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Abstract

In this study the extended Overnight Index Rate (OIR) model is presented. The �tting function for the

probability distribution of the OIR daily returns is based on three di�erent Gaussian distributions which

provide modelling of the narrow central peak and the wide fat-tailed component. Calibration algorithm

for the model is developed and investigated using the historical OIR data.
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1 Overnight Index Rate Model

Overnight indexed swap (OIS) rates are considered as the risk-free rate for valuation of collateral-
ized portfolios (Hull and White, 2013). The development of Overnight Index Rate (OIR) models
are very important. There are several publications on this topic, such as Poisson�Gaussian mod-
els (Das, 2002) for the Fed Funds rates, (Benito et al., 2006) for Eonia, and the OIR model based
on short-term "memory" (auto-correlation) and its highly leptokurtical nature in (Yashkir and
Yashkir, 2003). In the present study the daily changes of the OIR for a Monte Carlo scenario s
are modelled as:
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The OIR daily return xi+1 at a time point ti+1 is correlated to m previous daily returns. It is
accounted for by the weighted sum of corresponding random driver ϵ(q⃗). The probability distri-
bution function g(x, q⃗) of the random number driver ϵ(q⃗) is introduced as the linear combination
of three normal distributions:

{

g(x, q⃗) = w1G(x, µ1, σ1) + w2G(x, µ2, σ2) + w3G(x, µ3, σ3)
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ti = (i− 1)∆t time points (i = 1, · · · , n+ 1)

q⃗ = (σ1, σ2, σ3, w1, w2, µ1, µ2, µ3) parameters to be calibrated

σ1,2,3 standard deviations of Gaussian functions G(x, µ, σ)

w1,2 weight coe�cients

w3 = 1− w1 − w2

µ1,2,3 centering parameters

(3)

The proposed distribution function (2) has enough �exibility to �t a typical historical distribution
with a narrow central peak, and fat tails. The possible upward/downward rate drifts are re�ected
in non-zero values of µ⃗. The auto-correlation of the daily returns of the OIR model (1) should
satisfy the historical auto-correlations ρ⃗. Therefore, the auto-correlation factors β⃗ must satisfy
the following equation

m−p+1
∑

k=1

βkβk+p−1 = ρp (p = 1, · · · ,m), (4)

where ρ⃗ is the historical auto-correlation vector (the overline indicates averaging by i):

ρp =
(xi − x)(xi−p+1 − x)

(xi − x)2
(5)

2 OIR Model Calibration

2.1 Random driver parameters

Given the set of historical overnight rates1 r⃗(h) for a chosen time period we calculate the historical
density distribution y(h)(x) of the overnight returns x⃗(h). The calibration of the distribution
g(x, q⃗) (2) is obtained by minimizing the objective function H(q⃗):
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where Q is a user-de�ned argument hyper-box:
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2.2 Auto-correlation factors

The auto-correlations ρ⃗(h) are calculated using x⃗(h) in (5). Taking into account (4) the factors β⃗
are obtained by minimizing the objective function V (β⃗):
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1http://www.euribor-info.com/en/eonia
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2.3 Implementation

The calibration of the OIR model and its use for the simulation are based on R-codes (R statistical
package). The optimization procedures (6) and (8) are based on the R function optim() using
the method "L-BFGS-B" that incorporates the box constraints2. The random driver function
code for ϵ(q⃗) (2) is as follows:

eps <- function(q){

flag1 = flag2 = flag3 = 0

y1 <- rnorm(1,q[6], q[1])

y2 <- rnorm(1,q[7], q[2])

y3 <- rnorm(1,q[8], q[3])

flag1 <- rbinom(1,1,q[4]) # if 1 then y1

if(flag1 == 0){ # if 0 then either y2 or y3

flag2 <- rbinom(1,1,q[5]) # if 1 then y2

if(flag2 == 0) # if 0 then not y1, not y2, but y3

flag3 = 1

}

y <- y1 * flag1 + y2 * flag2 + y3 * flag3

return(y)

}

where the function rnorm() generates normally distributed random numbers.
The source codes3 are:

