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I. Introduction: Curve fitting or fitting a statistical/mathematical model to data finds its 

application in almost all empirical sciences - viz. physics, chemistry, zoology, botany, 

environmental sciences, economics, etc. It has four objectives: the first, to describe the 

observed (or experimentally obtained) dataset by a statistical/mathematical formula; the 

second, to estimate the parameters of the formula so obtained and interpret them so that 

the interpretation is consistent with the generally accepted principles of the discipline 

concerned; the third, to predict, interpolate or extrapolate the expected values of the 

dependent variable with the estimated formula; and the last, to use the formula for 

designing, controlling or planning. There are many principles of curve fitting: the Least 

Squares (of errors), the Least Absolute Errors, the Maximum Likelihood, the Generalized 

Method of Moments and so on. 

 

 The principle of Least Squares (method of curve fitting) lies in minimizing the 

sum of squared errors, 2 2
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x x x x i n= =  is a vector of values of independent 

(explanatory or predictor) variables. As a problem the dataset, ( , )y x , is given and the 

parameters ( ; 1,2,...,
k

b k p= ) are unknown. Note that m  (the number of independent 

variables, ; 1, 2,...,
j

x j m= ) and p  (the number of parameters) need not be equal. However, 

the number of observations ( n ) almost always exceeds the number of parameters ( p ). 

The system of equations so presented is inconsistent such as not to permit s
2
 to be zero; it 

must always be a positive value. In case s
2
 may take on a zero value, the problem no 

longer belongs to the realm of statistics; it is a purely mathematical problem of solving a 

system of equations. However, the method of the Least Squares continues to be 

applicable to this case too. It is also applicable to the cases where n  does not exceed p .  

 

 Take for example two simple cases; the first of two (linear and consistent) 

equations in two unknowns; and the second of three (linear and consistent) equations in 

two unknowns, presented in the matrix form as y Xb u= + : 
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Since ,y Xb u= +  it follows that ( ) .gX y u b− − =  Here g
X

−  the generalized inverse of X  

(Rao and Mitra, 1971).  Further, since 1( )gX X X X− −′ ′=  (such that 1( )X X X X I−′ ′ = , an 

identity matrix), it follows that 1 1( ) ( ) .b X X X y X X X u− −′ ′ ′ ′= −   Now, if ' 0X u = , we have 
1( ) .b X X X y−′ ′=  For the first system of equations given above, we have 
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This solution is identical to the one obtained if we would have solved the first system of 

equations by any algebraic method (assuming 0iu i= ∀ ). 

 

 Similarly, for the second system of equations, we have 
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This solution is identical to any solution that we would have obtained by solving any 

combination of two equations (taken from the three equation). This is so since the three 

equations are mutually consistent. 

 

 Now, let us look at the problem slightly differently. In the system of equations 

that we have at hand  (i.e. y u Xb− = ), the Jacobian (J, or the matrix of the first (partial) 

derivatives of 
iy  with respect to jb is X. Or, 
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Thus, 1
( )b X X X y

−′ ′=  may be considered as 1
( )J J J y

−′ ′ . In a system of linear equations J (the 

Jacobian, or the matrix of ,i jy b i j∂ ∂ ∀ ) is constant. However, if the system is nonlinear (in 

parameters), the J matrix varies in accordance with the value of jb  at which 
iy  is 

evaluated. This fact immediately leads us to the Gauss-Newton method (of nonlinear 

Least Squares). This method is an iterative method and may be described as follows. 

 

Take any arbitrary value of (0) (0)1 (0)2 (0), ( , , ..., )pb b b b b=  and find (0)J at that. Also, evaluate the 

equations at (0)b  to obtain (0) ; .iy i∀  This (0)y  will (almost always) be different from the y  

given in the dataset. Now, find ' 1 '

(0) (0) (0) (0)( ) ( ).b J J J y y−∆ = −  Obtain the next approximation of 

b  as (1) (0) .b b b= + ∆  Evaluate the equations at (1)b  to obtain (1)y  and also find (1)J  at (1)b . As 

before, find ' 1 '

(1) (1) (1) (1)( ) ( ).b J J J y y−∆ = −  Then, obtain (2) (1) .b b b= + ∆  And continue until b∆  is 

negligibly small. Thus we obtain the estimated parameters, b̂ . Note that an approximate 

value of the first derivative (elements of the Jacobian matrix) of a function ( )bϕ  at any 

point 
ab  may be obtained numerically as 

[ ( ) ( )]
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a

a a

b a a

b b

b b b

ϕ ϕ ϕ+∆ −∆

+∆ −∆

∂ −� �
� �∂ −� �

� . For example, the first 

derivative of 2
( ) 2 5 3v v vφ = + +  at 2v =  may be obtained as [ ( 2 1) ( 2 1)) /[2 1 (2 1)]v vϕ ϕ= + − = − + − −  

which is [(18 + 15 + 3) – (2 + 5 + 3)] / (3 - 1) = [36 - 10]/2 = 13, which is equal to 
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4 5v vϕ∂ ∂ = +  evaluated at v =2.  Note that although in this example we obtain the exact 

value of the first derivative, we would obtain, in general, only an approximate value.  

