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1 Introduction.

The first studies of games in the economics literature were the papers by Cournot

(1838), Bertrand (1883) and Edgeworth (1925) but these were seen as special

models that did little to change the way economists thought about most prob-

lems. The idea of a general theory of games was introduced by von Neumann

and Morgenstern in their famous 1944 book “Theory of Games and Economic

Behaviour”, which proposed that most economic questions should be analized as

games. Nash (1950) established what came to be known as the noncooperative

concept of Nash equilibrium of a game in normal form. This is a natural gener-

alization of the equilibria studied in specific models by Cournot and Bertrand

where the strategies of the players are simply their choices of quantities and

prices respectively, and it is the starting point for most economic analyses.

Since Nash contribution to the existence of equilibrium points in noncoope-

rative games there has been a growing literature on the strategic approaches to

economic equilibrium. In order to prove existence of Walras equilibrium, Ar-

row and Debreu (1954) and Debreu (1962) extended Nash’s model of a game

in normal form and of a Nash equilibrium to generalized games: by adding a

fictitious price player, who controls the price vector and whose payoff function

is the value of excess demand, they introduce “feasibility” to a game in normal

form; thus, they considered an abstract economy (which is a pseudo-game) and

a social equilibrium. Walras equilibria were obtained then as Nash equilibria

of a pseudo-game that included the market participant. However, there is no

indication as to how prices are formed.

The formation of prices plays a central role in any discussion of the market

process: which of the given economic agents sets the price vector and in what

way? This question gives rise to a series of papers on strategic market games

where, in addition to the consumer behavior, a price mechanism is formulated.

Several types of price-forming mechanisms have been described in which prices

depend on the actions of the traders, avoiding the classical assumption that
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individuals must regard prices as fixed.

The majority of these works proposed strategic market game models of ex-

change economies in the spirit of Cournot and Bertrand to study the relationship

between the Nash equilibria and the competitive equilibria. On one hand, and

following the Cournot tradition, Shapley (1976), Shapley and Shubik (1977),

Dubey and Shapley (1994) and Dubey and Geanakoplos (2003) proposed games

where money is introduced as the stipulated medium of exchange, either as one

of the intrinsically valuable commodities or as “inside” fiat money. These games

adhere completely to the Nash format, i.e., no price player is involved, and it is

shown that their Nash equilibria converge to Walras equilibria.

On the other hand, the analysis of Bertrand was extended by Schmeidler

(1980) and Dubey (1982) who established the coincidence of Nash equilibria and

Walras equilibria. In particular, Schmeidler (1980) provided a strategic market

game model where the exchange mechanism is characterized by a strategic out-

come function that maps agents’ selections of strategies to allocations. For it, it

was proposed a game in strategic form in which the choice of a price vector is a

part of the strategy choice for each player and proved that the Nash equilibrium

of the game is precisely the competitive equilibrium of the Arrow-Debreu pure

exchange economy.

The purpose of this paper is to extend this Schmeidler’s result to a two

period financial economy with an incomplete market structure and in particular,

to analyze the strategic approach to spot-financial equilibrium.

The classical Arrow-Debreu model was extended to take account of uncer-

tainty as Debreu (1959) proposed in Chapter 7 of his “Theory of Value”. In

Debreu’s analysis, the concept of uncertainty is integrated into a general equi-

librium context by introducing a finite set of states of the world and viewing

commodities as differentiated by state, that is, commodities can be differenti-

ated not only by their physical properties and location in space and time but also

by their location in “state”. In the Arrow-Debreu model of general equilibrium
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it is assumed that markets are complete: there is a market and an associated

price for each good in each state of nature. All commodities are traded simul-

taneously, no matter when they are consumed or under what state of the world.

All consumers face only a budget constraint, which is defined across the states,

and one price system.

However, as point out by Magill and Shafer (1991) and Magill and Quinzii

(1996), the Arrow-Debreu model introduces an idealized market structure that

under time and uncertainty can lead to unfeasible redistributions of resources

because of the behavioral imperfections of agents. Hence, a more general market

model must be considered with real and financial markets in which the structure

of markets is incomplete. In these models with incomplete markets the allocation

of resources is modelled by a market structure consisting of a system of spot

markets for real goods coupled with a system of financial markets where assets

are traded.

The characteristic feature of a model with incomplete markets is that con-

sumers face a multiplicity of budget sets and price systems at different times

and under different states of nature. Consumers must hold assets to transfer

wealth among budget constraints: individuals can buy or sell assets and, after

the state of nature is revealed, they trade in the spot market with income de-

rived from the sale of their initial endowments plus the deliveries of the revenues

they receive as a result of their portfolio holdings. Therefore, in the context of

this finance economy, there are markets for income in each state and agents

can transfer income as they want across the states. Whenever the number of

assets is less than the number of states, agents will have only a limited ability

to redistribute their income across the states. In this case, the financial markets

are said to be incomplete.

