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GMM Estimation of the Number of Latent Factors

Abstract

We propose a generalized method of moment (GMM) estimator of the number of latent factors
in linear factor models. The method is appropriate for panels a large (small) number of cross-
section observations and a small (large) number of time-series observations. It is robust to
heteroskedasticity and time series autocorrelation of the idiosyncratic components. All necessary
procedures are similar to three stage least squares, so they are computationally easy to use. In
addition, the method can be used to determine what observable variables are correlated with the
latent factors without estimating them. Our Monte Carlo experiments show that the proposed
estimator has good finite-sample properties. As an application of the method, we estimate the
number of factors in the US stock market. Our results indicate that the US stock returns are
explained by three factors. One of the three latent factors is not captured by the factors proposed

by Chen Roll and Ross 1986 and Fama and French 1996.

Keywords: Factor models, GMM, number of factors, asset pricing.



1. INTRODUCTION

Many economic and financial theories are based on linear factor models. A well known example
is the Arbitrage Price Theory (APT, Ross, 1976), where asset returns are generated by a factor
structure. In the finance literature, the APT model has been extensively used to analyze the
prices of the systematic risks in the stock, money, or fixed income securities markets. There are
many other examples. Analyzing the data from G7 countries, Gregory and Head (1999) found
that cross-country variations in productivity and investment have common components. Gorman
(1981) and Lewbel (1991) found that if consumers are utility maximizers, their budget shares for
individual goods or services purchased should be driven by at most three factors. Stock and
Watson (2005) proved that many macroeconomic variables in US are driven by a smaller number
of common factors. Ahn, Lee and Schmidt (2007a) showed that the time pattern of the
fluctuations in individual firms’ technical productivities can be estimated based on a factor
model. An excellent summary of the use of factor models can be found in Campbell, Lo and
Mackinlay (1997) and also in Bai (2003).

For any empirical study that involves factor models, estimation of the true number of
factors is crucial in order to identify and estimate the factors. It is also important to determine
what observable macroeconomic and/or financial variables are related to the unobservable
factors, in order to give an economic interpretation to the model. We propose a methodology to
address these questions using an estimation procedure based on GMM.

Earlier empirical studies of factor models were based on the maximum likelihood (ML)
method of Joreskog (1967). Using this method, a researcher estimates factor loadings and
variances of idiosyncratic errors of asset returns concurrently, and test for the number of latent
factors using a likelihood-ratio test. The ML method requires quite restrictive distributional
assumptions: the idiosyncratic error terms are required to be normal, and independently and
identically distributed over time. More general approaches have been developed allowing for
less restrictive assumptions. A common method is to construct candidate factors, repeat the
estimation and testing of the model for different number of factors (L), and observe if the tests
are sensitive to increasing L. Lehman & Modest (1988) and Connor & Korajczyk (1988) used
this technique to analyze the US stock returns. Success of this method would depend on the

quality of the chosen candidate factors. Another approach is to use estimators of the ranks of



matrices' (e.g., Gill and Lewbel, 1992; Cragg and Donald, 1996, 1997). A limitation of this
approach is that it is computationally burdensome, especially if the number of response variables
analyzed is large.” More recently, Bai and Ng (2002) have developed a general estimation
method for the number of factors. Their least squares estimation method is designed for data
with a large number of response variables (N) and a large number of time series observations (7).
This method could produce inconsistent estimators if either N or 7 is small. Simulation results
reported in Bai and Ng (2002) indicate that the number of factors is not accurately estimated if N
or T is less than 40. Thus, the least squares method would be inappropriate for the studies using

small sets of response variables.

In this paper we present an alternative generalized method of moment (GMM) estimator
of the number of factors. The advantages of this new method compared with those discussed
above are the following. First, the method requires that just one of the data dimensions (N or 7)
to be large; that is, either the number of cross-section or time series observations has to be large.
Several economic and financial applications involve small cross sectional observations.
Examples are the analyses of portfolio returns, yields on bond indexes, or country common
factors. Second, the method provides a way to check possible correlations between observable
variables (i.e., macroeconomics or financial variables) and unobservable factors without
estimating factor themselves. Using our method, researchers are able to give an economic
interpretation to the latent factors model (see, Ahn, Dieckmann and Perez, 2007). Third, the
method is computationally easy to implement. All necessary procedures are based on closed-
form solutions, and thus, do not require non-linear optimization. Any software that can estimate
multiple equations models can be used. Fourth, the method allows for cross-section and time

series heteroskedasticity and time series autocorrelation of the idiosyncratic components and it

"If the idiosyncratic error components of the response variables analyzed are cross-sectionally independent (exact
factor model), the variance matrix of the response variables (e.g., returns) is decomposed into a diagonal matrix and
a matrix with a rank equal to L. Thus, the number of the common factors (L) can be found by estimating the rank of
the difference between the estimates of the variance and the diagonal matrices.

? Rank of a matrix can be estimated by the Lower-Diagonal-Upper triangular decomposition test (LDU) developed
by Gill and Lewbel (1992) and Cragg and Donald (1996). This method requires a Gaussian elimination procedure
and division of the response variables into two non-overlapping groups. The Gaussian elimination procedure is
complicated if too big matrices are analyzed. Alternatively, Cragg and Donald (1997) propose a Minimum Chi-
Squared statistic (MINCHI2). This method is general in the sense that it requires only weak distributional
assumption about the response variables and allows for heteroskedasticity and autocorrelation. The principal
problem of MINCHI2 is that some nonlinear optimization procedures are required and the procedures often fail to
locate solutions as shown by Donald, Fortuna and Pipiras (2005).



does not require distributional assumptions about the data generating process. Our method is
primarily designed for exact factor models in which idiosyncratic error components of response
variables are cross-sectionally uncorrelated. However, even if the errors are cross sectionally
correlated, the method can be used to estimate the number of factors if N is large and the

response variables can be grouped appropriately (e.g., portfolios).

As an application we use our methodology to analyze the US stock market. Our empirical
results imply that the US stock returns are determined by three factors. Also we find that the
variables proposed by Chen Roll and Ross 1986 are able to capture just one of the three latent
factors. Fama and French 1996 proposed factors are able to capture an extra latent factor. One of
the three unobservable factors is not captured by the factors proposed by Chen Roll and Ross
1986 and Fama and French 1996.

The rest of the paper is organized as follows. Section 2 introduces the factor model we
investigate, and lists the basic assumptions we made for the estimation. Section 3 explains our
GMM method to estimate the number of factors. In section 4, we consider how the method
could be used for the analysis of the models when the idiosyncratic components are cross-
sectionally correlated. We also consider the cases in which some observable variables that are
potentially correlated with latent factors. Section 5 exhibits our Monte Carlo simulation results
and finite-sample properties of our method. Section 6 discusses the results we obtain by

applying the method to the U.S. stock market. Concluding remarks are provided in Section 7.

2. Model and Assumptions

We consider a linear model with a finite number of unobservable latent common factors:
r=a,+pf+e,, (1)
where r, is the value of the response variable i (=1, 2, ..., N)atthetime ¢t (= 1,2, ..., 7), o, 1s
an intercept, f, is an L x1 vector of unobservable common factors, £, is an 1x L vector of the
factor loadings for the response variable i, and the &, are the idiosyncratic components of
response variables which are cross-sectionally uncorrelated. Thus, the response variables 7, are

cross-sectionally correlated only through the common factors f,. Usual factor analysis typically



applies to demeaned data with E(7,) =0 for all i and 7. But we do not impose such restrictions.
To begin, we consider the cases in which N is relatively small and 7 is large. Thus, the
asymptotic theory we use below applies as N — o« for fixed 7. We will consider later the cases
in which 7' is large and N is small.

For convenience, we adopt the following notation. We use 7, to denote the vector that

includes all the cross-sectional observations of the response variable 7, at time ¢. Similarly, 7

denotes the vector including all of the time series observations of 7, for the response variable i.
The vectors ¢, and &,, are similarly defined. Using this notation, we can stack the equations in
(1) for given ¢ by

r,=a+Bf +e¢,, 2)
where o =(¢,,,,...,a,) and B=(f,p,,....5y) . Including the non-zero vector of response-
variable-specific intercepts into the model, we can assume that E(f )=0 without loss of

generality.
Our method to estimate the number of factors (L) is an application of GMM. Thus, we
require a set of sufficient conditions under which usual GMM theories apply and the number of

factors can be identified. For asymptotics, we use “— ” and “—,” to denote “converges in

probability” and “converges in distribution,” respectively. The basic assumptions are the

following:

Assumption A: The factors in f, are non-constant variables with finite moments up to the

fourth order, E(f;)=0, ,, and E(f,f)=Q, for all #, and TS ff/—>,Q, as T — o, where

L,x1

Q_isa L x L finite and positive definite matrix.

!
Assumption B: rank(B)=L, .

