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Abstract

We derive a canonical representation for the no-arbitrage discrete-

time term structure models with both observable and unobservable

state variables, popularized by Ang and Piazzesi (2003). We conduct

a speci�cation analysis based on this canonical representation. We

show that some of the restrictions commonly imposed in the literature,

most notably that of independence between observable and unobserv-

able variables, are not necessary for identi�cation and are rejected by

formal statistical tests. Furthermore, we show that there are impor-

tant di¤erences between the estimated risk premia, impulse response
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Grande, Marco Protopapa, Glenn Rudebusch, Oreste Tristani, Paolo Za¤aroni and semi-

nar participants at the Bank of Italy, at the ECB and at the FFM 2005, EEA-ESEM 2006

and EFA 2006 Conferences.
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functions and variance decomposition of unrestricted models, parame-

trized according to our canonical representation, and those of models

with overidentifying restrictions.
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1 Introduction

We derive a canonical representation for a class of a¢ne models with both

observable and unobservable variables, which includes as special cases the

models of Ang and Piazzesi (2003), Ang, Dong and Piazzesi (2004), Ang,

Piazzesi and Wei (2006), Hördal, Tristani and Vestin (2006) and Rudebusch

and Wu (2004). The new set of identifying restrictions implied by such a

representation is less restrictive than the set of restrictions �rst proposed

by Ang and Piazzesi (2003). Since the seminal paper of Ang and Piazzesi

(2003), it has been acknowledged that identi�cation schemes provided by

Dai and Singleton (2000) for a¢ne term structure models cannot be applied

to models with observable variables. In an a¢ne setting with only unobserv-

able variables, equivalent representations of a model can be obtained by any

rotation and translation of the state vector; hence, suitable restrictions, such

as those derived by Dai and Singleton (2000), are needed in order to identify

one and only one representation of the model (the canonical representation)

for each class of equivalent representations. When the set of state vari-

ables also comprises some observables, however, equivalent representations

can be obtained only by rotations and translations of the state vector which

leave the observables unchanged. For this reason, the identifying restrictions

provided by Dai and Singleton (2000) are not applicable to a¢ne models

with both observables and unobservables. Much of the previous literature

has imposed statistical independence between observable and unobservable

variables in order to achieve identi�cation. We prove that such restriction

is not necessary and we provide a canonical representation where interac-

tions between observables and unobservables are allowed. The importance

of such interactions, from both a theoretical and an empirical standpoint,
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has been stressed, among others, by Rudebusch, Sack and Swanson (2006)

and Diebold, Rudebusch and Aruoba (2006). As far as our dataset is con-

cerned, the statistical tests we perform on a battery of models strongly reject

the overidentifying restriction of independence, not only under the historical

probability measure, but also under the risk-neutral (pricing) one. We also

�nd that relaxing overidentifying restrictions produces material di¤erences

in estimated risk premia, impulse response functions and variance decom-

positions. We use our canonical representation to carry out a speci�cation

analysis in the spirit of that conducted by Dai and Singleton (2000). Be-

sides testing the validity of the aforementioned overidentifying restrictions,

we also conduct statistical tests to �nd the optimal number of unobservable

factors and lags of the observable macro variables. Our �ndings suggest that

the best model is a fully parametrized one with three unobservable and only

one lag of the observable variables.

Our study belongs to a recent literature which uses modern no-arbitrage

pricing models to analyze the relation between the yield curve and macro-

economic fundamentals: some examples are Ang and Piazzesi (2003), Ang,

Dong and Piazzesi (2004), Ang, Piazzesi andWei (2006), Chabi-Yo and Yang

(2007), Gallmeyer, Holli�eld and Zin (2005), Hördal, Tristani and Vestin

(2006) and Rudebusch and Wu (2005). For a survey, we refer the reader to

Diebold, Piazzesi and Rudebusch (2005). Earlier studies investigating the

relation between the yield curve and macroeconomic variables, like Fama

(1990), Mishkin (1990), Estrella and Mishkin (1995) and Evans and Mar-

shall (2002) do not consider no-arbitrage relations among yields and do not

model bond pricing. As a consequence, they are able to make predictions

only about the yields explicitly analyzed (typically no more than three), they

do not rule out theoretical inconsistencies due to the presence of arbitrage
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opportunities along the yield curve and they make no predictions about risk