Incomplete markets have been extensively researched as regards existence

and properties of equilibria (see Hart (1975), Geanakoplos y Polemarchakis

(1985), Geanakoplos (1990) and Geanakoplos, Magill, Quinzii y Dreeze (1990)).

It has been shown, for both the pure exchange and the production case, that
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competitive allocations are not necessary Pareto optimal.

In this paper we consider a two period pure exchange economy with a finite

number of states of nature at the second date. The economy consists of a

real asset structure and a finite set of durable goods in the initial period that

depreciate. We suppose that there is only one single good available in each

state of nature at the second date. Thus, the assets yield payoffs denominated

in a single numéraire commodity and this precisely makes irrelevant to consider

in our economy nominal or real assets. In any case, individuals can buy or

sell short any amount of the numéraire assets, in some limited collection. The

outstanding hypothesis is that it is assumed bounded short sales. On other side,

agents are assumed to dispose non-negative amounts of the single good in any

state at date one. In this model the financial market structure is incomplete

and, under standard assumptions on initial endowments and preferences, there

always exists spot-financial equilibrium.

This paper concentrates on highlight that, in this context, the spot-financial

equilibrium can be obtained as a Nash equilibrium of a game in which the

strategies of the players consist in suggesting prices and quantities for goods

and assets. Our approach follows the analysis of Schmeilder (1980). In this

case, the main difficulty to overcome is to guarantee that date one commodity-

bundles are non-negative. Thus, we construct a game in normal form where the

strategy profile of each player consists of suggesting prices and amounts for both

commodities and assets to be traded. In this game, in addition to the strategy

outcome function for the commodities in the first period, it is defined another

for the assets and from both, it is deduced the second date commodity outcome

function. The strategy outcome functions are defined in such a way that, in

equilibrium, they map agents strategies to non-negative consumptions at the

second date. Then, we demonstrate that Nash equilibria of the associated game

coincide with the spot-financial equilibria for the finance economy.

The paper is organized along with two other sections. In section 2 we de-

scribe a two period economy with incomplete market structure and in section 3
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we define the associated game and our main result is stated and proven.

2 The model: a two period finance economy.

We consider a two period exchange economy E under uncertainty with spot and

financial markets. The economy consists of a finite number of agents, a finite

number of goods and a finite number of real assets.

To capture both time and uncertainty we consider a model with two time

periods, t = 0, 1 and a set S = {1, . . . , S} of possible states of nature at date

t = 1. For convenience, date t = 0 is often included as state s = 0, so that in

total there are S + 1 states. Let there be only one good in each state s ∈ S at

date t = 1.

Let L = {1, . . . , L} be the set of goods at date t = 0. These L goods are

supposed to be possible durable, i.e., they are not entire consumed at the initial

date and can be used in t = 1. At the second period, durable goods may have

depreciated. Their depreciation is denominated in terms of the single date 1

good in each state. Precisely, as there is a unique good at t = 1, we consider it

as the numeraire good in each state of nature.

Let Υs : IR
L
+ → IR be the depreciation structure depending on the state

s ∈ S that occurs in the second period. The depreciation Υs is an increasing

function in the commodity bundle which implies that, if it is differentiable, its

partial derivatives are non-negative. The interpretation is clear: from time to

time goods change in their value and thus monotonicity implies that for each

good this change is directly proportional to its amount. Indeed, Υs is a concave

function; this means that variations in the depreciation are in inverse proportion

to the amounts. Latter on, when we state the hypothesis on the model, we will

single out assumptions on the depreciation structure.

The commodity space is IR
n with n = L + S. The consumption set of agent

i is taken to be Xi = IR
n
+. It is convenient to write the consumption set as
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Xi = IR
L
+×IR

S
+. A consumption bundle is a vector x = (x0, x1, . . . , xs) ∈ IR

L
+×IR

S
+

where x0 = (x0 1, . . . , x0 L) denotes date 0 consumption of the L goods and xs

represents the consumption of the numeraire good in each state s ∈ {1, . . . , S}.

Let J = {1, . . . , J} be the set of real assets. In this model there are J < S

real assets that can be freely traded at date t = 0. A real asset j is a contract

that can be purchased for the price qj at t = 0 and promises to deliver at date

t = 1 an amount Aj
s of units of the good in each state s, for s ∈ S. As there is

only one good consumption in each state, the assets are always numeraire assets.

A real asset is thus characterized by its return vector Aj = (Aj
1, . . . , A

j
S) ∈ IR

S
+.