 

 The Gauss-Newton method is very powerful, but it fails to work when the 

problem is ill conditioned or multi-modal. Hence, many methods have been developed to 

deal with difficult, ill conditioned or multimodal problems. It may be noted that a 

nonlinear least squares problem is fundamentally a problem in optimization of nonlinear 

functions. Initially optimization of nonlinear functions was methodologically based on 

the Lagrange-Leibniz-Newton principles and therefore could not easily escape local 

optima. Hence, its development to deal with nonconvex (multimodal) functions stagnated 

until the mid 1950’s. Stanislaw Ulam, John von Neumann and Nicolas Metropolis had in 

the late 1940’s proposed the Monte Carlo method of simulation (Metropolis, 1987; 

Metropolis et al. 1953) and it was gradually realized that the simulation approach could 

provide an alternative methodology to mathematical investigations in optimization. 

George Box (1957) was perhaps the first mathematician who exploited the idea and 

developed his evolutionary method of nonlinear optimization. Almost a decade later, 

John Nelder and Roger Mead (1964) developed their simplex method and incorporated in 

it the ability to learn from its earlier search experience and adapt itself to the topography 

of the surface of the optimand function. MJ Box (1965) developed his complex method, 

which strews random numbers over the entire domain of the decision variables and 

therefore has a great potentiality to escape local optima and locate the global optimum of 

a nonlinear function. These methods may be applied to nonlinear curve fitting problem 

(Mishra, 2006), but unfortunately such applications have been only few and far between.   

 

The simulation-based optimization became a hotbed of research due to the 

invention of the ‘genetic algorithm’ by John Holland (1975). A number of other methods 

of global optimization were soon developed. Among them, the ‘Clustering Method” of 

Aimo Törn (1978, Törn & Viitanen, 1994), the “Simulated Annealing Method “ of 

Kirkpatrick and others (1983) and Cerny (1985), “Tabu Search Method” of Fred Glover 

(1986), the “Particle Swarm Method” of Kennedy and Eberhart (1995) and the 

“Differential Evolution Method” of Storn and Price (1995) are quite effective. All these 

methods use the one or the other stochastic process to search the global optima. On 

account of the ability of these methods to search optimal solutions of quite difficult 

nonlinear functions, they provide a great scope to deal with the nonlinear curve fitting 

problems. These methods supplement other mathematical methods used to this end. 

 

II. The Differential Evolution Method of Optimization: The method of Differential 

Evolution (DE) was developed by Price and Storn in an attempt to solve the Chebychev 

polynomial fitting problem. The crucial idea behind DE is a scheme for generating trial 

parameter vectors. Initially, a population of points (p in m-dimensional space) is 

generated and evaluated (i.e. f(p) is obtained) for their fitness. Then for each point (pi) 

three different points (pa, pb and pc) are randomly chosen from the population. A new 

point (pz) is constructed from those three points by adding the weighted difference 

between two points (w(pb-pc)) to the third point (pa). Then this new point (pz) is subjected 

to a crossover with the current point (pi) with a probability of crossover (cr), yielding a 

candidate point, say pu. This point, pu, is evaluated and if found better than pi then it 
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replaces pi else pi remains. Thus we obtain a new vector in which all points are either 

better than or as good as the current points. This new vector is used for the next iteration. 

This process makes the differential evaluation scheme completely self-organizing. 

 

III. Objectives of the Present Work: The objective of the present work is to evaluate 

the performance of the Differential Evolution at nonlinear curve fitting. For this purpose, 

we have collected problems - models and datasets - mostly from two main sources; the 

first from the website of NIST [National Institute of Standards and Technology (NIST), 

US Department of Commerce, USA at http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml] 

and the second, the website of the CPC-X Software (makers of the AUTO2FIT Software 

at http://www.geocities.com/neuralpower now new website at www.7d-soft.com). In this 

paper we will use ‘CPC-X’ and ‘AUTO2FIT’ interchangeably. Some models (and 

datasets) have been obtained from other sources also. 