premia and their evolution over time. For these reasons, the more recent

studies we mentioned above have proposed to enrich macro-�nance models

with rigorous asset pricing relations, imposing no-arbitrage constraints on

bond prices. All these studies employ Gaussian a¢ne term-structure mod-

els where risk premia are allowed to vary over time. Our contribution to

this literature is two-fold: we enrich its theoretical foundations, by deriv-

ing the most general identi�ed formulation of the Gaussian a¢ne models

with observable macro-factors, and we perform a thorough empirical analy-

sis aimed at understanding which speci�cations are better from a statistical

standpoint.

The paper is organized as follows: Section 2 presents the class of a¢ne

models we are going to estimate and gives the minimal identifying con-

ditions; Section 3 describes our dataset; Section 4 discusses the empirical

evidence.

2 The model

2.1 The baseline model

Our model of the term structure is a standard Gaussian a¢ne model, set in

discrete time, as in the majority of the recent literature about macro term

structure models. The model consists of three equations. The �rst equation

describes the dynamics of the vector of state variables Xt (a k-dimensional

vector, k 2 N):

Xt = �+ �Xt�1 +�"t (1)
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where "t � N (0; Ik), � is a k � 1 vector and � and � are k � k matrices.

Without loss of generality, it can be assumed that � is lower triangular. The

(historical) probability measure associated to the above speci�cation of Xt

will be denoted by P .

The second equation relates the one-period interest rate rt to the state

variables (positing that it be an a¢ne function of the state variables):

rt = a+ b
|Xt (2)

where a is a scalar and b is a k � 1 vector:

The third equation is related to bond pricing in an arbitrage-free market.

A su¢cient condition for the absence of arbitrage on the bond market is

that there exists a risk-neutral measure Q, equivalent to P , under which the

process Xt follows the dynamics:

Xt = �+ �Xt�1 +��t (3)

where �t � N (0; Ik) under Q and such that the price at time t of a bond

paying a unitary amount of cash at time t+ n (denoted by pnt ) equals:

pnt = E
Q
t

�
exp (�rt) p

n�1
t+1

�
(4)

where EQt denotes expectation under the probability measure Q, conditional

upon the information available at time t.

The vector � and the matrix � are in general di¤erent from � and �,

while equivalence of P and Q guarantees that � is left unchanged. The

link between the risk-neutral distribution Q and the historical distribution

P is given by the prices of risk, denoted by �0 = ��1 (� � �) and �1 =
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��1 (� � �):

dQ

dP

����
t

= �t+1=Et
�
�t+1

�

�t+1 =
1Y

j=1

exp [� (�0 + �1Xt+j�1) "t+j ]

Multifactor a¢ne models of the term structure, such as the one just

described, are very popular in the �nance literature and their properties have

long been studied by many researchers. Thorough speci�cation analyses of

these models have been conducted (e.g. Dai and Singleton, 2000) and their

properties are now well-known. A distinguishing feature of these models is

that they are able to describe the dynamics of yields in terms of a small set of

unobservable state variables: typically three variables are deemed a su¢cient

number to describe the whole yield curve and this is supported also by

empirical studies, such as the seminal paper by Litterman and Scheinkman

(1991). Although such models are capable of describing accurately and

parsimoniously the evolution of interest rates over time, the factors they

identify as the driving forces of interest rates often lack economic intuition

and are di¢cult to relate to relevant economic variables. This is one of

the reasons why recent studies have proposed to augment the usual set

of unobservable state variables with some observable variables. Typically,

in�ation and a measure of the output gap are the two observable variables,

while a small number of unobservable factors, ranging from one to three,

are included into the models: recent examples are Ang and Piazzesi (2003),

Rudebusch and Wu (2004), Hördal, Tristani and Vestin (2006) and Ang,

Piazzesi and Wei (2006). All these works impose some set of restrictions on

the system of equations (1-3) and, after estimating the coe¢cients, derive

bond prices using equation (4).
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We take the same approach, adding in�ation and output gap to the un-

observable factors, but rather than imposing ad hoc set of restrictions on

the parameters of the model, we derive a set of minimal identifying restric-

tions and we perform a speci�cation analysis to understand the validity of

overidentifying restrictions previously imposed in the literature.