The exogenous date 1 returns of the J real assets are summarized by the S × J

matrix

A =








A1
1 . . . AJ

1

...
. . .

...

A1
S . . . AJ

S








Then, the matrix A represents the real asset structure of the economy. We

suppose that the rank of A is maximum. Let 〈A〉 denote the subspace of transfers

generated by A, that is, the subspace of IR
S spanned by the J columns of A. As

〈A〉 = IR
J 6= IR

S , then the asset structure is incomplete.

The set of agents is I = {1, . . . , I}. Each agent i ∈ I has an initial en-

dowment of goods in each state, ωi = (ωi
0, ω

i
1, . . . , ω

i
S) ∈ IR

L
+ × IR

S
+, where ωi

0 =

(ωi
0 1, . . . , ω

i
0 L) and ωi

0 l denotes her initial endowment at date 0 of good l, and an

initial endowment of real assets δi = (δi
1, . . . , δ

i
J) ∈ IR

J
+, with δi

j ≥ 0. The pref-

erence relation of agent i is represented by a utility function ui : IR
L
+× IR

S
+ → IR.

Therefore, the exchange economy with the real asset structure A is defined

by

E =
(
IR

L
+ × IR

S
+, (ui, ωi, δi, A), i = 1, . . . I

)
.

The economy is denoted by E(u, ω, δ, A).
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In this economy, there exists a sequential market structure for the trade of

goods and real assets. On one hand, transactions in real assets occur before

the state of nature is known: each agent i, for a price vector q = (q1, . . . , qJ),

trades the J real assets. Let zi = (zi
1, . . . , z

i
J) ∈ IR

J denote the ith agent

portfolio. Each coordinate zi
j represents the number of units of each of the J

real asset purchased (if zi
j > 0) or sold (if zi

j < 0) by agent i. A portfolio plan

z = (z1, . . . , zI) is feasible if
I∑

i=1

zi
j =

I∑

i=1

δi
j , for all j ∈ J.

On the other hand, agent i chooses a consumption bundle xi = (xi
0, . . . , x

i
S)

and makes a choice of consumption today xi
0 = (xi

0 1, . . . , x
i
0 L) ∈ IR

l
+ versus a

consumption in the future (xi
1, . . . , x

i
S) ∈ IR

S
+, as well as a choice over the relative

amounts of consumption in the different states at date 1. A consumption plan

x = (x1 . . . , xI) is feasible if:

I∑

i=1

xi
0 ≤

I∑

i=1

ωi
0, and

I∑

i=1

xi
s ≤

I∑

i=1

ωi
s +

I∑

i=1

J∑

j=1

Aj
s · z

i
j +

I∑

i=1

Υs(x
i
0), for all s ∈ S.

Hence, there is a market structure modelled by a collection of spot mar-

kets, for the trading of real goods, together with a system of financial markets

for trading real assets. The financial markets allow each agent to redistribute

income across the states; only by holding assets an agent can transfer wealth

between budget constraints. The spot markets are supposed for each of the

L goods at date 0 and in each state s at date 1. The main feature of a spot

market is that its payment is made at date 1 in state s (if s ≥ 1). Thus, under

a system of spot markets, agents face a multiplicity of S +1 budget constraints,

at different times and under different states of nature.

Let p = (p0, p1, . . . , pS) ∈ IR
L+S
+ + denote the vector of spot prices, where

p0 = (p0 1, . . . , p0 L) and p0 l represents the price payable for a unit of good l at

date 0. Note that at t = 1 we assume a single good, so, without loss of generality,

we can put ps = 1 for all s = 1, . . . , S. Hence, from now on p = p0.
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A price system in this economy is therefore a collection (p, q) formed by a

spot price vector p and a price vector q = (q1, . . . , qJ) for real assets traded at

t = 0. Let △L+J−1 =






(p, q) ∈ IR

L
++ × IR

J
++ |

L∑

l=1

pl +
J∑

j=1

qj = 1






. For a price

system (p, q), the budget set of agent i is given by

Bi(p, q) = {(xi, zi) ∈ (IRL
+ × IR

S
+) × IR

J | p · xi
0 + q · zi ≤ p · ωi

0 + q · δi

and xi
s ≤ ωi

s +

J∑

j=1

Aj
s · z

i
j + Υs(x

i
0), for all s ∈ S}.