 

 According to the level of difficulty, the problems may be classified into four 

categories: (1) Lower, (2) Average, (3) Higher, and (4) Extra Hard. The list of problems 

(dealt with in the present study) so categorized is given below: 

 
Table-1: Classification of Problems according to Difficulty Level 

Difficulty 
level 

Problem Names 
Source of 
Problem 

Classified 
by 

Chwirut, Gauss-1, Gauss-2, Lanczos-3  NIST NIST Lower 
Judge Goffe Author 

Average ENSO, Gauss-3, Hahn, Kirby, Lanczos-1 
Lanczos-2, MGH-17, Misra-1(c), Misra-
1(d), Nelson, Roszman 

NIST NIST 

Bennett, BoxBOD, Eckerle, MGH-09, 
MGH-10, Ratkowsky-42, Ratkowsky-43, 
Thurber 

NIST NIST Higher 

Hougen Mathworks.com Author 
Extra 
Hard 

CPC-X problems (all 9 functions), Mount  CPC-X CPC-X 

 

 It may be noted that the difficulty level of a Least Squares curve fitting problem 

depends on: (i) the (statistical) model, (ii) the dataset, (iii) the algorithm used for 

optimization, and (iv) the guessed range (or the starting points of search) of parameters. 

For the same model and the optimization algorithm starting at the same point, two 

different datasets may present different levels of difficulty. Similarly, a particular 

problem might be simple for the one algorithm but very difficult for the others and so on. 

Again, different algorithms have different abilities to combine their explorative and 

exploitative functions while searching for an optimum solution. Those with better 

exploitative abilities converge faster but are easily caught into the local optimum trap.  

They are also very sensitive to the (guessed) starting points. The algorithms that have 

excellent explorative power often do not converge fast. Therefore, in fitting a nonlinear 

function to a dataset, there’s many a slip between cup and lip.  
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IV. The Findings: In what follows, we present our findings on the performance of the 

Differential Evolution method at optimization of the Least Squares problems. The 

datasets and the models are available at the source (NIST, CPC-X Software, Mathworks, 

Goffe’s SIMANN). In case of any model, the function has been fitted to the related data 

and the estimated values, ŷ , of the predicted variable (y or the dependent variable) has 

been obtained. The expected values ( ŷ ) have been arranged in an ascending order and 

against the serial number so obtained the expected ŷ  and observed y have been plotted. 

The purpose is to highlight the discrepancies between the observed and the expected 

values of y. The goodness of fit of a function to a dataset may be summarily judged by R
2
 

(that always lies between 0 and 1), s
2
 or RMS. These values (along with the certified 

values) have been presented to compare the performance of the Differential Evolution   

 

1. The Judge’s Function: This function is given in Judge et al (1990). Along with the 

associated data it is a rather simple example of nonlinear least squares curve fitting (and 

parameter estimation) where 2 2

0 11
ˆ( ) ( , )

n

i ii
s y y f b b

=
= − =� is bimodal. It has the global 

minimum for 2 (0.864787293, 1.2357485)=16.0817301s f=  and a local minimum (as pointed 

out by Wild, 2001) (2.498571, -0.9826092)=20.48234f (not f(2.35, -0.319) = 20.9805 as mentioned 

by Goffe, 1994 as well as in the computer program simann.f).  It is an easy task for the 

Differential Evolution method to minimize this function. 

 

The Judge Function Hougen-Watson Function 

  
  

2. The Hougen-Watson Function: The Hougen-Watson model (Bates and Watts, 1988; 

see at Mathworks.com) for reaction kinetics is a typical example of nonlinear regression 

model.  The rate of kinetic reaction (y) is dependent on the quantities of three inputs: 

hydrogen (x1), n-pentane (x2) and isopentane (x3). The model is specified as: 

3
1 2

5

2 1 3 2 4 31

x
b x

b
y rate u

b x b x b x

−

= = +
+ + +

 

For the given dataset the minimum 2 2

1 2 3 4 51
ˆ( ) ( , , , , )

n

i ii
s y y f b b b b b

=
= − =� = 

(1.25258511,  0.0627757706,  0.0400477234,  0.112414719,  1.19137809)f  = ������������ The 

graphical presentation of the observed values against the expected values of y suggests 

that the model fits to the data very well.   
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3. The Chwirut Function: This function (specified as 1 2 3exp( ) /( )y b x b b x u= − + + ) 

describes ultrasonic response (y) to metal distance (x). This function has been fitted to 

two sets of data (data-1 and data-2). In case of the first set of data the Differential 

Evolution method has found the minimum value of 2 2

1 2 31
ˆ( ) ( , , )

n

i ii
s y y f b b b

=
= − =�  

which is (0.190278183  0.00613140045  0.0105309084) = 2384.47714f . However, for the second 

set of data the results are marginally sub-optimal. For the second set of data, the certified 

value of 2 2

1 2 31
ˆ( ) ( , , )

n

i ii
s y y f b b b

=
= − =�  is 513.04802941, but we have obtained 

(0.167327315  0.00517431911  0.0121159344) = 515.15955.  f  

 

