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Abstract 

In Mexico, as in most Latin American countries with indigenous populations, it is commonly 
believed that European phenotypes are preferred to mestizo or indigenous phenotypes. 
However, it is hard to test for such racial biases in the labor market using official statistics 
since race can only be inferred from native language. Moreover, employers may think that 
married females have lower productivity, and hence they may be more reluctant to hire them. 
We are interested in testing both hypotheses through a field experiment in the labor market. 
The experiment consisted on sending fictitious curriculums (CVs) responding to job 
advertisements with randomized information of the applicants. The CVs included 
photographs representing three distinct phenotypes: Caucasian, mestizo and indigenous. We 
also randomly vary marital status across gender and phenotype. Hence, our test consists on 
finding whether there are significant differences in the callback rates. We find that females 
have 40 percent more callbacks than males. We also find that indigenous looking females are 
discriminated against, but the effect is not present for males. Interestingly, married females 
are penalized in the labor market and this penalty is higher for indigenous-looking women. 
We did not find an effect of marital status on males. 

Keywords: Discrimination; Gender; Race; Labor market; Mexico; Hiring; 
Correspondence study.  
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1. Introduction 

Recent literature in economics has made an increasing effort to provide credible 

measures of discrimination by race, age, gender and physical appearance.1 Those 

studies have relied on the use of correspondence studies to measure discrimination 

at the point of hire. From our reading of the literature we have not found studies on 

racial discrimination in countries where race is not as physically salient as those 

countries with varied racial mixes derived from historical immigration influxes.2 

Mexico is a country in which racial features are not as pronounced, but there is 

however a range of darkness in the population going from Caucasian phenotypes to 

darker indigenous phenotypes and all the phenotypes within. Distinguishing 

discrimination in such a context is harder because the use of names does not 

directly imply a racial origin.  

In this paper we aim at identifying racial discrimination in Mexico along the range of 

phenotypes generated by the miscegenation during the Spanish colony. We conduct 

a correspondence study in which we randomly vary the photograph of the CV and all 

other information. The photographs represent three distinct racial phenotypes in 

Mexico: a Caucasian individual, a mestizo with light-brown skin, and a dark-brown 

skin individual who resembles the indigenous population the most. This study is 

particularly important in the Mexican context for two reasons. First, after 

independence there was an explicit effort to create a mestizo identity in the country 

(Aguilar, 2011). The idea that “we are all mestizos” is widespread, yet 24.5 percent 

of youth declare that they are discriminated against because of their physical 

appearance (ENADIS, 2011). Given the idea that Mexico is a mestizo country, there is 

no information on racial origin nor skin color in labor surveys. Hence, it is 

impossible to estimate any kind of labor market performance racial gap using official 

                                           

1 See the literature review section for more details on this literature. 

2 Such is the case of the United States with the white and black distinction, and Canada or other 
European countries with the white-native and immigrant distinction. 
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statistics.3,4 And second, as in many developing countries, employers explicitly ask 

applicants to include a photograph in their CVs. Thus the information on phenotype 

and physical appearance is explicitly conveyed in the CV, and used by employers in 

their at-point-of-hire decisions. 

Another dimension that we want to investigate on is marital status. It has long been 

hypothesized that employers may think that married females have lower 

productivity, and hence they may be more reluctant to hire them due to statistical 

discrimination. With this in mind, in our fictitious CVs we also varied marital status 

randomly for men and women. The provision of this kind of private information in 

the CVs is very standard in the Mexican context. So we will be testing how marital 

status affects callback rates of men and women. Moreover, we will be able to test 

whether there is statistical or preference-based discrimination by exploiting the 

interaction of marital status and phenotypes. The working hypothesis in this case is 

that if marriage affects productivity of females, it should affect it equally across 

phenotypes. 

Our research design consists on an audit study that will focus on recent college 

graduates. The reasons behind this choice are that online job searches for this group 

are more representative of the typical search, and that we do not introduce noise by 

having individuals with longer professional careers in which the experience may take 

a more prominent role as in Oreopoulos (2009). We sent comparable CVs to close to 

1,000 online job advertisements.5 To each job post, we sent 8 resumes on average 

varying the gender and the picture along with other observable characteristics of the 

fictitious applicants. The photographs represent three distinct phenotypes: 

Caucasian or European phenotype (white skin), the mestizo phenotype (light brown 

                                           

3 Some surveys have information on whether individuals speak an indigenous language. However, there 
is a large share of the population with an indigenous phenotype that only speaks Spanish. 

4 Some key Mexican studies on race discrimination include Béjar Navarro (1969) and Gall (2004) among 
others. None of these studies analyze the labor demand-side of the labor market as we do in this 
article. 

5 All job advertisements were posted by different firms. 
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skin), and the indigenous or dark mestizo phenotype. In the experiment, we built 10 

different sets of 8 resumes in which all characteristics, including experience, are 

random, such that we have substantial variation across CVs. The experimental 

design of the study allows us to test in a straightforward fashion if there is 

discrimination in the Mexican labor market: given that the education and experience 

in the CVs are randomly assigned, the gender, the physical characteristics and the 

marital status of the applicants should not determine the probability of getting a 

callback for an interview. 

For the more than 8,000 CVs we sent, our results indicate that women get 40 

percent more callbacks on average than men. Hence we do not find evidence of 

discrimination against women in the group of study. In terms of physical 

characteristics, we found that a Caucasian woman receives 23 per cent more 

callbacks than a woman with an indigenous phenotype. In the case of men, we do 

not find statistically significant differences in the callback rates among phenotypes. 

Moreover, there is a marriage penalty in terms of callbacks for women but not for 

men. This penalty is larger for women with Indigenous phenotype, when we do not 

control for firm characteristics. When we included a fixed effect in our estimates, we 

found that there is no heterogeneity suggesting that there may be statistical 

discrimination against married women. 

These results have important implications for the legislation on the labor market, 

and the promotion of equality in general, and public policies in Mexico and other 

developing countries. If individuals with the same education and labor experience 

receive a different treatment just because of their marital status or physical 

appearance, then there is no fostering of equality of opportunities or social mobility. 

For these reasons in many developed countries, employers are forbidden to ask 

personal information of the job applicant like marital status and racial background. 

Given that we found that these characteristics are used to discriminate against 

certain groups, it is desirable to improve the labor laws on these issues, and to 

prohibit explicitly the inclusion of personal information in the curriculum vitae. 
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The rest of the paper is organized as follows. In Section 2 we briefly review the 

findings of the literature. In Section 3, we describe the experiment we conducted and 

the methodology used to analyze the data collected. In Section 4, we present 

descriptive statistics and the results of the econometric analysis. Finally, Section 5 

concludes and offers a discussion of public policies and regulations that are 

necessary to halt discriminatory behavior given our evidence. 

2. Literature Review 

The literature on discrimination using field experiments has grown exponentially in 

the last 30 years (Pager, 2007). We can find two main approaches in the literature: 

correspondence tests and in-person audits. In the correspondence tests, the 

researcher creates similar sets of fictitious resumes varying the trait of interest. For 

example, a pair of CVs has similar professional experience, but different gender. The 

goal in correspondence tests is to compare the callback rates between groups (in our 

previous example, between men and women). Given that the labor experience is 

comparable, if there is equality of opportunities, then the callback rates should not 

vary by gender. On the other hand, in-person audit studies match similar individuals 

on an observable characteristic. Then these individuals apply to jobs using in-person 

applications or interviews. The researcher trains the potential job applicants in order 

to reduce the bias for unobserved characteristics (for instance, the accent or the 

behavior during the interview). 

There are several advantages of correspondence test studies over in-person studies. 

First, correspondence test studies are less expensive than in-person studies. Second, 

the sample size may be considerable larger which increases statistical power 

calculations. Third, it is difficult to guarantee that potential job applicants in the in-

person studies will behave identically or in a very similar way.6 In the correspondence 

                                           

6 It is particularly worrisome that the behavior of the applicants varies in an unobservable fashion to the 
econometrician. For instance, it is possible that the individual representing the discriminated minority 
will try to compensate by having a better attitude or being more charismatic during the interview (after 
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test studies, we can be certain that CVs are comparable. Nevertheless, in some 

employment positions like entry-level jobs, job applicants are required to apply in 

person for the job position (Pager, Western and Bonikowski, 2009; Pager, 2007). In 

those cases, the correspondence study has limited impact. For the reasons just 

described, we implement a correspondence test study that limits to recent graduates 

from university. In Mexico, most of the job advertisements to recent college 

graduates require sending a CV by email. 