{

OIR.v.3.5.R (calibration)

OIRSim.v.2.R (simulation)
(9)

3 The Overnight Index Rate Model

3.1 Calibration

The three input data sets were used for the model calibration. The long time period data set
(January 4, 1999 to July 11, 2012; Long Period A) covering 3464 time points and the short time
period data set (July 11, 2011 to July 11, 2012; Short Period B ) corresponding to 259 time
points were chosen to investigate how calibration depends on a wide range or rate drifts (Long
Period) compared to the relatively small rate drifts (Short Period). The other long time period
data set (January 4, 1999 to December 31, 2004; Long Period C; 1534 time points) was chosen
as the calibration base for OIR simulation for a long term (more than 5 years).

3.1.1 The Long Period A

The OIR model was calibrated based on Eonia rates (January 4, 1999 to July 11, 2012). The
time dependence of Eonia rates and daily returns x⃗(h) are presented in Figure 1 and in Figure 2.

2(Byrd et al., 1995)
3The R-codes for OIR calibration and simulation were developed by Yashkir Consulting (www.yashkir.com)
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Figure 1: Eonia (Long Period A: January 4, 1999 to July 11, 2012)
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Figure 2: Eonia daily returns (Long Period A: January 4, 1999 to July 11, 2012)

The hyper-box for �nding random driver parameters q⃗ was set as:

Q =
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0.0001 < σ2 < 0.02

0.0001 < σ3 < 0.95

0 < wk < 0.5, k = 1, 2

w3 = 1− w1 − w2

0 < µk < 0.003, k = 1, 2, 3

(10)

The result of the optimization procedure (6) was reached after 8 iterations (from H = 535.2 to
minH = 53.8), and the resulting vector q⃗ is presented in Table 4 (Long Period A). The process
of the convergence is shown in Figure 3.
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Figure 3: Convergence of the optimization procedure (6) (Long Period A)

The Long Period A calibration results demonstrate that the best-�t distribution has a narrow
(σ1 = 0.38%) peak (w1 = 45% weight), a wide band (σ2 = 2.0% with the w2 = 45% weight),
and a fat-tail band (σ2 = 9.25% with the w3 = 9.7% weight). The optimal �t of the calibrated
probability distribution function (2) to the historical density distribution y(h) is shown in Figure
4.
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Figure 4: Fitting of the model daily return distribution to historical data (Long Period A)

Using the algorithm (8) we obtained the β⃗ values (presented in Table 1 and in Figure 5). Note
that the one-day lag auto-correlation coe�cient is negative which re�ects the auto-compensation
feature of the OIR time dynamics.

Table 1: The historical auto-correlation ρ⃗ and factors β⃗

Auto-correlation lag (days) ρ(h) β

0 1 0.9656
1 -0.1986 -0.2333
2 -0.0541 -0.0760
3 -0.0420 -0.0594
4 -0.0564 -0.0615

8



Figure 5: Historical auto-correlations ρ⃗ and factors β⃗

The e�ciency of the calibration, and of the model itself, can be veri�ed by the backtesting
procedure. It is the simulation of the OIR using calibrated model and comparing simulation
results with historical OIR series. We assume that the model performs well if the historical OIR
time series lies between low and high con�dence levels of simulated rates.

3.1.2 The "in-sample" backtesting of the Long Period A calibration

The "in-sample" backtesting was done using the OIR model (1) with calibration parameters
presented in Table 4 (Long Period A) and in Table 1. The number of Monte Carlo scenarios was
N = 5000. Results of the simulation are presented in Figure 6.
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Figure 6: Backtesting (Long Period A): historical OIR (red), the upper/lower percentiles (99%
and 1%) of simulated rates, and the OIR simulated average (dashed curve)

The historical OIR time series is mostly covered by low/high quantiles of simulated rates in spite
of a very wide range of rate changes (the historical ratio of the highest rate to the lowest rate
= 5.75%/0.131% > 40 !).

