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Abstract. We investigate the effects of outlier treatment on the estimation of the seasonal component

and stochastic models in electricity markets. Typically, electricity spot prices exhibit features like seasonality,

mean-reverting behavior, extreme volatility and the occurrence of jumps and spikes. Hence, an important issue

in the estimation of stochastic models for electricity spot prices is the estimation of a component to deal with

trends and seasonality in the data. Unfortunately, in regression analysis, classical estimation routines like OLS

are very sensitive to extreme observations and outliers. Improved robustness of the model can be achieved by (a)

cleaning the data with some reasonable procedure for outlier rejection, and then (b) using classical estimation

and testing procedures on the remainder of the data. We examine the effects on model estimation for different

treatment of extreme observations in particular on determining the number of outliers and descriptive statistics

of the remaining series after replacement of the outliers. Our findings point out the substantial impact the

treatment of extreme observations may have on these issues.

Introduction

In the last two decades the power sectors worldwide have undergone a transition from monop-

olistic, government controlled systems into deregulated, competitive markets (Bunn, 2004; Harris,

2006; Kaminski, 2004; Kirschen and Strbac, 2004; Weron, 2006). The amount of risk borne by mar-

ket participants has increased substantially, partially due to the fact that electricity is a very unique

commodity. Firstly, it cannot be stored economically and requires immediate delivery, while end-user

demand shows high variability and strong weather and business cycle dependence. Secondly, effects

like power plant outages or transmission grid (un)reliability add complexity and randomness. Con-

sequently, electricity spot prices exhibit very high volatility and abrupt, short-lived and generally

unanticipated extreme price changes known as spikes (or jumps). The latter are, perhaps, the most

distinct feature of deregulated power markets, and will be investigated in this paper.

Apart from the aforementioned spikes, the two other most prominent characteristics of spot elec-

tricity prices include seasonality (at the annual, weekly and daily time horizons) and mean-reversion.

The first crucial step in defining a model for electricity price dynamics consists of finding an appropriate

description of the seasonal pattern. There are different suggestions for dealing with this task: Bhanot
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(2000), Knittel and Roberts (2005) and Lucia and Schwartz (2002) use piecewise constant functions;

Cartea and Figueroa (2005), Pilipovic (1997) and Weron et al. (2004a) model the seasonal pattern by

sinusoidal functions; while Stevenson (2001) and Weron (2006) utilize a wavelet decomposition.

A critical issue in estimation of the seasonal pattern is that it might be substantially affected

by the price spikes. While it is clear that price spikes should be captured by an adequate stochastic

model, like jump-diffusion (Clewlow and Strickland, 2000; Geman and Roncoroni, 2006; Weron, 2007)

or a regime-switching model (Bierbrauer et al., 2004; De Jong, 2006; Huisman and Mahieu, 2003),

the literature does not agree on whether these observations have to be included or excluded in the

estimation of the seasonal pattern. Even worse: despite the fact that price spikes are among the

most pronounced features of electricity markets and account for a large part of the total variation of

changes in spot prices, there is no commonly accepted definition of a price spike (Weron, 2006). A

variety of methods for identification has been suggested, however, so far there has been no thorough

empirical study on the effects of alternative treatment of the price spikes on parameter estimates for

the seasonal pattern or the stochastic component of the spot price. It is exactly our goal to examine

the consequences of the treatment of such extreme events in the estimation procedures. To identify

the spikes we will consider a variety of different approaches. After such ‘cleaning’ of the observed spot

prices we will then compare the remaining seasonal patterns.

Price Spikes

The identification of spikes is a very important issue as it bears on the estimation of the de-

terministic and stochastic components for models of electricity spot price dynamics. However, in the

literature the definition of a spike so far has been a rather subjective matter. Obviously, price spikes

are defined as prices that surpass a specified threshold for a brief period of time. But it is difficult to

gain any consensus on what that threshold or time interval should be.

Some authors use fixed price thresholds to identify the spikes (Lapuerta and Moselle, 2001).