Our minimal set of identifying restrictions is not the standard set of re-

strictions usually imposed for identi�cation of a¢ne term structure models

(e.g.: Dai and Singleton - 2000). Standard models of the term structure

include only unobservable factors and equivalent representations of the fac-

tor dynamics can be obtained by performing any rotation and translation

of the factors. On the contrary, our set of identifying restrictions takes into

account the fact that in a model with both observable and unobservable

factors equivalent representations can be obtained only with rotations and

translations which leave the observable factors unchanged.

Suppose that the �rst ko variables included in the model are observable

and the remaining ku = k�ko are unobservable. Collect their values at time

t into the ko�1 vector Xo
t and the k

u�1 vector Xu
t respectively. Equations

(1-3) can be written as follows:
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Short-rate

process

n
rt = a+ b

o>Xo
t + b

u>Xu
t

Law of motion

under P

8
<
:
Xo
t = �

o + �ooXo
t�1 + �

ouXu
t�1 +�

oo"ot

Xu
t = �

u + �uoXo
t�1 + �

uuXu
t�1 +�

uo"ot +�
uu"ut

Law of motion

under Q

8
<
:
Xo
t = �

o + �ooXo
t�1 + �

ouXu
t�1 +�

oo�ot

Xu
t = �

u + �uoXo
t�1 + �

uuXu
t�1 +�

uo�ot +�
uu�ut

(5)

where all the matrices are obtained by separating into blocks the matrices

in equations (1-3).

The following proposition, proved in the Appendix, gives the minimal

set of restrictions to be imposed in order to identify the model:

Proposition 1 Model (5) always admits a unique equivalent representation

(eventually after renaming the unobservable factors and the error terms)

satisfying the following restrictions:

� �oois lower triangular

� �uo = 0

� �uu = I

� bu � 0

� Xu
0 = 0

Further restrictions usually found in the literature are:
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� �uo = 0

� �ou = 0

� �uu is lower triangular

� �uo = 0

� �ou = 0

For example, Ang and Piazzesi (2003) and Favero, Niu and Sala (2007)

impose a set of restrictions equivalent to the above. However, as clari�ed by

Proposition 1, these further restrictions are overidentifying, i.e. not neces-

sary to identify the model. These overidentifying restrictions, together with

those in Proposition 1, imply that the observable factors are statistically

independent from the unobservable factors, both under the historical and

the risk-neutral measure. This is a strong assumption, as it is tantamount

to saying that there are no interactions between factors related to the shape

of the term-structure and macroeconomic variables (for a discussion of this

point, see Rudebusch, Sack and Swanson - 2006). Instead, the minimal set of

restrictions in Proposition 1 allows for a lagged response of macroeconomic

variables to changes in the unobservable factors related to the shape of the

yield curve and viceversa. As some recent studies con�rm (e.g. Diebold,

Rudebusch and Aruoba - 2006) the hypothesis of no interactions between

macroeconomic variables and the shape of the yield curve is strongly rejected

by formal statistical tests.

The restriction that the unobservable variables be equal to zero at time

zero (Xu
0 = 0) replaces the restriction �

u = 0 usually found in the literature.

However, while the latter can be derived only assuming that the process
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Xt be stationary, such an assumption is not needed to derive the former.

Hence, the restriction we propose is more general: for example, it allows for

the possibility that the process Xt has one ore more unit roots.

Within this Gaussian framework, bond yields are a¢ne functions of the

state variables:

ynt = �
1

n
ln (pnt ) = An +B

|
nXt

where ynt is the yield at time t of a bond maturing in n periods and An and

Bn are coe¢cients obeying the following simple system of Riccati equations,

derived from (4):

A1 = a (6)

B1 = b

: : :

An =
1

n

�
a+ (n� 1)

�
An�1 +B

|

n�1��
n� 1

2
B|n�1��

|Bn�1

��

Bn =
1

n
[b+ (n� 1) �|Bn�1]

The yields eynt and the bond prices epnt that would obtain in an arbitrage-

free market populated by risk neutral investors are instead obtained from

the relation:

epnt = EPt
�
exp (�rt) epn�1t+1

�

where the risk-neutral measure Q has been replaced by the historical mea-

sure P . They obey the same system of recursive equations (6), where � and

� are substituted by � and �. Subtracting the risk-neutral yields eynt thus

calculated from the actual yields ynt one obtains the risk premia �
n
t :

�nt = y
n
t � eynt (7)
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�nt is the additional interest per unit of time required by investors for

bearing the risk associated to the �uctuations of the price of a bond expiring

in n periods. Such premia are in general time varying, and they are constant

only when � = �.

