type distance, while the latter is formalized through the

minimization of the penalty term.

In this respect, we estimate the relevant parameters of a Markov chain process for bootstrapping

purposes via a constrained optimization problem. Rather than entropy, two specific distances based

on the transition probabilities are introduced and minimized. The introduction of non entropic

measures is based on three reasons: first of all, there is no consensus on a preferable entropy mea-

sure among the several available (Ullah, 1996; Cha, 2007); secondly, as we will see, our distance

indicators are close to usual dispersion measures, analytically simple, and we could prove easily for

them the minimal properties required to disorder measures discussed in Kolmogorov (1965); lastly,

the introduction of two new measures is an extension of the literature on information theory. A

constraint is also introduced which corresponds to minimizing the penalty term.

Starting from Rissanen (1978), Rissanen (1983), Rissanen and Langdon Jr. (1981), and Barron et al.

(1998), which first showed the strict link between coding and estimation, literature on data com-

pression has indeed developed in the direction of model estimation.
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Of particular interest for us are Rissanen (1986), Ziv and Merhav (1992), Weinberger et al. (1992),

Feder et al. (1992), Liu and Narayan (1994), and Weinberger et al. (1995). These works study the

class of finite-state sources and, among other results, develop methods for estimating their states;

an important example of a finite-state source is a Markov chain with variable memory, also called

variable length Markov chain (VLMC ) (see Bühlmann and Wyner, 1999; Bühlmann, 2002). As its

name suggests, a VLMC is characterized by a variable order depending on which state verifies at

past time lags. Starting from time lag 1, states are differentiated only if they contribute to dif-

ferentiate future evolution, otherwise they are lumped together. Farther time lags are considered

only for those states showing additional prediction power. In the end, such approach identifies a

Markov model whose memory changes depending on the trajectory followed by the process. This

approach proves to be computationally efficient, as it allows a strong synthesis of the state space.

As a further application, the method can be used to develop a bootstrap engine (VLMC bootstrap),

which is more user-friendly and attractive than the block bootstrap (Künsch, 1989). Bühlmann and

Wyner (1999) and Bühlmann (2002) are strongly related to our work, as the reduction to a minimal

state space is also an objective of the present study. The main difference in our proposal consists

of a non hierarchical selection of the relevant time lags, in the sense that we do not condition the

relevance of farther time lags to depend on that of the closer ones.

Merhav et al. (1989), Finesso (1992), Kieffer (1993), Liu and Narayan (1994), Csiszár and Shields

(2000), Csiszár (2002), Morvai and Weiss (2005), Peres and Shields (2008), and Chambaz et al.

(2009) consider the problem of the estimation of the order of a Markov chain, assuming that the

states are all relevant at all the time lags up to the estimated order. However, in some applications

a satisfactory estimation of the relevant states is even more important than a precise estimation of

the “memory” of the process. We refer, for example, to the bootstrapping of series with regimes

characterizing the dynamics of different processes in economics and finance.

3 The model

Let us consider an evolutive observable phenomenon, either continuous or discrete. We suppose that

we observe N realizations homogeneously spaced in time and we introduce the set of the time-ordered

observations of the phenomenon, E = {y1, . . . , yN}. The y1, . . . , yN are understood as the values of

a discrete process or as the labels of a discretized continuous process. There exist JN ≥ 1 distinct

states a1, . . . , aJN
∈ E. The corresponding subsets of E, denoted as E1, . . . , EJN

, and defined as:

Ez = {yi ∈ E | yi = az}, z = 1, . . . , JN , i = 1, ..., N

constitute a partition of E. Moreover, fixed z = 1, . . . , JN , then the frequency of state az in the

observed series E is the cardinality of Ez. Let A = {a1, . . . , aJN
} be the range of the observed series.
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We now consider a time-homogeneous Markov chain of order k ≥ 1, denoted as {X(t), t ≥ 0}, with
state space A. To ease the notation, in the following we will simply write Markov chain instead of

time-homogeneous Markov chain. The k-lag memory of the Markov chain implies that the transition

probability matrix should account for conditioning to trajectories of length k. Therefore, we refer

hereafter to a k-path transition probability matrix.

We deal in our paper with a couple of questions related to finding the Markov chain which best

describes the observed series E:

• Which is the optimal k?

• Which is the optimal clustering of A for each time lag w, with w = 1, ..., k?

It is important to notice that, though the second question focuses primarily on the search of the

relevant states, it actually also addresses the analysis of the memory of a Markov chain. Indeed if the

optimal clustering at time lag w returns many or just a few classes, we obtain an information about

the relevance of that time lag. Few or no classes will in general signal low or no conditioning power.

On the contrary the presence of many classes will signal higher relevance. Since the clustering is

operated independently for each time lag, this approach can return a distribution of the relevance

of the memory of a Markov chain over all the time lags, which need not to be in decreasing order

from 1 to k. We introduce a measure of relevance, or “activity”, for a time lag later in Section 5

(Methodological issues).

Let us consider az ∈ A and ah = (ah,k, ..., ah,1) ∈ Ak. The row vector ah is the ordered set of k

states ah,w ∈ A, w = 1, ..., k, listed, in a natural way, from the furthest to the closest realization of

the chain. This ordering of the realizations will be maintained throughout the paper. The Markov

chain has stationary probabilities:

P (ah) = P (X(t) = ah,1, . . . , X(t− k + 1) = ah,k), (1)

and transition probability from ah to state az:

P (az|ah) = P (X(t) = az|X(t− 1) = ah,1, . . . , X(t− k) = ah,k). (2)

According to Ching et al. (2008), we estimate the transition probability P (az|ah) by using the

empirical frequencies f(az|ah) related to the phenomenon. For the sake of simplicity, we avoid

introducing throughout the paper a specific notation for the estimates of the probabilities, therefore

we estimate P (az|ah) by

P (az|ah) =







f(az|ah)∑
j:aj∈A f(aj |ah)

, if
∑

j:aj∈A f(aj |ah) ̸= 0

0, otherwise
. (3)
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Analogously, P (ah) is estimated by

P (ah) =

∑

j:aj∈A f(aj |ah)
∑

b:ab∈Ak

∑

j:aj∈A f(aj |ab)
.

The k-path transition probability matrix of {X(t), t ≥ 0}, which is defined by the quantities in (2),

is estimated by the quantities in (3).

Let us now introduce the set Λ of the partitions of A. A generic element λ ∈ Λ can be written

as λ = {A1, . . . , A|λ|}, where |λ| is the cardinality of λ, with 1 ≤ |λ| ≤ JN , and {Aq}q=1,...,|λ| is a

partition of nonempty subsets of A. The cardinality of Λ is B(JN ), i.e. the Bell number1 of the JN

elements in set A.

Extending our notation to a multidimensional context, we consider the set Λk of k-dimensional

partitions. The set Λk contains the partitions we will focus on in the present paper. A k-dimensional

partition of Λk is denoted as λ and is defined as

λ = {Aqk,k × · · · ×Aqw,w × · · · ×Aq1,1| qw ∈ {1, . . . , |λw|}, w = 1, . . . , k} , (4)

where Aqw,w is a generic class of partition λw and λw is a partition of A at time lag w.

A k-dimensional partition of Λk can also be (more easily) represented by the k-tuple of partitions

λw, w = 1, ..., k, which the classes Aqw,w belong to. So partition λ can also be identified with the

following notation:

λ = (λk, . . . , λw, . . . , λ1).

Such notation describes the fact that λ is a time-dependent partition of A, i.e. A is partitioned in

different ways for each time lag w, w = 1, ..., k.

The cardinality of Λk is [B(JN )]k.

The cardinality of partition λ is:

|λ| =
k∏

w=1

|λw| .

We refer to the probability law P introduced in (2) and define

P (az|Aq) = P (X(t) = az|X(t− 1) ∈ Aq1,1, . . . , X(t− k) ∈ Aqk,k), (5)

where

Aq = Aqk,k × · · · ×Aqw,w × · · · ×Aq1,1 ⊆ Ak, (6)

1The following holds:

B(JN ) =

JN∑

z=1

S(JN , z),

where S(JN , z), z = 1, ..., JN , denote the Stirling numbers of the second kind. S(JN , z) indicates the number of ways
a set of JN elements can be partitioned into z nonempty sets. It holds:

S(JN , z) =
z∑

j=1

(−1)z−j ·
jJN−1

(j − 1)!(z − j)!
.
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and az ∈ A. The quantity in (5) is the transition probability to reach state az at time t after the

process has been in the classes Aqk,k, . . . , Aq1,1 in the previous k times.

The transition probabilities P (az|Aq) in (5) are estimated, as usual, through the empirical frequen-

cies:

P (az|Aq) =







∑
i:ai∈Aq

f(az|ai)
∑

i:ai∈Aq

∑
j:aj∈A f(aj |ai)

, if
∑

i:ai∈Aq

∑

j:aj∈A f(aj |ai) ̸= 0

0, otherwise
.

The quantities P (az|Aq) estimate a new transition probability matrix. To keep the notation as

simple as possible, we continue to refer to this matrix as to the k-path transition probability matrix.

3.1 Partition λ and k-path transition probability matrices

It is worth to explore how the k-path transition probability matrix of {X(t), t ≥ 0} modifies with

the lag k and the particular time-dependent clustering of the state space. If we consider a partition

λ, then we will associate to λ a k-path transition probability matrix of dimension |λ| × JN . Each

row of this matrix corresponds to a class Aq ∈ λ of process paths of length k.

For a sufficiently high k, we can find a partition λ removing the randomness of transitions between

paths and single states. Indeed, the longer the paths are the more the empirical observation of the

phenomenon drives transition probabilities to be trivially equal to 0 or 1. More precisely, each row

of the k-path transition probability matrix would consist of 0’s, with the (possible) exception of one

cell (equal to 1) corresponding to the value that is historically observed after the path (provided

that such a value exists). We explain our concern with an example.

Example 1. Consider a Markov chain {X(t), t ≥ 0} of order k ≥ 1, with state space A = {1, 2}.
The process is represented through different k-path transition probability matrices depending on the

number of time lags. The transition probabilities are driven empirically by the observation of an

evolutive phenomenon. In particular, we assume the following set of time-ordered observations of

the phenomenon:

E = {1, 2, 1, 1, 2, 2, 1}.

To avoid confusing notation, we will denote the k-paths ah,k, the partitions λk and partition classes

Aq,k of these k-paths and their corresponding transition probability matrices Mk with a subscript k

to distinguish the different values of k used in the present example.

We initially consider two time lags (k = 2). The possible process paths ah,2 = (ah,2, ah,1) ∈ A2,

h = 1, ..., 4, are

a1,2 = (1, 1), a2,2 = (1, 2), a3,2 = (2, 1), a4,2 = (2, 2).