Correspondence test studies have been used to measure discrimination in the labor 

market and real estate market by race or ethnicity, gender, age, physical 

attractiveness and social background in the labor and housing market (see the 

excellent reviews by Pager, 2007, and Pager and Shepherd, 2008). Most of the 

correspondence studies refer to developed countries. Moreover, in general these 

studies show evidence of discrimination by race or ethnicity and age.  

In the United States, Bertrand and Mullainathan (2004) analyze the effect of race in 

the probability of callback. They sent similar resumes using “White names” like Greg 

and Emily and “Black names” like Jamal and Lakisha. They find that resumes with 

white names have a callback rate of 9.7 percent while resumes with black names 

have a callback rate of 6.5 percent. As they only vary the names of potential 

applicants, they argue that there is substantial race discrimination in the U.S. labor 

market. 

Similar studies have been carried out in other countries. For Canada, Oreopoulos 

(2009) finds that employers place more value on resumes with English-sounding 

names and Canadian education and labor experience as opposed to foreign-

sounding names (China, India or Pakistan) and foreign education and labor 

experience. For Sweden, there is ample evidence of discrimination against minorities 

in the labor market (Bursell, 2007; Carlsson and Rooth, 2007; Rooth, 2010) and in 

the housing market (Ahmed and Hammarstedt, 2008). In Australia, Booth et al. 

                                                                                                                                     
all, the subjects are actors). Or quite the contrary, that this individual has a bad attitude so that the 
study throws the expected results. This behavior is unobservable to the econometrician.  
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(2011) shows there is also discrimination against indigenous, Chinese or middle-

eastern names. Chinese and Middle easterners have to submit at least 50 percent 

more applications than Anglo-Saxons in order to get a similar callback rate. In 

Germany, Kaas and Manger (2009) find discrimination in favor of German sounding 

names and against Turkish sounding names. In the rental market in Greece, Drydakis 

(2011) shows evidence that the probability of receiving an appointment to a showing 

in the house-renting market is lower for Albanians than for Greeks. 

On the other hand, in developing countries there is little evidence of discrimination 

on the basis of social background or ethnicity. In Chile, Bravo et al. (2008) conduct a 

correspondence study in which they vary social class by name and surname as well 

as place of residence. They do not find any discrimination effect. In India, Banerjee et 

al. (2009) compare callback rates for Upper and Non-Upper caste names in software 

and call-center jobs. They only find evidence of discrimination in call-center jobs, but 

overall caste names do not affect callback rates. 

Correspondence studies have been used to study age and gender discrimination. 

Lahey (2008) shows that in the United States young applicants are 44 percent more 

likely to be offered an interview than old applicants. In general, the evidence of 

discrimination against older workers is similar to other countries: France (Petit, 

2007), Spain (Albert et al., 2011) and United Kingdom (Riach and Rich, 2007). The 

studies in France and Spain do not find any gender discrimination. Finally, Booth and 

Leigh (2010) find discrimination against males in female-dominated occupations. 

Some countries allow or require a picture in the resume. Some researchers have 

exploited this inclusion to examine the role of physical attractiveness on the 

probability of a callback. Rooth (2009) finds a negative differential treatment in 

hiring in Sweden for job applicants who are obese or unattractive. In Argentina, 

Lopez Boo et al. (2011) find that attractive individuals receive 36 percent more 

callbacks for interviews than unattractive individuals. In Peru, Moreno et al. (2004) 

find no gender or racial discrimination in the hiring process, however they do find 

that female adjust their expected wages by 7 percent below the average of expected 



7 

 

wages of males. Although there is no direct evidence of discrimination in the 

employment process using audit studies in Mexico, Aguilar (2011) tests whether 

ethnicity in fictitious political candidates matters. She finds that Mexicans vote more 

for fictitious candidates with “European” looks than with indigenous or mestizo 

looks.  

Our paper is closer to the contributions of Oreopoulos (2009) and Lopez Boo et al. 

(2011). Similar to the case of immigrants’ characteristics in Oreopoulos (2009), we 

are interested in the determinants of callbacks among recent college graduates. We 

are also interested on whether ethnicity and the notion of an “attractive” face (in 

terms of European vs. Mestizo phenotypes) is a determinant for callbacks. Moreover, 

we are interested on whether there is differential treatment by social background, as 

measured by the university in which individuals graduate, and marital status. 

3. Experimental setup and methodology 

In order to test whether gender and phenotype determine the callbacks for an 

interview, we constructed a bank of randomized CVs and a bank of job 

advertisements. A typical CV includes identity information (name, photograph, 

address, email, cell phone number, etc.), previous education, professional 

experience, hobbies and some additional information (like time availability and 

willingness to move to another city). On average, we sent 8 CVs to each job 

advertisement. These were determined on the basis of gender and phenotype (3 

phenotypes and a CV without picture as control).7 

We created CVs using experiences from CVs available online such that the 

professional experience of our fictitious candidates is realistic. Moreover, we 

contacted recent college graduates and asked them to modify the CVs as if they were 

                                           

7 In some cases the job advertisements specified the gender desired for the vacant position (only men, 
or only women), ask for a photograph in the CV, or other characteristics of the applicants. We sent less 
than 8 CVs to these ads: 4 CVs in the first example, and 6 in the second. 
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their own. For the names, we used 8 of the most common names and surnames in 

Mexico. We chose mainly surnames ending with “ez”, because in Mexico these 

surnames are very common and they are not associated with social background.8 

Following Lahey & Beasley (2009), we randomized characteristics across CVs9 and 

created 10 sets of 8 CVs each for six different majors and two experience levels;10 

hence, our bank of CVs has 960 different CVs. Each name was associated to a 

Gmail© account and a cell phone number.11 The characteristics of the CVs are 

randomized, so on average each photograph has a CV of the same quality.  

In order to distinguish phenotypes, we took pictures of three men and three women 

representing the phenotypes. The pictures have a white background and the subjects 

wear similar attires.12 The pictures were taken with the express consent of the 

subjects, who granted us written permission to use their image in the experiment. 

We explained to each subject the nature of the experiment; and the way in which we 

would use their image during the experiment.13 For the purpose of this study, we 

define a European phenotype as a white person. It is important to mention that our 

definition is not necessarily related to a particular color of the eyes or the hair. The 

next phenotype we defined is the mestizo, whose skin is a light shade. Finally, the 

indigenous phenotype is a dark-skinned individual.  It is important to clarify that a 

                                           

8 We chose the following names: Alejandro Flores Álvarez, Antonio González Lara, Carlos Romero 
Gómez, Javier Rodríguez Mendoza, Claudia García Ramírez, Gabriela López Acosta, Mariana Hernández 
Silva, Mónica Vázquez Rivera. According to Instituto Federal Electoral (2012), to Mateos (2010) and to 
the Baby Center website (2011) these names are very common in Mexico. 

9 For example, we randomized pictures, universities and high schools from which they graduated, 
professional experience, marital status, addresses, hobbies, and any additional information.  

10 We selected the following majors: business administration, public accounting, economics, industrial 
engineering, engineering in electronics and telecommunications, and engineering in computational 
systems. We will explain why we chose those majors further ahead.  

11 Those were the means through which the firms could contact our fictitious applicants.  

12 Women wore a black blazer and a soft-toned blouse; men, a dark suit, white shirt and a tie with 
discrete patterns. We also attached colored pictures so that the physical characteristics are better 
observed by the employers.  

13 Please refer to Appendix A to see the photographs. 
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subject labeled as indigenous is not necessarily a native of the Americas. These 

types of individuals resemble native Americans more than mestizos in the color of 

their skin and facial features. In Mexico, it is widely recognized that a European 

appearance is preferred to a mestizo appearance, which is also preferred to an 

indigenous appearance (Aguilar, 2011). In fact, the word “indio” (Indian) is still an 

insult in Mexico.14 In our experiment, we are particularly interested on the existence 

of this preference for European looks. This preference would result in a higher 

callback rate to the applications of European-looking individuals as compared to the 

mestizos or the indigenous ones, even when all other information in the CVs is the 

same on average. 

