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Abstract

The new Credit Risk Indicator (CRI) based on credit rating migration matrices is introduced.

We demonstrate strong correlation between CRI and a number of defaults (ND) through several

business cycles. The new model for the simulation of the annual number of defaults, based on the

1st quarter CRI data, is proposed.

Monitoring of the business cycle dynamics is usually based on a set of microeconomic

indicators, such as GDP, consumer con�dence index, in�ation rate, etc. (see, for example,

(ECDG, 2012), (Carstensen et al., 2010), (Ziegler, 2009), (Altman et al., 2003), and

(Ormerod, 2004)); indicators are updated quarterly in (ECDG, 2012); the procyclicity

e�ect was analyzed in (Altman et al., 2003). Authors of (Okashima and Frison, 2000)

investigated forecast of default rates by Moody's downgrade/upgrade ratio for high-yield

corporate bonds. Each of indicators re�ects a certain aspect of the business cycle, but a

full picture requires taking into account several indicators simultaneously. One of ways

of the integral approach to the business cycle is to consider the dynamics of defaults

which re�ects directly the worsening of the business cycle conditions. This approach,

unfortunately, describes only past events, and can be used mostly for analysis of the

historical data. In this paper we would like to bring attention to the dynamics of credit
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rating transition matrices. Transition matrices re�ect movements of credit ratings and,

potentially, give insights into possible future defaults.

Credit transition matrices re�ect credit rating migrations, including defaults, during

certain periods (for example, annual and quarterly matrices are provided by rating agen-

cies). The matrix structure is very sensitive to the business cycle dynamics, therefore,

the temporal behaviour of the transition matrix has predictive power with respect to

recession periods in business cycles. Recession periods are typically characterized by an

elevated number of defaults, therefore, the increase of rating downgrades and decrease of

ratings upgrades could indicate a potential increase of the number of defaults.

It is important to note that the number of defaults and the amount of �nancial losses

(total debt outstanding) have the same dynamics pattern (Figure 1). Therefore, we use

the number of defaults as a measure of positioning in the business cycle.
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Figure 1: Total number of defaults (dots) and total debt outstanding (columns) from

1981 to 2011 (S&P, 2012)

Two transition matrices for 2009 (recession, peak, period) and for 2006 (quiet period)

are presented in the Table 1 (both matrices are based on the S&P data).
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Table 1: Transition matrices for 2009 and 2006

2009 Annual transition matrix

AAA AA A BBB BB B CCC/C D

AAA 0.91 0.090 0 0 0 0 0 0

AA 0 0.82 0.170 0.007 0.002 0 0 0

A 0 0.004 0.90 0.083 0.005 0.003 0 0.002

BBB 0 0 0.020 0.90 0.060 0.009 0.002 0.006

BB 0 0 0 0.030 0.82 0.130 0.007 0.008

B 0 0 0.002 0 0.030 0.77 0.090 0.112

CCC/C 0 0 0 0 0 0.080 0.33 0.590

2006 Annual transition matrix

AAA AA A BBB BB B CCC/C D

AAA 0.98 0.020 0 0 0 0 0 0

AA 0.010 0.98 0.020 0 0 0 0 0

A 0 0.040 0.92 0.040 0.003 0 0 0

BBB 0 0.002 0.050 0.92 0.030 0.004 0 0

BB 0 0.001 0 0.050 0.89 0.060 0.001 0.003

B 0 0 0.001 0.001 0.100 0.86 0.030 0.009

CCC/C 0 0 0 0 0 0.180 0.67 0.154

The default probabilities (D, last column) for the peak period are signi�cantly higher

than the default probabilities for quiet periods starting from the investment grade A-

rating. It is important to note that pre-diagonal elements (probabilities of one-notch

migrations) are also sensitive to the business cycle period. In the matrix for recession

period (2009) the pre-diagonal downgrade probabilities (shaded cells) are signi�cantly

higher than corresponding one-notch upgrade probabilities for all ratings starting from

AA to CCC/C. The opposite picture is seen for the quiet periods where some of upgrade

probabilities are higher than the downgrade probabilities (for example: CCC/C → B, B

→ BBB, and BBB → A). Also, for the quiet period, there were defaults only for BB to

CCC/C with probability of default for CCC/C being smaller (0.154) than the probability

to be upgraded to B (0.18).

As a quantitative measure of the business cycle conditions, we introduce the Credit

Risk Indicator (CRI) as a ratio between sums of lower and upper pre-diagonal credit

rating matrix elements mk,k+1 and mk,k−1 as follows:

CRI =

∑n−1
k=2 mk,k+1

∑n−1
k=2 mk,k−1

(1)
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where k is a credit rating (k = 1 is the highest credit rating AAA, and k = n

is the lowest non-default rating CCC/C), mk,p is the credit rating transition matrix

element. The sum in (1) does not contain ratings AAA (no upgrade possible) and CCC/C

(downgrade is to the default state).