We denote with Ms
2 the 2-path transition probability matrix of the Markov chain related to the

observed phenomenon. Ms
2 is associated to the partition of singletons, i.e. each class of the partition
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collects exactly one 2-path:

λ
s
2 = {{a1,2} , {a2,2} , {a3,2} , {a4,2}} .

The estimation in (3) gives

Ms
2 =

states az

partition classes A
s
q,2 of λs

2 1 2

{(1, 1)} 0 1

{(1, 2)} 0.5 0.5

{(2, 1)} 1 0

{(2, 2)} 1 0

On the contrary, the all-comprehensive set partition λ
a
2 is

λ
a
2 = {{a1,2,a2,2,a3,2,a4,2}}

and the corresponding 2-path transition probability matrix is

Ma
2 =

states az

partition classes A
a
q,2 of λa

2 1 2

{(1, 1), (1, 2), (2, 1), (2, 2)} 0.6 0.4

We admit that the all-comprehensive set partition is the one providing less information on the future

evolution of the chain. Nevertheless we stress that, since the second row of Ms
2 does not contain

solely 0’s, with the possible exception of one 1, there is not a partition λ = (λ2, λ1) of the set

A2 = {1, 2}2 such that the randomness of the transitions is completely removed. The number of time

lags (k = 2) adopted is not large enough.

To get to “deterministic paths”, we therefore extend k from 2 to 3: we have ah,3 = (ah,3, ah,2, ah,1) ∈
A3, h = 1, ..., 8. We construct the matrix Ms

3 associated to the partition of singletons

λ
s
3 = {{a1,3} , ..., {a8,3}}

as

Ms
3 =

states az

partition classes A
s
q,3 of λs

3 1 2

{(1, 1, 1)} 0 0

{(1, 1, 2)} 0 1

{(1, 2, 1)} 1 0

{(1, 2, 2)} 1 0

{(2, 1, 1)} 0 1

{(2, 1, 2)} 0 0

{(2, 2, 1)} 0 0

{(2, 2, 2)} 0 0
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It is totally evident that the partition of singletons λ
s
3 removes the randomness of transitions to

states 1 and 2. Consider also partition λ
x = (λx

3 , λ
x
2 , λ

x
1), with λx

3 = {{1, 2}}, λx
2 = {{1} , {2}}, and

λx
1 = {{1, 2}}; the partition includes the following multidimensional classes:

• A
x
1 = {1, 2} × {1} × {1, 2} = {(1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)},

• A
x
2 = {1, 2} × {2} × {1, 2} = {(1, 2, 1), (1, 2, 2), (2, 2, 1), (2, 2, 2)}.

Such a partition removes randomness and the corresponding 3-path transition probability matrix

is

Mx =

states az

partition classes A
x
q of λx 1 2

{(1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)} 0 1

{(1, 2, 1), (1, 2, 2), (2, 2, 1), (2, 2, 2)} 1 0

Observe that, by extending k from 2 to 3, we find partitions with deterministic evolution. In these

cases, starting from an initial path, the evolution of the process continues in a deterministic way.

Despite such “deterministic evolutions”, the all-comprehensive set partition λ
a
3 = {{a1,3, ...,a8,3}} is

still associated to non deterministic transitions of the chain; indeed, the 3-path transition probability

matrix associated to λ
a
3 is

Ma
3 =

states az

partition classes A
a
q,3 of λa

3 1 2

{(1, 1, 1), ..., (2, 2, 2)} 0.5 0.5

Generally speaking, for a given k and A, the all-comprehensive set partition loses all the information

about the conditional distribution of X(t), for each t ≥ 0, while the partition of singletons preserves

all the information available about that distribution.

4 Optimal Criteria

The aim of this section is to present some optimal criteria for choosing the order k of the Markov

chain and the clustering of Ak. As already mentioned in the Introduction, our optimization problems

are based on two competing guidelines: statistical similarity and multiplicity.

4.1 Information-type criteria

Consider a Markov chain {X(t), t ≥ 0} of order k ≥ 1, where A is its state space, and Ω is the event

space of all its trajectories. Let G be a functional space, and g ∈ G be a transformation of the process

{X(t), t ≥ 0} classifying all its trajectories into the classes of a partition λ. In particular, class q of

partition λ, namely Aq, contains the trajectories of {X(t), t ≥ 0} having k-path ah as their last k

realizations (ah is used here to name any k-path included in class q).
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Clearly there is a bijection between the g’s and the λ’s. Consequently, letting Ig be the σ-algebra gen-
erated by g, it can be viewed as the information generated by λ. We denote hereafter {X(t), t ≥ 0} |Ig
as the stochastic process {X(t), t ≥ 0} conditioned on the information provided through Ig.
In the spirit of Kolmogorov (1965), we define a disorder measure for {X(t), t ≥ 0} given the infor-

mation Ig, and denote it as

η({X(t), t ≥ 0} |Ig) = {η(X(t)|Ig), t ≥ 0} ,

where η is a function transforming random variables in nonnegative real numbers. This measure

should not be understood as the conditional probability of the random variables X(t), as t varies,

rather as the “ignorance” that we have about their conditional distributions. Achieving a value of

η = 0 will therefore tell us that we have perfect knowledge about the (conditional) distribution of

{X(t), t ≥ 0}, not that we have eliminated its randomness.

A definition concerning the equivalence of the informative contents of transformations is needed.

Definition 2. Consider g1, g2 ∈ G, and suppose that they are associated to a pair of σ-algebras

Ig1 , Ig2 , respectively. We say that g1 and g2 generate the same information with respect to the

process {X(t), t ≥ 0} when η({X(t), t ≥ 0} |Ig1) = η({X(t), t ≥ 0} |Ig2). We denote in this case

g1 ∼ g2 or, equivalently, Ig1 ∼ Ig2 .

We denote as ga ∈ G the less informative transformation. It is associated to the all-comprehensive

set partition λ
a (the partition making no distinction among all k-paths) and generates the σ-algebra

Ia = {∅,Ω}.
Following an information-type argument (see Kolmogorov, 1965), we can define the gain in applying

g at {X(t), t ≥ 0}
I(g) = η({X(t), t ≥ 0} |Ia)− η({X(t), t ≥ 0} |Ig).

Among all the g’s in G, we call gs the most information conservative transformation. It distinguishes

any k-path ah, in the sense that, under such transformation, different k-paths will be assigned to

different classes of the related partition λ
s. Hence, λs is a partition of singletons and Is indicates

the corresponding σ-algebra. It is easy to show that the functionals ga and gs are opposite in the

following sense:

ga ∈ argmax
g∈G

η ({X(t), t ≥ 0} |Ig) ; (7)

gs ∈ argmin
g∈G

η ({X(t), t ≥ 0} |Ig) . (8)

The following result states immediately:

Theorem 3. It holds

0 ≤ I(g) ≤ η({X(t), t ≥ 0} |Ia), ∀g ∈ G,
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with I(ga) = 0 and I(gs) = η({X(t), t ≥ 0} |Ia).

Remark 4. The result stated above has an intuitive interpretation: if the σ-algebra associated to g

is the most informative (i.e. g ∼ gs), then the gain in applying g to {X(t), t ≥ 0} is maximum, in

that g reduces the disorder by an amount equal to η({X(t), t ≥ 0} |Ia). Conversely, there is no gain

in applying the less informative g, i.e. if g ∼ ga.

To link our work to this information-type framework, we specify in the following sections two dis-

tance indicators, which we call dλ and vλ, as disorder measures for the conditional distribution of

{X(t), t ≥ 0}. As it will be apparent after the analysis of these two distances, dλ and vλ fulfill the

defining properties stated in Kolmogorov (1965), as for both of them we have:

λ
a ∈ argmax

λ∈Λk

dλ (9)

λ
a ∈ argmax

λ∈Λk

vλ,

and

λ
s ∈ argmin

λ∈Λk

dλ (10)

λ
s ∈ argmin

λ∈Λk

vλ.

Observe that (9) is equivalent to (7) and (10) is equivalent to (8), because of the bijection between

g and λ. As already discussed several other disorder measures can of course be devised instead of

the ones we advance. We remark here that respecting the Kolmogorov properties requires careful

inspection. It can happen in some cases that the partition giving the lowest disorder is not the

partition of singletons (λs), or that the maximum disorder is not achieved through λ
a. For example,

a slight variation of the distance indicator dλ (as shown in Remark 8) turns out to violate the argmax

requirement in (9).

4.1.1 Bootstrapping

So far we have dealt with the reduction of a disorder measure η about the conditional distribution

of {X(t), t ≥ 0}. In the absence of any type of constraints, it should be obvious for a researcher

to take the partition of singletons λ
s as the best choice in replicating the original series. However

dealing with Markov chain bootstrapping such choice is not trivial at all. Indeed it can happen that

for η approaching 0 the following outcome also results:

P (az|ah) = 1 or 0,

for all z = 1, ..., JN and all h = 1, ..., (JN )
k
, that is the model forecasts with certainty if a time t

realization of the process is X(t) = az or not, whatever its previous k-path. In such cases the boot-

strapped series will be exact replications of the original series, starting from the initial k observations.
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In practice such a situation will usually verify when the number of observations are insufficient with

respect to the initial number of states JN and the number of time lags k (i.e. insufficient sampling

to estimate the transition probability matrix).

In such cases joining some states through a partition λ coarser than λ
s, amounts to reintroducing

some randomness in the bootstrapped series. Indeed joining the rows of the transition probability

matrix in classes, recovers a non-degenerate conditional distribution of {X(t), t ≥ 0}. However notice

that, in the lack of knowledge about the true conditional distribution of the process {X(t), t ≥ 0},
a partition λ coarser than λ

s re-introduces also disorder next to randomness, and we will not be

able to distinguish neatly between the two effects. This key remark justifies the need of a method

to reintroduce randomness in a controlled way.

Our proposal consists in measuring the degree of the potential diversification of the bootstrapped

series linked to a given partition. In particular, we introduce a multiplicity measure and denote it as

m({X(t), t ≥ 0} |Ig). Among all the partitions sharing the same measure of multiplicity, we will se-

lect the one with the lowest level of disorder. Such method corresponds to the following optimization

problem:

min
g∈G

η({X(t), t ≥ 0} |Ig) (11)

s.t. m({X(t), t ≥ 0} |Ig) ≥ γ,

where γ ≥ 0. Letting γ vary, a set of optimal solutions of problem (11) obtains.

Two multiplicity measures m({X(t), t ≥ 0} |Ig) will be defined, and denoted as lλ and mλ.