Chwirut Function: Data Set 1 Chwirut Function: Data Set 2 

  
 

��������	
�������� 1 2 3 4 5 6h(x) = b exp(-b x) + b exp(-b x) + b exp(-b x)+u � 

Data Set - 1 Data Set -2 Data Set - 3 

   
 

4. Lanczos Function: Lanczos (1956) presented several data sets (at different accuracy 

levels) generated by an exponential function g(x) = 0.0951 exp(-x) + 0.8607 exp(-3x) + 

1.5576 exp(-5x). Using the given dataset of this problem one may estimate the 

parameters of 1 2 3 4 5 6h (x) = b exp(-b x) + b exp(-b x) + b exp(-b x) + u and check if the values of 

1 2 3 4 5 6( , , , , , ) (0.0951, 1, 0.8607, 3, 1.5576, 5)b b b b b b =  are obtained. We have obtained 
2 (0.0951014297,1.00000728,0.860703939,3.00000927,1.55759463,5.00000322)s f= = 9.07870717E-18 

for the first data set, while the certified value is 1.4307867721E-25. The estimated 

parameters are very close to the true parameters. For the second data set we obtained  
2 (0.0962570522,1.00576317,0.864265983,3.00786966,1.55287658,5.00289537)s f= =2.22999349E-11 

against the certified value of 2.2299428125E-11. The estimated parameters are once 

again very close to the true ones. For the third data set we have obtained  
2 (1.58215875,  4.98659893,  0.844297096,  2.95235111,  0.0869370574,  0.955661374)s f=  to 

be 1.61172482E-008. The certified value is 1.6117193594E-08.  
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5. The Kirby Function: Kirby (NIST, 1979) measured response values (y) against input 

values (x) to scanning electron microscope line width standards. The Kirby function is 

the ratio of two quadratic polynomials, 2 2

1 2 1 3 1 4 1 5 1
( ) (b + b x + b x )/(1+ b x  + b x ) + uy g x= = . We 

have obtained  2 (1.67450632,-0.13927398,0.00259611813,-0.00172418116,2.16648026E-005)s f= = 

3.90507396 against the certified value of 3.9050739624.  

 

Kirby Function ENSO Function 

 

 

6. The ENSO Function: This function (Kahaner, et al., 1989) relates y, monthly 

averaged atmospheric pressure differences between Easter Island and Darwin, Australia 

and time (x).  The difference in the atmospheric pressure (y) drives the trade winds in the 

southern hemisphere (NIST, USA). The function is specified as  

  

y = b1 + b2cos(2π x/12) + b3sin(2π x/12) + b5cos(2π x/b4) + 

b6sin(2π x/b4) + b8cos(2π x/b7) + b9sin(2π x/b7) + u 

 

Arguments to the sin(.) and cos(.) functions are in radians.  

 

We have obtained 2 (10.5107492,3.0762128,0.532801425,26.8876144,0.212322867,1.49668704,s f=  

44.3110885 -1.62314288  0.525544858) = 788.539787 against the certified value of 788.53978668. 

  

7. The Hahn Function: Hahn  (197?) studied thermal expansion of copper and fitted to 

data a model in which the coefficient of thermal expansion of copper (y) is explained by a 

ratio of two cubic polynomials of temperature (x) measured in the Kelvin scale.  The 

model was: 2 3 2 3

1 2 3 4 5 6 7
(b + b x + b x  + b x )/(1 + b x + b x  + b x ) + uy = . We have obtained 

 2 (1.07763262, -0.122692829, 0.00408637261, -1.42626427E-006, -0.0057609942, 0.000240537241,s f=  

-1.23144401E-007) = 1.53243829  against the certified value = 1.5324382854. 

 

If in place of specifying the cubic in the denominator as  2 3

5 6 7
(1 + b x + b x  + b x ),   

we permit the specifications as 2 3

8 5 6 7
(b  + b x + b x  + b x )  such that the model specification is 

2 3 2 3

1 2 3 4 8 5 6 7
(b + b x + b x  + b x )/(b  + b x + b x  + b x ) + uy =  and fit it to Hahn’s data, we have: 
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2 (-1.89391801, 0.215629874,-0.00718170192, 2.50662711E-006, 0.0101248026, -0.000422738373,  s f=

2.16423365E-007, -1.75747467) = 1.532438285361130 that meets the certified value given by 

NIST (1.5324382854) for entirely  different set of parameters. The value of b8 is 

remarkably different from unity.  Of course, Hahn’s specification is parsimonious. 