We also randomized the universities where the applicants went to college. We used 

do public universities and three private universities, all them widely known in Mexico 

City. An employer can discriminate an indigenous-looking individual. However, we 

would also like to test whether this type of discrimination is independent of the type 

of university attended by the individual. In Mexico, employers prefer the graduates 

of some private universities than those of public ones (for instance, the newspaper 

Reforma, 2012, reports university rankings).15,16 In the CV, we also randomized the 

marital status. It is very common in Mexico that the CV includes such personal 

information; in fact some employers explicitly ask for that kind of information. This 

is quite in contrast to what is legally allowed in developed countries. 

As for the job advertisements, we only focused on those requesting candidates with 

zero to three years of experience, given that we are analyzing the market for recent 

                                           

14 There are anthropological studies which present those cases. See, for instance, Oehmichen (2006) 
and Wade (2009). 

15 In order to build the index, Reforma takes into account the opinion of the employers about college 
graduates. 

16 It is important to mention that just sent CVs to firms looking for employers online. One can argue 
that network effects are more important in private than in public universities (mouth-to-mouth 
recommendations or than the information on vacancies is kept within the firm). We cannot test the 
existence of those effects. Hence, our results should be interpreted as the impact of universities on 
callbacks derived from online job postings, and not as the impact in the whole labor market. 
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college graduates. The graduates are confined to the following majors: business 

administration, public accounting, economics, industrial engineering, engineering on 

electronics and telecommunications, and engineering on computational systems. 

These majors were selected to try to maximize the number of job ads available 

before the beginning of the experiment; and also to achieve some gender balance 

among the graduates. We found that 48 percent of the graduates in those majors of 

the 2007-2008 class were women (ANUIES, 2009). Hence, given a relatively balanced 

distribution of graduates we would expect a relatively balance callback rate in the 

absence of discrimination. 

We sent the CVs from October 2011 to May 2012. We collected the job ads 

information on a weekly basis from internet websites commonly used to publicize 

and look for jobs in the Metropolitan Area of Mexico City.17 For each job ad we 

collected some information on the job characteristics, but the ads did not allow us to 

collect information on the firm (such as the firm size, revenues, and the like) or on 

the specifics of the job position within the firm (such as whether there is contact 

with customers or clients and the hierarchy within the firm).18 If the advertisement 

was looking only for women, we just sent women’s CVs. If the ad had some 

requirements on languages or programming skills, then we added all requirements 

to all CVs sent to that ad.  

In order not to raise suspicions about the experiment, we did not send all the CVs at 

the same time. We scheduled the deliveries of emails at different times within two 

consecutive days using Boomerang©.19 The employer could make contact with the 

applicant via email or cell phone, so each name was associated with a cell phone 

number and an email account. If the firm contacted the applicant to schedule an 

                                           

17 The websites were OCC Mundial (http://www.occ.com.mx/) y CompuTrabajo 
(http://www.computrabajo.com.mx/). 

18 The reason for this lack of firm and job position data is that the job ad is too general and does not 
identify the firm. 

19 http://www.boomeranggmail.com/ 
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interview, we registered the callback. These are the callbacks that we use to estimate 

the probability of a callback in our econometric model.20 

In sum, in most of the cases we sent 8 CVs per job advertisement. In each set of CVs 

we included 4 men and 4 women. For each gender, we randomized universities, 

marital status, and a picture representing 3 characteristic phenotypes, so we left a 

CV without picture as a control. When the employers called to schedule an interview 

with the applicant, we recorded the callback as a success. These callbacks will be 

used as our dependent variable in the econometric model presented below. 

Given that the information on the CVs is randomly assigned, if the employers are 

only interested on the candidates’ qualifications, then gender, marital status or 

phenotype should not matter in the callback decision. We are therefore interested on 

three results. First, we want to test whether employers have a strict gender 

preference when presented with both options. Second, we want to whether if there is 

discrimination against people with facial features which are close to the indigenous 

one. Finally, we want to test whether marital status affects callback rates. We will 

thus estimate the following statistics:21 

𝐸[𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘|𝑊𝑜𝑚𝑎𝑛] − 𝐸[𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘|𝑀𝑎𝑛] (1) 

𝐸[𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘|𝑊ℎ𝑖𝑡𝑒] − 𝐸[𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘|𝐷𝑎𝑟𝑘] (2) 

𝐸[𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘|𝑆𝑖𝑛𝑔𝑙𝑒] − 𝐸[𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘|𝑀𝑎𝑟𝑟𝑖𝑒𝑑] (3) 

                                           

20 In order to avoid having problems with the employers and to avoid having follow-up call, right after 
recording the callback, our research assistants informed the firms that they were pleased for the 
interest in their application, but that they had already found a job. 

21 We will also condition the estimates of (2)-(4) on gender. 
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A statistical difference in equations (1)-(3) may be interpreted as discrimination. The 

literature on discrimination in economics distinguishes between preference-based 

discrimination and statistical discrimination. There is preference-based 

discrimination when the employer derives disutility from having certain type of 

people among his employees. This disutility is reflected on a higher psychic cost of 

hiring those people. On the other hand, statistical discrimination exists due to 

information asymmetries about workers’ productivities: the employer has a prior 

about the productivity of people based on some observable characteristic like marital 

status, gender or race (Arrow, 1998; Dickinson and Oaxaca, 2006; Phelps 1972). In 

our case, the employer may expect single to married women because they expect 

single women to be more productive.22 Similarly, the employer may think that 

European-looking people are more productive, and hence they call them back with a 

higher probability. However, as Phelps (1972) states “[d]iscrimination is no less 

damaging to its victims for being statistical. And it is no less important for social 

policy to counter.”23 For this reason, in this article we do not aim to find out the 

source of discrimination. However, some relevant comparison between specific 

groups may provide suggestive evidence on the type of discrimination. 

We can formalize the expression above with the following estimating equation: 

Pr�𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝑖𝑗 = 1�𝐺𝑖𝑗 ,𝑅𝑖𝑗 ,𝑈𝑖𝑗 ,𝑋𝑖𝑗 ,𝑊𝑗� = Pr (𝛼𝐺𝑖𝑗 + 𝛽𝑅𝑖𝑗 + 𝛾𝑈𝑖𝑗 + 𝛿𝑋𝑖𝑗 + 𝜃𝑊𝑗) (4) 

where 𝑖 denotes individual y 𝑗 the ad/firm, the dependent variable is an indicator of 

whether the firm contacted the applicant, 𝐺 denotes gender; 𝑅, the phenotype 

(European, mestizo, and indigenous), 𝑈 is the type of college attended, and 𝑋 and 𝑊 

are control variables of the individual and the ad, respectively. Our control variables 

include age, major dummies, and dummies for scholarships, public high schools, 

                                           

22 For instance, married women may ask for more days off in order to take care of sick children. 

23 Phelps (1972), p. 661. Statistical discrimination is as damaging as preference-based discrimination 
because if a high-productivity individual belongs to a group with a low average productivity, that 
individual will be considered to be low productivity when she is not. 
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foreign language proficiency, time availability and leadership activities within the 

university. In all the regressions we estimate standard errors robust to 

heteroskedasticity and clustered at the firm level.  

The parameters of interest in the regression of equation (4) are the coefficients on 

gender, phenotype, university and marital status. In order to present some evidence 

on the existence of preference-based labor market discrimination we will interact the 

phenotype with marital status in equation (4), and we will run the regression on 

some subsamples of interest.24 

4. Results 

A. Descriptive results 

Table 1 shows the descriptive statistics of the fictitious job applicants. Overall, 

employers post more ads requiring “only women” than “only men”. There are more 

job ads for majors on business than on engineering. In fact, 71 percent of all 

fictitious applicants graduated from business majors. Given the random assignment 

that we established, 62 percent of the applicants graduated from a public university. 

By the same token, and consistent with the parameters we established, 27 percent of 

individuals are married and the average age is 24.5 years. The CVs also include 

information on scholarships, foreign languages and availability of extra time and to 

move to another city. These aspects are included in order to analyze if they are an 

important factor in the determination of a callback. 