4.2 First distance indicator: Absolute difference of k-path transition

probabilities

The first distance indicator focuses on the absolute difference between the elements of the k-path

transition probability matrix. Fixed a value for k, we can define a distance di,j between two paths

ai and aj as follows:

di,j :=

JN∑

z=1

|P (az|ai)− P (az|aj)| . (12)

In order to preserve similarity, we notice that ai and aj should be grouped together when their

distance di,j is close to zero: in this case, we have no reason to distinguish the paths ai and aj . By

extending this argument, we stress that it is desirable that the elements composing the classes of a

suitable partition are close enough to each other, at least on average. We formalize this point. Let

us consider a partition λ ∈ Λk such that λ = (λk, . . . , λ1) and Aq as in (6). The distance in Aq is

defined as

dAq
:= max

i,j:ai,aj∈Aq

di,j . (13)
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We can finally characterize the distance dλ of partition λ with the average value of its classes

distances. More precisely, we have

dλ :=
1

C
·

|λ|
∑

q=1

dAq
· |Aq|, (14)

where |Aq| is the cardinality of partition class Aq and C =
∑|λ|

q=1 |Aq|.

Remark 5. The cardinalities of the classes Aq are calculated discarding the k-paths having null

rows in (3).

Proposition 6. dλ ∈ [0, 2].

Proof. See Appendix A.

Remark 7. The all-comprehensive set partition takes the maximum value of dλ (not necessarily 2).

The opposite case, represented by the partition of singletons, is associated (with certainty) to dλ = 0,

since any singleton has zero distance from itself.

Remark 8. Observe that if we defined the distance indicator by interchanging the calculations of

(13) and (14), we would obtain a contradiction. Indeed, define

d̃Aq
:=

1

|Aq|2
∑

i,j:ai,aj∈Aq

di,j

as the (simple) average distance of partition class Aq. Define then

d̃λ := max
Aq∈λ

dAq

as the distance indicator of partition λ.

It is easy to show that such a defined distance indicator causes the all-comprehensive set partition to

take a value strictly less than other partitions; such indicator contradicts the request of a similarity

(distance) criterion to exhibit its minimum (maximum) value if all the elements are grouped together

(see Theorem 3).

4.3 Second distance indicator: Variance-type measure of k-path transi-

tion probabilities

The second distance indicator is constructed by taking into account the average error made within

the classes of a partition. Let us consider a partition λ ∈ Λk such that λ = (λk, . . . , λ1) and Aq as

in (6).

We then proceed by defining a variance-type measure of the multidimensional class Aq as follows:

vAq
:=

1

JN
·
JN∑

z=1







∑

i:ai∈Aq

Wi · [P (az|ai)− P (az|Aq)]
2






, (15)
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with weights

Wi =
P (ai)

∑

c:ac∈Aq
P (ac)

.2

In this case, we preserve the similarity by imposing that the classes of a suitable partition have a low

value of the indicator defined in (15). More generally, the entire partition should have a low value of

the variance-type measure. To this end, we introduce a weighted average of variance-type measures

of partition classes: given λ, we define its associated variance-type measure as the weighted average

of the vAq
’s:

vλ :=
1

C
·

|λ|
∑

q=1

vAq
· |Aq|, (16)

with C =
∑|λ|

q=1 |Aq|.
We state the following:

Proposition 9. vλ ∈ [0, 0.25].

Proof. See Appendix A.

Remark 10. The all-comprehensive set partition identifies the minimum level of similarity, i.e. the

maximum value of vλ (not necessarily 0.25).

It is easily observed that vλ = 0 if the k-path transition probability matrix shows uniformly distributed

columns within each class Aq. The partition of singletons clearly verifies such condition.

4.4 Multiplicity measure

The multiplicity measures we propose are based on the size of the partition classes.

Let us define lλ an absolute multiplicity measure of the partition λ:

lλ :=

|λ|
∑

q=1

|Aq|2. (17)

The following result holds:

Proposition 11. It results

C ≤ lλ ≤ C2,

with C =
∑|λ|

q=1 |Aq|.

Proof. See Appendix A.

We can also define a relative multiplicity measure mλ, related to a partition λ, by normalizing lλ as

follows:

mλ :=

√
lλ −

√
C

C −
√
C

. (18)

2It is easy to see that

P (az |Aq) =
∑

i:ai∈Aq

Wi · P (az |ai).
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By Proposition 11 and arguments above, we have mλ ∈ [0, 1], being






mλ = 0, for |λw| = JN , ∀w = 1, . . . , k;

mλ = 1, for |λw| = 1, ∀w = 1, . . . , k.
.

In the statement of the optimization problems, as we shall see, mλ will be the adopted multiplicity

measure.

4.5 Two optimization problems

We now present two optimization problems based on the similarity and multiplicity criteria developed

so far. Solving them will provide a way to answer the questions addressed in this paper.

The first one is based on the distance defined in (14).

Definition 12. Let us consider γ ∈ [0, 1], k∗ ∈ {1, . . . , N}, and λ
∗ = (λ∗

k∗ , . . . , λ∗
1) ∈ Λk∗ .

We say that the couple (k∗,λ∗) is d-γ-optimal when it is the solution of the following minimization

problem:

min
(k,λ)∈{1,...,N}×Λk

dλ (19)

s.t. mλ ≥ γ.

The second optimization problem involves the variance-type measure defined in (16).

Definition 13. Let us consider γ ∈ [0, 1], k∗ ∈ {1, . . . , N}, and λ
∗ = (λ∗

k∗ , . . . , λ∗
1) ∈ Λk∗ .

The couple (k∗,λ∗) is said to be v-γ-optimal when it is the solution of the following minimization

problem:

min
(k,λ)∈{1,...,N}×Λk

vλ (20)

s.t. mλ ≥ γ.

In both Definition 12 and 13, we have that k∗ is the optimal order of a Markov chain describing the

evolutive phenomenon. Moreover, λ∗ provides the optimal time-dependent clustering of the state

space, in order to have an approximation of the k∗-path transition probability matrix.

According to the definitions of dλ, vλ, and mλ, we can briefly discuss the two optimization problems.

Letting the multiplicity measure reach its minimum (γ = 0) is equivalent to allow for the partition

of singletons, which ensures the minimum distance (dλ, vλ = 0). Letting γ = 1 corresponds to

forcing the maximum level of multiplicity. This boundary in our case is satisfied only by the all-

comprehensive set partition, in which case the two distance indicators take their maximum value.

It is important to point out how this approach selects jointly the relevant states and the time lags.

Consider a time lag w ≤ k and suppose that a couple of paths ai and aj are both in state au at

time lag w, while another couple am and an are in state ax at the same time lag. For ease of
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notation, let us call the first as the u-couple and the second as the x-couple. In addition suppose

that coincidentally the paths of the u-couple have very similar transition probabilities; the paths

of the x-couple also have very similar transition probabilities but very different from those of the

u-couple. Keeping all other things equal, both minimization problems (19) and (20) will favor those

partitions combining the u-couple and the x-couple in two separate classes. Distinguishing states au

and ax at time lag w would be relevant to our minimization problems.

If, on the contrary, the four paths were all very similar with respect to their transition probabilities,

the partitions joining all of them will be preferred, as they would increase the multiplicity criterion.

As a consequence states au and ax at time lag w would result jointly of no relevance.

5 Methodological Issues

To perform the optimization procedures, a researcher faces several technical problems; an important

computational problem is the restriction of the set of admissible solutions. In particular, we present in

the following two methods/concepts that could help identifying which time lags “count” to determine

the evolution of a process at time t.

A technical definition is firstly needed.

Definition 14. Let us consider a k-dimensional partition λ = (λk, . . . , λ1) of set Ak. Time lag

w ∈ {1, ..., k} is a partition time for λ when λw ̸= {A}, or, equivalently, |λw| > 1.

We introduce the concept of longest-memory k in the following:

Definition 15. Let us consider a k-dimensional partition λ = (λk, . . . , λ1). The longest-memory k

for λ, call it lm-kλ, is a time lag such that:

• lm-kλ ∈ {1, ..., k};

• lm-kλ is a partition time;

• if lm-kλ < k, the set {lm-kλ + 1, ..., k} does not contain partition times.

Remark 16. It is worth noting that, if the set of partition times of λ is not empty, lm-kλ represents

its maximum.

An lm-kλ represents the maximum number of time lags that can be considered in building up a

partition without loosing information: indeed, the time series values are grouped all together before

that time lag (third condition of the previous definition).

We discuss now some important properties of partitions and distance indicators depending on

the previous definition of longest-memory k. Let us consider the partitions λ and λ
′ with λ =

(λk, . . . , λlm-kλ
, . . . , λ1) and λ

′ = (λlm-kλ
, . . . , λ1). It is easily seen that the two partitions have

the same number of classes; in addition, the existence of lm-kλ implies that the distance indicators
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should yield the same value for both the partitions λ and λ
′.

We can extend the properties of partitions and distance indicators to a generic time lag (not neces-

sarily a longest-memory k). More precisely, we state the following theorem:

Theorem 17. Consider a partition λ = (λk, . . . , λ1). Define the w-penalized partition λ
(−w) :=

(λk, . . . , λw+1, λw−1, . . . , λ1), with w ∈ {1, . . . , k}. Assume that:

a. w is not a partition time;

b. for any az ∈ A and any couple of k-paths ai and aj with ai,l = aj,l for l = 1, ..., w−1, w+1, ..., k,

it holds P (az|ai) = P (az|aj).

Then:

1. |λ| = |λ(−w)| (partitions λ and λ
(−w) have the same cardinality);

2. dλ = dλ(−w) and vλ = vλ(−w) .

Proof. See Appendix A.

The theorem holds not only for a generic time lag w, but also for a set of r generic time lags

{w1, ..., wr}, with r > 1.

We now introduce the important concept of ε-active time lag.

Definition 18. Given ε ∈ [0, 1] and w ∈ {1, . . . , k}, a time lag w is said ε-active when, for any

az ∈ A, the following conditions are fulfilled:

• |P (az|ai)− P (az|aj)| < ε, where ai can differ from aj in all times but t − w, for any couple

i, j,

• ε is the lowest number satisfying the previous inequality.

In other words, the observation of the process in t− w brings a “key information” to determine its

evolution at time t.

This definition can be extended to combinations of several ε-active time lags as follows:

Definition 19. Given ε ∈ [0, 1] and ρ indexes w1, . . . , wρ ∈ {1, ..., k}, the time lags w1, . . . , wρ are

said joint ε-active when, for any az ∈ A, the following conditions are fulfilled:

• |P (az|ai)− P (az|aj)| < ε, where ai can differ from aj in all times but t−w1, . . . , t−wρ, for

any couple i, j,

• ε is the lowest number satisfying the previous inequality.