Assumption C: There exists a constant m € (0,00), such that for all 7' (with fixed N), (C1) the

errors &, have finite moments up to the eighth order with E(¢, | f,, f5,.... f,) =0 for all i and ¢;

(C2) E(&,6:, | [ [yses ;) =0 for all i#i", s>1; (C3) ‘T’IZITZIZSTZIE(QS&”)

<m for all i and ¢



(C4) T2 w —, N(O A) , a8 T—ow , where w,=(h ®e¢g,)-Eh®¢,), h =

(N+L,)x1>

(1, f,el), and A = plim,_ T'S" =" E(ww!).

T

Assumption D: Let B. be the factor loading matrix corresponding to L (=L, ) arbitrarily

chosen response variables from 7,,. Then, rank(B,)=1L,.

In Assumption A, we assume that the factors are covariance stationary; that is, the

variance matrix of f,, Var(f,)=€Q,, is same for all 7, we adopt this assumption for expository

convenience. The assumption can be relaxed without altering our results. The required

assumption is that T7'X f f'— ,Q, as T —o. Most of the general mixing processes satisfy

this condition (White, 1999).

Assumption B implies that the true number of factors is L,. Under Assumption (C1), the

factors are weakly exogenous to the idiosyncratic errors. Assumption (C2) restricts the error
terms to be cross-sectionally uncorrelated. Thus, with (C2), the model (2) is an exact factor
model. For the cases in which observable variables correlated with factors are absent, this
assumption is crucial for the estimation of the number of factors. Alternatively, when the errors
are cross-sectionally correlated, but not autocorrelated over time, an exact model can be obtained
by rewriting the model (2) as
no=Ep +e,,
where F' =(f,,f,,....f;) . If the errors are serially uncorrelated, the variance matrix of &,

becomes diagonal. When T is small, we can estimate L, by applying the method we discuss

below to this alternative model.

If some instrumental variables correlated with the factors are observable, we could use
them to estimate the number of factors, even allowing the errors to be cross-sectionally
correlated. Such cases will be discussed in section 4.2.

Assumption (C3) indicates that the autocovariances of the error terms are absolutely
summable, while (C4) is nothing but a central limit theorem. When factors and errors follow

general mixing processes, both Assumptions (C3) and (C4) hold.



Assumption D implies that all factors (L, ) influence all possible subsets of response

variables. In order to motivate Assumption D, let us partition the response variables in 7,, into
two arbitrary groups.

g., af+ B* f + &8

P LB fte = (Px1)  (PxL,)(L,x1) (Pxl) , 3)

of -
(Nx1) Zy (Nx1) (NxL,)(L,x1) (Nxl) a’ + B ft + gft
(Ox1) (Ox1)  (OxL,) (L,x1) (@x1)

such that P+Q=N, P>L ,and Q> L . Then, Assumption D, with Assumptions A-C, implies

that
rank[E(z,,(g,, —a*))] = rank[B°Q,B*] = L,. (4)
Based on this observation, we propose to estimate L, by estimating the rank of E[z,,(g,, —a®)'].
Clearly, Assumption D is stronger than Assumption B. Many of the methods popularly
used for factor analysis do not require Assumption D. Under Assumptions A-C,
El(r, —a)(r, —a)]=BQ,B'+ ¥,
where ¥ is the N x N diagonal matrix of the variances of ¢,. The ML estimation of Joreskog
(1967) and the Minimum Chi-Squared statistic (MINCHI2) of Cragg and Donald (1997) estimate
L, based on estimates of B and ¥ . But use of these methods is somewhat limited. The
legitimacy of the ML method requires some strong distributional assumptions on data such as

normality. Use of MINCHI2 does not require such strong distributional assumptions, but it often

suffers from a computational difficulty in estimating ¥ . Adopting Assumption D, we no longer
need to estimate V. It suffices to estimate the rank of the moment matrix E(z, (g, —a*)’).

Assumption D requires that most of the response variables should depend on all of the
factors in f,. Too see why, suppose that L  or more response variables in g,, depend on only a
subset of f,; that is, the factor loadings of many (L, or more) response variables corresponding
to a subset of factors are zeros. For such cases, Assumption D is violated depending on the
partitions of g,, and z,,. We will consider such cases later.

The rank condition (4) can be converted to a moment condition that can be used in

GMM. According to Assumption D, there must exist a Px (P —L,) matrix = =(Z],—-Z,)" of



full column, where =, is a (P—-L)x(P—-L,) square invertible matrix, such that

B¥Z=0 1 x(p-1,) - Thus, under Assumptions A-D, we have

L ol 1 evm | Y Lo
EKZ.J ~g.,_065)}—E|:(Z“j(g., a )H}_EKZ.JE.[ H}—O(QH)X(PLG), (5)

where . =E'a® is a (P—L,)x1 vector. Assumption C(2), which restricts the model (2) to be
an exact one, is crucial for this moment condition. For future use, define € =vec[(a.,E))'].

Clearly, Z is not unique, since for any conformable square matrix A, (E4)'B® =0. There are
many possible restrictions we can impose to avoid this under-identification problem. Among

them, we use the restriction =, =/ while leaving =, unrestricted. Among the Px(P—L))

P-L,°
matrices satisfying this restriction, = is the unique Px(P—L, ) matrix of full column that is

orthogonal to B¢ .
3. GMM ESTIMATION OF THE NUMBER OF LATENT FACTORS

In this section we present the GMM method for estimation the number of factors. First, given
the assumptions explained before, we construct the moment conditions that will be used in the
estimation. Let us denote by L the number of factors we use for estimation, which could be

different from L . Given L, we partition g,, into

P-L y v y
Vet , + Bp ft + Ep Lu
| «e-Dyx)y || (P=D)xD) ((P=L)xL,) (L,x1)  ((P-L)x1)
g‘t - L - X x X ) (6)
(Px1) Xot a,+ B, f +¢&.,
(Lx1) (Lx1)  (LxL)(L,x1)  (Lx1)
where L =0, 1,2, ..., P—1. With this notation, define the following moment function:

1
m, (b, |L)= {IP-L ®[ J:|[J’-]:_L_ Up, ® (lﬂx:t))bL] ) (7

of
where b, 1s a (P—L)(L+1)x1 vector of unknown parameters. Observe that the moment

function (7) is linear in b,. Also note that the moment function (7) is the one implied by a

? Specifically, Z = Bf(Bf)™" where B* =[B¢,B¢']', and Bf is a square invertible matrix.



multiple equation model with (P—L) different dependent variables ( y. “), with common

regressors (x. ) and common instrumental variables ( z,, ). Thus, the moment function (7) can be

easily imposed in GMM using any software that can handle three-stage least squares.
The intuition behind moment function (7) comes from the fact that it is linked to moment

condition (5). To see why, let H, =(/,_,,—S,_,)". be a Px(P — L) matrix with a Lx(P—-L)

unrestricted parameter matrix S,_,; and let a,_, be a (P — L) x1unrestricted parameter vector.

L>

By construction, /, is a full-column matrix. Furthermore, it can be shown:

m, (b, |L)= vecK !
z

j(HLg-t —dp g )’j| . (8)
ot

Thus, the moment condition (5) implies that under Assumptions A-D, when L=L |,
E[m, (b, | L,)]=0 if and only if b, = 6. That is, our moment conditions will hold just at the true

value of the parameters, and if and only if the true number of factors (L,) was used in the

estimation.
Now, we explain how to use the moment function to consistently estimate the factors. For

given L, consider the following minimization problem:

min, ¢, (b, |W;(L),L) =Td(b,)[W;(L)] " (b,), )
where d,(b, | L)=T"S_m,(b, | L) is the sample mean of the moment functionsm, (b, | L), and
the weighting matrix W,(L) is (P—-L)Ox(P—-L)Q positive-definite matrix with a non-
stochastic and finite probability limit, say W(L) . Let EL denote the GMM estimator
minimizing ¢, (b, |W,(L),L) ; and use l;Z to denote the GMM estimator minimizing

c, (b, |W,.(L,)),L,) (i.e. at the true number of factors). Let WT (L,) be a consistent estimator of

T—>o©

lim Var(ﬁ dT(6’|L0)) . The estimator WT (L,) can be obtained by using the method of

White (1980) if data are serially uncorrelated, and the methods of Newey and West (1987) or
Andrews (1991) if data are serially correlated. We now denote by ISLO the optimal GMM
estimator of @ that minimizes c, (b, |W,(L,),L,) . Using this notation, the following result

establishes that the moment conditions on (7) can be used to estimate the number of factors.



Proposition 1: Under Assumptions A-D, for any W, (L), ¢, (I;L | Wy (L),L) —>, oo for any
L<L, and cT(l;Z \W,(L,),L,)—>, Y, where Y is a weighted average of independent y*(1)

random variables. In addition, c, (b~L” | WT (L),L)—>, P’(P-L)QO-L)].