3.1.3 The Short Period B

The OIR model was calibrated based on Eonia rates (July 11, 2011 to July 11, 2012). The time

dependence of Eonia rates and daily return ⃗x(h) are presented in Figure 7 and in Figure 8.
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Figure 7: Eonia historical rates (Short Period B: July 11, 2011 to July 11, 2012)
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Figure 8: Eonia historical daily returns (Short Period B: July 11, 2011 to July 11, 2012)

The hyper-box for �nding random driver parameters q⃗ was set as follows:
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w3 = 1− w1 − w2

0 < µk < 0.0001, k = 1, 2, 3

(11)

The result of the optimization procedure (6) was reached after 24 iterations (from H = 275.9
to minH = 37.7), and the resulting vector q⃗ is presented in Table 4 (Short Period B). The
convergence process dynamics for (6) is shown in Figure 9.
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Figure 9: Convergence of the optimization procedure (6) (Short Period B)

The optimal �t of the calibrated probability distribution function (2) to the historical density
distribution y(h) is shown in Figure 10.
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Figure 10: Fitting of the model returns distribution to the historical data (Short Period B)

Using the algorithm (8) we obtained β⃗ values (presented in Table 2 and in Figure 11). The main
auto-correlation feature of the OIR daily log return (the negative value of ρ for the one-day lag)
is present.

Table 2: Historical auto-correlations ρ⃗ and factors β⃗

Auto-correlation lag (days) ρ(h) β

0 1 0.9750
1 -0.1941 -0.2050
2 -0.0227 -0.0212
3 0.0294 0.0142
4 -0.0618 -0.0716
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Figure 11: Historical auto-correlations ρ⃗ and factors β⃗ (Short Period B)

Note that in case of the Short Period the one-day negative auto-correlation is dominant.

3.1.4 The "in-sample" backtesting of the Short Period B calibration

The "in-sample" backtesting was done using the OIR model (1) with calibration parameters
presented in Table 4 (Short Period B) and in Table 2. The number of Monte Carlo scenarios
was N = 10000. Results of the simulation are presented in Figure 12.
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Figure 12: Backtesting (Short Period B): historical OIR (red), the upper/lower percentiles (99%
and 1%) of simulated rates, and simulated average (dashed curve)

The historical OIR time series is mostly covered by low/high quantiles of simulated rates and
(sic!) the simulated rate average tends to the historical rate trend.

3.1.5 The Long Period C

The OIR model was calibrated based on Eonia rates (January 4, 1999 to December 31, 2004).
The time dependence of Eonia rates and daily returns x⃗(h) are presented in Figures 13 and in
Figure 14.
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Figure 13: Eonia (Long Period C: January 4, 1999 to December 31, 2004)
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Figure 14: Eonia daily returns (Long Period C: January 4, 1999 to December 31, 2004)

The hyper-box for �nding random driver parameters q⃗ was set as:

Q =







































0.0001 < σ1 < 0.01

0.0001 < σ2 < 0.02
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0 < wk < 0.4, k = 1, 2

w3 = 1− w1 − w2

0.00001 < µk < 0.01, k = 1, 2, 3

(12)

The result of the optimization procedure (6) was reached after 5 iterations (from H = 4706 to
minH = 1490), and the resulting vector q⃗ is presented in Table 4 (Long Period C). The process
of convergence is shown in Figure 15.
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Figure 15: Convergence of the optimization procedure (6) (Long Period C)

The Long Period C calibration results (16) demonstrate that the calibrated probability distri-
bution function (2) �ts well the historical density distribution y(h).
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Figure 16: Fitting of the model daily return distribution to historical data (Long Period C)

The �tting result (Figure 16) shows that the three-component �tting function 2 provides a good
replication of the historical distribution.
Using the algorithm (8) we obtained the β⃗ values (presented in Table 3 and in Figure 17). The
one-day lag auto-correlation coe�cient is negative which re�ects the auto-compensation feature
of time dependence of OIR.