Remark 20. It does not make sense to extend the search for active ρ-tuples whose size is greater

than k − 1, where k is the order of the Markov chain {X(t), t ≥ 0}. Verifying that all the k time

lags are ε-active is equivalent to find that none time is of particular importance over the others for

the analysis at time t of the phenomenon described by X(t).
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We now see how we can jointly use the definitions of longest-memory k and joint ε-active time

lags. Consider the time lags which are less than or equal to the longest-memory k, i.e. the set

{1, ...,lm-kλ}. If we know which time lags in {1, ...,lm-kλ} are joint ε-active, we can neglect all the

others and avoid to evaluate the corresponding partitions.

To be more precise, we detail here the conditions for selecting the non-dominated solutions and build

the efficient frontier. Such definitions will turn out to be useful in the next section, devoted to the

application of our methodology.

Definition 21. Let us consider a couple of partitions λ
u,λx ∈ Λk; we say that λ

u is d-m-non-

dominated (v-m-non-dominated) by λ
x when







dλu ≥ dλx

mλu ≥ mλx

or







dλu ≤ dλx

mλu ≤ mλx

(21)











vλu ≥ vλx

mλu ≥ mλx

or







vλu ≤ vλx

mλu ≤ mλx



 .

According to the previous definition, dominated partitions will be discarded in our analysis; basically,

the rejected partitions show no lower distance (dλ, or vλ) and no higher multiplicity (mλ), with at

least a strict inequality holding.

We now turn to the optimization problems (19) and (20) and introduce the efficient frontier, defined

as follows:

Definition 22. Consider k̄ ∈ {1, . . . , N}.

i. The efficient frontier Fm,d,k̄ related to optimization problem (19) is:

Fm,d,k̄ :=
∪

γ∈[0,1]

{(mλ∗ , dλ∗) ∈ [0, 1]× [0, 2]} ,

where λ
∗ is the solution of the problem:

min
λ∈Λk̄

dλ

s.t. mλ ≥ γ.

ii. The efficient frontier Fm,v,k̄ related to optimization problem (20) is:

Fm,v,k̄ :=
∪

γ∈[0,1]

{(mλ∗ , vλ∗) ∈ [0, 1]× [0, 0.25]} ,

where λ
∗ is the solution of the problem:

min
λ∈Λk̄

vλ

s.t. mλ ≥ γ.
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It is worth noting that we can build an efficient frontier for each value of k ∈ {1, . . . , N}. In practice,

once k has been set equal to k̄, the procedure to build the efficient frontiers associated to the two

optimization problems (19) and (20) can be synthesized in the following points:

1. initially the researcher orders the set of admissible solutions by increasing values of their

distance indicator (v or d);

2. starting from the solution with the lowest value of distance, she/he scans for the next solution

with a higher distance and a higher value of multiplicity (m) and discards the intermediate

solutions (dominated in the sense of Definition 21);

3. step 2. is repeated until the worst value of distance is reached.

The partitions remaining after step 3. constitute the optimal solutions and the values of their

distance indicator and multiplicity measure represent the efficient frontier Fm,d,k̄ or Fm,v,k̄.

It is relevant to assess the finite time performance of the above 3 step procedure. Firstly, we stress

that the procedure provides the solution of the optimization problems (19) and (20) as the parameter

γ varies in [0, 1]. The complexity of the problems increases dramatically as the number of time lags

and states of the Markov chain grow. The following result formalizes this aspect.

Proposition 23. The time required to span the set of admissible solutions is O
(
[J2

NB (JN )]k
)
for

optimization problem (19) and O
(
[JNB (JN )]k

)
for optimization problem (20) as JN → +∞, where

JN is the number of states and k is the order of a Markov chain.

Proof. See Appendix A.

As an example, Table 1 shows the cardinality of the set of admissible solutions for various combina-

tions of time lags k and states JN characterizing a Markov chain. Remember that such cardinality

is equal to [B (JN )]k (see footnote 1).

Insert Table 1 here

6 Numerical Test

To test the effectiveness of our method, we devise the following experiment:

1. we consider a Markov chain of order k, with k set to a chosen value k̄, and artificially design

the associated k̄-path transition probability matrix. The rows on this matrix are joined fol-

lowing a partition, which we call here as “true” partition, where only some of the time lags

are “active” and equivalent states (i.e. those generating similar transition probabilities) are

grouped together. This matrix defines the effective conditional probability distribution of a

Markov chain and serves as benchmark;
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2. based on such matrix, we generate a simulated trajectory of 5, 000 observations;

3. an empirical transition probability matrix is then estimated from this simulated series;

4. our optimization procedure is then applied both to the benchmark and to the empirical matrices

and their solutions (represented through efficient frontiers) are compared. Such procedure is

replicated for both the two distance indicators analyzed here.

If the procedure is effective, then the benchmark and the empirical solutions should “largely” inter-

sect and the true partition should be one of the preferred solutions. More specifically, our experiment

consists in a severe reverse-engineering test, where some parameter estimates obtained from empir-

ical investigation, instead of being tested for statistical significance, are compared with their “true”

values, which is a definitely more conclusive result. We also expect that the method should be fairly

robust to the choice of the distance indicator adopted.

We run this experiment starting with two different transition probability matrices.

6.1 k-path transition probability matrix design

The considered Markov chains (and their transition probability matrices) are defined as follows:

I. a Markov chain of order k̄ = 5 and with state space A = {1, 2, 3}, such that only time lags 3

and 2 are active in the sense of Definition 18. This means that the values observed in time lag 1,

4, and 5 have no influence on the evolution of the process. So for comparison purposes we will

consider transition probability matrices Abench and Aempir with dimensions 35 × 3 = 243× 3;

II. a Markov chain of order k̄ = 3 and with state space B = {1, 2, 3, 4, 5}, such that only time lag

2 and 1 are active. In this case, the transition probability matrices are denoted with Bbench

and Bempir and have dimension 53 × 5 = 125× 5.

The four transition probability matrices are available at the web page http://chiara.eco.unibs.

it/~pelizcri/CuttedTable1andTable2new.xls. To obtain a complete view of the information

embedded in these matrices, consider Tables 2 and 3, where the true partitions are clearly repre-

sented. We call these two partitions as λA,tr and λ
B,tr respectively for cases I. and II.. The same

tables also show which time lags are “active”:

• time lags 3 and 2 in matrix Abench are joint 0.23-active (singularly considered, t − 5, t − 4,

t− 3, t− 2, and t− 1 are ε-active, with ε between 0.83 and 0.84);

• time lags 2 and 1 in matrix Bbench are joint 0.04-active (singularly considered, t − 3, t − 2,

and t− 1 are 0.44-active, 0.34-active, and 0.39-active, respectively).

Insert Tables 2 and 3 here
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Tables 4 and 5 show the average values of the transition probabilities associated to the states

grouped following the true partitions. The black horizontal lines in the matrices help to represent

the corresponding classes. These partitions are formed combining the classes defined in each time

lag, as it has been discussed in the theoretical settings (see Section 3). Values are taken averaging

over the non ε-active time lags. In particular in Table 4, which refers to case I., each row represents

a 5-path observed at active time lags 2 and 3, and the transition probabilities are obtained averaging

27 rows (i.e. the combinations of 3 states in the 3 non ε-active lags) of matrix Abench. The rows in

Table 5, which refers to case II., are the average probabilities calculated over the corresponding 5

rows in matrix Bbench (i.e. the 5 states in the only non ε-active time lag 3).

Insert Tables 4 and 5 here

Numbers in bold help to represent which states the process tends to evolve to preferably, conditional

on its past values. As it is immediate to observe, the rows tend to be very similar when they are in

the same group and change significantly from class to class.

6.2 Simulation and estimation of the empirical transition probability ma-

trix

As anticipated at the beginning of the present section, for each case a simulated trajectory has been

generated consisting of 5, 000 values. The simulation has been based on a Monte Carlo method3. For

each simulated series the corresponding empirical transition probability matrix has been estimated,

based on the usual conditional frequency calculation.

The most obvious differences between the benchmark and the empirical matrices are concerned with

the values of the transition probabilities. Besides, another possible difference consists of the loss of

some rows in the empirical matrix, a case which can verify if the process has very low probabilities

(if not zero) to follow some paths. Finally some paths can be observed with a frequency which is too

low to supply a significant estimate of the corresponding row. To estimation purposes, rows with a

low frequency (i.e. less than 20) have been treated in the same way as the rows which have never

been observed in the simulated series: in both cases those rows have been set to zero, following (3).

6.3 Optimization procedure

The set of admissible solutions in case I. is formed by 3, 125 partitions (the set of partitions on A is

ΛA, with |ΛA| = 5, and |(ΛA)5| = |ΛA|5 = 55). For case II. the same calculation results in 140, 608

partitions (the set of partitions on B is ΛB , with |ΛB | = 52, and |(ΛB)3| = |ΛB |3 = 523).

3For a Markov chain of order k ≥ 1 the simulation procedure starts by fixing an initial combination of k conditional
values and finding the corresponding row on the transition probability matrix. The next value of the Markov chain
is selected extracting a uniformly distributed random number and then applying it to the inverse of the transition
probability distribution of the row just fixed. The selected value is then used to update the conditioning k-path, and
the simulation procedure can be iterated.
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To solve the two optimization problems (19) and (20), we have calculated the distance indicators

and the multiplicity measure for every partition (see (14), (16), and (18)) in the set of admissible

solutions of cases I. and II.. For each case the procedure has been applied both to the benchmark and

the empirical transition probability matrices. Summing up the combinations, the 3 step procedure

presented at the end of Section 5 has been applied 8 times (2 distance indicators × 2 cases ×
2 transition probability matrices) and has generated 8 efficient frontiers Fbench

m,d,5 , Fbench
m,v,5 , Fbench

m,d,3 ,

Fbench
m,v,3 , Fempir

m,d,5 , Fempir
m,v,5 , Fempir

m,d,3 , and Fempir
m,v,3 .

Table 6 shows the time required to calculate the distance indicators and the multiplicity measure for

each case and both the benchmark and empirical transition probability matrices. The calculation

has been performed on a machine with an Intel Pentium M-processor at 2.8 Ghz.

Insert Table 6 here

6.4 Analysis of results

Tables 7, 8, 9, and 10 give details of the benchmark efficient frontiers calculated on the bench-

mark matrices for the two distance indicators and the two cases (i.e. Fbench
m,d,5 , Fbench

m,v,5 , Fbench
m,d,3 , and

Fbench
m,v,3 ). It is interesting to analyze these results moving from the partition of singletons to the

all-comprehensive set partition. As more classes are aggregated the multiplicity indicator improves

at the price of increasing the distance indicator. This is no surprise, but it is important to analyze

the size of the increments in the two indicators passing from one point to the next on these frontiers.