The proof of Proposition 1 is given in the appendix. The distribution of ¢, (EL |W.(L),L)

is generally unknown, but the results from Proposition 1 are sufficient to derive the estimation
methods for the number of factors. We can formulate the model (2) assuming different number

of factors (i.e. different values of L) and then, use the ¢, statistics to select the model that has

the best fit. Two approaches have been proposed in the literature for model selection. The first
one uses a sequential hypothesis testing approach, and the second is based on model selection
criterion. We can apply these two approaches to estimate the number of factors.

Our sequential testing approach 1is based in the asymptotic distribution of
cr (152 |WT (L,),L,) statistic, which is simply the overidentifying restriction test statistic (Hansen,
1982). Using this approach, we first formulate the factor model (2) assuming that the true
number of factors is equal to one (L, = 1). Then we estimate 5, by GMM, compute the
overidentifying restriction statistic, and test the hypothesis of L, = 1 against the alternative
hypothesis of L, > 1. By proposition 1, if L, is greater than one, the statistic diverges to infinity
in large sample. Thus, we can expect that the test is likely to reject the hypothesis of L, =1, if
the sample size is reasonably large. If the hypothesis is rejected, we will formulate the model (2)
with L =2, and compute the overidentifying restriction statistic to test the null hypothesis of L,
= 2 against the alternative of L, >2. We continue this procedure until the null hypothesis is not
rejected. This sequential procedure can yield a consistent estimator of L, if an appropriate

adjustment is made to the significance level used for the test. The adjustment is necessary

because type 1 errors are accumulated as the test continues. Cragg and Donald (1997) show that

the significance level «, should be adjusted such that «, — 0, and —loge, /T -0 as T — .
The model section criterion method has been used extensively in determining the order of

ARMA processes in time series analysis, specifically by Hannan and Quinn (1979), Hannan

(1980,1981), Atkinson (1981), and Nishii (1988). Cragg and Donald (1997) use this method to



estimate the ranks of matrices. Following these studies, we define the following criterion
function:

MS, (L) = (b, W, (L), L) f(T)" ~g(L), (10)
where f(T) and g(L) are predefined functions of 7" (the number of observations) and L (the
number of factors), respectively. With appropriate choices of f(7) and g(L), a consistent
estimate of L can be obtained by minimizing the criterion function MS,(L). There are many

possible choices of f(7) and g(L). One commonly used criterion is:
Schwarz Criterion (BIC): f(7)=In(T),and g(T)=(P-L)(Q-L).

In BIC, g(L) is simply the degrees of overidentifying restrictions in the moment condition

E[m (b, |L)] =0. With (10) and BIC, we obtain the following result:

Proposition 2: Let L be the minimizer of MS, (L) with BIC. Then, L— » L,

The proof of Proposition 2 is given in the appendix, even though it is a straightforward
extension of a result from Ahn, Lee and Schmidt (2007b). They have studied a panel data model
with latent components of factor structure. They developed a GMM method to estimate the
model and the number of factors in the latent components with BIC. Their results are easily
extended to our factor model. Interested readers may refer to the paper.

Observe that Proposition 2 holds even if the optimal GMM estimator is not used. One
important advantage of the criterion method over the sequential method is that it does not require
use of the optimal GMM estimator. In the GMM literature, many studies have shown that
optimal GMM estimators often have poor finite-sample properties, especially when data are
autocorrelated or/and too many moment functions are used (see, for example, Altongi and Segal,

1996; Andersen and Serensen, 1996; and Christiano and den Haan, 1996). One of the main
reasons for this problem is that for such cases, the optimal weighting matrix, [WT (L)]" is

poorly estimated. Given this problem, in practice, the selection criterion method appears to be an

attractive alternative to the sequential method.

10



The sequential testing and model selection criterion methods can consistently estimate L,

if Assumption D holds. However, as we have discussed above, the assumption would be
violated if some factors influence only a subset of the response variables. When the assumption
does not hold, our methods tend to underestimate the number of factors. To see why, consider

the following alternative assumption:
Assumption D" rank(B°Q,B*)=L <L, and rank[B°Q (B.)]=L.

In the appendix (Lemma A.1), it is shown that when L= L', a unique vector & exists such that

E[m, (0" |L')] =0. Let W,(L) be a consistent estimator of lim Var(ﬁdr(é?* |L*)); and let

T—>w

b, and b, be the minimizers of ¢, (b, |W,(L),L) and ¢, (b, |W,(L),L), respectively. Then,

by replacing Assumption D by D*, we obtain the following results:

Proposition 3: Under Assumptions A-C and D, for any choice of L <L and W.(L),
cr (bl |W;(L),L) =, . In contrast, ¢, (5; |W.(L'),L')y—>, Y, where Y is a weighted average of

independent #°(1) random variables. In addition, c, (b~L* | WT (L)L) =, y’'[(P-LYQ-L)].

Since the partition of g, and z,, is arbitrary, the rank of BZQfBg' could change

depending on the choice of g,, and z,, if Assumption D does not hold. Thus, Proposition 3

indicates that when Assumption D is violated, the estimated number of factors could be sensitive
to the partition used in estimation. As a treatment to this problem, we propose to try many
different partitions to estimate the number of factors. We can try a subset of all possible
partitions, or some randomly generated partitions. Our simulation exercises show that using the
frequency table of the estimates from a sufficiently large number of different partitions, we can

obtain an accurate estimate the correct number of factors.

11



4. Extensions
In this section, we consider the two cases to which the GMM methodology developed in the

previous section can be generalized.

4.1. Approximate Factor Models

Chamberlain and Rothschild (1983) propose an approximate factor model to test the Arbitrage
Price Theory. This model differs from the exact factor model since it allows idiosyncratic
components to be cross-sectionally correlated. Assumption C implies that Var(e, )=Y is
diagonal. In contrast, the approximate factor model allows ¥ to be non-diagonal, although the

correlations among the errors in ¢,, are restricted to be mild. Chamberlain and Rothschild (1983)
have shown that for an approximate model with L, factors, the first L eigenvalues of the
variance matrix of the response variables diverge to infinity as N — oo, while other eigenvalues
remain bounded. Based on this finding, they suggest estimating L by counting the number of

larger eigenvalues of the variance matrix of response variables. Bai and Ng (2002) proposes a
more elaborated statistical method. These two methods are appropriate for the data with both
large N and T'. However, they may not be appropriate for the data with small N (see Brown,
1989; Bai and Ng, 2002).

While our method is designed for exact factor models with small N, it could be used to
estimate some approximate factor models. For example, consider a model in which the response

variables in 7,, are categorized into a finite number (M ) of groups (e.g., portfolios). Each of the
groups, indexed by G,, G,, ... , G,,, contains NG ; variables, such that Zﬁ”: NG, =N, and for
all j=1,..,M , NG,/N —a, for some positive number a,, as N - . Suppose that the
response variables are generated by the following processes:

B =0+ (B 15+ (B [+, (11)
where i indexes individuals, j=1,...,M indexes individual groups, the variables in f,glo are the

“global” factors that influence all of the response variables in different groups, the variables in

¢ are the “local” factors that are correlated with the variables in group j, but not with those in
Jit group j

other groups (e.g., E(f f)=0, for j# j'), the «,, are intercept terms, and the vectors ,ngj.“

Jit Jjst

12



and ﬂjl”f are the loadings of the corresponding factors. The u,, are idiosyncratic errors.

Approximate factor models restrict the cross-section correlations in the error terms to be mild.
For example, Bai and Ng (2002) impose the following restriction, which we name “Approximate

Assumption” (AA):

Assumption AA: Let 7, = E(u,u, ), where u, and u,, are the error terms from the
same or different groups, and ¢ and s are time indexes. Then, (NT)'Z % ‘r” u | for
some 7, and forall ¢,and N7 = |rii,| <M for some positive number M , forall N .

Let u,, = (NG, ) ZleG . Then, Assumption AA warrants that N, T — oo,

1 .
E(ujt 7, t) mziebezi'eG u/ ltuj i't _)0’ (12_1)
j 7
1 T — — 1 T
= 2o Zico, Zieg, Uity =, 0. (12-2)

72 TxNG,xNG, =%
Now, consider the following group-mean equations of (11):

Fu= @+ B BV S 0, =@+ (B + 5 (13)
where the symbols with overhead bar are defined similarly to u,,. By (12-1)-(12-2) and the fact
that the variables in f /l“ are group-specific, we can show that &, are asymptotically

uncorrelated over different groups. That is, we can treat the equations in (13) as an exact factor

model if N and NG, are sufficiently large. Thus, using our method, we could estimate the

number of the global factors by estimating the rank of B = lim,_ ( B, BE LB gl‘))

4.2. GMM Estimation with Observable Instruments
When some variables are potentially correlated with latent factors and observable, we could use

them to estimate L, , or test how many of them are indeed correlated with the factors. We first

consider how to estimate L . Let s; be the K x1 vector of instruments which satisfies following

assumption:

13



Assumption Dt rank[E(s, )] =L, <K and E(e,;s/) =0,

Under Assumption D", there must be a N x (N — L,) matrix of full column, =, such that

1 sk
E{[s )(7”.; -a)= } = 0(K+I)><(N—LO) . (14)

Thus, we can estimate L, using the same method discussed in section 3. Our methods apply as
we use 7, for g, and s, for z,,. When observable instruments are not available, we need to
partition response variables into two groups to use a group of response variables as the
instruments for latent factors. But for the response variables in a group to be legitimate
instruments, the error terms in &,, should be cross-sectionally uncorrelated. When outside
instruments are observable, we do not need to partition the response variables. In additions, the
error terms are allowed to be cross-sectionally correlated as long as the instruments are not
correlated with them.