The de�nition of CRI is based on the assumption that the one-notch rating migration

mk,k±1 would be most sensitive to business cycle conditions: deteriorated market condi-

tions would increase downgrade probabilities mk,k+1 and decrease upgrade probabilities

mk,k−1.

Our further investigation of CRI is focused on quarterly transition matrices from Q1

2000 to Q4 2011 (S&P CreditPro data). The following chart (Figure 2) shows quarterly

calculated CRI values (open circles) plotted together with the annual number of defaults

(�lled squares). The CRI values and the number of defaults (ND) are visibly highly

correlated. The actual correlation value is equal to 85% for quarterly CRIs. Similar

e�ect was found in (Okashima and Frison, 2000) (the correlation between default rate

and downgrade/upgrade ratio lagged by 3 quarters was 0.81).
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Figure 2: Credit Risk Indicator and Number of Defaults per year

There are two distinct areas of CRI behavior: stable periods (CRI values do not

deviate far from 1) and unstable periods (CRI systematically increases or decreases).

For example, during a stable period (Q3 2004 to Q1 2008) the CRI values based on one

notch migration probabilities mk,k±1 do not di�er too much, therefore values of CRI

�uctuate around 1 (0.64 to 1.61). During this period the annual number of defaults is

either declining or is at its low. Peak periods of the business cycle (2001 - 2002, and 2008

- 2009) are very well emphasized by Credit Risk Indicator curve.

The quarterly transition matrices were available from year 2000, therefore, the 1991 -

1992 peak is not included. The following reasonable assumptions can be made: the CRI

values calculated using the 1-st quarter transition matrix data may have a predictive

power with respect to the total number of defaults at the end of the year.

The plot of annual number of defaults versus the CRI values for 1st quarter matrices

shown in the graph (Figure 3) demonstrates that this is the case (time period 2000 - 2006

includes both peak and quiet periods).
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Figure 3: Total annual number of defaults versus Q1 Credit Risk Indicator for 2000 -

2006 period

The best �t of the total annual Number of Defaults (ND) vs. Q1 CRI dependency

can be represented by a logarithmic curve

F (CQ1) = α· ln(CQ1) + β, (2)

where α = 96.12, β = 34.47, and CQ1 is the CRI based on the �rst quarter data of

the year for which a number of defaults is calculated. Therefore, we can introduce the

following simple stochastic model for a total number of defaults for ith year:

ND(i) = F (C
(i)
Q1) + F (C

(i)
Q1)·σ·ε

(i), (3)

where σ is a standard deviation of relative di�erences between the historical and modelled

number of defaults (σ =0.45) and ε is a standard Gaussian random driver. The value of

R2 equal to 0.7838 shows a very good �t of the model to the historical data (in (Okashima

and Frison, 2000) the best linear regression �t with 3 quarters lag produced R2=0.65).

This model provides the expected number of defaults with a required con�dence level.

The model (3) was applied to the time period from 2000 to 2011. This time period
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includes "in-sample" period 2000 - 2006, based on which model was calibrated, and

"out-of-sample" period 2007 - 2011 which illustrates the validity of the model. In Figure

4 the predicted number of defaults for the 15% to 85% con�dence level corridor is plotted

(curves). The historical numbers of defaults (�lled circles) and expected (model) numbers

of defaults (squares) per year are also plotted.

Figure 4: Comparison of the expected number of defaults (model) with the historical

number of defaults; curves represent the 15th and 85th percentile of the modelled number

of defaults

The historically observed numbers of defaults registered at the end of the year �t

very well within chosen con�dence level interval of the model, which uses CRI calculated

at the end of the �rst quarter of the year. We can conclude, therefore, that Credit Risk

Indicator has evident predictive power.

Summary

• We propose new Credit Risk Indicator (CRI) as the ratio of the average one-notch
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downgrade probability to the average one-notch upgrade probability in the migra-

tion matrix as a dynamic indicator of the business cycle state.

• The CRI values are highly correlated (85%) with the annual number of defaults in

the global portfolio.

• Increase (decrease) of the CRI value calculated using the 1st quarter data provides

estimation of increase (decrease) of the annual number of defaults. Increase of the

estimated number of defaults indicates a possible deterioration of credit conditions

of the business cycle, and vice versa.

• The monitoring of the CRI changes can be used for the qualitative estimation of

the business cycle direction.
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