Indeed it is possible to observe that the true partitions λ
A,tr and λ

B,tr represent a kind of “cor-

ner point” in each case. Before these key points the increase in the multiplicity measure is paired

with small increments of the distance indicators. On the contrary, after those turning points every

increase in the multiplicity tends to come at a price of a consistent increase in the distance.

Insert Tables 7, 8, 9, and 10 here

The previous arguments become even more evident observing Fig. 1 and Fig. 2, where the bench-

mark efficient frontiers are graphically represented for cases I. and II. respectively. Each figure has

two panels, i.e. (a) and (b), corresponding respectively to the two optimization problems (19) and

(20). Partitions λ
A,tr and λ

B,tr separate the corresponding benchmark efficient frontiers (Fbench
m,d,5 ,

Fbench
m,v,5 , Fbench

m,d,3 , and Fbench
m,v,3 ) in two clearly different parts.

It is also possible to observe that in both cases the partitions generating the benchmark efficient

frontiers show partition times (see Definition 14) mainly coinciding with the ε−active times.

Insert Figures 1 and 2 here

Turning to the analysis of the empirical efficient frontiers (Fempir
m,d,5 , Fempir

m,v,5 , Fempir
m,d,3 , and Fempir

m,v,3 ), in

Fig. 1 and Fig. 2 it is possible to observe several confirmations about the method proposed here.
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First, we observe that the true partitions belong to all the four empirical efficient frontiers. This

is an important acknowledgment about the consistency of our method, since it states that we have

done a successful reverse-engineering of the true mechanics governing the evolution of the Markov

chains designed for cases I. and II..

Second, the general shape of the empirical efficient frontiers reproduces that of the corresponding

benchmark ones, with the true partitions points acting in both cases as “corner stones”.

Third, it is relevant to observe that such successful result was obtained for both the distance indi-

cators adopted here. This is evidence that, at least in our experiment, the choice between the two

distance indicators is not crucial for the method to operate correctly.

Fourth, the intersection between each pair of efficient frontiers (i.e. the benchmark and the empirical

frontiers paired with the same distance and the same case) is significantly large, as Table 11 shows.

Insert Table 11 here

6.5 Reduction of the set of admissible solutions and computation time

As shown in Proposition 23, the fast growing behavior of the Bell numbers increases dramatically

the computational complexity of our optimization problems. This fact explains why our didactic

applications I. and II. have been kept to a small size.

The reduction of computation time as a consequence of a reduction of the elements in the set of

admissible solutions is a relevant issue justifying the interest towards some heuristics as a way to

apply our method in real situations, where the states and the time lags can be significantly larger

than in our numerical examples.

The following table shows how the computation times change in response to a reduction of the space

of admissible solutions in the two cases analyzed here. In particular the reduction has been operated

through a removal of some partitions, randomly selected, up to some percentages.

Insert Table 12 here

As it was expected, computation times reduce nearly proportionally with respect to the correspond-

ing reduction in the size of the two optimization problems.

7 Conclusions

This paper proposes an optimization method for the problem of estimating the dimension of the

transition probability matrix of a Markov chain for simulation and bootstrap purposes. Several

aspects were to be addressed. We discussed the necessary properties of the criteria required to

identify jointly the state space and the order of a Markov chain. Such discussion is of help in

avoiding the development of inappropriate criteria.
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We formalized our problem as a search of the partition of the states and the order of a Markov

chain which minimize the distance inside each class, subject to a minimal level of multiplicity. Two

alternative distance indicators were proposed, both based exclusively on the transition probabilities.

The multiplicity measure is based on the cardinality of the classes of a given partition.

Several benefits originate from this approach. Since the solution of the optimization problem is

completely data driven, the optimal partition of the states and the order of a Markov chain emerge

without any arbitrary choice on the side of the researcher. Bootstrap and simulation methods based

on the explicit estimation of the transition probabilities can therefore adopt an objective choice.

Besides, closely to information theoretical analysis of Markov chains, our distance indicators respect

fully the Kolmogorov properties required to a disorder measure.

By solving our optimization problem, we obtain an efficient frontier composed of partitions of the

state space of a Markov chain reflecting its evolutive structure. A numerical test has been performed

and has verified the effectiveness of the method proposed here. The efficient frontiers, obtained in

the two cases analyzed in the test, allow to identify the true evolutionary law governing a Markov

chain.

It is important noticing that the full search over the set of admissible solutions is not computationally

feasible if the state space and the order of the Markov chain are not small enough. So the introduction

of heuristic methods to restrict the search among the admissible solutions is a welcome direction for

future research.

Appendix A - Proofs of Propositions 6, 9, 11, and 23 and of

Theorem 17

Proof of Proposition 6. Let ai and aj any two paths of a transition probability matrix. Since di,j

in (12) is a distance, then di,j ≥ 0, and the case di,j = 0 is attained if and only if P (az|ai) = P (az|aj),

for each az ∈ A.

By definition, the maximum value of di,j is reached when P (az|ai) · P (az|aj) = 0, for each az ∈ A,

and there exist two subsets of A, say A1 and A2, such that

∑

z1:az1∈A1

P (az1 |ai) = 1 and
∑

z2:az2∈A2

P (az2 |aj) = 1.

In that case, di,j = 2. By definition of the distance in a class Aq, introduced in (13), then also

dAq
∈ [0, 2].

(14) gives that dλ is a weighted mean of the distances within the classes, and this proves the

result.
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Proof of Proposition 9. Consider (15). Fix an az and focus on the variance formula

∑

i:ai∈Aq

Wi · [P (az|ai)− P (az|Aq)]
2

(22)

appearing inside the curly brackets; this formula is the (weighted) variance of the transition proba-

bilities P (az|ai) related to the k-paths ai of partition class Aq. We want to show that the maximum

value of this variance is 0.25 and is attained when:

• the probabilities P (az|ai) are either 0 or 1,

• the sum of the weights Wi assigned to the 1’s is 1
2 ,

• the sum of the weights Wi assigned to the 0’s is 1
2 .

First, it is easily seen that (22) is maximum if and only if each element of the sum is a global

maximum in its own. To this purpose, let us consider the generic element of the summation in (22),

i.e. Wi · [P (az|ai)− P (az|Aq)]
2
, and put, for ease of notation,

Wi = x, P (az|ai) = y, and P (az|Aq) = k.

The function z(x, y) = x(y − k)2 is to be maximized in the domain [x̄d, x̄u] × [0, 1], with 0 < x̄d <

x̄u < 1; indeed, the probability y cannot take values outside the interval [0, 1]; moreover, the weight

x is allowed to take a value strictly less than 1 and greater than 0, otherwise we would have trivial

solutions: if x = 1, then (22) is worth 0, as the addend under scrutiny is given all the potential weight

and k = y, independently of y; on the contrary, if x = 0, then the addend under scrutiny would

contribute with a 0 to the value of (22), independently of y, and there is no reason in considering it.

Finally, notice that also the weighted average of the probabilities, k, can take only values in [0, 1].

It is easy to see that, constrained to the domain [x̄d, x̄u] × [0, 1], the function z has two points of

local maximum, (x̄u; 0) and (x̄u; 1). Depending on k, the points of global maximum can be (x̄u; 0),

or (x̄u; 1), or both of them:

1. if k > 0.5, then (x̄u; 0) is the only point of global maximum and z(x̄u, 0) = x̄u(0− k)2 = x̄uk
2;

2. if k < 0.5, then (x̄u; 1) is the only point of global maximum and z(x̄u, 1) = x̄u(1− k)2;

3. if k = 0.5, then both (x̄u; 0) and (x̄u; 1) are points of global maximum and z(x̄u, 0) = z(x̄u, 1) =

x̄u · 0.25.

Remember now that k takes the same value for each addend of (22), therefore the maximization of

each addend would give the same answer in terms of y’s.

Remember further that P (az|Aq) = k is the average of the transition probabilities P (az|ai) - the

y’s -, therefore it depends on them, and observe two facts:

a. if all the transition probabilities P (az|ai) in (22) are equal either to 0 or to 1, then their average

is equal either to 0 or to 1; as a consequence, there is a contradiction in choosing the optimal

probabilities as in cases 1. or 2. and forcing k to be greater than 0.5 or less than 0.5, respectively;
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b. on the contrary, if we look at case 3., then there is a way of choosing the optimal P (az|ai)’s to

be both 0 and 1 and their average P (az|Aq) to be 0.5.

To this purpose, call S1 the sum of the weights assigned to the 1’s, and S0 = 1− S1 the sum

of the weights assigned to the 0’s; we can write

P (az|Aq) = S1 · 1 + S0 · 0 = S1,

and conclude that, if we choose the sum of the weights assigned to the 1’s to be S1 = 0.5

(and, obviously, the sum of the weights assigned to the 0’s to be the same), then we fulfill the

features of case 3. jointly for all the addends of (22).

If we choose the probabilities P (az|ai) to be both 0 and 1, with the constraint that the weight

assigned to the 1’s is equal to the weight assigned to the 0’s, then we maximize the variance in (22),

because such variance is now the sum of jointly globally maximized addends. In this case, it is also

easily seen that the variance is worth 0.25. We now want to consider the following k-path transition

probability matrix:

M =

a1 a2

a1 0 1

... 0 1

aM 0 1

aM+1 1 0

... 1 0

aM+N 1 0

The rows a1 to aM+N represent the possible M+N blocks of length k of the observed phenomenon.

We suppose that the Markov chain possesses two states, i.e. the range of the observed series is

A = {a1, a2}. The two columns of M composed by 0’s and 1’s represent the transition probabilities

of block ah to state az, with h = 1, ...,M +N and z = 1, 2 (see (2) and (3)).

In light of the previous discussion, for the variance of the two columns of transition probabilities of

M to be maximum, the weights assigned to the transition probabilities of the first M rows have to

sum to 0.5 and the same is to be true for the transition probabilities of the remaining N rows.

Let us now introduce the possibility for the rows of M to be partitioned. We start by considering a

simple partition of the ah’s, i.e. the all-comprehensive set partition; such partition is composed by

only one class collecting all the ah’s and is denoted with

λ
a = {A1} = {{a1, ...,aM ,aM+1, ...,aM+N}} .

By (15), the variance of λa is equal to the variance of its unique class:

vλa = vA1 =
1

2
· (0.25 + 0.25) = 0.25;

the variance of λa is obtained by averaging the variances of the two columns, and by (22) each

column variance is equal to 0.25.
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In order to get to a generic transition probability matrix partitioned in a generic way, observe that

there are two ways to modify matrix M and the related all-comprehensive set partition λ
a:

i. introducing more than two columns in M,

ii. introducing a finer partition λ.

In both the cases, it is easy to see that vλ decreases or, at most, does not change.

i. Suppose that we expand our matrix M by adding a third column; it is easily observed that, if

the new column is composed by all 0’s, then it does not affect the variance of the first two

columns, but now the variance of the all-comprehensive set partition becomes

vλa =
1

3
· (0.25 + 0.25 + 0) = 0.16̄.