In cases in which the number of factors is already known, or estimated by the methods
discussed in section 3, we can test by GMM how many of the factors are correlated with the

observable instrumental variables in s,. If some factors are not correlated with s,, it should be
the case that rank[E(s,f)]=L" <L, . For this case, by the same method we used in section 3,

we can show that the GMM methods based on the moment condition (14) estimate L™, not L, .

5. MONTE CARLO SIMULATION
5.1. Data Generation

The foundation of our Monte Carlo exercises is the following the three-factor model:
Bo=0+ Bty + Bofo+ Bafs +6, =0 +C +0y +05, + 6, (15)
where the f,, (k= 1, 2, 3) are the common factors of the model. Our benchmark model is the

three-factor model of Fama and French (1993): EMR (excess market return), SMB, and HML.*

* The Fama-French factors are constructed using the 6 value-weight portfolios formed on size and book-to-market.
SMB (Small Minus Big) is the average return on the three small portfolios minus the average return on the three big
portfolios. HML (High Minus Low) is the average return on the two value portfolios minus the average return on
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We generate randomly £, and f,, to match the moments of the Fama-French data. That is, we

generate data such that the moments of ¢, , match the counterparts from the data that Fama and

French (1993) used. At the sample means of the estimated betas ( /71 , /72 , and ,53) for the 25 size

and book-to-market portfolios, the estimated variances of the Fama-French common components

are the following:
var(f, x EMR) = 21.72; var( 8, x SMB) = 4.50; var( 3, x HML) =1.29.

Two types of idiosyncratic error components are used. First, we generate the errors

which are cross-sectionally heteroskedastic, but not autocorrelated. Specifically, the errors are

drawn from N(0,0/"), where the o/" are the variances of the residuals from the time-series

regressions of (15) for each i. The values of /"

- are between 1.21 and 3.78, with the average
of 2.016. Thus, the variances of the first and second common components at the means of betas
are more than twice as great as the average variance of the idiosyncratic components, while the
variance of the third common component (1.29) is smaller. We define the signal to noise ratio

(SNR) of a common component (¢, ) as the ratio of the variances of the common component
and the idiosyncratic error component. In our simulation, the SNRs are 10.8 , 2.2, and 0.65 for
common components 1, 2, and 3, respectively.

Second, we generate the error terms from a simple AR (1) process: ¢, = p;&;,_, +v,. Using

it *
the residuals from the time-series regressions of (15), we estimate the parameters p, and estimate
var(v,) such that var(g,)=oc/" . The errors generated by this way are cross-sectional

heteroskedastic and serially correlated over time.

5.2. Size of the Over-ldentifying Restriction Tests
We first investigate the size of the overidentifying restrictions test with the true number of

factors. We use N portfolio returns generated by equation (15). We randomly divide the N

portfolios into two groups: g, and z,, in the notation of section 2. Then, we carry out the

the two growth portfolios. EMR is the excess return on the market: the value-weight returns on all NYSE, AMEX,
and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates). See Fama
and French (1993) for a complete description of the factor returns.
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GMM estimation discussed in section 2,” compute the overidentifying restriction test statistic
(which we simply call “J statistic” from now on), and finally, test if the true number of factors is
equal to 3, at a significance level of 5%. We proceed to repeat this procedure for 1,000

iterations, and compute how many times the true null hypothesis (L, =3) is rejected. Since the

portfolio returns are generated by 3 factors we expect to reject the null hypothesis 5% of the
times.

We perform our simulations with six different combinations of 7 and N: T = 500 and
1000, N = 12, 15, and 25. For each combination, we consider two cases: the cases with
autocorrelated (AR(1)) and serially uncorrelated idiosyncratic errors. We also try different
numbers of instruments. That is, we conduct simulations using different number of portfolios in
each of the two groups ( g,, and z,,) of the partition of total N portfolios. For the cases with N =
12, we try three different partitions: (P,Q) = (8,4), (7,5) and (6,6). We also try (P,Q) = (9,6),
(7,8) and (6,9) for N = 15; and (P,Q) = (17,8), (16,9), and (13,12) for N =25. We perform this
experiment to check whether the test results are sensitive to the number of instruments (Q) used.
There have been many studies finding that the GMM estimators computed with too many
instruments and small data are often biased (see, for example, Andersen and Serensen, 1996).5
The values of N and T are chosen to be close to the sample sizes most often used in the finance
literature. The percentage of rejection of the true null hypothesis by the J test statistic is
presented in Table 1.

For the case of no autocorrelation, the J test performs relatively well for all of the
specifications we experimented. It appears that the test performs better when 5, 8, and 9
instruments (Q) are used for the data with N = 12, 15, and 25, respectively (not counting the
vector of ones as instrument). We suggest that in practice initially the partition should include
around half of the response variables (N/2) as instruments, but the number of instruments (Q)
should not be greater than 10.

As expected, the size of the test improves as the number (7 ) of times series observations

increases from 500 to 1000. For the cases of autocorrelated errors, we use the Newey-West

> We develop a programs using GAUSS 6.0 for the estimation and data generation.

% Using only a small subset of the available moment conditions is not a solution either. Andersen and Serensen
(1996) showed that using too few moment conditions are as bad as estimators using too many conditions. This
result indicates that there is a trade-off between informational gain and finite-sample bias caused by using more
moment conditions.
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(1987) covariance matrix to compute the optimal weighting matrix. We present the results
obtained using two different bandwidths: 3 and 0.” Notice that, if bandwidth = 0, the Newey-
West matrix reduces the heteroskedasticity-robust variance of White (1980).

When the idiosyncratic errors are autocorrelated, the White variance matrix is not the
optimal choice. Our results indeed show that when autocorrelation is present in data, the test
results are quite sensitive to the choices of bandwidth and number of instruments, especially for
the data with large N. For N = 12, the test performs better when the statistic is computed with
bandwidth = 3. When N = 15 or 25, and bandwidth = 3, the test statistic under-rejects the true

null hypothesis of L =3 for almost any choice of the number of instruments. When bandwidth

= 0 (which is asymptotically not an optimal choice) is selected for the cases with N = 15 and 25,
the test is rather better sized. It appears that the Newey-West estimator becomes less reliable
when N is large. It may be so because the number of parameters in the weighting matrix rapidly
increases with N. For the cases of N = 15 and 25, the efficiency gain by using the estimated
optimal weighting matrix do not seem to be large enough to compensate for the loss by using

poorly estimated weighting matrix.

5.3. Estimation of the number of factors

Using the data generated using three factors as defined in section 5.1, we now estimate the
number of factors using the sequential hypothesis testing and the model selection criterion
methods. As discussed in section 3, to obtain consistent estimates by using the sequential test

method, we need to adjust the significance level (¢, ) depending on the sample size (7). We use

a, =0.05x+/500/T . This function is chosen such that o, =0.05.% 1,000 different sets of

randomly generated portfolio returns are used for simulations. The results are summarized in
Tables 2 and 3.
Table 2 shows that for all of the different combinations of N and 7, the sequential

hypothesis testing method produces quite reliable estimates when the idiosyncratic errors are not

7 In unreported experiments we use other different choices of bandwidth. Results and main conclusions do not
change. The automatic bandwidth selection methods by Andrews (1991) or Newey and West (1994) chose the
values of bandwidth greater than six for our simulated data, but with the values greater than six, our test results get
worse. The tests with bandwidth of three performed better.

*In unreported experiments, we also have tried many other significance levels, but the results do not show
remarkable changes.
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autocorrelated and the heteroskedasticity-robust weighting matrix is used in GMM. As expected,
the estimates become more accurate as 7 increases. We obtain less accurate results when N =
500 and T = 25: The estimated numbers of factors are three for 93.20% of the times. For the
cases of autocorrelated errors, we obtain the similar results even if the heteroskedasticity-robust
weighting matrix (which is not optimal) is used. We obtain the similar results using the Newey-
West matrix with bandwidth = 3, except for one case. For the simulated data with N =25 and T
= 500, the sequential test with bandwidth = 3 predicts one factor for 100% of the times. This
result is consistent with the results of size in Table 1, which shows that the J test tends to under-
reject the true null hypothesis. Our simulations results from the sequential hypothesis testing
method suggest that larger samples are required to analyze a large number of portfolios (N >15)
when idiosyncratic errors are autocorrelated.