Other references suggest the use of fixed log-price change thresholds, e.g., log-price increments or

returns exceeding 30% (Bierbrauer et al., 2004), or variable log-price change thresholds, e.g., log-

price increments or returns exceeding three standard deviations of all price changes (Cartea and

Figueroa, 2005; Clewlow and Strickland, 2000; Weron et al., 2004b). Borovkova and Permana (2004)

considered as jumps those price moves that were outside 90% prediction intervals, implied by the

normal distribution with the mean and variance given by the 60-days moving average and 60-days

moving variance of the price moves. Yet another approach was used by Geman and Roncoroni (2006)

who filtered raw price data using different thresholds and selected the one leading to the best calibrated

model in view of its ability to match the kurtosis of observed daily price variations. Finally, the use

of wavelet decomposition to filter out the spikes has been suggested (Stevenson, 2001; Weron, 2006).

Obviously, different definitions and techniques may lead to quite different results and identification of

price spikes.

The Data

For our empirical analysis we have chosen data from the European Energy Exchange (EEX) in

Leipzig, Germany. This power market has shown a steady increase both in the number and volume of

traded products since its opening in 1999. While some of the other European power exchanges suffer

from low liquidity in the spot market and concentration on futures contracts, the spot market trading

volume at the EEX has been increasing significantly. The spot market is a day-ahead market and the

spot is an hourly contract with physical delivery on the next day. In our analysis we consider the

Phelix base day index. The index is an equally weighted average of all 24 hourly spot prices for that
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Figure 1: Spot prices of the EEX Phelix Base (day) index from January 1, 2001, to

December 31, 2006, totaling 2191 observations.

particular day.

Our data comprise six years of Phelix base day prices from January 1, 2001, to December 31,

2006, totaling 2191 observations. The dynamics of the spot prices for the considered period are shown

in Figure 1. Obviously, several spikes can be observed during the considered period. For example,

spot prices peaked in December 2001 with a daily average of 240 EUR/MWh, in January 2003 with

163 EUR/MWh and in July and November 2006 with 301 and 162 EUR/MWh, respectively. In most

cases the spikes lasted only for one or two days and prices fell back to their normal levels very quickly.

There is also an obvious trend in the data such that the average price level at the end of the considered

period was substantially higher than in the first two-three years.

Methods to Detect the Spikes

Probably the simplest technique to detect outliers is the use of fixed price thresholds. However,

the choice of the levels themselves is non-trivial and rather arbitrary. For the present dataset, we

chose to classify all prices beyond 75 EUR/MWh as extreme observations. Obviously other thresholds

may be chosen depending on needs.

Nevertheless, the remaining question is how to replace the outliers. The chosen technique for

replacement will also affect parameter estimates, e.g., of the seasonal pattern if the estimation is con-

ducted using the new series. Some authors suggest to dampen prices exceeding a certain threshold

with a logarithmic function or to replace the observed outliers by the thresholds themselves (Shahideh-

pour et al., 2002; Weron, 2006). An alternative may be to replace the extreme observations by the

mean of the two neighboring prices (Weron, 2007) or by one of the neighboring prices (Geman and

Roncoroni, 2006). However, this can lead to complications when there are two or more consecutive

outliers. Also seasonal behavior of electricity prices may alter the prices too much. Recall, for exam-

ple, that weekend prices are generally significantly lower than during the week. Hence, an alternative

approach was suggested by Bierbrauer et al. (2007) where the outliers were replaced by the median of

all prices having the same weekday and month as the outlier. Results for this method are displayed

in the left panel of Figure 2.

As it was mentioned above, there is an obvious positive trend in the data. Hence, using fixed

thresholds without detrending the time series beforehand may lead to an underestimation of spikes

at the beginning of the considered period while for the later years the number of spikes may be
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Figure 2: Time series after replacement of the spikes and original observations classified

as outliers using fixed price thresholds for the original (left panel) and a detrended series

(right panel).

overestimated. Hence, the fixed threshold method was also applied to the detrended series. The

results for this method are displayed in the right panel of Figure 2. From a first glance one can see

that clearly fewer observations are classified as outliers when the detrended series is used. For further

comparison of the techniques see the next section.

Another method for detection of spikes or outliers was initially suggested in Clewlow and Strick-

land (2000). Hereby, a recursive filter is applied to identify price jumps in the sample distribution of

daily returns. The filter consists of an iterative procedure that is repeated until no more jumps can

be identified. In the first step, the sample standard deviation ŝ of the returns is calculated before

identifying returns beyond a certain range – measured in multiples of ŝ – as extreme returns. Clewlow

and Strickland (2000) suggest three standard deviations as the limit, however alternative specifications

are straightforward. Returns within that limit are treated as ‘normal’ price returns, while the other

returns are identified as outliers. After replacing the outliers, the next iteration is performed.