Definition 2.1 A spot-financial equilibrium for the finance economy E is a

pair of actions and prices ((x, z), (p, q)), where (x, z) is a consumption-portfolio

bundle and (p, q) is a price system, such that

(i) (xi, zi) ∈ arg max {ui(xi) | (xi, zi) ∈ Bi(p, q)}, i = 1, . . . , I,

(ii)
I∑

i=1

xi
0 =

I∑

i=1

ωi
0,

(iii)
I∑

i=1

zi
j =

I∑

i=1

δi
j , for all j ∈ J,

(iv)
I∑

i=1

xi
s =

I∑

i=1

ωi
s +

I∑

i=1

J∑

j=1

Aj
s · z

i
j +

I∑

i=1

Υs(x
i
0), for all s ∈ S,

On the whole, the existence of equilibrium in a finance economy as the one

here described is not guarantee. The assumptions we state below on short sales,

initial endowments, preferences and depreciation structure are enough to ensure

the existence of spot-financial equilibrium (see for example Magill and Quinzii

(1996)).In point of fact, in the standard incomplete markets framework-see Rad-

ner (1972) for instance- a bound on short sales eliminates any discontinuity and

guarantees the existence of equilibrium. It is really true that all these hypoth-

esis are not necessary to guarantee the equilibrium existences but we will use

them to prove our main result.
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(A.1 ) (Bounded short sales). There exists a positive real number M such that

zi
j > −M for all i ∈ I and for all j ∈ J.

(A.2 ) (Strict positivity of endowments). ωi ≫ 0 and δi ≫ 0 for all i ∈ I.

(A.3 ) (Monotonicity). For each i ∈ I the utility function ui is monotone.

(A.4 ) (Convexity). For each i ∈ I the utility function ui is strictly quasi-concave.

(A.5 ) (Inada). Each i ∈ I prefers an interior commodity bundle to any con-

sumption in the frontier of IR
n
+.

(A.6 ) (Differentiability). For each i ∈ I the utility function ui is differentiable.

(A.7 ) (Depreciation structure). For each state s ∈ S, Υs is differentiable and

concave.

Observe that, under bounded short sales (assumption (A.1 )), the budget set

Bi(p, q) is compact for all (p, q) ∈ △L+J−1. Then, there exists a well defined set

of actions bundle that maximizes ui over Bi(p, q).

The concavity assumption of the depreciation structure guarantees that the

budget set Bi(p, q) is convex for any price system (p, q). In fact, Bi(p, q) define

a system of equations, one linear constraint and S constraints such that xi
s ≤

ωi
s +

J∑

j=1

Aj
s · z

i
j + Υs(x

i
0). Thus, if (x, z) y (x′, z′) are in Bi(p, q) and α ∈ (0, 1)

then α · (x, z) + (1 − α) · (x′, z′) is also in Bi(p, q) because

α · xs + (1 − α) · x′
s ≤ ωs +

J∑

j=1

Aj
s · (α · zi

j + (1 − α) · z
′ i
j )+

α · Υs(x
i
0) + (1 − α) · Υs(x

′ i
0 ).

By the concavity of the depreciation structure, Υs(α · xi
0 + (1 − α) · x

′ i
0 ) ≥

Υs(x
i
0) + (1 − α) · Υs(x

′ i
0 ). Hence,

α · xs + (1 − α) · x′
s ≤ ωs +

J∑

j=1

Aj
s · (α · zi

j + (1 − α) · z
′ i
j )+

Υs(α · xi
0 + (1 − α) · x

′ i
0 ).
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The convexity of Bi(p, q) together with the strict quasi-concavity of the

utility function guarantees that the commodity bundle which maximizes the

utility subject to the constraints embodied in the budget set exists (the budget

set, by (C.1) is compact) and is unique for any price system (p, q). Let di
c(p, q)

denote ith agent demand for each price pair (p, q). On the other hand, once the

commodity demand is fixed, there exists a unique vector di
a(p, q) that represents

the real asset demand of agent i and for which the S inequations are saturated

(di
c(p, q))s ≤ ωi

s+

J∑

j=1

Aj
s ·z

i
j +Υs((d

i
c(p, q))0) are saturated, i.e, are satisfied with

equal. We know that this inequation system has solution and, given the unique

commodity demand, the rank of the S equation system
J∑

j=1

Aj
s = (di

c(p, q))s −

ωi
s − Υs((d

i
c(p, q))0) is J < S. Thus S − J equations are a linear combination

of the other J and, therefore, this becomes a Cramer equation system with a

unique solution.

3 Spot-financial equilibrium and Nash.

Let E =
(
IR

L
+ × IR

S
+, (ui, ωi, δi, A), i = 1, . . . I

)
be a finance economy. The pur-

pose of this section is to relate the spot-financial market equilibria of this eco-

nomy to the Nash equilibria of a game in strategic form.

Given the exchange economy above E(u, ω, δ, A), we construct a game in

normal form. Let Γ = {Θi, πi}i=1,...,n be a n−person game where Θi is the

strategy set and πi the payoff function of a player i.