The results reported in Table 3 show that the model selection criterion method is slightly
better than the sequential test method in estimating the number of factors, for almost all of the
different combinations of 7" and N. Similarly to the results from the sequential tests for the data
with N = 25, and T = 500, the numbers of factors estimated by the selection criterion method are
severely downward biased when the bandwidth of three is used. As we find out in section 3, the
model selection criterion procedure does not require use of the optimal weighting matrix. Thus,
the results reported in Tables 2 and 3 suggest that the model selection criterion method using the
heteroskedasticity-robust variance matrix performs well whether or not the idiosyncratic errors
are autocorrelated.

To check the robustness of our results, we now investigate if the estimation results
change substantially when we change our partitions of portfolio returns into two groups. To
accomplish this objective we generate one set of portfolio returns, and then, we randomly create
100 different partitions. Then, for each partition, we estimate the number of factors. The results
from the experiments with 7= 1,000 are presented in Table 4 Panel A.° The sequential testing
method estimates the number of factors more accurately when N = 12 or 15, than when N = 25.
We find the correct number of factors more than 89% of the times when N =12 or 15, but around

65% when N = 25. The model selection criterion method produces more reliable estimates,

? We do not report results for T=500 in order to save space and since the main conclusion of this section do not are
not different. Results are available upon request.
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especially for the cases with N = 15 and 25. We obtain the correct number of factors over 91%
when N = 15 and over 82% when N = 25.

This experiment confirms that the GMM estimation results could change depending on
the partition we use. The test results are more sensitive to the partitions used in GMM when N is
large. The model selection criterion method is less sensitive to the partitions than the sequential
testing method does. Nonetheless, the selection method is also likely to produce incorrect
inferences when the data with large N are analyzed. For this reason, we propose to estimate the
number of factors using many randomly partitioned data. Our experiments suggest that the
number of factors can be more accurately estimated if 100 different partitions are used for

. . 1
estimation. 0

The number of factors most often estimated from different partitions could be a
reliable estimator (i.e. the one with the highest frequency). In order to confirm this conjecture,
we perform the following experiment: We generate 1,000 different sets of portfolio returns. For
each data set, we estimate the number of factors using 100 randomly created partitions and
choose as our point estimator the number estimated most often. The results are presented in
Table 4. Panel B of Table 4 confirms our conjecture. The number of factors most often
estimated from different partitions is always 3, for N = 12, 15, and 25, whether or not

idiosyncratic errors are autocorrelated or not.

The last part of our simulations tries to evaluate the performance of our methods when a
factor explains a very small proportion of the total variation of the response variable. We will
call such factor a weak factor. In our simulation, the variance of the common component

(¢eu =Byt ) associated to a weak factor will be small compared with the variance of the

idiosyncratic component. In order words, a weak factor is a factor with a low signal to noise
ratio (SNR). As described in section 5.1, our data was generated using as a benchmark the three-
factor model of Fama and French (1992), where the SNRs of three factors are 10.8, 2.2, and 0.65,
respectively. To generate the data with one weak factor and two other non-weak factors, we
reduce the SNR of the second common component (SMB) and increase the one of the first
common component (EMR). We do so because we wish to generate data such that the total

variations in the response variables explained by the three factors and the variations in

' We also performed the same experiment using all possible partitions of portfolio returns into two groups. Results
do differ significantly with the ones presented just using 100 random specifications of the groups.
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idiosyncratic errors remain constant. In this experiment, we reduce the SNR of the second
common component to four different values: 1.0, 0.50, 0.35, and 0.25. As we have done in the
before, we generate one set of portfolio returns, and then, we randomly create 100 different
partitions. For each partition, we estimate the number of factors. The results are presented in
Table 5. Since the model selection criterion method appears to be superior to the sequential
method, we only report the results from the former method.

When the SNR of the second common component is greater than or equal to 0.50 (Panels
A and B), the model selection criterion method estimates most repeatedly three factors for all of
the different values of N. For example, when SNR = 1, we estimate three factors 91% of the
time for the data with N = 12, 90% for N = 15, and 75% for N = 25. The second highest
frequencies are smaller that 25% in all the cases. These results are very similar in magnitude
with the ones presented in Panel A of Table 4 in which the SNR of the second common
component is set at 2.2.

When the SNR drops to 0.35, the method also estimates most repeatedly three factors, but
with lower frequencies. For example, for the cases with N = 12, 15 and 25, we estimate three
factors, 60%, 67%, and 59% of the time, respectively. For N = 12, two factors are estimated
35% of the time, which is the second highest frequency. All the other frequencies are smaller
than 25%. Finally, when the explanatory power of the second factor becomes even weaker, that
is, when its SNR drops further to 0.25, we estimate most repeatedly two factors. For the cases
with N= 12, 15 and 25, we estimate two factors 75%, 60% and 68% of the time, respectively.

While it is somewhat arbitrary, given these results, we define the factor with SNR equal
to 0.25 as a “weak” factor. Our simulation results show that when a weak factor is present in
data, our estimator (the one that receives the highest frequency from the estimation with 100
random partitions) underestimates the true number of factors. That is our estimator is able to
detect factors with a SNR bigger than 0.25. However, the true number of factors (L, = 3) is
estimated with the second highest frequency at the range of 25-30%. Our results suggest that if
the second highest frequency in the estimation is larger that 25%, then one of the factors is weak
and the true number of factors can be underestimated.

The number of factors most often estimated from 100 different partitions (i.e. the one
with the highest frequency) appears to be a reliable estimator unless weak factors are present. In

order to confirm this fact, we carry out the same experiment we conduct before: we generate one
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set of portfolio returns, and then, we randomly create 100 different partitions. For each partition,
we estimate the number of factors. Then, our point estimator is the number most often
estimated. We repeat this experiment for 1,000 generated samples with four different SNRs of
the second common component: 1.0, 0.5, 0.35 and 0.25. The results are presented in Table 6.
When SNR is greater than or equal to 0.50, the method estimates 3 factors 100% of the time for
all values of N. This implies that if all factors are strong, we will have a very reliable estimator
of the true number of factors. As SNR gets smaller our method estimates three factors with less
often and two factors with more frequency. For example if SNR = 0.35 and N = 12, three factors
are estimated with the highest frequency 61.70%, but we also estimate two factors 38.30% of the
time. When N = 12 and SNR = 0.25, we will estimate two factors 89.10% of the time, and the
three factors just 10.90% of the time. An important fact from these simulations is that the method
never overestimates the number of factors, even in the presence of a weak factor.

We confirm that if all factors are strong (SNR larger than 0.25) the number of factors
most often estimated from different partitions is a very accurate estimator of the true number of
factors (i.e. the one with the highest frequency). If a factor is weak, this method can lead to
underestimation of the number of factors. A second highest frequency larger that 25% will be

evidence for the presence of a weak factor.

Based on this conclusions, we suggest researchers should estimate the number of factors
with different specifications of two groups (100 randomly generated partitions appear to be
enough). The relative frequencies of estimated numbers of factors should be observed. If there
is just one frequency larger than 25%, the correct number of factors is the one with this higher
frequency. One could judge that no weak factor is present. A second highest frequency larger
than 25% could be viewed as an evidence of a weak factor. In this case just looking at the
highest larger frequency may lead to underestimate of the number of factors. If the second
highest frequency (=25%) corresponds to a number of factors that is greater than the one with
the highest larger frequency, then the correct number of factors will be the one with the second

largest frequency.
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6. EMPIRICAL RESULTS

As an empirical application we estimate the number of factors that explain the stock returns in
the United States following an APT model. In order to check the sensibility of the estimation to
the number of portfolios used, we employ return data of 10, 15, and 25 portfolios. For the case of
the 10 portfolios we use the 10 momentum portfolios obtained from Kenneth R. French’s on-line
data library. These portfolios are formed as the average return on the two high prior return
portfolios minus the average return on the two low prior return portfolios.!' Under this portfolio
design the number of assets in each portfolio is roughly the same for every time period. As
detailed in section 4.1, this is important for our estimation since the methodology will perform

better if the number of assets in each portfolio is large.'?

The 15 and 25 portfolios are
constructed randomly, in the sense that the asset returns included in each portfolio are randomly
selected. Again this portfolio design warranties that the number of assets included in each
portfolio is roughly the same, so the number of assets in each portfolio is large every time period.
Our time series sample includes 954 monthly observations for each portfolio from 1927 to 2006.
We use the model selection criterion since according to simulations it produces more
reliable inferences in finite samples than the sequential testing method. We repeat the estimation
for 100 randomly selected partitions. Instrument groups include 5, 8 and 9 instruments for N =
10, 15, 25 respectively. The results are very robust to changes in the number of instruments. We

use the heteroskedasticity-robust variance matrix for the GMM weighting matrix. Estimation

results are presented in Table 7 panel A.