However, applying this technique, we have to take into account that electricity prices usually

show strong weekly seasonality that may affect the number of extreme returns. A straightforward

application of the recursive filter technique may lead to an overestimation of the number of extreme

returns. To avoid this problem we will apply a variant of a simple moving average-based deseasonal-

ization technique beforehand, to eliminate the weekly component. It differs from the original method

(Brockwell and Davis, 1991; Weron, 2006) in that instead of using the mean it uses the median, which

is more robust to outliers.

For the vector of daily prices {x1, ..., x2191} we first estimate the trend by applying a moving

average filter specially chosen to eliminate the weekly component and to dampen the noise:

m̂t = median(xt−3, .., xt, .., xt+3), t = 4, ..., 2188.(1)

Next, we estimate the seasonal component. For each k = 1, .., 7 the average wk of the deviations

{(xk+7j − m̂k+7j), 3 < k + 7j ≤ 2188} is computed. Since these average deviations do not necessarily

sum to zero, we estimate the seasonal component sk as

ŝk = wk −
1

7

7∑

i=1

wi,(2)
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Figure 3: Time series after replacement of the spikes and original observations classified

as outliers using the recursive filter technique (left panel) and percentage price thresholds

for the detrended series (right panel).

where k = 1, ..., 7 and ŝk = ŝk−7 for k > 7. The deseasonalized (with respect to the 7-day period)

data is then defined as yt = xt − ŝt for t = 1, ..., 2191 and is used to detect and replace the outliers.

Note that the deseasonalised series is not adjusted for the trend, long-term cycles or yearly seasonal

components but only for the weekly seasonal pattern. However, since the recursive filter considers daily

returns, long-term cycles or trends should not have any impact. Then applying the same approach as

for the fixed threshold, the outliers were replaced by the median of all prices having the same weekday

and month plus a linear trend component. Results for outlier detection and the remaining series are

displayed in the left panel of Figure 3.

Alternatively, extreme observations may be detected using percentage thresholds. For example

one may consider the largest 1% of the observations as outliers. In this case, however, it is important

to consider also seasonality and trend in the data. Otherwise the identification of certain observations

as outliers will be clearly dependent on the weekday or month if there is also a yearly pattern in the

data. To overcome this problem, similar to the approach for the recursive filter, we first calculated the

deseasonalized series yt. However, in a second step we applied another moving average filter to take

care of the lower frequency seasonality in the data: m̂2,t = median(yt−15, ..., yt+15), t = 16, ..., 2176.

Note, that the 31 day median roughly corresponds to monthly smoothing. The difference between the

deseasonalized series yt and the moving average m2,t was chosen to identify the highest 1% extreme

observations in terms of actual deviations from the average price level. The extreme observations were

replaced by the median of all prices having the same weekday and month. After replacement of the

outliers the estimated seasonal component and trend was added to the series again. Results for outlier

detection and the remaining series are displayed in the right panel of Figure 3.

Yet another outlier detection approach utilizes wavelets, more specifically, lowpass filtering

(Weron, 2006). The wavelet transform involves the projection of a signal onto an orthonormal set

of components – the so-called wavelets. Unlike sines and cosines, individual wavelet functions are

quite localized in time or (more generally) in space; simultaneously, like sines and cosines, individual

wavelet functions are quite localized in frequency or (more precisely) characteristic scale (Härdle et al.,

1998; Percival and Walden, 2000). Wavelets belong to families, like the Daubechies wavelet family

used here. A wavelet family comes in pairs of a father (S) and mother wavelet (D). The former

represents the ‘lowest frequency’ smooth components – those requiring wavelets with the widest sup-
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Figure 4: Time series after replacement of the spikes, S3 (left panel) and S5 (right panel)

wavelet approximations and original observations classified as outliers using the wavelet

filter technique.

port – whereas the latter captures the ‘higher frequency’ detail components. Any function or signal