If the third column collects positive numbers strictly less than 1, a corresponding reduction

of the 1’s in the first two columns is needed. In this way, the third column and one or both

of the first two columns do not show an extreme distribution of 0’s and 1’s; consequently, the

variance of such columns, and of the all-comprehensive set partition, cannot be 0.25.

Finally, if we want the added column to show an extreme distribution of 1’s and 0’s, we should

allocate some 1’s to this column. Remember that the only way for the weighted variance of

a column to be maximum (0.25) is to assign weights whose sum is S1 = 0.5 for the 1’s and

S0 = 1 − S1 = 0.5 for the 0’s. Because these weights have to stay fixed across the columns,

there is no way for columns 1, 2, and 3 to jointly have an extreme distribution and a total

weight of 0.5 for their 1’s and a total weight of 0.5 for their 0’s. As a result, the variance of

the all-comprehensive set partition will decrease.

ii. It is easy to see that each possible partition λ of the rows of M takes a value of vλ less than or

equal to the value of the all-comprehensive set partition λ
a. This fact is easily explained by

observing that (16) is a weighted average of the variances inside the classes of partition λ and

does not consider the variance between these classes.

This completes the proof.

Proof of Proposition 11. The absolute multiplicity indicator lλ attains its minimum value when,

for each w = 1, . . . , k, it results |λw| = JN . In this case, the unidimensional partitions λw are

composed by singletons, i.e. λw = {{a1} , . . . , {aJN
}}, and have maximum cardinality, and the

multidimensional partition is the partition of singletons λs. Given that C =
∑|λ|

q=1 |Aq|, (17) becomes

lλ =

|λ|
∑

q=1

|Aq|2 =

|λ|
∑

q=1

12 =

|λ|
∑

q=1

|Aq| = C.

Conversely, lλ attains its maximum value when, for each w = 1, . . . , k, it results |λw| = 1, i.e.

λw = {A}. The multidimensional partition is the all-comprehensive set partition λ
a = ({A}, ..., {A}

︸ ︷︷ ︸

k times

)
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and consists of one class represented by set Ak; in this case, we have

lλ =

|λ|
∑

q=1

|Aq|2 =

1∑

q=1

|Aq|2 = C2.

Proof of Proposition 23. It is known that the number of distinct partitions of JN elements is the

number of Bell of JN , B(JN ). Combining B(JN ) partitions k times, gives the number of elements

in the set of admissible solutions of the optimization problems (19) and (20). This number is equal

to [B(JN )]k. Let us decompose the calculations involved in the assessment of each partition λ in

the set of admissible solutions into three parts:

(i) computation of the distance of each class of λ;

(ii) calculation of the distance indicator of λ (i.e. dλ or vλ);

(iii) calculation of the multiplicity measure mλ.

Let us enter into the details.

We first observe that the Bell number can be decomposed into a summation of Stirling numbers of

the second kind, S(JN , z), which give the number of partitions that can be obtained dividing JN

elements into z classes. In particular, it is known that

B(JN ) =

JN∑

z=1

S(JN , z). (23)

Therefore

(i) The summation in (23) recalls that all the possible unidimensional partitions of λ have cardinality

equal to B(JN ) and can be decomposed into JN groups, where the elements in each group are

the partitions with the same cardinality z (let us call it z-th Stirling class). Depending on vλ

or dλ, the computation time of the internal distances for each partition in the z-th Stirling

class is proportional respectively to the following products;

for vλ

z · S(JN , z) · αv

JN
z

= S(JN , z) · αvJN ,

that is the product of the number of classes (i.e. z), the number of partitions of JN elements

into z classes (i.e. S(JN , z)), and the average number of elements in each z-th Stirling class

(i.e. JN/z); αv is a time conversion parameter depending on the machine computing power;

for dλ

z · S(JN , z) · αd

JN
z

(
JN
z

− 1

)

= S(JN , z) · αdJN

(
JN
z

− 1

)

.

In this case, the computation time increases because dλ implies an average number of com-

parisons among the rows contained in each class equal to 1
2
JN

z

(
JN

z
− 1

)
;
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(ii) the distance indicators we adopt are weighted averages of the class distances calculated for a

given partition. The average operator implies a number of calculations proportional to the

number of elements to be aggregated (z in the z-th Stirling class). Therefore, the aggregation

time required by the z-th Stirling class is given by:

β1 · z · S(JN , z),

where β1 > 0 is a time conversion factor;

(iii) turning to the calculation of the multiplicity measure for the z-th Stirling class, observe that

it is required to calculate the square value of z terms (i.e. the cardinality of each class), so the

computation time can be written as:

β2 · z · S(JN , z),

where β1 > 0 is, as usual, a time conversion factor.

Recalling the Stirling decomposition in (23) and combining the computation times in the previous

points, the time required to accomplish all the calculations for an entire partition of JN elements is,

in the case of vλ,
JN∑

z=1

(αvJN + βz) · S(JN , z),

where β = β1 + β2 is a time conversion parameter following from those in points (ii) and (iii), and

JN∑

z=1

[

αdJN

(
JN
z

− 1

)

+ βz

]

· S(JN , z),

in the case of dλ.

Taking the average time for a partition gives, in the two cases:

1
∑JN

z=1 S(JN , z)

JN∑

z=1

S(JN , z) · (αvJN + βz) ≈ αvJN ,

as JN → +∞ for vλ, and

1
∑JN

z=1 S(JN , z)

JN∑

z=1

S(JN , z) ·
[

αdJN

(
JN
z

− 1

)

+ βz

]

≈ αdJ
2
N ,

as JN → +∞ for dλ.

In other words, the average time to process a partition is proportional to the number of its elementary

states (i.e. the number of the rows of the transition probability matrix) in the case of vλ and to

the square of this number in the case of dλ. Since the combinations of partitions which can be

obtained using k time lags increases with the k-th power of B(JN ) and the number of rows in the

transition probability matrix increases with the k-th power of JN , the expected calculation time

required to span the set of admissible solutions is proportional to [αvJNB(JN )]k in the case of vλ
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and to [αdJ
2
NB(JN )]k in the case of dλ. Concluding the proof, we have

[αvJNB(JN )]k = O([JNB(JN )]k)

for vλ and

[αdJ
2
NB(JN )]k = O([J2

NB(JN )]k)

for dλ as JN → +∞.

Proof of Theorem 17. 1. By hypothesis a., we have:

|λ| = |λ1| · ... · |λw−1| · |λw| · |λw+1| · ... · |λk|

= |λ1| · ... · |λw−1| · 1 · |λw+1| · ... · |λk| = |λ(−w)|.

2. We prove the result only for the distance indicator dλ, being the case of vλ analogous.

Hypothesis b. can be equivalently stated as in the following: for any az ∈ A and any k-path

ah, the probability

P (az|ah) = P (az|(ah,k, . . . , ah,w+1, ah,w, ah,w−1, . . . , ah,1))

is independent from the value of ah,w. Therefore:

P (az|(ah,k, . . . , ah,w+1, ah,w, ah,w−1, . . . , ah,1)) = P (az|(ah,k, . . . , ah,w+1, ah,w−1, . . . , ah,1)).

(24)

By hypothesis a. we have λw = {A}, so that each class of λ can be written as:

Aq = Aqk,k × · · · ×Aqw+1,w+1 ×A×Aqw−1,w−1 × · · · ×Aq1,1. (25)

Hence, there is a relation between the classes of λ and those of λ(−w) according to (25). For

ease of exposition, we set:

Aq = A
(−w)
q ×A,

where

A
(−w)
q = Aqk,k × · · · ×Aqw+1,w+1 ×Aqw−1,w−1 × · · · ×Aq1,1.

By (24) and (13), we have

dAq
= d

A
(−w)
q

. (26)

Moreover

|Aq| = |A(−w)
q | · |A| = |A(−w)

q | · JN . (27)

By point 1., (14), (26), and (27), we obtain:

dλ =
1

(JN )k
·

|λ|
∑

q=1

dAq
· |Aq|
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=
1

(JN )k
·
|λ(−w)|
∑

q=1

d
A

(−w)
q

· |A(−w)
q | · JN

=
1

(JN )k−1
·
|λ(−w)|
∑

q=1

d
A

(−w)
q

· |A(−w)
q | = dλ(−w) .

Tables

Table 1: Cardinality of the set of admissible solutions for various combinations of time lags k and
states JN of a Markov chain.

Time lags (k)
States (JN ) 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 2 4 8 16 32 64 128

3 5 25 125 625 3,125 15,625 78,125

4 15 225 3,375 50,625 759,375 11,390,625 170,859,375

5 52 2,704 140,608 7,311,616 380,204,032 19,770,609,664 1,028,071,702,528

6 203 41,209 8,365,427 1,698,181,681 344,730,881,243 69,980,368,892,329 14,206,014,885,142,800

7 877 769,129 674,526,133 591,559,418,641 518,797,610,148,157 454,985,504,099,934,000 399,022,287,095,642,000,000

This table reports the cardinality of the set of admissible solutions of the two optimization problems (19) and (20)

for a Markov chain of order k and with JN states, k, JN ∈ {1, 2, 3, 4, 5, 6, 7}. See also footnote 1.

Table 2: True partition λ
A,tr associated to the 5-path transition probability matrix

Abench.

λA,tr
5 λA,tr

4 λA,tr
3 λA,tr

2 λA,tr
1

1
2
3

1
2
3

1

2

3

1

2

3

1
2
3

This table refers to the true partition λA,tr
=(λA,tr

5
, λA,tr

4
, λA,tr

3
, λA,tr

2
, λA,tr

1
) designed for case I..

Transition probabilities have been allocated in matrix Abench so that keeping all the 3 states

of the process together at time lags 5, 4, and 1, while separating them

in three sets at time lags 3 and 2, will result in partition classes

populated by 5-paths with highly similar transition probabilities.

See also the next Table 4, which shows the average transition probabilities

of the 5-paths belonging to each class of λA,tr.
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Table 3: True partition λ
B,tr associated to the 3-path transition probability matrix

Bbench.

λB,tr
3 λB,tr

2 λB,tr
1

1
2
3
4
5

1
2

3
4
5

1
2

3
4

5
This table refers to the true partition λB,tr

=(λB,tr
3

, λB,tr
2

, λB,tr
1

) designed for case II..

Transition probabilities have been allocated in matrix Bbench so that keeping all the 5 states

of the process together at time lag 3, while separating them in two sets at time lag 2,

{1,2} and {3, 4, 5} respectively, and in three sets at time lag 1, i.e. {1,2}, {3,4}, and {5},

will result in partition classes populated by 3-paths with highly similar transition probabilities.