In the case of the 10 momentum portfolios, we estimate 71% of the time three factors.
Since this is the only frequency larger than 25% we can conclude that the number of factors in
this case is three, and there is not evidence of a weak factor. For the data with 15 portfolios we
estimate three factors 50% of the time and 35% two factors. Again three factors are estimated
with the highest frequency, but in this case two factors are obtained more than 25% of the time

which evidences that one of the three factors is weak. Finally for the 25 portfolios, two factors

" More details of portfolio formation can be obtained from Kenneth R. French’s on line data library.

12 . . T .
The idiosyncratic components of individual stock returns may be cross-sectionally correlated. However, as

discussed in section 4.1, the errors of portfolio returns are less likely to be cross-sectionally correlated if each
portfolio is constructed with many individual stocks. We use portfolios that maximize the number of assets in each
portfolio for every period of time.
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are estimated 63% of the time and the second highest frequency corresponds to three factors
which are estimated 25% of the time. These results imply that three factors explain the stock
market returns, and there is evidence that one of the factors is weak in the sense that its
corresponding SNR is smaller than 0.25.

We want to investigate further the 25 portfolios case to verify the presence of a third
weak factor. Assumption D in our model implies that all portfolios should be affected by the
same number of factors. If just and small number of the portfolios are affected by a third factor
then this third factor will be weak. In order to investigate how different groups of portfolios from
the total 25 are affected by a third weak factor, we estimate the number of factors for different
groups or subsets from the 25 portfolios. Specifically we randomly select 10 portfolios from the
25 portfolios. Results of the estimation of the number of factors for 2 different random selections
of 10 portfolios are presented in Table 7 panel A. We estimate two factors with the highest
frequency in all the cases. We estimate three factors with frequencies that range from 19% to
31%. This implies that the third factor affects a small group of 25 the portfolios, which confirms
the fact that the third factor is weak.

We conclude that 3 factors explain the returns of the US stock market. One of the three
factors is a weak factor in the sense that its contribution to the total variance of the stock returns
is small relative to the idiosyncratic variance.

In a second part of our empirical exercise we want to investigate which variables
proposed in the financial literature as factors are really correlated with the three latent factors. As
explained in section 4.2, our estimation methodology can be applied for this purpose by just
using the observable variables as instruments in the moment conditions. We will focus in the
variables proposed by Chen Roll and Ross 1986 (CRR) and Fama French 1996 (FF). CRR select
as factors variables that affect the discount rate used to discount future expected cash flows and
variables that influence the expected cash flows themselves. The proposed factors are term
structure (UTS), changes in expected inflation (DEI), unexpected inflation (UI) , industrial
production growth (MP) and the risk premium (URP). UTS is calculated by subtracting the 10
year constant maturity US government bond and the 4 week Treasury bond yield"’. DEI is

obtained by calculating the monthly changes in expected inflation obtained from the U. of

13 Data obtained fro the Federal Reserve statistical release H15.
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Michigan consumer expectations survey.'* Ul is the difference between the realized inflation for
month ¢ and the expected inflation for month #.'> MP is the monthly growth in the industrial
production index'®. URP is calculated by the difference between the yield of the US government
bond and the Moody's seasoned Baa corporate bond yield. Fama and French three factors:
excess market return, SMB, and HML are factor mimicking portfolios formed using firm
characteristics and returns as explained in section 5.1. We focus in 342 observations stating in
1978, motivated in the availability of the all data for this sample period.

The first step of our estimation involves estimating the number of factors for this sub-
sample of 342 periods. Our simulations showed that in small samples it is better to use small
number portfolios, so we use 10 portfolios formed on Momentum. Results are presented in table
7 panel B. Interestingly we estimate 3 factors 78% of the times, similarly that the full sample
case. Given that the number of latent factors is three, we proceed to test how many of them are
correlated with the observable variables of CRR and FF. Results are presented in Table 7 panel
B. First we test for the case CRR non inflation variables (MP, UTS and URP) and we find that
using them as instruments we are just able to estimate one factor. This implies that these three
variables are able to capture (or are correlated) with just one of the three latent factors. In a
second estimation we include all CRR variables. Results do not improve, since just one factor is
captured again. Finally we include all CRR variables and the three FF factors in our estimation.
Results show that just two unobservable factors are correlated with the set of 8 observable
variables since two factors are estimated 78% of the times. We conclude the set of variables
included in CRR are correlated with one of the three latent factors and the FF factors are able to
capture an extra latent factor. One of the three unobservable factors is not captured by the

variables in CRR and FF.

7. CONCLUDING REMARKS
In this paper we present a method to consistently estimate the number of factors in a linear factor
model. The test is independent of the factors, since it is assumed that they are unobservable.

Since GMM is used it is feasible to allow for time series autocorrelation and heteroskedasticity

' Data obtained from the Federal Reserve Economic Data FRED.
' The Consumer Price Index obtained from FRED was used to calculate monthly inflation.
'® The industrial production index used to calculate MP was obtained from FRED
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and cross sectional heteroskedasticity of disturbances. Monte Carlo simulations show that the
size of the test is better when N is small and 7 is large.

We have considered two procedures to estimate the number of factors: sequential testing
and model selection criterion methods. Our simulations show that the model selection criterion
method is more precise, especially for 15 or more response variables. We recommend use of the
model selection method since it does not require bandwidth selection or adjustment of
significance levels.

Since the method requires the partition of the response variable in two groups, we
recommend to estimate the number of factors for different specifications of two groups (100
randomly generated partitions appear to be enough). Simulation show that the number of factors
most often estimated from different partitions is a very reliable estimator (i.e. the one with the
highest frequency). A second highest frequency larger than 25%, will evidence the presence of
a weak factor, i.e. a factors that explains small proportion of the variation of the response
variable (SNR smaller than 0.25). In this case just looking at the highest larger frequency may
lead to underestimate of the number of factors.

Our empirical results imply that the US stock returns are determined by three factors.
There is also evidence that one of the factors is a weak factor. Also we find that the variables
proposed by Chen Roll and Ross 1986 are able to capture just one of the three latent factors.
Fama and French 1996 are able to capture an extra latent factor. One of the three unobservable
factors is not captured by the factors proposed by Chen Roll and Ross 1986 and Fama and
French 1996.
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APPENDIX

The following lemma is useful to prove Propositions 1 and 3.

Lemma 1: Suppose that the factor model (2) satisfies Assumptions A-C and D’. Then,

(i) for L< L, there exist no values of b, such that E[m,(b, |L)]=0. (ii) For L=L, a unique
solution b, =@" exists for E[m,(b, |L')]=0. Finally, (iii) for L > L', there are infinitely many
b, ’s such that E[m (b, |L)]=0.

Proof: By construction, rank(H,)=P— L. But, under Assumption D', the maximum

number of the linearly independent columns of H, that are orthogonal to all of the columns of
BZQfBg' is (P—L"), which is smaller than (P—L). This means that some columns of H,

cannot be orthogonal to all of the columns of BZQfBg' when L< L. That is, BZQfBg'HL #0.

Under Assumptions A-C and D, using (8), we can show that

Elm,(b,|L)]= E(V@C{{ : j(HL’g-t _aP—L)':D
Z-t

(H,a* —a, ;) ’
=vec , #0
o’ (H,af —aH)'+BZQfBg H,

for any H, and a,_,. Thus, (i) holds. When L = L', there exists a unique H, = [/

p-L'°

(A1)

!

—
]
—_—

A
E" such that B°Q B¥E =0. Let 8" =vec[(az,E; )], where az =Z"a*. Then, from (A.1),
we can see that @ is the unique solution of E[m, (b, |L')]=0. This proves (ii). A simple

example can provide an intuition for the result (iii). Consider a simple case with P=0 =3,

L=1, a=(a,a,,a)", g,=(g,,8,,8) »and

0 0 0 1 0
B'QB'=0 0 0;2= 0 1,
vy 7 nlrs =17

assuming 7, #0. Suppose now that for estimation, we choose L=2 and H, =(1,-¢,-¢,)",

where ¢ is a unrestricted parameter, and ¢, =—(y, —¢y,)/7;. Then, B°Q fBg'H , = 0. Thus,
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Elvec{(1,z.)'(H,g.,—a,_;)'}]1=0, where a, , =a, —¢a, —¢,c,. Since ¢ is an unrestricted

parameter, there are infinitely many matrices H, (other than = ) that satisfy the moment

conditions E[m, (b, |L)]=0 when L>L . This result can be easily generalized.

We first prove Proposition 3, and later Proposition 1. We do so because Proposition 1 is

in fact a corollary of Proposition 3.

Proof of Proposition 3: Consider the case with L < L'. Then, by Lemma 1(i), there is no
b, that satisfies E[m,(b, |L)]=0. This means that b, —, b for some b # 0", and, for some
d=0,
d(b,|L) =d,(b"|L) +o0,(1) >, d.
Thus, cT(EL \W,(L),L)/T —, d'[W(L)]'d >0, and therefore, cT(bAL | Wi (L),L) —>, .
Consider now the case with L=L . By Lemma 1(ii), there is a unique solution §" for
E[m,(b, |L,))]=0. Therefore, b, -, 0" by Hansen (1982). Let D, (b, |L)=0d,(b, |L)/0b, .