(here: the spot price series) can be built up as a sequence of projections onto one father wavelet and

a sequence of mother wavelets,

f(t) = SJ + DJ + DJ−1 + ... + D1,(3)

where 2J is the maximum scale sustainable by the number of observations. At the coarsest scale the

signal can be estimated by SJ . At a higher level of refinement the signal can be approximated by

SJ−1 = SJ + DJ . At each step, by adding a mother wavelet Dj of a lower scale j = J − 1, J − 2, ...,

we obtain a better estimate of the original signal. This procedure is known as lowpass filtering. Here,

we use the S3 and S5 approximations, roughly corresponding to weekly (23 = 8 days) and monthly

(25 = 32 days) smoothing, respectively. Once a chosen approximation (S3 or S5) is subtracted from the

original price series, the outliers are identified as the observations exceeding three standard deviations

of the differences. We decided to replace the outliers by their wavelet approximation. A plot of the

original time series and the wavelet S3 and S5 approximations as well as the results for outlier detection

for the two approximation techniques are displayed in Figure 4.

Results

In this section we will compare the different approaches in terms of outlier detection, descriptive

statistics of the remaining series and the effects of the preprocessing technique on the estimation of

the seasonal pattern. In a first step we investigate the number of detected outliers, see Table 1.

The bounds for the fixed thresholds method was chosen to be 75 EUR/MWh. Obviously, de-

pending on whether the technique is applied to the original or the detrended series there are substantial

differences in the outcome. For the detrended series mostly observations in the years 2005 and 2006

were characterized as outliers, since the average price level was much higher in these years, see Figure

2. In total there are 50 observations replaced when the original series is considered. The respective

number for the same threshold using a detrended time series only yields 19 outliers. Overall, consid-

ering several years of data, it seems recommendable to choose a fixed price threshold to identify price

spikes only after dealing with trends or seasonalities beforehand.

For the percentage thresholds we chose to identify the highest 1% of the deseasonalized series as



Table 1: Number of detected spikes and descriptive statistics of the series after removing

the spikes. Preprocessing indicates whether the trend, the annual and/or the weekly

seasonal components have been removed from the original data before identifying the

spikes.

Method Preprocessing #spikes Max Mean Std Skew Kurt

Trend Year Week

Original — — — — 301.54 33.56 19.01 3.93 37.16

Fixed Threshold — — — 50 79.49 32.01 13.43 0.83 3.52

Fixed Thres. Detrend. X — X 19 108.25 32.64 14.90 1.24 5.08

Recursive Filter — — X 37 112.65 32.47 14.92 1.32 5.51

Percentage Thres. X — X 22 114.06 32.70 14.99 1.24 5.13

Wavelet Approx. S3 X X ∼ 12 132.91 33.10 16.23 1.70 7.81

Wavelet Approx. S5 X X — 20 114.06 32.78 15.14 1.27 5.18

outliers, yielding 22 observations. The comparative number for the recursive filter technique is higher

and characterized 37 observations as outliers. It is notable that for the filter technique also a number

of observations with a lower price level but high percentage returns were identified as price spikes.

Examining the results for the wavelet decomposition techniques, we find that the S3 approximation

is very close to the original time series (see the left panel of Figure 4). Thus, only a small number

of observations – in total 12 – is classified as outliers. The smoother S5 approximation, on the other

hand, characterizes 20 observations as outliers and yields similar results to the other techniques.

The examination of the descriptive statistics for the preprocessed series yields the following

results. For all techniques, the mean of the preprocessed series is only slightly smaller than for the

original observations. However, the removal of the outliers has clearly decreased the standard devia-

tion, skewness and kurtosis of the remaining series. There is also a general tendency for the relationship

between the number of replaced outliers and those statistics: the more extreme observations are re-

placed, the more will the standard deviation, skewness and kurtosis decrease for the preprocessed

series. Hence, the preprocessed series using the wavelet S3 approximation yields the highest values for

those statistics while they are clearly the lowest for the series that was preprocessed using the simple

fixed threshold technique. The results for the other four techniques (fixed threshold detrended, recur-

sive filter, percentage threshold and wavelet S5) yield quite similar descriptive statistics. Interestingly,

the recursive filter technique yields a preprocessed series with a slightly higher skewness and kurtosis

than most of the other techniques, although a relatively high number of detected outliers has been

replaced.