2.2 An extension

In this subsection we extend the results of the previous section to the case

where the set of state variables includes also some lags of the observable

variables. Let the state variables be ordered in such a way that the vector

Xt can be partitioned as follows:

Xt =
h
Xo>
t Xu>

t X l>
t

i>

where Xo
t is the k

o�1 vector of observable variables, Xu
t is the k

u�1 vector

of unobservable variables and X l
t is the k

l�1 vector of lags of the observable

variables. Equations (1-3) can be written as follows:

Short-rate

process

n
rt = a+ b

o>Xo
t + b

u>Xu
t + b

l>X l
t

Law of motion

under P

8
>>><
>>>:

Xo
t = �

o + �ooXo
t�1 + �

ouXu
t�1 + �

olX l
t�1 +�

oo"ot

Xu
t = �

u + �uoXo
t�1 + �

uuXu
t�1 + �

ulX l
t�1 +�

uo"ot +�
uu"ut

X l
t = �

loXo
t�1 + �

llX l
t�1

Law of motion

under Q

8
>>><
>>>:

Xo
t = �

o + �ooXo
t�1 + �

ouXu
t�1 + �

olX l
t�1 +�

oo�ot

Xu
t = �

u + �uoXo
t�1 + �

uuXu
t�1 + �

ulX l
t�1 +�

uo�ot +�
uu�ut

X l
t = �

loXo
t�1 + �

llX l
t�1

(8)
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where �lo, �ll are two matrices whose entries are either equal to zero or to

one. For example, when X l
t = Xo

t�1, �
lo is the identity matrix and �ll is

the zero matrix. Besides, �lo = �lo and �ll = �ll, since each lagged variable

is de�ned to be equal to itself also under the risk neutral measure. Notice

that the dimension of "t and �t is not equal to the number of state variables,

as in the baseline case, but is equal to ko + ku. Furthermore, (8) obviously

imply zero restrictions on the lower blocks of �, �, �, �.

The following proposition, proved in the Appendix, extends Proposition

1 to the case when the state variables include some lags of the observable

variables:

Proposition 2 Model (8) always admits a unique equivalent representation

(eventually after renaming the unobservable factors and the error terms)

satisfying the following restrictions:

� �oois lower triangular

� �uo = 0

� �uu = I

� bu � 0

� Xu
0 = 0

Hence, the inclusion of some lags of the observable variables in the state

vector does not change the identi�cation conditions found for the baseline

case.
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3 The data

For our empirical analysis of the term structure we rely on a dataset of

zero coupon rates extracted from US government bond yields and recorded

at a quarterly frequency, provided by the Federal Reserve: the yield curve

consists of ten maturities, from 1 to 10 years. The sample goes from the

�rst quarter of 1960 to the last of 2006 and the yields are registered on the

last trading day of each month. We utilize all the ten maturities to carry

out estimation of the models. In this respect our paper di¤ers from most

existing studies, which select only small subsets of the available maturities

and typically do not employ yields of maturities longer than �ve years. We

prefer not to exclude a priori any maturity from our sample, because we are

also interested in understanding the capability of the models to �t the entire

yield curve.

We include two macroeconomic variables in our model: an in�ation rate

and a measure of the output gap. The in�ation rate is the twelve-month

growth rate of the consumer price index. The output gap is HP-�ltered

real GDP. The empirical results we present are robust to inclusion of other

measures of the output gap, for example Baxter and King (1995) bandpass

�ltered GDP at di¤erent frequency ranges (2-4, 3-5 and 2-8 years).