Then, using (7), we can show that, under Assumptions A-C,

- 1Ly
DT(bL L) :_erzl ]P—L ® r
T Z-t Zuz (‘xuz )'

1 ()
- IP*L® z z X\ Lz X\ ED’
’ o a(a.)+BQ(B)
where D is a full-column matrix under Assumption D". Define

A= W1/2W71/2 [1

Pt1e0) (Wr)fl/zD(DIW—ID)—IDrW—l/Z](Wr)—l/Z(Wr)l/Z ’

where W=W (L), W=W(L), and W"? and W"? are the triangular matrices from the

Cholesky decomposition of S and G. Then, following Theorem 3 of Jagannathan and Wang

(1996), we can show that, as N — o,
er (b W (D),0) =, 2,46, (A2)
where G=(P-L)QO-L), A,....A; are the positive eigenvalues of 4, and the fj are

independent y°(1) random variables. Observe that G is the degrees of overidentifying
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restrictions: the number of moment restrictions in m, (b, | L) minus the number of parameters in
b,. Thatis,
G=(P-LY1+Q)—(P-L)Y1+L)=(P-L)Q-L).
The minimizer of ¢, (b, |W,(L),L), b, , is the optimal GMM estimator among the estimators
based on the moment condition E[m, (b, |L)]=0. When WT (L) is used for GMM, the matrix
A reduces to:
A=1

(P-L,)(1+0) — W '"*D(D'W'DY'D'W?,

because W =W . Observe that 4 is symmetric and idempotent. Thus, the eigenvalues of A are
all ones or zeros. Since the rank of a matrix equals the number of its non-zero eigenvalues, and

since rank(A) = trace(4) = G, we must have 4, =1, forall j=1,...,G. Thus, by (A.2),

e (b, |W(L'),L)—>,29.& = 1°(G).

Proof of Proposition 1: Under Assumption D, rank[B*Q fBg']: L' =L,. Thus, the

results follow from Proposition 3.

Proof of Proposition 2: We can complete the proof by showing that Pr(L > L)—0 and

Pr(ﬁ<LU) —0,as T —>oo. We first show lim,__ Pr(L >L )=0. Observe that for L to be

N—>x

greater than L , MS,(L,)-MS,(L,) > 0 for some L, > L . This implies that Pr(i >L) <
Pr[MS,(L,)-MS,(L,)>0]. Note also that

Pr[MS,(L,)- MS;(L,)>0]=Prlc, (] | L,) —c; (b, | L)+ /(N)(&(L,)-g(L,)) > 0]

<Prle, (6] | L)+ f(T)(g(L,)-8(L,)) > 0] >0,

because (g(L,)—g(L,))) is a fixed negative number, f(7)=In(T)—>o as T —oo , and
cr (ISZ |L,) is a weighted »’ random variable that is bounded almost surely. Thus, Pr(i >L) >
0.

We now show that lim,  Pr(L<L)=0. For L to be smaller than L,, there should

exist some L, <L, such that MS, (L, )-MS.(L,) <0. But we can show
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S

Pr[MS, (L)~ M S, (L,)>0]= Pr[%cf (b7 |L,) —%cT(BL L)+ = e(L,) g, )>>0}

—0,

as T'— oo. This is true for three reasons. First, f(T)/T =In(T)/T — 0 as T —>oo. Thus, the
third term converges to zero. Second, c, (52’ |L,)/T—,0, because c;, (BZ |L ) converges to a
bounded random variable. Third, for L, < L , there is no b, such that E[m, (b, |L,)]=0. Let b,

be the minimizer of plim, ¢, (b, |W,(L,),L,)/T. Since E(m,(b,|L,))#0,

plim, _d (b, |L,)=plim, d, (b |L,)#0.

Thus, c, (ISL |L,)/T converges in probability to a positive number. Accordingly, Pr(l: <L) —0.
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TABLE 1
Size of the J Test

1,000 random samples are generated by a three-factor model. For each sample, the J statistic is computed and the
null hypothesis of Ly = 3 is tested. The reported are the percentages of rejection at 5% of significance level. The
Newey-West estimator is used to compute the weighting matrix for the cases of autocorrelation. The abbreviation
BW is the value of bandwidth used.

NO AUTOCORRELATION
T N BW Number of Instruments (Q)
4 5 6
500 12 0 4.30% 5.10% 7.10%
1000 12 0 4.70% 4.90% 5.60%
T N BW Number of Instruments (Q)
6 8 9
500 15 0 7.20% 5.30% 5.20%
1000 15 0 6.40% 4.90% 4.85%
T N BW Number of Instruments (Q)
8 9 12
500 25 0 6.80% 4.90% 33.2%
1000 25 0 5.90% 5.00% 32.50%
AUTOCORRELATION
T N BW Number of Instruments (Q)
4 5 6
500 12 3 4.00% 4.30% 5.70%
1000 12 3 4.50% 5.00% 4.60%
500 12 0 4.50% 6.10% 7.60%
1000 12 0 4.70% 6.00% 5.80%
T N BW Number of Instruments (Q)
6 8 9
500 15 3 3.20% 2.50% 2.90%
1000 15 3 5.00% 2.60% 2.90%
500 15 0 7.20% 5.80% 5.10%
1000 15 0 6.20% 5.00% 4.60%
T N BW Number of Instruments (Q)
8 9 12
500 25 3 0.00% 0.00% 0.00%
1000 25 3 0.20% 0.00% 0.74%
500 25 0 7.40% 5.20% 57.00%
1000 25 0 5.90% 5.30% 47.20%
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TABLE 2
Estimation by the Sequential Hypothesis Testing Method

The sequential hypothesis testing method is used to estimate the number of factors in the data generated with three
factors (L, = 3). Five, eight and nine instrumental variables are used for the data with N = 12, 15, and 25,
respectively. For the cases of autocorrelation, we use the Newey-West estimator. The total number of simulations is
1,000.

NO AUTO CORRELATION

NUMBER OF FACTORS

T N BANDWIDTH AVERAGE
<2 3 4 5 6
500 12 0 0% 94.10% 5.90% 0.00% 0.00% 3.059
500 15 0 0% 94.70% 3.70% 1.10% 0.50% 3.074
500 25 0 0% 93.20% 4.40% 1.50% 0.08% 3.052
1000 12 0 0% 94.20% 5.80% 0.00% 0.00% 3.058
1000 15 0 0% 95.10% 3.40% 1.30% 0.02% 3.055
1000 25 0 0% 94.40% 3.40% 1.40% 0.20% 3.050
AUTOCORRELATION
NUMBER OF FACTORS
T N BANDWIDTH AVERAGE
<2 3 4 5 6
500 12 0 0% 94.60% 5.40% 0.00% 0.00% 3.054
500 15 0 0% 94.20% 4.30% 0.90% 0.60% 3.079
500 25 0 0% 94.10% 3.00% 1.30% 0.60% 3.044
1000 12 0 0% 94.70% 5.30% 0% 0% 3.053
1000 15 0 0% 95.40% 3.70% 0.90% 0.00% 3.055
1000 25 0 0% 94.60% 3.40% 1.20% 0.40% 3.058
500 12 3 0% 95.70% 4.30% 0.00% 0.00% 3.043
500 15 3 0% 97.50% 1.60% 0.80% 0.10% 3.035
500 25 3 100% 0.00% 0.00% 0.00% 0.00% 1.000
1000 12 3 0% 95.00% 5.00% 0% 0% 3.050
1000 15 3 0% 97.40% 1.40% 0.80% 0.40% 3.042
1000 25 3 0% 92.30% 5.70% 3.00% 0.00% 3.147
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TABLE 3
Estimating the number of Factors by the Model Selection Criterion Method

The model selection criterion method is used to estimate the number of factors for the data generated with three
factors (Lo = 3). Five, eight and nine instrumental variables are used for the data with N = 12, 15, and 25,
respectively. For the cases of autocorrelation, we use the Newey-West estimator. The total number of
simulations is 1,000. The Schwartz Information Criterion (BIC) is used.