  

Hahn Function Nelson Function 

  

 

8. The Nelson Function:  Nelson (1981) studied performance degradation data from 

accelerated tests and explained the response variable dialectric breakdown strength (y, in 

kilo-volts) by two explanatory variables - time (x1, in weeks) and temperature (x2, in 

degrees centigrade). He specified the model as 
1 2 1 3 2

x  exp(-b x ) + uy b b= − . We have 

obtained 2 (2.5906836, 5.61777188E-009, -0.0577010131) = 3.797683317645143s f=  against the 

NIST-certified value, 3.7976833176.  Another minimum of 2

1 2 3
( , , )S f b b b=  is found to be  

2 (-7.4093164, 5.61777132E-009, -0.0577010134) = 3.797683317645138. s f=   

 

9. The MGH Functions: More, Garbow and Hillstrom (1981) presented some nonlinear 

least squares problems for testing unconstrained optimization software. These problems 

were found to be difficult for some very good algorithms. Of these functions, MGH-09 

(Kowalik and Osborne, 1978; NIST, USA) is specified as 2 2

1 2 3 4
(x + b x)/(x + b x + b ) + uy b=  

that fits to MGH-09 data with NIST certified 2 3.0750560385E-04s =  against which have 

obtained 2 (0.192806935, 0.191282322, 0.123056508, 0.136062327) = 3.075056038492363E-04.s f=  

 

 Another problem (MGH-10;  NIST, USA) is the model (Meyer, 1970) specified 

as 
1 2 3
exp(b /(x + b )) + uy b=  whose parameters are to be estimated on MGH-10 data. We 

have obtained 2 (0.00560963647, 6181.34635, 345.223635) = 87.94585517018605 s f= against the 

NIST certified value of 2 87.945855171s = .   

 

 Yet another problem (MGH-17;  NIST, USA) is the model (Osborne, 1972) 

specified as 
1 2 4 3 5
+ b exp(-b x) + b exp(-b x) + uy b=  whose parameters are to be estimated on 

MGH-17  data. We  have obtained  2 (0.375410053, 1.93584702, -1.46468725, 0.0128675349,s f=  

0.0221226992) = 5.464894697482394E-05 against 2 5.4648946975E-05s = , the NIST certified 

value of s
2
.   

 

 



 9

MGH-09 Function MGH-10 Function MGH-17 Function 

   
 

10. The Misra Functions: In his dental research monomolecular adsorption study, Misra 

(1978) recorded a number of datasets and formulated a model that describes volume (y) 

as a function of pressure (x). His model Misra-1[c]  is: -0.5

1 2
b (1-(1+2b x) ) + uy = . We have 

fitted this function to data (Misra-1[c]) and against the NIST certified value of 

0.040966836971 obtained   2 (636.427256, 0.000208136273) = 0.04096683697065384s f= . 

 

 Another model, -1

1 2 2y = b b x((1+b x) )+ u was fitted to Misra-1[d] data set and we 

obtained  2 (437.369708, 0.000302273244) = 0.05641929528263857s f=  against the NIST 

certified value,   0.056419295283. 

  
Misra-1[c] Function Misra-1[d] Function 

  
 

11. The Thurber Function: Thurber (NIST, 197?) studied electron mobility (y) as a 

function of density (x, measured in natural log) by a model 
2 3

1 2 3 4

2 3

5 6 7

(b  + b x + b x  + b x ) 

(1 + b x + b x  + b x )  
y u= + . 

We fitted this model to the given data and obtained minimum 2 5.642708239666791E+03s =  

against the NIST-certified value = 5.6427082397E+03. The estimated model is obtained 

as: 
2 3

2 3

1288.13968 + 1491.07925x +  583.238368x  + 75.4166441x   
ˆ

1 + 0.96629503x +  0.397972858x  + 0.0497272963x
y =  

 Alternatively, if we specify the model as 
2 3

1 2 3 4

2 3

8 5 6 7

(b  + b x + b x  + b x ) 

(b  + b x + b x  + b x )  
y u= + , we obtain 

2 3
2

2 3

1646.30744 + 1905.67444x + 745.408029x  + 96.386272x   
ˆ ; 5.642708239666863E+03

1.27805041 + 1.23497375x + 0.508629371x  + 0.0635539913x   
y s= =  
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It appears that replacing of 1 by  b8 = 1.27805041 in the model serves no purpose except 

demonstrating that the parameters of the model are not unique. Note that on uniformly 

dividing all the parameters of the (estimated) alternative model by b8 (=1.27805041) we 

do not get the estimated parameters  of the original model. 

 
Thurber Model Thurber Model (alternative specification) 

  

 

12. The Roszman Function: In a NIST study Roszman (19??) investigated the number of 

quantum defects (y)  in iodine atoms and explained them by the excited energy state  (x 

in radians) involving quantum defects in iodine atoms (NIST, USA). The model was 

specified as 
1 2 3 4

y =  b  - b x - arctan(b / (x-b ))/  + eπ . We estimated it on the given data and 

obtained 2 (0.201968657, -6.1953505E-006, 1204.4557, -181.34271) = 4.948484733096893E-04s f=  

against NIST certified value 4.9484847331E-04. 