The set of strategies for a player i is defined by

Θi = {(xi, zi, pi, qi) ∈ IR
L
+ × IR

J ×△L+J−1 | p
i · xi

0 + q
i · zi = p

i · ωi
0 + q

i · δi

and ω
i
s +

J∑

j=1

A
j
s · z

i
j + Υs(x

i
0) ≥ 0, for all s ∈ S}.

Note that there is a single good at t = 1, so a player i will choose goods and spot

prices at date 0. Hence, from now on in the game, (xi, zi, pi, qi) = (xi
0, z

i, pi
0, q

i).
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Therefore, a player i′s strategy θi is defined by a consumption bundle xi at t = 0,

a portfolio zi, a spot price vector pi and a real asset price vector qi, that is,

θi = (xi, zi, pi, qi) ∈ IR
L
+ × IR

J × △L+J−1, such that xi and zi belong to the

budget set of agent i under the price system (pi, qi). Let Θ =

n∏

i=1

Θibe the set of

possible strategy profiles.

Given a strategy profile θ = (θ1, . . . , θn) ∈ Θ, where θi = (xi, zi, pi, qi), let

Ai(θ) denote the set of agents who propose the same prices as player i in the

strategy profile θ. That is,

Ai(θ) = {k ∈ {1, . . . , I} | pk = pi and qk = qi}

Agents who propose different prices, either for goods and/or assets do not trade

at all. Therefore, trade of goods and assets only takes place among members of

Ai(θ).

Let f i
0 : Θ → IR

L
+ be the commodity bundle defined by

f i
0(θ) = xi −

∑

k∈Ai(θ)

(
xk − ωk

0

)

Card(Ai(θ))

where Card(Ai(θ)) denotes the cardinality of the set Ai(θ), let f i
a : Θ → IR

J be

the real asset bundle with components

f i
a j(θ) = zi

j −

∑

k∈Ai(θ)

(
zk
j − δk

j

)

Card(Ai(θ))

for j ∈ J, and let f i
1(θ) = ωi

s +
J∑

j=1

Aj
s · f

i
a j(θ) + Υs(f

i
0(θ)) for all s ∈ S.

Now we define the function f i as

f i(θ) =
(
f i
0(θ) , f i

1(θ)
)

if f i
0(θ) ≥ 0 and f i

1(θ) ≥ 0

and otherwise
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f i(θ) =



ωi
0 − ǫ · 1L ,



ωi
s +

J∑

j=1

Aj
s · δ

i
j + Υs(ω

i
0)





s∈S

− ǫ · 1S





where 1L = (

L
︷ ︸︸ ︷

1, . . . , 1), 1S = (

S
︷ ︸︸ ︷

1, . . . , 1) and ǫ > 0 is such that



ωi
0 − ǫ · 1L ,



ωi
s +

J∑

j=1

Aj
s · δ

i
j + Υs(ω

i
0)





s∈S

− ǫ · 1S





is non-negative.

The function f i : Θ → IR
L
+ × IR

S
+ denotes the outcomes of player i at dates

0 and 1 under each strategy profile θ ∈ Θ. Then, the ith agent payoff function

πi : Θ → IR is defined by

πi(θ) = ui
(
f i(θ)

)
.

For a profile θ, let θ−i denote a strategy selection for all players but i. So we

write θ = (θ−i, θi). A strategy profile θ∗ = (θ−i ∗, θi ∗) is a Nash equilibrium

if for all players i,

ui
(
f i(θ∗ −i, θ∗ i)

)
≥ ui

(
f i(θ∗ −i, θi)

)
, for all θi ∈ Θi.

Theorem 3.1 Let E be an exchange economy with the real asset structure A

satisfying assumptions (A.1)− (A.7), with N ≥ 3. Let Γ be the game in normal

form associated with E. Then

I. If θ∗ is a Nash equilibrium of the game Γ, then p∗ i = p∗ and q∗ i = q∗ for

all i ∈ N and (f i
0(θ

∗), f i
a(θ∗), p∗, q∗) is a spot-financial equilibrium of the

economy E.

II. If (xi ∗, zi ∗, p∗, q∗) is a spot-financial equilibrium of E then the strategy

profile θi ∗ = (x∗ i, z∗ i, p∗ i, q∗ i) for each i = 1, . . . , I is a Nash equilibrium

of Γ.

13



Demonstration.

I. Let θ∗ be a Nash equilibrium of Γ. We will see that (f i
0(θ

∗), f i
a(θ∗), p∗, q∗) is

an equilibrium of E.

First, we will see that if θ∗ = (θ1 ∗, . . . , θn ∗), with θ∗ i =
(
x∗ i, z∗ i, p∗ i, q∗ i

)
,

is a Nash equilibrium of Γ, then f i
0(θ

∗) ≥ 0 and f i
1(θ

∗) ≥ 0 for all i = 1, . . . , I.