Table 3: Historical auto-correlation ρ⃗ and factors β⃗

Auto-correlation lag (days) ρ(h) β

0 1 0.9445
1 -0.1720 -0.2520
2 -0.1542 -0.1925
3 -0.0501 -0.0697
4 -0.0331 -0.0422
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Figure 17: Historical auto-correlations ρ⃗ and factors β⃗

The e�ciency of the calibration (and quality of the model itself) was veri�ed by the backtesting
procedure in the next subsection.

3.1.6 The "in-sample" backtesting of the Long Period C calibration

The "in-sample" backtesting was done using the OIR model (1) with calibration parameters
presented in Table 4 (Long Period C) and in Table 3. The number of Monte Carlo scenarios was
N = 5000. Results of the simulation are presented in Figure 18.
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Figure 18: Backtesting (Long Period C): historical OIR (red), the upper/lower percentiles (99%
and 1%) of simulated rates, and the simulated OIR average (dashed curve)

The historical OIR time series is mostly covered by low/high quantiles of simulated rates (in
spite of very strong upward/downward rate drift periods and long periods with relatively stable
rates.

3.2 Summary of OIR calibration tests

The results of the OIR calibration based on di�erent data sets are summerized in Table 4.
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Table 4: OIR Model Calibration results

σ1 σ2 σ3

Case Time period w1 w2 w3 β1 β2 β3

From To µ1 µ2 µ3

0.0038 0.0200 0.0925
A 4-Jan-1999 11-Jul-2012 0.4516 0.4515 0.0969 0.9656 -0.2333 -0.0760

0 0 0.0003
0.0230 0.0142 0.1585

B 11-Jul-2011 11-Jul-2012 0.4000 0.3968 0.2032 0.9750 -0.2050 -0.0212
0 0 0

0.0092 0.0019 0.0762
C 4-Jan-1999 31-Dec-2004 0.3680 0.3680 0.2640 0.9445 -0.2520 -0.1925

0.0007 0 0.0008

3.3 OIR simulation using the "out-of-sample" calibration

3.3.1 The short term OIR simulation

The "out-of-sample" OIR simulation for a short term (July 11, 2012 to June 5, 2013; 230 days)
was done:

• using the Long PeriodA calibration (Table 4, case A and Table 1). Results of the simulation
are presented in Figure 19.

• using the Short Period B calibration (Table 4, case B and Table 2). Results of the simu-
lation are presented in Figure 20.
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Figure 19: The short term OIR simulation using the Long Period A calibration: the 99% and
1% quantiles, the simulated OIR average, and historical rates (dots)
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Figure 20: The short term OIR simulation using the Long Period B calibration: the 99% and
1% quantiles, the simulated OIR average, and historical rates (dots)

Simulated OIR are presented in Figure 19 and in Figure 20 by upper/lower percentiles (99% /
1%) and by the average of simulated rates. Historical rates (not used for calibration) are plotted
as dots. In both cases historical rates do not deviated far from the simulated averages. In both
cases (Figures 19 and 20) the historical "out-of-sample" rates lie within the quantile envelope
(99% - 1%).

3.3.2 The long term OIR Simulation

The "out-of-sample" OIR simulation for a long term (December 31, 2004 to December 30, 2011;
1796 days) was done using Long Period C calibration (Table 4 and Table 3). Results of the
simulation are presented in Figure 21.
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Figure 21: The long term OIR simulation using the Long Period C calibration

In spite of the strong upward/downward drifts of the rate during certain periods of time, the
envelope of upper/lower quantiles covers most of historical rate changes. The simulated OIR
average and the historical rates have similar time tendencies.

4 Summary

The extended Overnight Index Rate model was developed and validated. The model is based
on auto-correlated daily log returns with the special stochastic driver (represented by the mix of
three di�erent Gaussian processes). The density distribution of this stochastic driver provides
�exible modelling of the narrow central peak, the medium width component, and the wide
fat-tailed band. The calibration algorithm was developed, tested and validated using both "in-
sample" and "out-of-sample" OIR simulations. The model is well suited for the OIR simulation
in both quiet and stressed market conditions. It can be used both for OIR forward estimation
and for pricing of OIR-based derivatives (such as Overnight Interest rate Swaps).
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