 

 Roszman Function BoxBOD Function 

	  

 

13. The BoxBOD Function:  Box et al. (1978) explained the biochemical oxygen 

demand (y, in mg/l) by incubation time (x, in days) by the model 
1 2

y = b (1-exp(-b x)) + u . 

We have obtained the minimum 2 (213.809409, 0.547237484) = 1.168008876555550E+03s f=  

against the NIST certified value, 1.1680088766E+03. 

 

14. The Ratkowsky Functions: Two least squares curve-fitting problems presented by 

Ratkowsky (1983) are considered relatively hard. The first (RAT-43, NIST, USA), 

specified as 
1 2 3

y = b  / (1+exp(b -b x)) + u with the dataset RAT-42, has been estimated by us 
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to yield 2 (72.4622375, 2.61807684, 0.0673592002) = 8.056522933811241 s f= against the NIST 

certified value, 8.0565229338. The second model (RAT-43, NIST, USA), specified as 
4(1/b )

1 2 3
y = b  / ((1+exp(b -b x)) u+  with the dataset RAT-43, has been estimated by us to yield 

2 (699.641513, 5.27712526, 0.75962938, 1.27924837) = 8.786404907963108E+03s f=  against the 

NIST certified value, 8.7864049080E+03.  
 

Ratkowsky Function - 42 Ratkowsky Function - 43 

  
 

15. The Bennett Function: Bennett et al. (NIST, 1994) conducted superconductivity 

magnetization modeling and explained magnetism (y) by duration (x, log of time in 

minutes) by the model 3(-1/b )

1 2
b (b + x)y u= + . Against the NIST certified value of minimum 

2
s =5.2404744073E-04, we have obtained  2 (-2523.80508, 46.7378212, 0.932164428)s f= = 

5.241207571054023E-04. The rate of convergence of the DE solution towards the 

minimum has been rather slow. 

 

Bennett Function Eckerle Function 

 

16. The Eckerle Function: In a NIST study Eckerle (197?, NIST, USA) fitted the model 

specified as 2

1 2 3 2
y = (b /b ) exp(-0.5((x-b )/b ) ) + u  where y is transmittance and x is wavelength. 

We have obtained 2 (-1.55438272, -4.08883218, 451.541218) = 1.463588748727469E-03s f=  

against the NIST certified value,  1.4635887487E-03. 

 

17. The Mount Function: Although the specification of this function is identical to the 

Eckerle function, the CPC-X (www.7d-soft.com) have fitted it to a different dataset. 

Against the reference value of 5.159008779E-03, we have obtained the value of 
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2 (1.5412806  4.01728442  450.892013) = 5.159008010368E-03s f= . Further, against the reference 

values of RMS and R
2
  (5.028842682e-03 and 0.9971484642) we have obtained 

5.028842307409E-03 and 0.997148464588044 respectively. 

 

Mount (Eckerle) Function CPC-X-9 Function 

  
 

18. The CPC-X-9 Function: This function is specified as 4b

1 2 3
y = b exp(b  (x + b ) ) + u . We 

fitted this function to the given data.  We obtained R
2
 = 0.9699794119704664 (against 

0.9704752) and RMS = 1.154690900182629  (against 1.1546909) obtained by AUTO2FIT.  
2 (19.1581777, -0.362592746, -29.8159227, 2.29795109) 14.66642182461028S f= = .   

 

19. The CPC-X-8 Function: This is a composite multivariate sigmoid function given as 

6b1

5 32

2 1 3 2 3 4

b
y =   + b x

(b  + x ) (1 + b x ) (x -b )
u+  

We have fitted this function to AUTO2FIT data and obtained R
2
 = 0.9953726879097797 

slightly larger than the R
2 

 (= 0.995372) obtained by AUTO2FIT. The estimated function is 

-2.5

32

1 2 3

174808.701  
ŷ =   + 160.016475 x

(3615.41672 + x ) (1 + 0.536364662 x ) (x -27.8118343)
 

The value of s
2 

is 0.01056060934407798 and RMS = 0.0197770998736 against 0.01977698 

obtained by AUTO2FIT. Further, there is some inconsistency in the figures of R
2
 and 

RMS (of errors) reported by CPC-X. If their R
2
 is smaller than our R

2
 then their RMS(E) 

cannot be smaller than our RMS(E).  