For it suppose that there exists an agent i such that f i
0(θ

∗) < 0 or f i
1(θ

∗) < 0.

Then, f i(θ∗) =



ωi
0 − ǫ · 1L ,



ωi
s +

J∑

j=1

Aj
s · δ

i
j + Υs(ω

i
0)





s∈S

− ǫ · 1S



 . Con-

sider that player i chooses θ̃i = (ωi
0, δ

i, p, q) with p 6= p∗ k or q 6= q∗ k for

any k 6= i. Note that in this case Ai(θ∗) = {i}, so f i
0(θ

∗ −i, θ̃i) = ωi
0 and

f i
a(θ∗ −i, θ̃i) = δi. Then the outcome is

f i(θ∗ −i, θ̃i) =



ωi
0,



ωi
s +

J∑

j=1

Aj
s · δ

i
j + Υs(ω

i
0)





s∈S





By the monotonicity of ui, it follows that ui
(

f i(θ∗ −i, θ̃i)
)

> ui
(
f i(θ∗

)
), that

is, πi
(

θ∗ −i, θ̃i
)

> πi(θ∗), so θ∗ would not be a Nash equilibrium of Γ. Hence, if

θ∗ is a Nash equilibrium of Γ, then f i
0(θ

∗) ≥ 0 and f i
1(θ

∗) ≥ 0, which implies that

f i(θ∗) =
(
f i
0(θ

∗), f i
1(θ

∗)
)

for all i ∈ I. Therefore, under the Nash equilibrium

strategy profile, θ∗, the commodity and real asset bundle that player i obtains

is (f i
0(θ

∗), f i
a(θ∗)).

Next, we will prove that for any different agents, i, k ∈ I, the payoff that

agent i gets with f i(θ∗) is greater or equal than her indirect utility at prices

(p∗ k, q∗ k) proposed by agent k. We will distinguish two cases: (i) if k ∈ Ai(θ∗)

and (ii) k 6∈ Ai(θ∗).

If (i) occurs, then (p∗ i, q∗ i) = (p∗ k, q∗ k). In this case, Card(Ai(θ∗))−1 6= 0

because Ai(θ∗) ≥ 2. Player i could receive her demands of goods and real assets

at prices (p∗ k, q∗ k) by choosing her strategy θi =
(
xi, zi, p∗ k, q∗ k

)
where

xi =
1

Card(Ai(θ∗)) − 1



η · Card(Ai(θ∗)) +
∑

r∈Ai(θ∗)\{i}

x∗ r −
∑

r∈Ai(θ∗)

ωr
0




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and

zi =
1

Card(Ai(θ∗)) − 1



µ · Card(Ai(θ∗)) +
∑

r∈Ai(θ∗)\{i}

z∗ r −
∑

r∈Ai(θ∗)

δr





It is easy to see that θi ∈ Θi. Note that

(f i
0(θ

∗ −i, θi), f i
a(θ∗ −i, θi)) = (di

c(p
∗ i, q∗ i), di

a(p∗ i, q∗ i)) =

= (di
c(p

∗ k, q∗ k), di
a(p∗ k, q∗ k)).

Since θ∗ is a Nash equilibrium then

ui(f i(θ∗ −i, θ∗ i)) ≥ ui(f i(θ∗ −i, θi)) = vi(p∗ k, q∗ k)

where vi(p∗ k, q∗ k) is the indirect utility function of agent i.

Now we will prove that for all r ∈ Ai(θ∗), (fr
0 (θ∗), fr

a(θ∗)) ∈ Br(p∗ k, q∗ k).

Suppose that there exists an agent r ∈ Ai(θ∗) such that,

p∗ k · fr
0 (θ∗) + q∗ k · fr

a(θ∗) > p∗ k · ωr
0 + q∗ k · δr

As
∑

r∈Ai(θ∗)

fr
0 (θ∗) =

∑

r∈Ai(θ∗)

ωr
0 and

∑

r∈Ai(θ∗)

fr
a(θ∗) =

∑

r∈Ai(θ∗)

δr, then it has to

exist another agent r′ ∈ Ai(θ∗) such that

p∗ k · fr′

0 (θ∗) + q∗ k · fr′

a (θ∗) < p∗ k · ωr′

0 + q∗ k · δr′

.

and fr′

(θ∗) =
(

fr′

0 (θ∗), fr′

1 (θ∗)
)

. By monotonicity of ui (assumption (A.3)),

ur′

(fr′

(θ∗)) < vr′

(p∗, q∗), which is a contradiction. Then, (fr
0 (θ∗), fr

a(θ∗)) ∈

Br(p∗ k, q∗ k), for all r ∈ Ai(θ∗). As ur(fr(θ∗)) ≥ vr(p∗ k, q∗ k) for all demands

(dr
c(p

∗ k, q∗ k), dr
a(p∗ k, q∗ k)), then (fr

0 (θ∗), fr
a(θ∗)) = (dr

c(p
∗ k, q∗ k), dr

a(p∗ k, q∗ k))

for all r ∈ Ai(θ∗). Hence, we conclude that

(f i
0(θ

∗), f i
a(θ∗)) = (di

c(p
∗ k, q∗ k), di

a(p∗ k, q∗ k)).