See also the next Table 5, which shows the average transition probabilities

of the 3-paths belonging to each class of λB,tr.

Table 4: Average transition probabilities characterizing the true partition λ
A,tr associated to the

5-path transition probability matrix Abench.

yt
yt−5 yt−4 yt−3 yt−2 yt−1 1 2 3
- - 1 1 - 0.137 0.164 0.699
- - 1 2 - 0.780 0.118 0.102
- - 1 3 - 0.791 0.106 0.104
- - 2 1 - 0.110 0.780 0.111
- - 2 2 - 0.778 0.106 0.116
- - 2 3 - 0.785 0.101 0.113
- - 3 1 - 0.105 0.791 0.104
- - 3 2 - 0.786 0.111 0.103
- - 3 3 - 0.116 0.787 0.097

This table refers to case I. (matrix Abench) and represents the classes of the true partition λA,tr

through the average transition probabilities of its 5-paths.

Each row represents a 5-path observed at active times t-3 and t-2, irrespective of the values at times t-5, t-4, and t-1.

The transition probabilities in each row are obtained averaging the corresponding 27 rows of transition probabilities

in matrix Abench. Indeed, for each couple of values yt−2 and yt−3 chosen in the set {1, 2, 3}, 27 alternative 5-paths

can be obtained by letting yt−5, yt−4, and yt−1 vary in the same set (the 3 values the process can take for each of the 3

“non critical” time lags).

To help have a fast view of the “mechanics” of the process, average transition probabilities greater than 0.7 are reported in bold.

At time t-2 state 1 should be separated from states 2 and 3, look, for example, at the first three rows of average transition probabilities.

For the same time lag, states 2 and 3 cannot be put together, see the last two rows of average transition probabilities.

Similar arguments also apply for time lag 3, where states 1, 2, and 3 should be kept separated.
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Table 5: Average transition probabilities characterizing the true partition λ
B,tr associated to the

3-path transition probability matrix Bbench.

yt
yt−3 yt−2 yt−1 1 2 3 4 5
- 1 1 0.366 0.239 0.107 0.093 0.195
- 1 2 0.362 0.236 0.106 0.102 0.194
- 2 1 0.360 0.228 0.104 0.114 0.194
- 2 2 0.365 0.234 0.107 0.098 0.196
- 1 3 0.356 0.236 0.303 0.060 0.046
- 1 4 0.371 0.237 0.307 0.041 0.045
- 2 3 0.370 0.230 0.303 0.052 0.045
- 2 4 0.370 0.236 0.306 0.042 0.046
- 1 5 0.366 0.240 0.024 0.025 0.345
- 2 5 0.372 0.240 0.026 0.018 0.343
- 3 1 0.102 0.286 0.204 0.362 0.046
- 3 2 0.106 0.290 0.206 0.355 0.044
- 4 1 0.105 0.286 0.203 0.362 0.044
- 4 2 0.106 0.279 0.206 0.365 0.044
- 5 1 0.104 0.285 0.206 0.360 0.045
- 5 2 0.105 0.279 0.202 0.370 0.044
- 3 3 0.106 0.289 0.455 0.108 0.042
- 3 4 0.105 0.286 0.454 0.111 0.044
- 4 3 0.107 0.277 0.456 0.115 0.045
- 4 4 0.105 0.291 0.453 0.108 0.043
- 5 3 0.104 0.282 0.453 0.117 0.045
- 5 4 0.103 0.284 0.457 0.112 0.044
- 3 5 0.105 0.286 0.408 0.060 0.142
- 4 5 0.106 0.285 0.404 0.059 0.146
- 5 5 0.107 0.292 0.406 0.049 0.147

This table refers to case II. (matrix Bbench) and represents the classes of the true partition λB,tr

through the average transition probabilities of its 3-paths.

Each row represents a 3-path observed at active times t-2 and t-1, irrespective of the values at time t-3.

The transition probabilities in each row are obtained averaging the corresponding 5 rows of transition probabilities

in matrix Bbench. Indeed, for each couple of values yt−2 and yt−1 chosen in the set {1, 2, 3, 4, 5}, 5 alternative 3-paths

can be obtained by letting yt−3 vary in the same set.

To help have a fast view of the “mechanics” of the process, average transition probabilities greater than 0.2 are reported in bold.

The first four classes of the partition, separated by horizontal lines, are clearly identified in terms of average transition probabilities.

Classes 5 and 6 of the partition seem to show the same average transition probabilities, although a difference

can be spot in the last two columns showing that class 5 mainly evolves to state 4, while class 6 mainly goes to state 5.

36



Table 6: Computation time of the distance indicators dλA/dλB and vλA/vλB and the multiplicity
measure mλA/mλB for the partitions λA of case I. and the partitions λB of case II..

Case Transition probability matrix Computation time of dλA/dλB , vλA/vλB , and mλA/mλB

I. Abench 92 secs

Aempir 37 secs

II. Bbench 3, 123 secs

Bempir 2, 031 secs

Rows 1 and 2 refer to the numerical experiments of case I. based on a set

of admissible solutions with 3, 125 partitions.

Rows 3 and 4 report the computation time in case II.,

where the set of admissible solutions has 140, 608 partitions.

Table 7: Benchmark efficient frontier Fbench
m,d,5 .

Solutions λA,∗ = (λA,∗
5 , λA,∗

4 , λA,∗
3 , λA,∗

2 , λA,∗
1 ) generating Fbench

m,d,5 Partition

mλA,∗ dλA,∗ λA,∗
5 λA,∗

4 λA,∗
3 λA,∗

2 λA,∗
1 times

0 0 {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} 5,4,3,2,1

0.01995 0.04889 {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} 5,4,3,2,1

0.04570 0.08840 {{1,3},{2}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} 5,4,3,2,1

0.07894 0.12321 {{1,3},{2}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} 5,4,3,2,1

0.08473 0.18514 {{1,2,3}} {{1},{2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} 4,3,2,1

0.12933 0.20840 {{1,2,3}} {{1},{2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} 4,3,2,1

0.13709 0.22052 {{1,2,3}} {{1,2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} 3,2,1

0.19694 0.23800 {{1,2,3}} {{1,2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} 3,2,1

0.28764 0.27756 {{1,2,3}} {{1,2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1,2,3}} 3,2

0.39128 0.56533 {{1,2,3}} {{1,2,3}} {{1,2},{3}} {{1},{2},{3}} {{1,2,3}} 3,2

0.52509 0.87978 {{1,2,3}} {{1,2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2,3}} 3,2

0.54838 1.17200 {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1},{2},{3}} {{1,2,3}} 2

0.72790 1.19733 {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1,3},{2}} {{1,2,3}} 2

1 1.67200 {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1,2,3}} -

Column “m
λA,∗” lists the values of the multiplicity measure defined in (18).

Column “d
λA,∗” lists the values of the distance indicator defined in (14).

Columns “λA,∗
5

”, “λA,∗
4

”, “λA,∗
3

”, “λA,∗
2

”, and “λA,∗
1

” show the partitions generating the benchmark efficient frontier Fbench
m,d,5

.

Each solution λA,∗ is displayed through the 1-dimensional partitions λA,∗
5

, λA,∗
4

, λA,∗
3

, λA,∗
2

, and λA,∗
1

of the time series values - 1, 2, and 3 - for each of the k̄ = 5 time lags. The benchmark efficient frontier is the output

of the optimization procedure described in Subsection 6.3. In particular, optimization problem (19) has been solved

according to the 3 step procedure presented at the end of Section 5 and based on the 5-path transition probability matrix Abench

described in Subsection 6.1.

The last column reports the partition times (see Definition 14). Fbench
m,d,5

is plotted in Fig. 1.
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Table 8: Benchmark efficient frontier Fbench
m,v,5 .

Solutions λA,∗ = (λA,∗
5 , λA,∗

4 , λA,∗
3 , λA,∗

2 , λA,∗
1 ) generating Fbench

m,v,5 Partition

mλA,∗ vλA,∗ λA,∗
5 λA,∗

4 λA,∗
3 λA,∗

2 λA,∗
1 times

0 0 {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} 5,4,3,2,1

0.01995 0.00018 {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} 5,4,3,2,1

0.04570 0.00029 {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} 5,4,3,2,1

0.07894 0.00038 {{1,3},{2}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} 5,4,3,2,1

0.08473 0.00090 {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1,2,3}} 5,4,3,2

0.12933 0.00094 {{1,3},{2}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1,2,3}} 5,4,3,2

0.13709 0.00102 {{1},{2},{3}} {{1,2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1,2,3}} 5,3,2

0.19694 0.00103 {{1},{2,3}} {{1,2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1,2,3}} 5,3,2

0.28764 0.00106 {{1,2,3}} {{1,2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1,2,3}} 3,2

0.39128 0.01451 {{1,2,3}} {{1,2,3}} {{1,2},{3}} {{1},{2},{3}} {{1,2,3}} 3,2

0.52509 0.02632 {{1,2,3}} {{1,2,3}} {{1},{2,3}} {{1},{2,3}} {{1,2,3}} 3,2

0.54838 0.04197 {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1},{2},{3}} {{1,2,3}} 2

0.72790 0.04727 {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1},{2,3}} {{1,2,3}} 2

1 0.08247 {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1,2,3}} {{1,2,3}} -

Column “m
λA,∗” lists the values of the multiplicity measure defined in (18).

Column “v
λA,∗” lists the values of the distance indicator defined in (16).

Columns “λA,∗
5

”, “λA,∗
4

”, “λA,∗
3

”, “λA,∗
2

”, and “λA,∗
1

” show the solutions generating the benchmark efficient frontier Fbench
m,v,5 .

Each solution λA,∗ is displayed through the 1-dimensional partitions λA,∗
5

, λA,∗
4

, λA,∗
3

, λA,∗
2

, and λA,∗
1

of the time series values - 1, 2, and 3 - for each of the k̄ = 5 time lags. The benchmark efficient frontier is the output

of the optimization procedure described in Subsection 6.3. In particular, optimization problem (20) has been solved

according to the 3 step procedure presented at the end of Section 5 and based on the 5-path transition probability matrix Abench

described in Subsection 6.1.

The last column reports the partition times (see Definition 14). Fbench
m,v,5 is plotted in Fig. 1.
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Table 9: Benchmark efficient frontier Fbench
m,d,3 .