 
CPC-X-8 Function   CPC-X-7 Function 
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20. The CPC-X-7 Function: This function is specified as 1 2 1 3 2 4 1 2

5 1 6 2 7 1 2

b  + b x  + b x   + b x x
y =  + u

1 + b x  + b x  + b x x
. 

We have fitted it to CPC-X data and obtained R
2
 = 0.9715471304250647 against the R

2
 = 

0.9715471 of AUTO2FIT. The value of RMS(E) is 1.006260685261970 against the 

AUTO2FIT value 1.00626078. Our s
2
 is 21.263771900781600. The estimated function is 

 

1 2 1 2

1 2 1 2

  92.0738767  - 0.0267347156 x  - 2.72078474 x  + 0.000744446437 x x
ŷ =  

1 - 0.000384550462 x  - 0.0303920084 x  + (1.07039964E-005) x x
 

 

21. The CPC-X-3 Function: The function specified as 
1 2 3

y = b / (1 + b /x + x/b ) + u  has been 

fitted to the test dataset provided by the CPC-X. We obtain R
2
 = 0.969923509396039 

(against reference value, 0.969929562), RMS = 0.87672786941874 (against 0.8767278) and 
2 (-101.078841, -1258.50244, -170.113552) = 7.68651757015526s f= .   

 

CPC-X-3 Function CPC-X-4 Function 

  
 

22. The CPC-X-4 Function: This function is a ratio of two linear functions, both in four 

predictor variables. Its specification is:  0 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

b + b x + b x + b x + b x
y =  + u

1 + a x + a x + a x + a x
. We have fitted 

this function to the data (given by CPC-X) and obtained R
2
 =  0.8051428644699052 

against the reference value, 0.80514286. The estimated function is:  

 

1 2 3 4

1 2 3 4

674.67934 +  227.745644x +  2120.32578x + 1.64254986x  -176.051025x   
ˆ

1 + 0.572582178x  5.55641932x +  0.0334385585x  -0.560015248x
y =

+
 

 

The 2 53118.2415305900s = and RMS = 48.0571405953 (against reference value 48.05714). 

 

23. The Blended Gaussian Function:  NIST has given three datasets (with different 

difficulty levels) to fit a blended Gassian funcion. The function is specified as 

 
2 2 2 2

1 2 3 4 5 6 7 8
y = b exp(-b x) + b exp(-(x-b ) /b ) + b exp(-(x-b ) /b ) + u  

 

We have fitted this function to the three sets of data and obtained the following results. 
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Estimated Parameters of Blended Gaussian Function with Different Datasets 

Function b1 b2 b3 b4 b5 b6 
Gauss1 ���

����
		 �������
�
��		 ����������		 �
�������		 �����

		 
��������� 
Gauss2 ���������	 ������������	 ����������	 ��
������	 ���
����	 
���������	

Gauss3 ���������		 ���������
��		 
�
�����		 ��
�
����		 ����������		 ��������� 
 b7 b8 NIST certified s

2 Ours  s
2 

Ours RMS Ours R
2 

Gauss1 �
��������		 �������� ����������	 ������������� ��������	 ����������	
Gauss2 ����
����			 �������
�
	 ���
��������	 ���
���������	 ������	 ����������	
Gauss3 ���������		 �������� �����������	 ������������ ������� ���������
� 

 

���������
������	
����������� ���������
������	
����������� ���������
������	
�����������

   
    

It is worth reporting that the function fitting to dataset-1 is easier as it is more robust to 

choice of b2 than the other two datasets. A range (0 < b2 < 10) yields the results. 

However, the other two datasets need (0 < b2 < 0.1) else the algorithm is caught in the 

local optimum trap. All the three datasets are problematic if b5 or b8 is given a range 

much beyond (0, 50).  

 

24. The CPC-X-5 Function: The function 3 5 7 8b b b b

1 2 1 4 2 6 1 2y = b + b x  + b x + b x x + u has been 

fitted to the data provided by CPC-X. We have obtained R
2
 = 0.9932818431032495 against 

0.994632848 and RMS = 0.3024453470938 against 0.2703296 reported by the makers of 

AUTO2FIT. Ours  s
2
 = 2.1953565114881. The estimated model is 

-0.312443915 1.42617267 -0.00228812301 1.42909022

1 2 1 2
ˆ 0.833300621 + 0.0894933939x + 0.634308339x -0.631664635x xy =  

We would also like to mention that the present solution needed several trials to get at 

these values. The problem is extremely ill conditioned and very sensitive to the choice of 

the domain or the initial (starting) values of parameters. 