[Table 1 about here] 

                                           

24 For example, assume that there is statistical discrimination against married women in the labor 
market. That is, the employers expect that married women are going to be less productive than single 
women on average. This prior expectation may be due to a higher absenteeism among married women 
given their care-giving responsibilities in the household. Then we would expect that an interaction 
between marital status and phenotype in regression (4) will not any additional effect on the probability 
of a callback after controlling for the levels of those two variables. 
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Table 2 shows the callback rates by gender, major, type of university, marital status 

and time availability. Most of the differences are not statistically significant (the table 

only includes the t-statistics for the statistically significant tests). However, women 

receive a higher proportion of callbacks than men. The difference between women 

and men is 4.2 percentage points. In other words, men need to send 40 percent 

more job applications in order to get the same number of callbacks than women. 

Approximately for every 20 job applications sent, men receive around 2 calls and 

women receive 3 calls.  

[Table 2 about here] 

 

The callback rates are similar for individuals who majored in business and from 

public universities for both genders. Notwithstanding, we noticed that there is a 

gender gap in the callback rates, which is larger of business graduates (4.8 

percentage points) than for engineering (2.9 percentage points). Similarly, the 

gender gap is larger for private universities (5.2 percentage points) than for public 

universities (3.7 percentage points). All these gaps are statistically significant. 

The callback rate for single applicants is 13.1 percent and for married applicants, 

12.3 percent; the difference is not statistically significant. However, there is a large 

heterogeneity when we analyze men and women separately. The callback rate is 11.5 

and 10.3 percent for married and single men, respectively. In contrast, single women 

have a larger callback rate than married women; the difference is 2.5 percentage 

points and it is statistically significant. Additionally, the gender gap is larger among 

single individuals than among married individuals. So our results point out that 

employers do not care about the marital status of men, but they do take into account 

the marital status of women. 

Finally, the inclusion of time availability in the CV does not matter for a callback, 

even after we split the sample by gender. Apparently, employers do not even read 

this part of the CV (which is place at the end) given that in all cases those who do 
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not provide that information seem to receive more callbacks than the rest of the 

applicants. Nevertheless, even when we split the sample by availability, women 

continue to receive more callbacks than men in every case. 

[Table 3 about here] 

Table 3 presents the callback rates by gender and phenotype (European, mestizo, 

indigenous and without picture), and the p-value of the Pearson independence test. 

We found that the phenotype is correlated with the callback rate only for women. In 

the case of men, even when European-looking men have a larger callback rate than 

indigenous-looking men (or those without a picture), the difference is not 

statistically significant. In contrast, there are statistically significant differences 

between women with a European phenotype and those with an indigenous 

phenotype (or without a picture). European-looking women have 23 percent more 

callbacks tan indigenous-looking women, and 34 percent more callbacks tan women 

who did not include a picture on their CVs. It is surprising to find these differences 

only for women. If we believe that employers discriminate statistically in favor of 

attractive people because they expect them to be more productive, then we would 

expect to observe the same differences among men and women, but we only 

observe them for women. 

Table 3 also includes the callback rates by marital status and the type of college 

attended. For women, we found that European-looking singles have a larger callback 

rate than their married counterparts. This marriage penalty is even higher for those 

with an indigenous phenotype and those without a picture. In fact, the lowest 

callback rate that we wound in our sample is for married indigenous-looking women. 

As a result, the callback rate of married Caucasian women is 61 percent larger than 

the callback rate of married women with indigenous appearance. It is important to 

notice that married women with a mestizo look have a premium with respect to their 

single counterparts. We do not observe any type of marriage penalty for men, if any 

we observe a relatively larger callback rate for married indigenous-looking men. 
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The results from tables 2 and 3 imply that, in general, employers prefer to call single 

women to married women, whereas for men marital status does not play any role. 

However, the marriage penalty for women differs according to phenotypes. Statistical 

discrimination against married women would suggest a similar penalty for all women 

independently of phenotype (that is, employers would expect a lower productivity 

from all married women). This result is no consistent with our data, which suggests 

that preference-based discrimination may be present in the Mexican labor market. 

B. Econometric results 

Table 4 presents the estimation of equation (4) using all the sample, and Table 5 

restricts the estimation to women. The results are similar to those described in the 

previous subsection, which is consistent with the randomization of the information 

in the CVs. The tables include six columns in which we vary the omitted photo 

dummy variable or subsets of photo dummies. The first five columns do not control 

for firm fixed effects; those are included in Column (6).25 All regressions control for 

age, business dummy, scholarship dummy, public high-school dummy, dummies for 

foreign language, and a leadership dummy. The standard errors are robust to 

heteroskedasticity and clustered at the firm level to control for error correlation 

within the firm. 

Table 4 shows that the probability that women receive a callback is 4.3 percentage 

points higher than that of men. That is, women receive 40 percent more callbacks 

than men. This result is robust to the inclusion of marital status, dummies for 

phenotypes (photos) and all other control variables. This result was rather 

unexpected. However we think that it may be a result of the self-selection process of 

women graduating from college and participating in the labor market. These 

selection processes may signal employers of high productivity in the case of women, 

                                           
25 The results are similar if we estimate the marginal effects in a logistic or normal probability model. 
The main reason for using a linear probability model is precisely the inclusion of firm fixed effects in 
the model. Tables B1 to B3 in Appendix B show the results using a probit model. We do not show the 
results of the logit estimation for simplicity, but they are very similar to those of the probit and the 
linear probability models.  
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but not in the case of men. As such, there may be unobservable characteristics 

which are unobserved by the econometrician, but which may help employers on their 

hiring decisions. This may be interpreted as statistical discrimination against males. 

We provide a test on this on the robustness subsection. The results are consistent 

with the descriptive analysis in the sense that having attended a public university 

and being married do not have any effect on the probability of a callback when we 

consider both men and women in the estimations. 

[Table 4 about here] 

As for phenotypes, the results show that the European phenotype has a higher 

callback rate as shown in Column (2). Individuals with a European appearance have a 

callback rate 2.5 percentage points larger than indigenous phenotypes (omitted 

category). Mestizos have a callback rate 1.7 percentage points higher than 

indigenous phenotypes. However, there is no statistically significant difference 

between the callback rates of indigenous applicants and those without a photo in 

their CVs. Columns (3) to (5) change the phenotype of reference and the results are 

qualitatively similar. That is, we always find that European or mestizo phenotypes 

have a higher callback rate than indigenous phenotypes or CVs without a photo.  

Column (6) includes firm fixed effects and the results hold. This column controls for 

all unobserved factors at the firm level like the firm size, sales, industry and so on. 

Hence, the biases introduced by the firm’s type are eliminated with the introduction 

of firm fixed effects. These fixed effects also control for the fact that some firms 

demand only men or only women. For this reason, the coefficient on Women is the 

only one that changes in a significant way. These results imply that even within firms 

women and European phenotypes are preferred, and that the results are not a 

consequence of the firms demanding certain characteristics from their employees. 

[Table 5 about here] 
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Table 5 shows the results when we restrict the sample to women.26 Public 

universities are irrelevant to receive a call. However, and in contrast to men, marital 

status does have an impact on the female callback rates. Married females have a 

callback rate between 2.7 and 3 percentage points less than single women (columns 

[1] to [5]). A European phenotype also exhibits a higher callback rate than all other 

phenotypes. Specifically, European-looking women have a callback rate 3.3 

percentage points higher than indigenous phenotypes. Hence, “indigenous” females 

need to send 23 percent more CVs to receive the same number of calls than whites.  

As in Table 4, we introduce firm fixed effects in Column (6) of Table 5. Even when 

controlling for unobserved firm characteristics, the marital status continues to be 

important in the firm’s decision to call back. The significance of the coefficient drops 

due to the small number of married females in the sample (26 percent). Similarly, 

even after adding firm fixed effects, firms still prefer European phenotypes to 

indigenous ones. 