4 Empirical evidence

We use the canonical representations given in Section 2 to carry out a spec-

i�cation analysis, in order to �nd the best model, according to statistical

criteria, as regards the number of unobservable variables and lags of the ob-

servables, and to test the validity of overidentifying restrictions. To simplify
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the exposition, we denote a model by M (i; j; r), where i is the number of

unobservable variables, j is the number of lags of the observable variables

included in the state vector and r speci�es which overidentifying restrictions

are imposed:

r = U no overidentifying restrictions

r = R1 �uo = 0, �ou = 0, �uu is lower triangular

r = R2 �uo = 0, �ou = 0

r = R3 R1 +R2

As previously explained, the above restrictions are those commonly im-

posed in the literature, together with those in Proposition 1 and 2 (among

others, Ang and Piazzesi - 2003), and they imply either independence of ob-

servables and unobservables under the historical probability measure (r =

R1), or independence under the risk-neutral probability measure (r = R2),

or both (r = R3). All the models have in�ation and the output gap as

observable variables.

We carry out the speci�cation analysis simultaneously along the three

dimensions i, j and r, estimating a total of 64 models M (i; j; r): we let i

range from 1 to 4, j from 0 to 3 and estimate for each of the 16 models thus

obtained both the unrestricted version and the three restricted versions. We

also re-estimate all the models with j > 1, imposing the further restrictions:

�ul = 0 (9)

�ol = 0

�ul = 0

These restrictions on lagged state variables (imposed also by Ang and
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Piazzesi - 2003) turn out to be generally not rejected by statistical tests in

our sample and help to avoid computational di¢culties generated by over-

parametrization. Furthermore, whithout imposing these restrictions, adding

lags to the state vector causes an explosion in the number of parameters,

hence selection criteria based on parameter numerosity, like AIC and BIC,

tend to overwhelmingly reject speci�cations with j > 1. For these reasons,

we present the results obtained after re-estimating the models with the re-

strictions in (9).

The models are estimated by maximum likelihood, using Chen and Scott�s

(1993) methodology: given a set of parameters, observed bond prices are

used to infer the values of the unobservable variables. In order to do so, one

has to assume that a number of bonds equal to the number of unobserv-

able factors are exactly priced and their prices are measured without error:

we choose the 1-year bond for the model with one unobservable variable

(i = 1) and we add the 5-year, the 10-year and the 3-year when we increase

the number of unobservable variables to two, three and four, respectively

(i = 2; 3; 4).

The overidentifying restrictionsR1, R2 andR3 are rejected by �2-tests at

any conventional level of signi�cance and for any choice of i and j (see Table

2). Also the AIC criterion (Table 1) always selects the unrestricted models

over those with restrictions. However, the BIC criterion, which tends to

penalize overparametrization more heavily, always selects R3 models. In the

ensuing discussion we will show that the more parsimonious overidenti�ed

parametrizazion selected by the BIC criterion in spite of strong rejection

by �2-tests produces notable di¤erences in estimated risk premia, impulse

response funtions and variance decompositions.
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Moving along the i dimension, we �nd that the models with three unob-

servable variables are unanimously selected by all criteria: hence, the classi-

cal �nding that multifactor models with three unobservable factors provide

the best balance between parsimony and statistical �t (e.g. Litterman and

Scheinkman - 1991 and Knez, Litterman and Scheinkman - 1994) is not

altered by the inclusion of observable state variables.

As far as the number of lags of the observable variables is concerned, the

evidence is more mixed (Table 1 and 3). When M (i; 3; r) is the encompass-

ing model, the restriction j = 2 is in most cases not rejected by �2-tests.

Further restrictions on the number of lags (j = 1 or j = 0) are rejected at

the 5% signi�cance level, but not at the 1% level for the M (i; j; U) models,

while they are rejected at both levels of signi�cance for the overidenti�ed

models. Furthermore, the more overidentifying restrictions are imposed,

the stronger is the rejection of a lesser number of lags. Also according to

the AIC criterion, a model with no lags (j = 0) is best when there are no

overidentifying restrictions (r = U), while a model with two or three lags is

preferred in conjunction with overidentifying restrictions (r = R1; R2; R3).

According to the BIC criterion, on the other hand, a model with no lags is

preferred in any case.