Finally, we compare the effects of the chosen outlier detection technique on the estimated sea-

sonal pattern. We assume that the system price of electricity St can be decomposed as the sum of a

deterministic component ft and a stochastic component Yt: St = ft + Yt, t > 0. In the following, we

are not interested in specifying a model for the stochastic component Yt, but mainly in the estimated

seasonal pattern for the differently preprocessed data. To keep the results comparable, we estimated

the same seasonal pattern including a constant, trend and specified dummy variables for daily and

monthly effects for all preprocessed series:

f(t) = α + β · t + d · Dday + m · Dmon.(4)

Hereby, α, β are constant parameters and d and m denote the corresponding parameter vectors for the

daily (day = 1, .., 7) and monthly (mon = 1, .., 12) dummy variables Dday, Dmonth. The function f(t)

was calibrated via numerical optimization using non-linear least squares regression in Matlab. Results

of the estimation in terms of parameter estimates and significance of the parameters can be found in

Table 2.



Table 2: Parameter estimates for the seasonal pattern depending on the different outlier

detection techniques (* indicates significant parameter estimates at the 5% level).

Parameter Original Fixed Fixed Detr Filter Percent Wave S3 Wave S5

Constant 23.573* 22.249 22.683* 22.546* 22.998* 22.908* 22.660*

Trend 0.0158* 0.0137* 0.0150* 0.0154* 0.0151* 0.0156* 0.0152*

Tue 2.388* 0.223 1.192 1.211 0.741 1.212 0.880

Wed 0.759 1.344* 1.725* 1.217 1.381 1.414 1.436

Thu 1.156 0.949 1.2097 1.260 1.120 0.994 0.937

Fri -2.372* -1.371* -1.271 -0.919 -1.854* -1.705 -1.750*

Sat -10.277* -8.199* -8.765* -8.580* -9.135* -9.614* -9.226*

Sun -16.818* -14.750* -15.279* -15.016* -15.687* -16.146* -15.767*

Feb 0.210 1.097 1.315 1.059 1.243 0.869 1.491

Mar -1.129 0.128 -0.351 -0.313 -0.613 -0.666 -0.356

Apr -5.551* -2.601* -4.446* -4.764* -4.514* -4.896* -4.267*

May -8.862* -5.928* -7.791* -8.128* -7.846* -8.240* -7.609*

Jun -5.242* -2.661* -4.106* -4.677* -4.399* -4.595* -3.936*

Jul -0.091 -1.430 -2.198* -3.676* -2.888* -1.180 -1.839

Aug -7.021* -3.708* -5.755* -6.236* -5.840* -6.505* -5.612*

Sep -4.247* -0.898 -2.972* -3.343* -3.061* -3.549* -2.834*

Oct -5.206* -1.829* -3.929* -4.313* -4.017* -4.512* -3.792*

Nov -0.638 -0.797 -2.901* -3.327* -2.137* -1.228 -1.914

Dec -1.093 -1.144 -2.528* -4.078* -1.802 -1.787 -1.459

We find that depending on the chosen technique for outlier detection, there are significant

differences between parameter estimates and also in terms of which days and months are considered

to be significant. For all models, the constant and trend are highly significant. Note, however, that

with β = 0.0158 the parameter estimate for the trend component is the highest for the observations

where no preprocessing of the outliers has been conducted followed by the wavelet technique S3 where

the trend estimate is β = 0.0156. On the other hand, the trend is estimated to be substantially lower

(β = 0.0137) if the outliers are detected by a fixed threshold technique without detrending. The other

methods yield estimates for the trend parameter between of β = 0.0150 and β = 0.0154.

It is also noteworthy that depending on the preprocessing of the data, often quite different

dummy variables for the day or month are significant at the chosen 5% level. While for all ap-

proaches obviously Saturday and Sunday show a significant lower price level, for the original data

also the dummy variables for Tuesday and Friday are significantly different from Monday, respectively

Wednesday and Friday for the fixed threshold technique without detrending. On the other hand,

preprocessing using the recursive filter technique or the wavelet S3 yields only Saturday and Sunday

as being significantly different from a Monday.

Similar results can be observed for the significance of dummy variables for the months. All

approaches give significant parameter estimates for the months April, May, June, August and October.