C. Extensions 

In order to further test whether the marital status has differential effects depending 

on gender, phenotype and other characteristics, we present the estimates in tables 6 

and 7. These tables will allow us to show evidence on the existence of preference-

based or statistical discrimination. Recall that if there is statistical discrimination 

against married women, we would expect the marriage penalty to be similar across 

phenotypes. Table 6 presents the results when we add interactions of marital status 

and phenotypes. Column (1) shows that there is a marriage penalty of 6.3 

percentage points in the probability of a callback. Being European does not entail 

                                           

26 We also estimated the regressions for the sample of men, but none of the relevant variables are of 
significance in the determination of a callback. That is, in the case of men, the firms do not use any of 
the personal information in the CV on the callback decision. Only in the case when we combined the 
European and Mestizo photos in a single dummy is the coefficient statistically significant at 10%. The 
coefficient is significant at 5% only in the case when the omitted groups are indigenous and no photo. 
When we split the phenotypes and estimate the coefficients for European and mestizo photos separately 
the estimations are not robust. These results are presented in Appendix C, Table C1. 
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any additional penalty as compared to all other groups. However, when we control 

for mestizo photographs in Columns (2) and (3), we find that mestizo females 

receive more calls than any other group. We do not find a marriage penalty in the 

case of males (columns 4 to 6); if anything we find a premium for being married, 

though the coefficient is only significant at 10% in Column (6). In the case of men, 

we do not see a phenotype-differentiated premium or penalty. Hence, given that 

there are heterogeneous effects of marriage on females according to phenotypes, it 

is possible that there is preference-based discrimination against married indigenous 

females. 

[Table 6 about here] 

However, in Table 7 we estimate the same specifications as in Table 6, but we 

added firm fixed effects. Once we include firm controls the effect of marriage is 

smaller in magnitude as in Table 5, and in one case it becomes statistically 

insignificant due to the larger standard errors. More interestingly, the 

heterogeneity of marriage across female phenotypes disappears as a result of a 

large drop in the coefficient of the interaction between mestizo females and 

being married. The results for males remain constant, but the marginally 

statistical significant marriage premium that we had found in Table 6 also 

vanishes (see Column (6) in Table 7). Hence, the results in Table 6 may be driven 

by some firms in the market. 

[Table 7 about here] 

D. Robustness of results 

Heckman and Sigelman (1993) argue that one could find discrimination in 

correspondence studies when there is actually none, even when observable 

characteristics are similar. The reason is that if the variance of unobservable 

characteristics differs across groups, then this could lead us to find discrimination. 

Neumark (2010) provides an elegant derivation of this critique, and shows that we 
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can empirically test for the presence of heteroskedasticity across the groups of 

interest in correspondence studies. He proposes the estimation of a probit that 

allows for heteroskedasticity on the variables used to determine the existence of 

discrimination. We follow Neumark’s test and assume that heteroskedasticity is 

distributed as an exponential.27 

[Table 8 about here] 

The null hypothesis of this test is that the variance of unobservable characteristics is 

constant across groups. We use this Neumark’s test to provide evidence on two 

hypotheses. First, we want to test whether our results on physical phenotypes are 

spurious correlation.  Table 8 presents the results of the heteroskedastic probit 

where we performed the test suggested by Neumark (2010). We assumed that the 

heteroskedasticity is only due to marital status or European phenotypes (or both). 

The inclusion of heteroskedasticity in the model complicates the identification of the 

parameters, so we are going to observe an increase in the standard errors of the 

marginal effects of the photos and marital status. In spite of that power loss, the 

results are similar to those presented in previous tables. The takeaway from Table 8 

is that the null of variance equality across groups cannot be rejected. Hence 

Heckman and Sigelman’s (1993) critique does not apply in our case. We can interpret 

our results on phenotype and marital status as discrimination. 

Finally, we want to test whether the higher callback rates for females are due to 

differences in the variance of unobservables across gender categories. As we 

discussed before, female college graduates who are participating in the labor market 

may signal higher productivity than similar males due to a self-selection process. As 

econometricians, we do not know of this signal and hence we cannot control for it. 

However we can use Neumark’s test to provide some evidence on it. We ran the test 

                                           

27 That is, we assume that 𝑉𝑎𝑟(𝜀) = [exp(𝛾𝐷)]2, so the variance of the unobservables follows an 
exponential distribution, where 𝐷 defines the groups of interest. The null hypothesis is that 𝛾 = 0. 
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using different specifications and found that the variance of the unobservables is 

indeed related to gender (results not shown), and hence our hypothesis seems likely. 

As Neumark himself points out, “the idea that the variances of unobservables differ 

across groups has a long tradition in research on discrimination, stemming from 

early models of statistical discrimination” (p.8). Hence, we can interpret the latter 

test as evidence of the existence of statistical discrimination across gender 

categories. In the former test on phenotypes and marriage, we can discard that 

statistical discrimination has its source on difference in group variances; however, 

we cannot discard other models of statistical discrimination. 

E. Interpretation of results 

In tables 4 and 5 we found that women have on average a higher callback rate than 

men. In the case of men we do not find a differential callback rate across 

phenotypes, marital status or type of university attended. So, the employers do not 

seem to prefer a specific type of male applicant. In contrast, employers do 

discriminate certain types of women. In particular, European-looking females have a 

higher callback rate than their indigenous counterparts. Moreover, there is a penalty 

for being married for European and indigenous phenotypes, but the penalty is much 

larger in the case of married females with an indigenous appearance. 

The results in tables 6 and 7 present suggestive evidence in favor of statistical 

discrimination against married women. We explained that statistical discrimination 

would suggest that the marriage penalty is the same for women. If marriage has an 

impact on productivity, this impact should be the same for all women independently 

of phenotype. Our fixed effects models confirm this expected result. However the 

findings on the preference for Caucasian women may be more consistent with 

preference-based discrimination. We found that none of the variables that may have 

signaled greater productivity such as being single, coming from a private university, 

and time availability make a dent on the higher callback for white women. 
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5. Discussion and conclusions 

Most societies aspire to offer equality of opportunities to their members. Any form 

of discrimination would deter societies’ efforts to reach that goal. Colonial societies 

have a wide range of skin colors in their populations. This diversity tends to 

generate discrimination against their darker members thus preventing a non-

negligible portion of the populace of equality of opportunities. In this paper we 

wanted to test if there is racial discrimination in a society in which the racial divide is 

not between blacks and whites, nor natives and immigrants, but a range of skin 

colors from white to dark brown. With this goal in mind, we conducted a 

correspondence study in which we varied the information in fictitious CVs. We sent 

approximately 8,000 CVs responding to around 1,000 online job advertisements. In 

each set of 8 CVs we included 4 men and 4 women. Each CV was distinguished by a 

photograph representing 3 phenotypes (Caucasian, mestizo, and indigenous) and 

one CV did not have a picture as a control. Hence, we are particularly interested on 

gender and race discrimination among youths. 

We found that women have on average a higher callback rate than men. Women 

receive 40 percent more calls. So, we do not find any evidence on discrimination 

against women in our study; in any case, we found evidence of discrimination 

against men. As discussed the selection of women into college graduation and the 

labor market may signal a higher productivity than in the case of men. We find 

evidence that this estimate is a result of differences in the variance of unobservables 

between men and women by means of a heteroskedastic probit. As for 

discrimination based on physical appearance, women with a European phenotype 

receive more calls than women with an indigenous phenotype. Specifically, a 

Caucasian woman receives 23 percent more calls than an “indigenous-looking” 

woman. In the case of men, we do not find any statistically significant differences 

across phenotypes. Having graduated from a public university has no impact on the 

callback rate in our sample of job ads. 



23 

 

Although disentangling the type of discrimination is not the objective of this paper, 

we provide some suggestive evidence on the existence of statistical discrimination in 

the Mexican labor market. If there were statistical discrimination, and thus 

employers are only concerned with expected productivity, then we should observe 

that groups with a given characteristic are equally discriminated. For example, 

married women should receive fewer calls than single women independently of the 

phenotype. Our results confirm this implication from statistical discrimination. 

Initially, we find that the marriage penalty is not the same across phenotypes: the 

callback rate gap between European- and indigenous-looking females increases when 

they are married, and mestizo females have a premium for being married. However, 

this heterogeneity vanishes when we include firm fixed effect. Thus the marriage 

penalty is the same for all marred women independently of the phenotype. We 

cannot say the same regarding the preference for white women over mestizo or 

indigenous looking women, which may be more in line with preference-based 

discrimination. We can thus conclude that employers are driven by both productivity 

beliefs and tastes in their hiring decisions. 