 

CPC-X-5 Function CPC-X-6 Function 
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25. The CPC-X-6 Function: The function 3 5 7b b b

1 2 4 6y = b + b x + b x + b x u+  has been 

fitted to CPC-X-6 data. We obtain R
2 

= 0.9614190785232305 and RMS = 0.2236173793023 

against the reference values 0.999644261 and 0.0214726136 as reported. We obtained s
2
 

= 0.5000473232604 for the following estimated model. 
0.199999589 0.499998867 -0.0132847799ŷ = -13104.0498 + 1042.09568x  -114.02134x + 12184.2476x  

The problem is extremely unstable.  

 

26. The CPC-X-2 Function: This function is a ratio of two other linear functions given as 

 

1 2 1 3 2 4 3 5 4

1 1 2 2 3 3 4 4

b +b x + b x + b x + b x
y =  + u

1+ a x + a x + a x + a x
 

We have obtained R
2
 = 0.8622291597468909 and RMS = 0.439647321698 against the 

reference values of  0.9346422 and 0.3028129 respectively. The estimated function is 

1 2 3 4

1 2 3 4

4.58342731 + 0.000262177177x  -7.95307951E-006x  -0.0270514576x  + 0.0331768444x
ˆ

1+ 9.54335611E-005x  -3.04612509E-006x  -0.0066977514x  + 0.00668129827x
y =  

For this estimated model the value of s
2
  is  3.479215814564.  

 

CPC-X-2 Function CPC-X-1 Function [y = g(x) view] 

  
 

CPC-X-1 Function [ y vs. yhat  view] 
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27. The CPC-X-1 Function: This function is given as: 5

3

b

4b

1 2

1
y =  + b x

b + b x
u+ . We have 

fitted this function to CPC-X-1 data to obtain R
2
 = 0.882331799699548 against the 

reference value 0.99678004 and RMS = 622.7034 against 104.376667. The value of s
2
 

obtained by us is 69021203.98784. Our estimates are far off the mark. We obtain 

4.3671976

-0.00346072131

1
ŷ =  + 1.46250826E-006x

0.450036183 - 0.450036183x
 

 

V. Concluding Remarks:  The Differential Evaluation (DE) method applied to fit 

functions to datasets given by NIST and others has exhibited a mixed performance. It has 

been successful at the job for all problems, of various degrees of difficulty, given by 

NIST, although, the Blended Gauss functions have been relatively difficult and sensitive 

to the choice of initial values or range of parameters. Among the ten functions (including 

the Mount function) posed by the CPC-X Software as the challenge problems, the DE has 

been able to deal with six (functions # 9, 8, 7, 3, 4 and the Mount) either comfortably or 

with some trial and error in setting the ranges of parameters to be estimated. In particular, 

the Mount function has been very easy to fit. The function # 5 has been quite difficult to 

optimize and although the DE took the solution very close to the one reported by CPC-X, 

but it remained, after all, sub-optimal. The DE solution to the CPC-X-6 function 

remained appreciably far from the optimal fit. 

 

 The DE performed miserably in dealing with two CPC-X functions: #1 and #2. In 

spite of several trials, the DE failed to reach any closer to the optimal solution (the 

reference R
2
 provided by the CPC-X). 

 

The Differential Evolution optimizer is a (stochastic) population-based method. It 

may be noted that all population-based methods of optimization partake of the 

probabilistic nature inherent to them. As a result, one cannot obtain certainty in their 

results, unless they are permitted to go on for indefinitely large search attempts. Larger is 

the number of attempts greater is the probability that they would find out the optimum. 

Secondly, all of them adapt themselves to the surface on which they find the optimum. 

The scheme of adaptation is largely based on some guesswork since nobody knows as to 

the true nature of the problem (environment or surface) and the most suitable scheme of 

adaptation to fit the given environment. Surfaces may be varied and different for different 

functions. Further, like any other population-based method of optimization, the DE 

method operates with a number of parameters that may be changed at choice to make it 

more effective. This choice is often problem oriented and that for obvious reasons. A 

particular choice may be extremely effective in a few cases, but it might be ineffective (or 

counterproductive) in certain other cases. Additionally, there is a relation of trade-off 

among those parameters.  

 

The CPC-X problems are the challenge problems for any nonlinear Least Squares 

algorithm. About these problems, the CPC-X Software themselves remark: “Some of 

those test data are very hard, and may never get right answers without using Auto2Fit. 

Even for Auto2Fit, it does not ensure every run will be successful. … In some cases, you 

may try to change the control parameter of  ‘Population Size’  …”. They have suggested 
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that to solve these problems one should use Global Levenberg-Marquard or Global BFGS 

method. If the DE has performed well at more than half the number of such challenge 

problems (and done better than the AUTO2FIT in some cases), we may conclude that its 

success rate is appreciably high and it may be used for solving nonlinear curve fitting 

problem with some good degree of reliability and dependability. It may be noted that 

there cannot be any ‘sure success method’ to solve all the problem of nonlinear least 

squares curve fitting.   
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