However, there are substantial differences for the months as well as the total number of dummy

variables that yield significant estimates. While based on the simple fixed threshold preprocessing

only estimates for the above mentioned months are significantly different from January, for the fixed

threshold with detrending and the recursive filter approach all dummy variables for April - December

are significant at the 5% level. The preprocessing using the percentage threshold technique yields

significant estimates for the April - November dummy variables, while the original series and the

series preprocessed with the wavelet approaches classifies April, May, June, August, September and

October as significant.

Overall, there are quite substantial differences in terms of the estimated seasonal pattern de-



Table 3: Monthly price forecasts for 2007 based on the estimated seasonal pattern for the

different outlier detection techniques. The last row provides the mean absolute deviation

(MAD) in Euro/MWh from the forecasts for the original observations.

Method Original Fixed Fixed Detr Filter Percent Wave S3 Wave S5

Jan 54.5209 49.0125 52.4774 52.9667 52.3237 53.5435 52.2009

Feb 55.0786 49.5304 53.0487 53.5786 52.9056 54.1691 52.7876

Mar 55.5115 49.9425 53.5171 54.0819 53.3647 54.6760 53.2511

Apr 49.1317 46.5389 48.1878 48.4612 48.0433 48.8416 48.1681

May 46.3943 43.7730 45.5007 45.7155 45.2749 46.1364 45.3964

Jun 51.0264 47.9317 50.1690 50.2008 49.6956 50.8514 50.0513

Jul 57.3837 51.4427 52.9390 52.0750 52.1647 56.3713 54.9484

Aug 51.2424 48.6331 50.3961 50.4766 50.1258 50.8717 50.2593

Sep 53.5551 51.8952 52.6839 52.9507 52.4826 53.3344 52.6087

Oct 53.6332 50.8713 52.5883 52.8528 52.4226 53.2971 52.5529

Nov 59.5912 53.4480 54.4707 54.6911 55.0923 58.6951 57.1431

Dec 57.6905 51.7984 53.0882 52.2966 55.5464 56.8890 55.4473

MAD 4.16 2.14 2.03 2.11 0.59 1.66

pending on the chosen technique for outlier detection. To further illustrate the effects of the different

preprocessing techniques on the seasonal pattern and possible price forecasts let us consider the follow-

ing situation. Starting with a model including all possible independent variables, for each preprocessed

series in a backwards stepwise regression non-significant variables are excluded from the model, re-

maining with a model including only significant variables. Then the estimated seasonal pattern is

used to give (deterministic) price forecasts for each month in 2007. The forecast results for each of the

considered methods are presented in Table 3. Note that the predicted values of the seasonal pattern

should not be used as actual price forecasts, since the modeling of the stochastic component has not

been considered here. However, since the system price is decomposed as the sum of the deterministic

and stochastic component, significant differences in the prediction of the deterministic component will

also have an substantial effect on the forecasted system price.

We find that the estimated seasonal pattern without preprocessing the data for outliers yields

the highest forecasts for the deterministic part of the series for all months in 2007. On the other hand,

the lowest price forecasts for each month is obtained when the simple fixed threshold technique is used

for outlier detection. As the last row indicates, the average difference between these two approaches

is 4.16 Euro/MWh per day. For example, the forecasted average daily price in January is almost 10%

lower for the fixed threshold technique in comparison to using the original observations.The differences

are smaller for the other techniques, however, the predicted price level in 2007 is still between 1.66 and

2.14 Euro/MWh lower for the outlier detection techniques fixed threshold with detrending, recursive

filter, percentage threshold and wavelet S5. Only the wavelet S3 approximation yields similar results

to the original series. Here the forecasted average price level according to the estimated seasonal

pattern is only 0.59 Euro/MWh lower than for the original series. Hence, the technique that classifies

the smallest number of observations as outliers also predicts the highest price level for the forthcoming

months in 2007.

Overall, the choice of the technique for outlier detection has to be considered as an important

choice for modeling electricity spot prices. The chosen approach will not only affect the number of

observations classified as outliers, but also the estimated seasonal pattern. Hence, as a decomposition

of a deterministic and a stochastic component, also parameter estimates of the stochastic model as

well as price forecasts of future spot prices are affected by the treatment of extreme observations.
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