Our study has several drawbacks. First, job seekers use different means to search for 

a job and we are only focusing on online job searches. This could potentially bias the 

impact of private universities, since these could rely on networks to find placements 

for their graduates in the labor market. Second, we restrict the analysis to an age 

group in the Metropolitan Area of Mexico City. Third, we do not have information on 

the firm and lack some information about the job position within the firm. Fourth, 

our discrimination measure is limited to only the first contact in the hiring process. 

We do not have information on starting wages or the actual hires, which would allow 

us to have arguably more relevant measures of discrimination. And finally, the 

results on correspondence tests may be a result of differences in the variance of 

unobservables across groups as suggested by Heckman and Sigelman (1993) and 

Neumark (2010).  

Here are our answers to these critiques. The first critique is valid, and for this reason 

we do not generalize our results to the whole labor market. Our results are only valid 
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for online searches. Second, future research should focus on other age groups and 

regions to analyze the robustness of our results. We are confident that our results 

are robust to other regions and majors because the major included in our study 

represent 36 percent of the graduating classes and Mexico City’s Metropolitan Area 

has the highest concentration of both public and private universities in Mexico. 

Third, it would be interesting to extend our study to analyze discrimination by the 

type of firm. However, our results are robust to the inclusion of firm fixed effects. 

Future research should also collect data on the job positions within the firm to 

analyze discrimination by job position. Fourth, an analysis of wage discrimination or 

hiring discrimination would require an in-person audit. As we mentioned in our 

literature review, in-person audits cannot fully control for unobservable behavior of 

the interviewees, which could bias the results. And in order to address the last 

critique, we performed the test suggested by Neumark (2010) and did not find any 

evidence that our results are a product of heteroskedasticity stemming from marital 

status and phenotypes. 

Our findings have important implications for public policy in developing countries, 

and particularly for Mexico. It is clear that employers should not require personal 

information and photographs in the applicants’ CVs. For instance, in the United 

States the Equal Employment Opportunity Commission (EEOC) “is responsible for 

enforcing federal laws that make it illegal to discriminate against a job applicant or 

an employee because of the person's race, color, religion, sex (including pregnancy), 

national origin, age (40 or older), disability or genetic information.”28 However, in 

most Latin American countries, and Mexico is not an exception, it is not illegal for 

employers to ask for personal information in the curriculums, which includes marital 

status and a photograph.29   

                                           

28 Taken from http://www.eeoc.gov/eeoc/. 

29 This practice is strictly forbidden in the United States. For instance, visit the EEOC website, where you 
can find the following prohibition: “employers should not ask for a photograph of an applicant. If 
needed for identification purposes, a photograph may be obtained after an offer of employment is 
made and accepted” (EEOC, 2012) 
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The Mexican labor law is ambiguous on what is allowed and prohibited when it 

comes to discrimination. The 3rd article of the Federal Labor Law states that “No 

distinction may be made between employees on the basis of race, sex, age, religion, 

political views or social background.” The term “employees” is problematic here, 

since it entails that there exists an employer-employee relationship among parties. 

This relationship is absent among job seekers and employers, which would allow 

discrimination against a job applicant. The law should explicitly forbid discrimination 

based on physical appearance or phenotype. The Federal Labor Law also establishes 

in its 9th article Section III that the following behavior is considered discriminatory: 

“Prohibiting the free access to employment; or restricting the access to, tenure in or 

promotion in the job.” However, the explicit requirement of a photograph (racial 

features included) and marital status in CVs facilitates the restriction to access 

employment for reasons unrelated to aptitude for the job position. 

The evidence in this paper shows that the inclusion of private information, such as 

the marital status and a photograph, may be detrimental for young applicants. As we 

mentioned in the introduction, youth idleness halts human capital investments 

during a crucial stage of the life cycle. Moreover, if indigenous phenotypes are 

somehow correlated with social background, then the inclusion of a photograph may 

even inhibit social mobility. In sum, Mexico could take a big step in the promotion of 

equality of opportunities by prohibiting employers to require the disclosure of 

personal information, like marital status and a photograph, in the curriculum vitae.  
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Table 1: Descriptive statistics of the sample of sent 
fictitious CVs 

  All Men Women 

A. Gender 

Men 0.49 
Women 0.51 
B. Major 
Business 0.71 0.70 0.73 
Engineering 0.29 0.30 0.27 
C. University 
Public 0.62 0.64 0.61 
Private 0.38 0.36 0.39 
D. Marital status 
Married 0.27 0.29 0.26 
E. Other characteristics 
Age 24.5 24.6 24.4 
Scholarship 0.26 0.23 0.28 
Leadership 0.50 0.49 0.51 
Foreign languages 0.25 0.25 0.25 
Time availability 0.50 0.51 0.50 
Sample size (N) 8149 3992 4157 

Notes: Estimates by the authors based on the sample of sent fictitious 
CVs. All variables are dichotomous with the exception of age. Business 
majors include accounting, business administration and economics; 
engineering majors include electronics and telecommunications, 
computational systems and industrial engineering.  

  

Table 2: Callback rates (percentages) 

  All  Men Women t-statistic 

A. Gender 
Men 10.67 

 
Women 14.94 

 
t-statistic 5.78 

 
B. Major 
Business 13.20 10.72 15.48 5.41 
Engineering 11.97 10.57 13.45 2.16 
C. University 
Public 12.82 10.97 14.67 4.35 
Private 12.90 10.13 15.35 3.95 
D. Marital status 
Married 12.31 11.51 13.12 

 
Single 13.05 10.31 15.57 6.06 
t-statistic 2.00 

 
E. Other characteristics 
Available 12.50 11.52 14.78 3.08 
Not available 13.21 9.86 15.10 5.09 
Notes: Estimates by the authors. The t-statists are from a test of the difference in 
means. They are presented only when there is statistical significance at 5%. 
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Table 3: Callback rates by phenotype 

  European Mestizo Indigenous No photo p-value 
A. Women 

All 17.05 15.78 13.82 12.76 0.03 
Single 17.93 15.02 15.06 14.03 0.19 
Married 14.80 18.37 9.21 10.10 0.01 
Public university 16.69 15.63 13.18 12.93 0.15 
Private university 17.71 15.98 15.07 12.53 0.24 
B. Men 

All 11.53 11.40 9.97 9.64 0.41 
Single 11.53 11.04 8.58 9.92 0.25 
Married 11.52 12.29 13.23 9.09 0.43 
Public university 11.93 12.20 10.05 9.46 0.31 
Private university 10.89 9.76 9.84 9.97 0.95 
Notes: Estimations by the authors. The last column "p-value" is the probability value of the 
Pearson independence test. The null hypothesis is that there is independence across columns 
within the category represented by the row, and the statistic is distributed as a chi-squared.  

 

Table 4: Econometric results: All  

  [1] [2] [3] [4] [5] [6] 

Woman 0.043*** 0.043*** 0.043*** 0.043*** 0.043*** 0.035*** 
[0.008] [0.008] [0.008] [0.008] [0.008] [0.008] 

Public university -0.000 -0.000 -0.000 -0.000 -0.000 0.001 
[0.006] [0.006] [0.006] [0.006] [0.006] [0.006] 

Married -0.011 -0.010 -0.010 -0.010 -0.011 -0.003 
[0.008] [0.008] [0.008] [0.008] [0.008] [0.007] 

Photo 1 (European) 0.025*** 0.026*** 0.026*** 
[0.007] [0.007] [0.007] 

Photo 2 (Mestizo) 0.017** 0.018*** 
[0.007] [0.007] 

No photo -0.006 -0.01 -0.005 
[0.008] [0.008] [0.007] 

Photo 1 & 2 (European 
and mestizo) 

0.024*** 0.021*** 
[0.005] [0.006] 

Photo 2 & 4 (mestizo and 
no photo) 

0.006 
[0.006] 

Firm fixed effects No No No No No Yes 
N 8,149 8,149 8,149 8,149 8,149 8,149 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust and clustered 
at the firm level. *** (**) denotes statistical significance at 1% (5%). All regressions control for age, business dummy, 
scholarship dummy, public high-school dummy, dummies for foreign language, and a leadership dummy. The 
coefficients on the control variables are not presented (all of them are not statistically significant, with the exception 
of the business major). Columns (1) to (5) do not include firm fixed effects. The results are similar when using 
marginal effects in a logit or probit (see Table B1 in Appendix B for the probit estimation).  
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Table 5: Econometric results: Women 