Solutions λB,∗ = (λB,∗
3 , λB,∗

2 , λB,∗
1 ) generating Fbench

m,d,3 Partition

mλB,∗ dλB,∗ λB,∗
3 λB,∗

2 λB,∗
1 times

0 0 {{1},{2},{3},{4},{5}} {{1},{2},{3},{4},{5}} {{1},{2},{3},{4},{5}} 3,2,1

0.01800 0.01069 {{1,2},{3},{4},{5}} {{1},{2},{3},{4},{5}} {{1},{2},{3},{4},{5}} 3,2,1

0.03929 0.02093 {{1,2},{3},{4},{5}} {{1},{2},{3,4},{5}} {{1},{2},{3},{4},{5}} 3,2,1

0.04747 0.02424 {{1,2,5},{3,4}} {{1},{2},{3},{4},{5}} {{1},{2},{3},{4},{5}} 3,2,1

0.06449 0.03069 {{1,2},{3},{4},{5}} {{1},{2},{3,4},{5}} {{1},{2},{3,4},{5}} 3,2,1

0.07416 0.03114 {{1,2},{3},{4},{5}} {{1},{2},{3,4,5}} {{1},{2},{3},{4},{5}} 3,2,1

0.10575 0.03941 {{1,2},{3},{4},{5}} {{1},{2},{3,4,5}} {{1,2},{3},{4},{5}} 3,2,1

0.11787 0.04022 {{1,2,5},{3,4}} {{1},{2},{3,4,5}} {{1},{2},{3},{4},{5}} 3,2,1

0.13306 0.04760 {{1,2},{3},{4,5}} {{1},{2},{3,4,5}} {{1,2},{3},{4},{5}} 3,2,1

0.15747 0.04864 {{1,2,5},{3},{4}} {{1},{2},{3,4,5}} {{1},{2},{3,4},{5}} 3,2,1

0.17042 0.05216 {{1,2,4,5},{3}} {{1},{2},{3,4,5}} {{1},{2},{3},{4},{5}} 3,2,1

0.17974 0.05760 {{1,2,3},{4,5}} {{1},{2},{3,4,5}} {{1,2},{3},{4},{5}} 3,2,1

0.19170 0.05765 {{1,2,5},{3},{4}} {{1},{2},{3,4,5}} {{1,2},{3,4},{5}} 3,2,1

0.21964 0.05877 {{1,2,4,5},{3}} {{1},{2},{3,4,5}} {{1},{2},{3,4},{5}} 3,2,1

0.22756 0.06616 {1,2,3,4,5} {{1},{2},{3,4,5}} {{1},{2},{3},{4},{5}} 2,1

0.26220 0.06675 {{1,2,4,5},{3}} {{1},{2},{3,4,5}} {{1,2},{3,4},{5}} 3,2,1

0.28725 0.07280 {1,2,3,4,5} {{1},{2},{3,4,5}} {{1,2},{3},{4},{5}} 2,1

0.29360 0.07405 {{1,2,4,5},{3}} {{1,2},{3,4,5}} {{1,2},{3,4},{5}} 3,2,1

0.32083 0.07888 {1,2,3,4,5} {{1,2},{3,4,5}} {{1,2},{3},{4},{5}} 2,1

0.33886 0.07992 {1,2,3,4,5} {{1},{2},{3,4,5}} {{1,2},{3,4},{5}} 2,1

0.37694 0.08624 {1,2,3,4,5} {{1,2},{3,4,5}} {{1,2},{3,4},{5}} 2,1

0.38499 0.28608 {1,2,3,4,5} {{1},{2},{3,4,5}} {{1},{2},{3,4,5}} 2,1

0.42709 0.29192 {1,2,3,4,5} {{1,2},{3,4,5}} {{1},{2},{3,4,5}} 2,1

0.47285 0.29736 {1,2,3,4,5} {{1,2},{3,4,5}} {{1,2},{3,4,5}} 2,1

0.50249 0.44792 {1,2,3,4,5} {{1},{2},{3,4,5}} {{1,2,3,4},{5}} 2,1

0.55483 0.45344 {1,2,3,4,5} {{1,2},{3,4,5}} {{1,2,3,4},{5}} 2,1

0.56071 0.67600 {1,2,3,4,5} {{1,2},{3,4},{5}} {1,2,3,4,5} 2

0.63025 0.67920 {1,2,3,4,5} {{1},{2},{3,4,5}} {1,2,3,4,5} 2

0.69372 0.68160 {1,2,3,4,5} {{1,2},{3,4,5}} {1,2,3,4,5} 2

0.80739 0.88680 {1,2,3,4,5} {1,2,3,4,5} {{1,2,3,4},{5}} 1

1 1.16200 {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} -

Column “m
λB,∗” lists the values of the multiplicity measure defined in (18).

Column “d
λB,∗” lists the values of the distance indicator defined in (14).

Columns “λB,∗
3

”, “λB,∗
2

”, and “λB,∗
1

” show the solutions generating the benchmark efficient frontier Fbench
m,d,3

.

Each solution λB,∗ is displayed through the 1-dimensional partitions λB,∗
3

, λB,∗
2

, and λB,∗
1

of the time series values - 1, 2, 3, 4, and 5 -

for each of the k̄ = 3 time lags. The benchmark efficient frontier is the output of the optimization procedure

described in Subsection 6.3. In particular, optimization problem (19) has been solved according to the 3 step procedure

presented at the end of Section 5 and based on the 3-path transition probability matrix Bbench described in Subsection 6.1.

The last column reports the partition times (see Definition 14). Fbench
m,d,3

is plotted in Fig. 2.
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Table 10: Benchmark efficient frontier Fbench
m,v,3 .

Solutions λB,∗ = (λB,∗
3 , λB,∗

2 , λB,∗
1 ) generating Fbench

m,v,3 Partition

mλB,∗ vλB,∗ λB,∗
3 λB,∗

2 λB,∗
1 times

0 0 {{1},{2},{3},{4},{5}} {{1},{2},{3},{4},{5}} {{1},{2},{3},{4},{5}} 3,2,1

0.04747 0.00001 {{1},{2},{3},{4},{5}} {{1},{2},{3,4,5}} {{1},{2},{3},{4},{5}} 3,2,1

0.11787 0.00002 {{1,2,5},{3},{4}} {{1},{2},{3,4,5}} {{1},{2},{3},{4},{5}} 3,2,1

0.17042 0.00003 {{1,2,3,5},{4}} {{1},{2},{3,4,5}} {{1},{2},{3},{4},{5}} 3,2,1

0.28725 0.00004 {1,2,3,4,5} {{1},{2},{3,4,5}} {{1,2},{3},{4},{5}} 2,1

0.37694 0.00005 {1,2,3,4,5} {{1,2},{3,4,5}} {{1,2},{3,4},{5}} 2,1

0.47285 0.00209 {1,2,3,4,5} {{1,2},{3,4,5}} {{1,2},{3,4,5}} 2,1

0.55483 0.00408 {1,2,3,4,5} {{1,2},{3,4,5}} {{1,2,3,4},{5}} 2,1

0.69372 0.00612 {1,2,3,4,5} {{1,2},{3,4,5}} {1,2,3,4,5} 2

0.80739 0.00998 {1,2,3,4,5} {{1,3,4,5},{2}} {1,2,3,4,5} 2

1 0.01235 {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} -

Column “m
λB,∗” lists the values of the multiplicity measure defined in (18).

Column “d
λB,∗” lists the values of the distance indicator defined in (16).

Columns “λB,∗
3

”, “λB,∗
2

”, and “λB,∗
1

” show the solutions generating the benchmark efficient frontier Fbench
m,v,3 .

Each solution λB,∗ is displayed through the 1-dimensional partitions λB,∗
3

, λB,∗
2

, and λB,∗
1

of the time series values - 1, 2, 3, 4, and 5 -

for each of the k̄ = 3 time lags. The benchmark efficient frontier is the output of the optimization procedure

described in Subsection 6.3. In particular, optimization problem (20) has been solved according to the 3 step procedure

presented at the end of Section 5 and based on the 3-path transition probability matrix Bbench described in Subsection 6.1.

The last column reports the partition times (see Definition 14). Fbench
m,v,3 is plotted in Fig. 2.

Table 11: Partitions generating both the benchmark and the empirical efficient frontiers.

Number of partitions Number of partitions generating both the benchmark

Case Efficient frontier generating the efficient frontier and the empirical efficient frontiers

I. Fbench
m,d,5 14

Fempir
m,d,5 40 7 (50% of benchmark)

Fbench
m,v,5 14

Fempir
m,v,5 28 10 (71% of benchmark)

II. Fbench
m,d,3 31

Fempir
m,d,3 73 9 (29% of benchmark)

Fbench
m,v,3 11

Fempir
m,v,3 44 5 (45% of benchmark)

Table 12: Computation time of the distance indicators and the multiplicity measure for the partitions
λ
A of case I. and the partitions λB of case II. in case of a reduction of the set of admissible solutions.

Computation time

Size of the set Case I. with matrix Aempir Case II. with matrix Bempir

of admissible solutions Number of partitions Secs % reduction Number of partitions Secs % reduction

100% 3, 125 37 - 140, 608 2, 031 -

90% 2, 812 16 56.8% 126, 542 807 60%
50% 1, 562 8 78.4% 70, 302 470 76.9%
10% 312 1 97.3% 1, 412 6 99.9%
Computation times of the two distance indicators d

λA/d
λB and v

λA/v
λB and of the multiplicity indicator m

λA/m
λB

in cases I. and II. if the empirical matrices are selected.

The last three rows show the computation time of distances and multiplicity for randomly reduced sets of admissible solutions.
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Figure 1: Panel (a) shows the benchmark and empirical efficient frontiers Fbench
m,d,5 and Fempir

m,d,5 rep-

resenting the solutions λA,∗ = (λA,∗
5 , λA,∗

4 , λA,∗
3 , λA,∗

2 , λA,∗
1 ) of optimization problem (19). Panel (b)

shows Fbench
m,v,5 and Fempir

m,v,5 representing the solutions of optimization problem (20). Both optimiza-
tion problems have been solved according to the 3 step procedure presented at the end of Section
5. The procedure has been applied to the 5-path transition probability matrices Abench and Aempir

described in Subsection 6.1. Each point of the benchmark efficient frontiers is labelled with its par-
tition times (see Tables 7 and 8). The circled big squares and diamonds indicate the true partition
λ
A,tr.
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Figure 2: Panel (a) shows the benchmark and empirical efficient frontiers Fbench
m,d,3 and Fempir

m,d,3 rep-

resenting the solutions λ
B,∗ = (λB,∗

3 , λB,∗
2 , λB,∗

1 ) of optimization problem (19). Panel (b) shows

Fbench
m,v,3 and Fempir

m,v,3 representing the solutions of optimization problem (20). Both optimization prob-
lems have been solved according to the 3 step procedure presented at the end of Section 5. The
procedure has been applied to the 3-path transition probability matrices Bbench and Bempir described
in Subsection 6.1. Each point of the benchmark efficient frontiers is labelled with its partition times
(see Tables 9 and 10) The circled big squares and diamonds indicate the true partition λ

B,tr.
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