If (ii) occurs, then (p∗ i, q∗ i) 6= (p∗ k, q∗ k). In this case, player i could still

receive her demands of goods and real assets at prices (p∗ k, q∗ k) by choosing

15



her strategy θi =
(
xi, zi, p∗ k, q∗ k

)
where

xi =
1

Card(Ak(θ∗))
·




η · (Card(Ak(θ∗)) + 1) +

∑

r∈Ak(θ∗)

x∗ r −
∑

r∈Ak(θ∗)
⋃

{i}

ωr
0






and

zi =
1

Card(Ak(θ∗))
·




µ · (Card(Ak(θ∗)) + 1) +

∑

r∈Ak(θ∗)

z∗ r −
∑

r∈Ak(θ∗)
⋃

{i}

δr






It is easy to see that θi ∈ Θi. Note that

(f i
0(θ

∗ −i, θi), f i
a(θ∗ −i, θi)) = (di

c(p
∗ k, q∗ k), di

a(p∗ k, q∗ k)).

Since θ∗ is a Nash equilibrium, it follows that

ui(f i(θ∗ −i, θ∗ i)) ≥ ui(f i(θ∗ −i, θi)) = vi(p∗ k, q∗ k).

So ui(f i(θ∗ −i, θ∗ i)) ≥ vi(p∗ k, q∗ k).

Now we will see that if θ∗ is a Nash equilibrium, then all players propose

the same prices:

If there exists an agent i such that Card(Ai(θ∗)) ≥ 2, then Ak(θ∗) = {1, . . . , I}

for every k.

For it, and by contradiction, suppose that there exists an agent k such that

k 6∈ Ai(θ∗), so (p∗ k, q∗ k) 6= (p∗ i, q∗ i). Since
∑

r∈Ai(θ∗)

fr
0 (θ∗) =

∑

r∈Ai(θ∗)

ωr
0 and

∑

r∈Ai(θ∗)

fr
a(θ∗) =

∑

r∈Ai(θ∗)

δr, there are two cases:

(a) There exists r ∈ Ai(θ∗) such that p∗ k · fr
0 (θ∗) + q∗ k · fr

a(θ∗) < p∗ k · ωr
0 +

q∗ k · δr .

(b) For any r ∈ Ai(θ∗), p∗ k · fr
0 (θ∗) + q∗ k · fr

a(θ∗) = p∗ k · ωr
0 + q∗ k · δr .

If (a) is the case, there exists (yc, ya) such that

p∗ k · (fr
0 (θ∗) + yc) + q∗ k · (fr

a(θ∗) + ya) = p∗ k · ωr
0 + q∗ k · δr .
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Since (p∗, q∗) ∈ △L+J−1 and by the monotonicity of ui, then vr(p∗ k, q∗ k) >

ur(fr(θ∗)) a contradiction with ur(fr(θ∗)) ≥ vr(p∗ k, q∗ k).

Suppose that (b) occurs, then p∗ k ·fr
0 (θ∗)+q∗ k ·fr

a(θ∗) = p∗ k ·ωr
0 +q∗ k ·δr ,

for any r ∈ Ai(θ∗). We will prove that (p∗ i, q∗ i) = (p∗ k, q∗ k). Since r ∈ Ai(θ∗),

it follows (by (i)) that (fr
o (θ∗), fr

a(θ∗)) = (dr
c(p

∗ k, q∗ k), dr
a(p∗ k, q∗ k)). Given

that Card(Ai(θ∗)) ≥ 2, (fr
o (θ∗), fr

a(θ∗)) = (dr
c(p

∗ i, q∗ i), dr
a(p∗ i, q∗ i)) for all

r ∈ Ai(θ∗). Then

(
dr

c(p
∗ k, q∗ k), dr

a(p∗ k, q∗ k)
)

=
(
dr

c(p
∗ i, q∗ i), dr

a(p∗ i, q∗ i)
)
.