  [1] [2] [3] [4] [5] [6] 

Public university -0.005 -0.006 -0.005 -0.005 -0.007 -0.012 
[0.010] [0.011] [0.010] [0.010] [0.011] [0.008] 

Married -0.028** -0.028** -0.027** -0.027** -0.030** -0.018* 
[0.013] [0.013] [0.013] [0.013] [0.013] [0.011] 

Photo 1 (European) 0.033*** 0.033*** 0.036*** 
[0.011] [0.011] [0.011] 

Photo 2 (Mestizo) 0.019* 0.022** 
[0.010] [0.010] 

No photo -0.009 -0.009 -0.004 
[0.011] [0.011] [0.010] 

Photo 1 & 2 (European 
and mestizo) 

0.030*** 0.026*** 
[0.008] [0.009] 

Photo 2 & 4 (mestizo and 
no photo) 

0.006 
[0.009] 

Firm fixed effects No No No No No Yes 

N 4,157 4,157 4,157 4,157 4,157 4,157 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust and clustered 
at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) [10%]. All regressions control for age, business 
dummy, scholarship dummy, public high-school dummy, dummies for foreign language, and a leadership dummy. The 
coefficients on the control variables are not presented (all of them are not statistically significant, with the exception 
of the business major). Columns (1) to (5) do not include firm fixed effects. The results are similar when using 
marginal effects in a logit or probit (see Table B2 in Appendix B for the probit estimation).  
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Table 6: Econometric results by marital status and gender: Women 

  Women Men 

  (1) (2) (3) (4) (5) (6) 

Married -0.029** -0.056*** -0.063*** 0.010 0.015 0.041* 

[0.015] [0.016] [0.023] [0.013] [0.015] [0.022] 

Photo 1 0.030** 0.029** 0.025* 0.014 0.020* 0.026** 

[0.012] [0.013] [0.014] [0.010] [0.011] [0.013] 

Photo 2 0.002 -0.003 0.019* 0.025** 

[0.012] [0.013] [0.011] [0.012] 

Photo 4 -0.011 0.013 

[0.014] [0.013] 

Photo 1 x Married -0.004 0.026 0.033 -0.007 -0.012 -0.038 

[0.028] [0.029] [0.033] [0.025] [0.027] [0.032] 

Photo 2 x Married 0.091*** 0.099*** -0.011 -0.038 

[0.033] [0.037] [0.026] [0.030] 

Photo 4 x Married 0.017 -0.055* 

[0.032] [0.030] 
Firm fixed effects N N N N N N 

N 4,157 4,157 4,157 3,992 3,992 3,992 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust and clustered 
at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) [10%]. All regressions control for age, business 
dummy, scholarship dummy, public high-school dummy, dummies for foreign language, and a leadership dummy. The 
coefficients on the control variables are not presented (all of them are not statistically significant, with the exception 
of the leadership dummy for males). The results are similar when using marginal effects in a logit or probit (see Table 
B3 in Appendix B for the probit estimation).  
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Table 7: Econometric results by marital status and gender: Women Fixed effects model 

  Women Men 

  (1) (2) (3) (4) (5) (6) 

Married -0.028** -0.029* -0.026 0.001 0.002 0.016 

[0.013] [0.016] [0.021] [0.011] [0.013] [0.018] 

Photo 1 0.022** 0.029** 0.029** 0.009 0.015 0.016 

[0.011] [0.012] [0.013] [0.010] [0.011] [0.012] 

Photo 2 
 

0.021* 0.020 

 

0.016 0.017 

 

[0.011] [0.012] 

 

[0.010] [0.011] 

Photo 4 
  

-0.002 

  

0.003 

  

[0.012] 

  

[0.012] 

Photo 1 x Married 0.027 0.030 0.027 0.016 0.015 0.001 

[0.023] [0.025] [0.028] [0.021] [0.023] [0.026] 

Photo 2 x Married 
 

0.012 0.009 

 

0.001 -0.013 

 

[0.028] [0.033] 

 

[0.021] [0.025] 

Photo 4 x Married 
  

-0.004 

  

-0.029 

  

[0.027] 

  

[0.026] 

Firm fixed effects Y Y Y Y Y Y 

N 4,157 4,157 4,157 3,992 3,992 3,992 

Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust and clustered 
at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) [10%]. All regressions control for age, business 
dummy, scholarship dummy, public high-school dummy, dummies for foreign language, and a leadership dummy. The 
coefficients on the control variables are not presented (all of them are not statistically significant).  

 

Table 8: Difference on the variance of unobservables: Women 

  [1] [2] [3] 
Married -0.026 -0.004 -0.017 

[0.027] [0.017] [0.023] 
Photo 1 (European) 0.012 0.045 0.089 

[0.040] [0.068] [0.226] 
Photo 2 (Mestizo) 0.015 0.022 0.022 

[0.043] [0.014] [0.023] 
No photo 0.000 -0.012 -0.007 
  [0.006] [0.013] [0.014] 
Heteroskedasticity  
Married -1.99 -0.10 

 [2.98] [0.067] 
Photo 1 (European) -2.04 -2.66 
  [2.52] [2.84] 
N 4,157 4,157 4,157 
Notes: Estimations by the authors using heteroskedastic probit. The coefficients 
presented are marginal effects. We asume heteroskedasticity has an exponential 
distribution. Standard errors in brackets are robust and clustered at the firm level. *** (**) 
[*] denotes statistical significance at 1% (5%) [10%].  All regressions control for age, 
business dummy, scholarship dummy, public high-school dummy, dummies for foreign 
language, and a leadership dummy. 
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Appendix A – Photographs of the fictitious applicants 

WOMEN 

 
  

European Mestiza Indigenous 

 

MEN 

 
  

European Mestizo Indigenous 
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Appendix B – Estimation results using a probit model 

Table B1: Econometric results: All  
Probit model 

  [1] [2] [3] [4] [5] 

Woman 0.043*** 0.043*** 0.043*** 0.043*** 0.043*** 
[0.008] [0.008] [0.008] [0.008] [0.008] 

Public university 0.000 -0.000 -0.000 -0.000 -0.000 
[0.006] [0.006] [0.006] [0.006] [0.006] 

Married -0.011 -0.010 -0.010 -0.010 -0.011 
[0.008] [0.008] [0.008] [0.008] [0.008] 

Photo 1 (European) 0.026*** 0.026*** 
[0.007] [0.007] 

Photo 2 (Mestizo) 0.017** 
[0.007] 

No photo -0.006 -0.006 
[0.008] [0.008] 

Photo 1 & 2 (European and 
mestizo) 

0.024*** 0.021*** 
[0.005] [0.006] 

Photo 2 & 4 (mestizo and no 
photo) 

0.006 
[0.006] 

N 8,149 8,149 8,149 8,149 8,149 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust 
and clustered at the firm level. *** (**) denotes statistical significance at 1% (5%). All regressions control 
for age, business dummy, scholarship dummy, public high-school dummy, dummies for foreign 
language, and a leadership dummy. The coefficients on the control variables are not presented (all of 
them are not statistically significant, with the exception of the business major).  
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Table B2: Econometric results: Women  
Probit model 

  [1] [2] [3] [4] [5] 

Public university -0.005 -0.006 -0.005 -0.005 -0.007 
[0.010] [0.010] [0.010] [0.010] [0.010] 

Married -0.028** -0.028** -0.028** -0.027** -0.030** 
[0.013] [0.013] [0.013] [0.013] [0.013] 

Photo 1 (European) 0.033*** 0.034*** 
[0.011] [0.011] 

Photo 2 (Mestizo) 0.020* 
[0.010] 

No photo -0.010 -0.010 
[0.012] [0.012] 

Photo 1 & 2 (European and 
mestizo) 

0.030*** 0.025*** 
[0.008] [0.009] 

Photo 2 & 4 (mestizo and no 
photo) 

0.007 
[0.009] 

N 4,157 4,157 4,157 4,157 4,157 

Notes: Estimation by the authors using a linear probability model. Standard errors in brackets 
are robust and clustered at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) 
[10%]. All regressions control for age, business dummy, scholarship dummy, public high-school 
dummy, dummies for foreign language, and a leadership dummy. The coefficients on the 
control variables are not presented (all of them are not statistically significant, with the 
exception of the business major).  
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Table B3: Econometric results by marital status and gender: Women  
Probit model 