NO AUTO CORRELATION
T N BANDWIDTH NUMBER OF FACTORS AVERAGE
<2 3 4 5 6
500 12 0 0.00% 97.00% 3.00% 0.00%  0.00% 3.03
500 15 0 0.00% 99.10% 0.90%  0.00%  0.00% 3.01
500 25 0 0.00% 99.90% 0.10%  0.00%  0.00% 3.00
1000 12 0 0.00% 97.80% 2.20%  0.00%  0.00% 3.02
1000 15 0 0.00% 99.70% 0.03%  0.00%  0.00% 2.99
1000 25 0 0.00% 99.80% 0.20%  0.00%  0.00% 3.00
AUTOCORRELATION
T N BANDWIDTH NUMBER OF FACTORS AVERAGE
3 4 5 6
500 12 0 0.00% 96.90% 3.10%  0.00%  0.00% 3.03
500 15 0 0.00% 98.90% 1.10%  0.00%  0.00% 3.01
500 25 0 0.00% 99.70% 0.10%  0.00%  0.00% 3.00
1000 12 0 0.00% 97.70% 2.30%  0.00%  0.00% 3.02
1000 15 0 0.00% 99.60% 0.40%  0.00%  0.00% 3.00
1000 25 0 0.00% 99.90% 0.10%  0.00%  0.00% 3.00
500 12 3 0.00% 98.00% 2.00% 0.00%  0.00% 3.02
500 15 3 0.00% 99.80% 0.20%  0.00%  0.00% 3.00
500 25 3 100.00% 0.00%  0.00%  0.00%  0.00% 1.00
1000 12 3 0.00% 98.10% 1.90% 0.00%  0.00% 3.02
1000 15 3 0.00% 99.90% 0.10%  0.00%  0.00% 3.00
1000 25 3 9.20% 90.80% 0.00%  0.00%  0.00% 2.82
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TABLE 4
Effects of Changing Partitions

PANEL A
A single data set with 7' = 1,000 is generated from a three-factor model. The number of factors is
estimated by sequential testing and model selection criterion methods. This estimation is conducted for
100 randomly chosen partitions of the response variables. For the cases of autocorrelation, the Newey-
West estimator with bandwidth = 3 is used for the sequential hypothesis testing method. Zero
bandwidth is used for the model selection criterion method. The term “yes” in the “auto” column
indicates a case of autocorrelation, and “no” indicates the case of no autocorrelation.

SEQUENTIAL HYPOTHESIS TESTING

N auto NUMBER OF FACTORS AVERAGE
u

<2 3 4 S5

12 no 0.00% 97.00% 3.00% 0.00% 3.03

15 no 0.00% 89.00% 10.00% 0.00% 3.07

25 no 0.00% 66.60% 33.30% 0.00% 3.33

12 yes 0.00% 97.00% 3.00% 0.00% 3.03

15 yes 0.00% 91.00% 8.00% 1.00% 3.10

25 yes 0.00% 65.00% 32.00% 3.00% 3.38

MODEL SELECTION CRITERION

N auto NUMBER OF FACTORS AVERAGE
<2 3 4 5

12 no 0.00% 97.00% 3.00% 0.00% 3.03

15 no 0.00% 91.00% 8.00% 1.00% 3.10

25 no 0.00% 83.00% 15.00% 2.00% 3.19

12 yes 0.00% 97.00% 3.00% 0.00% 3.03

15 yes 0.00% 91.00% 8.00% 1.00% 3.10

25 yes 0.00% 82.00% 16.00% 2.00% 3.20

PANEL B

1,000 random samples are generated from a three-factor model. For each generated sample, the number of factors
is estimated by applying the model selection criterion method to 100 randomly chosen partitions of response
variables. The estimated number of factors for each sample is the number estimated the most frequently.

MODEL SELECTION CRITERION

N auto NUMBER OF FACTORS AVERAGE
<2 3 4 5
12 no 0.00% 100.00% 0.00% 0.00% 3.00
15 no 0.00% 100.00% 0.00% 0.00% 3.00
25 no 0.00% 100.00% 0.00% 0.00% 3.00
12 yes 0.00% 100.00% 0.00% 0.00% 3.00
15 yes 0.00% 100.00% 0.00% 0.00% 3.00
25 yes 0.00% 100.00% 0.00% 0.00% 3.00
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Effects of Weak Factor in One Random Sample

TABLE 5

A single data set with 7' = 1,000 is generated from a three-factor model using different
signal to noise ratios for the second common component. The variances of the response
variables explained by three factors are held constant. The number of factors is estimated
by the model selection criterion method. The method is applied to 100 randomly chosen
partitions of response variables.

PANEL A: SIGNAL TO NOISE FOR COMMON COMPONENT 2 =1.00

N NUMBER OF FACTORS AVERAGE
<1 2 3 4 5
12 0.00%  4.00%  91.00%  5.00%  0.00% 3.01
15 0.00%  0.00%  90.00%  9.00%  1.00% 3.11
25 0.00%  0.00%  75.00%  24.00%  1.00% 3.26
PANEL B: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.50
N NUMBER OF FACTORS AVERAGE
<1 2 3 4 5
12 0.00%  24.00% 71.00%  5.00%  0.00% 2.81
15 0.00%  6.00%  82.00%  12.00%  1.00% 3.11
25 0.00%  1400%  66.00%  19.00%  1.00% 3.07
PANEL C: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.35
N NUMBER OF FACTORS AVERAGE
<1 2 3 4 5
12 0.00%  35.00%  60.00%  4.00%  0.00% 2.66
15 0.00%  23.00%  67.00%  10.00%  0.00% 2.87
25 0.00%  13.00%  59.00%  24.00%  4.00% 3.19
PANEL C: SIGNAL TO NOISE FOR COMMON COMPONENT 2 = 0.25
N NUMBER OF FACTORS AVERAGE
<1 2 3 4 5
12 0.00%  75.00% 25.00%  0.00%  0.00% 2.22
15 0.00%  60.00% 39.00%  10.00%  0.00% 2.77
25 0.00%  68.00% 30.00%  2.00%  0.00% 2.34
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TABLE 6
Effects of Weak Factors in 1,000 Random Samples

1,000 random samples are generated from a three-factor model with different signal to noise
ratios of the second common component. Each sample contains 1,000 time series
observations. For each data set, the variances of the response variables explained by three
factors are held constant. The number of factors is estimated by applying the model selection
criterion to 100 randomly chosen partitions of response variables. The estimated number of
factors for each sample is the number estimated the most frequently.

PANEL A: SIGNAL TO NOISE FOR COMMON COMPONENT 2 =1.00

N METHOD NUMBER OF FACTORS AVERAGE
<1 2 3 4

12 MSC 0.00% 0.00% 100.00% 0.00% 3.00

15 MSC 0.00% 0.00% 100.00% 0.00% 3.00

25 MSC 0.00% 0.00% 100.00% 0.00% 3.00

PANEL B: SIGNAL TO NOISE FOR COMMON COMPONENT 2 =0.50

N METHOD NUMBER OF FACTORS AVERAGE
<1 2 3 4

12 MSC 0.00% 0.90% 99.10% 0.00% 2.99

15 MSC 0.00% 0.00% 100.00% 0.00% 3.00

25 MSC 0.00% 0.00% 100.00% 0.00% 3.00

PANEL C: SIGNAL TO NOISE FOR COMMON COMPONENT 2 =0.35

N METHOD NUMBER OF FACTORS AVERAGE
<1 2 3 4

12 MSC 0.00% 38.30% 61.70% 0.00% 2.62

15 MSC 0.00% 6.50% 93.50% 0.00% 2.94

25 MSC 0.00% 0.00% 99.80% 0.20% 3.00

PANEL D: SIGNAL TO NOISE FOR COMMON COMPONENT 2 =0.25

N METHOD NUMBER OF FACTORS AVERAGE
<1 2 3 4

12 MSC 0.00% 89.10% 10.90% 0.00% 2.11

15 MSC 0.00% 67.80% 32.30% 0.00% 2.33

25 MSC 0.00% 46.50% 53.50% 0.00% 2.54
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We apply the model selection criterion method to three different groups of portfolios constructed from US stock
market from 1929 to 2006. The 15 and 25 portfolios in each group are constructed randomly while each
portfolio has the same number of assets. The 10 momentum portfolio was obtained from K. French data library
and it has roughly the same number of assets per portfolio. PANEL A, shows results of the estimation of the
number of factors for 100 randomly chosen partitions. The heteroskedasticity-robust variance matrix is used as
weighting matrix. PANEL B includes results for testing how many factors are captured by Chen-Roll-Ross

TABLE 7
Empirical Application

1986 (CRR) factors and Fama and French (FF) 1996 factors, in a sub sample from 1978 of 342 observations..

PANEL A: Full sample

MBER OF FACTOR
Portfolio Used NU 9 CTORS Average
1 2 3 4 5
10 Momentum Portfolios 0.00% 8.00%  71.00%  21.00% - 3.13
15 Random Portfolios 0.00% 35.00%  50.00% 6.00% 1.00% 2.44
25 Random Portfolios 8.00% 63.00%  25.00% 4.00% 1.00% 2.26
10 from the 25 Portfolios 16.00%  49.00% 31.00% 4.00% - 2.23
10 from the 25 Portfolios 37.00%  40.00%  19.00% 4.00% - 1.90
PANEL B: Number of Factors with Instruments (sub-sample from 1978)
NUMBER OF FACTOR!
Portfolio Used v © CTORS Average
1 2 3 4 5
10 Momentum Portfolios 0.00% 8.00%  78.00% 14.00% - 3.06
CRR no Inflation Factors 100% 0% - - - 1.00
CRR All Factors 100% 0% 0% 0% - 1.00
FF Factors 5% 95% - - - 1.95
CRR and FF Factors 29% 71% 0% 0% 0% 1.71
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