Let Lr be the agent r’s Lagrangean function defined by

Lr(xr, zr, λ) = ur(xr) + λi
0

(
pi · ωr

0 + qi · δr − pi · xr
0 − qi · zr

)
+

+
S∑

s=1

λi
s



ωr
s +

J∑

j=1

Aj
s · z

r
j + Υs(x

r
0) − xr

s





where we set the superindex i to refer the vector of Lagrange multipliers as-

sociated with the maximization problem at prices (pi, qi). We will write λk =

(λk
0 , λk

1 , . . . , λk
S) the vector of Lagrange multipliers associated with the maxi-

mization problem at prices (pk, qk). Then, from the first order conditions for

the problem at prices (pi, qi), we get that

(1)
∂ur

∂xr
0

= λi
0 · p

i −
S∑

s=1

λi
s ·

∂Υs

∂xr
0

(2)
∂ur

∂xr
s

= λi
s, s=1,. . . ,S

(3) −λi
0 · q

i
j +

S∑

s=1

λi
sA

j
s = 0, for each j ∈ J.

In the same way, for her problem at prices of goods pk and prices of real assets

qk, we obtain that

(1)
∂ur

∂xr
0

= λk
0 · pk −

S∑

s=1

λk
s ·

∂Υs

∂xr
0
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(2)
∂ur

∂xr
s

= λk
s , s=1,. . . ,S

(3) −λk
0 · qk

j +
S∑

s=1

λk
sAj

s = 0, for each j ∈ J.

Since the solution in both problems (the demand) is the same, we get from (2)

that λi
s = λk

s . Then, by (1) we obtain that p∗ i = γ ·p∗ k, with γ =
λk

0

λi
0

, and by (3)

that qi ∗
j = γ ·q∗ k

j . Since (pi ∗, qi ∗) and (p∗ k, q∗ k) are in the simplex △L+J−1, it

follows that (p∗ k, q∗ k) = (p∗ i, q∗ i), a contradiction with (p∗ k, q∗ k) 6= (p∗ i, q∗ i)

supposed above.

Hence, it only remains to demonstrate that there exists an agent i for which

Card(Ai(θ∗)) ≥ 2 to conclude that in Nash equilibrium all players propose

the same prices. For it, and by contradiction, suppose that Ai(θ∗) = {i} for

every i. In this case, (f i
0(θ

∗), f i
a(θ∗)) = (ωi

0, δ
i) for every i. Consider any agent

i. There exists a (p, q) in △L+J−1 such that di
0(p, q) = ωi

0 and di
a(p, q) = δi.

Since I ≥ 3, Card{(p∗ k, q∗ k) | k 6= i} ≥ 2 and there exists k 6= i such that

(p∗ k, q∗ k) 6= (p∗ i, q∗ i). Then by definition of (p, q), vi(p∗ k, q∗ k) > vi(p, q). By

(ii), ui(f i(θ∗)) ≥ vi(p∗ k, q∗ k), so ui(f i(θ∗)) > vi(p, q) a contradiction. Then

Card(Ai(θ∗)) ≥ 2.

II. Let (x∗, z∗, p∗, q∗) be an equilibrium of E.

Define θi ∗ = (x∗ i, z∗ i, p∗, q∗) for every i. Then (f i
0(θ

∗), f i
a(θ∗)) = (x∗ i, z∗ i).

Also (x∗ i, z∗ i) ∈
(
di

c(p
∗, q∗), di

a(p∗, q∗)
)
.

Let θi = (x∗ i, z∗ i, p, q) with (p, q) 6= (p∗, q∗). In this case the bundle

is (f i
0(θ

∗ −i, θi), f i
a(θ∗ −i, θi)) = (ωi

0, δ
i), so πi(θ∗ −i, θi) = ui(f i(θ∗ −i, θi)) ≤

πi(θ∗) = ui(f i(θ∗)) = vi(p∗, q∗). On other hand, let θi = (xi, zi, p∗, q∗). Then

πi(θ∗ −i, θi) = ui(f i(θ∗ −i, θi)) ≤ πi(θ∗) = ui(f i(θ∗)) = vi(p∗, q∗).

Therefore, given the strategy profile θ∗, no agent i can get greater payoffs

by choosing a strategy different from θ∗ i, while the other players choose θ∗ −i.

Hence, θ∗ is a Nash equilibrium of Γ.
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Q.E.D.

To sum up, in this paper we extend the analysis of Schmeidler (1980) to a

two period finance economy with S ≥ 1 states of nature at the second date cha-

racterized by durable goods that depreciate and an incomplete numeraire asset

structure. For it we have constructed a game in normal form associated to the

economy where each player strategy profile is given by prices and quantities of

goods and assets and the strategy outcome functions defined map strategies to

portfolio and non-negative consumption bundles in both periods. We demon-

strate that Nash equilibria of the associated game coincide with spot-finacial

equilibria of the underlying economy.
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