  Women Men 

  (1) (2) (3) (4) (5) (6) 

Married -0.029** -0.059*** -0.067*** 0.010 0.016 0.043* 

[0.015] [0.017] [0.025] [0.013] [0.015] [0.022] 

Photo 1 0.029** 0.028** 0.023* 0.014 0.022* 0.029** 

[0.012] [0.012] [0.014] [0.011] [0.012] [0.015] 

Photo 2 -0.001 0.037 0.049 -0.007 -0.012 -0.033 

[0.028] [0.035] [0.044] [0.023] [0.024] [0.023] 

Photo 4 
 

0.002 -0.003 

 

0.021* 0.028** 

 

[0.012] [0.013] 

 

[0.012] [0.014] 

Photo 1 x Married 
 

0.113** 0.128** 

 

-0.012 -0.035 

 

[0.045] [0.056] 

 

[0.022] [0.021] 

Photo 2 x Married 
  

-0.012 

  

0.015 

  

[0.014] 

  

[0.015] 

Photo 4 x Married 
  

0.022 

  

-0.047** 

   

[0.043] 

  

[0.021] 

Firm fixed effects N N N N N N 

N 4,157 4,157 4,157 3,992 3,992 3,992 

Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust 
and clustered at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) [10%]. All regressions 
control for age, business dummy, scholarship dummy, public high-school dummy, dummies for foreign 
language, and a leadership dummy. The coefficients on the control variables are not presented (all of 
them are not statistically significant, with the exception of the business major).  
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Table B4: Econometric results by groups: Women Probit model 

  [1] [2] [3] [4] [5] [6] 

Public university -0.010 0.007 0.005 -0.011 
[0.012] [0.020] [0.022] [0.013] 

Married -0.029* -0.018 -0.044** -0.022 
[0.015] [0.028] [0.021] [0.017] 

Photo 1 (European) 0.035*** 0.027 0.049 0.024 0.029 0.037** 
[0.013] [0.021] [0.033] [0.015] [0.025] [0.017] 

Photo 2 (Mestizo) 0.020 0.022 0.102** -0.001 0.001 0.032* 
[0.013] [0.019] [0.041] [0.013] [0.023] [0.019] 

No photo -0.018 0.011 0.012 -0.012 -0.022 -0.006 
[0.014] [0.021] [0.035] [0.015] [0.025] [0.018] 

Group Business Engineering Married Single Private 
university 

Public 
university 

N 3,029 1,128 1,074 3,083 1,622 2,535 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust 
and clustered at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) [10%]. All regressions 
control for age, business dummy, scholarship dummy, public high-school dummy, dummies for foreign 
language, and a leadership dummy. The coefficients on the control variables are not presented (all of 
them are not statistically significant, with the exception of the business major).  
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Appendix C – Estimation results for Men 

Table C1: Econometric results: Men  

  [1] [2] [3] [4] [5] [6] 

Public university 0.005 0.004 0.004 0.004 0.005 0.014* 
[0.008] [0.008] [0.008] [0.008] [0.008] [0.007] 

Married 0.008 0.009 0.009 0.009 0.008 0.006 
[0.012] [0.012] [0.012] [0.012] [0.012] [0.010] 

Photo 1 (European) 0.015 0.016 0.016 
[0.010] [0.010] [0.010] 

Photo 2 (Mestizo) 0.014 0.014 
[0.010] [0.010] 

No photo -0.004 -0.004 -0.007 
[0.010] [0.010] [0.009] 

Photo 1 and 2 (European and 
mestizo) 

0.016** 0.015* 
[0.008] [0.009] 

Photo 2 and 4 (mestizo and 
no photo) 

0.006 
[0.008] 

Firm fixed effects No No No No No Yes 
N 3,992 3,992 3,992 3,992 3,992 3,992 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust 
and clustered at the firm level. ** (*) denotes statistical significance at 5% (10%). All regressions control 
for age, business dummy, scholarship dummy, public high-school dummy, dummies for foreign 
language, and a leadership dummy. The coefficients on the control variables are not presented (all of 
them are not statistically significant, with the exception of the business major). Columns (1) to (5) do not 
include firm fixed effects. The results are similar when using marginal effects in a logit or probit (see 
Table C2 in this appendix for the probit estimation).  
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Table C2: Econometric results: Men  
Probit model 

  [1] [2] [3] [4] [5] 

Public university 0.005 0.004 0.004 0.004 0.004 
[0.008] [0.008] [0.008] [0.008] [0.008] 

Married 0.008 0.009 0.009 0.009 0.008 
[0.011] [0.011] [0.011] [0.011] [0.011] 

Photo 1 (European) 0.016 0.016 
[0.011] [0.011] 

Photo 2 (Mestizo) 0.014 
[0.010] 

No photo -0.004 -0.004 
[0.010] [0.010] 

Photo 1 and 2 (European and 
mestizo) 

0.016** 0.015* 
[0.008] [0.009] 

Photo 2 and 4 (mestizo and no 
photo) 

0.006 
[0.008] 

N 3,992 3,992 3,992 3,992 3,992 

Notes: Estimation by the authors using a linear probability model. Standard errors in brackets 
are robust and clustered at the firm level. ** (*) denotes statistical significance at 5% (10%). All 
regressions control for age, business dummy, scholarship dummy, public high-school dummy, 
dummies for foreign language, and a leadership dummy. The coefficients on the control 
variables are not presented (all of them are not statistically significant, with the exception of 
the business major).  
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Table C3: Econometric results by group: Men 

  [1] [2] [3] [4] [5] [6] 

Public university 0.010 -0.008 0.058*** -0.011 
[0.009] [0.017] [0.019] [0.010] 

Married 0.029** -0.023 -0.028 0.027* 
[0.014] [0.022] [0.018] [0.015] 

Photo 1 (European) 0.021 0.018 -0.005 0.028** 0.002 0.024 
[0.013] [0.018] [0.027] [0.013] [0.020] [0.016] 

Photo 2 (Mestizo) 0.013 0.017 -0.014 0.025** 0.006 0.022 
[0.012] [0.018] [0.026] [0.012] [0.021] [0.015] 

No photo -0.005 -0.012 -0.048** 0.012 -0.002 -0.006 
[0.012] [0.018] [0.024] [0.013] [0.023] [0.015] 

Group Business Engineering Married Single Private 
university 

Public 
university 

N 2,781 1,211 1,151 2,841 1,440 2,552 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust 
and clustered at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) [10%]. All regressions 
control for age, business dummy, scholarship dummy, public high-school dummy, dummies for foreign 
language, and a leadership dummy. The coefficients on the control variables are not presented (all of 
them are not statistically significant, with the exception of the business major). Columns (1) to (5) do not 
include firm fixed effects. The results are similar when using marginal effects in a logit or probit (see 
Table C4 in this appendix for the probit estimation).  
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Table C4: Econometric results by groups: Men Probit model 

  [1] [2] [3] [4] [5] [6] 

Public university 0.009 -0.007 0.056*** -0.011 
[0.009] [0.016] [0.018] [0.010] 

Married 0.030** -0.023 -0.028* 0.027* 
[0.014] [0.021] [0.017] [0.015] 

Photo 1 (European) 0.023 0.018 -0.007 0.030** -0.001 0.026 
[0.014] [0.019] [0.025] [0.014] [0.020] [0.017] 

Photo 2 (Mestizo) 0.013 0.018 -0.015 0.028** 0.004 0.022 
[0.013] [0.019] [0.022] [0.014] [0.022] [0.016] 

No photo -0.003 -0.011 -0.046** 0.014 -0.002 -0.005 
[0.012] [0.018] [0.021] [0.015] [0.023] [0.016] 

Group Business Engineering Married Single Private 
university 

Public 
university 

N 2,781 1,211 1,151 2,841 1,440 2,552 
Notes: Estimation by the authors using a linear probability model. Standard errors in brackets are robust 
and clustered at the firm level. *** (**) [*] denotes statistical significance at 1% (5%) [10%]. All regressions 
control for age, business dummy, scholarship dummy, public high-school dummy, dummies for foreign 
language, and a leadership dummy. The coefficients on the control variables are not presented (all of 
them are not statistically significant, with the exception of the business major).  

 