Overall, the AIC criterion picks M(3; 0; U) as the best model, while

BIC selects M(3; 0; R3), despite the �2-test rejection of the restrictions in

R3. We further investigate the properties of these two models (parameter

estimates are reported in Table 4 and 5), in order two better understand

their di¤erences.

Estimated risk premia, calculated as in (7), are considerably shifted up-

wards and become less volatile when overidentifying restrictions are imposed

(Figure 1). The di¤erence seems to be caused by the restrictions on the

17



risk-neutral dynamics, as risk premia estimated with the M(3; 0; U) model

are almost identical to those estimated with the M(3; 0; R1) model, while

M(3; 0; R2) yields estimates similar to those yielded by M(3; 0; R3).

As far as estimated impulse response functions are concerned, the dif-

ferences between the two models are sometimes striking. In particular, the

response of the yield curve (we plot the response of the 10-year yield in

Figure 2 and 3) to changes in in�ation and output is weak and oscillatory

according to M(3; 0; R3), while it is much stronger and not oscillatory ac-

cording to the unrestricted M(3; 0; U) model.

Also the variance decompositions for the two models yield strikingly

di¤erent results. In Figure 4 we plot the proportion of variance of the 10-

year yield explained by shocks to the macroeconomic variables as a function

of the time horizon (in quarters). According to the unrestricted M(3; 0; U)

model, the proportion explained by macro factors is at �rst low (around 10

per cent), but then increases as time elapses and, already after four years,

it explains more than half of the variation. According to the overidenti�ed

M(3; 0; R3) model, the proportion explained by macro factors remains well

below 10 per cent at any time horizon. The latter �nding is apparently in

contrast with that of Ang and Piazzesi (2003), who estimate an overidenti�ed

model but �nd that macro factors explain a substantial proportion of the

variability in yields. The analysis we carried out to understand the causes of

this discrepancy revealed that results similar to those of Ang and Piazzesi

(2003) can be recovered from our M(3; 0; R3) model if one uses the two-

stage estimation procedure proposed by Ang and Piazzesi, rather than the

one-stage estimation procedure we use.
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5 Appendix

Proof. Given the process Xt de�ned as in (5), whose law of motion under

P is:

Xt = �+ �Xt�1 +�"t (10)

we can obtain an equivalent representation Yt by rotating and translating

Xt in such a way that the observable variables are left unchanged:

Yt := m+ CXt

where m is any (ko + ku)� 1 vector whose �rst ko entries are equal to zero

and C is any invertible (ko + ku)� (ko + ku) matrix whose �rst ko rows are

the �rst ko vectors of the Euclidean basis of Rk
o+ku , i.e.:

C =
h
e1 : : : eko v1 : : : vku

i>

where:

e1 =
h
1 0 0 : : : 0

i>

e2 =
h
0 1 0 : : : 0

i>

: : :

are the �rst ko vectors of the Euclidean basis of Rk
o+ku and v1; : : : ; vku are

ku vectors such that C is invertible.

The equivalent representation Yt has law of motion:

Yt = �� + ��Yt�1 +��"t
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where

�� =
�
I � C�C�1

�
m+ C�

�� = C�C�1

�� = C�

A set of restrictions on ��, �� and �� is a set of minimal identifying

restrictions (and Yt is a canonical representation of Xt), if there exists a

unique couple (m;C) such that the equivalent representation Yt satis�es the

restrictions (this must be true for any initial choice of Xt).

We �rst prove existence. The set of restrictions on �� is:

�oo� is lower triangular

�uo� = 0

�uu� = I

Since the �rst ko rows of C are the �rst ko vectors of the Euclidean basis

of Rk
o+ku and �oo is already lower triangular, the requirement that �oo� be

lower triangular is trivially satis�ed.

The restrictions �uo� = 0 and �uu� = I are satis�ed if:

e>ko+i = v
>

i � i = 1; : : : ; ku

Since � is invertible, the restrictions are satis�ed with:

v>i = �
�1e>ko+i

Since the distribution of any component of "t does not change when

you multiply it by -1, you can always change the sign of an unobservable
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component of Yt leaving �� unchanged, in order to satisfy the restrictions

bu � 0. The restriction Xu
0 = 0 can be satis�ed only by subtracting from

the unobservable components of Yt their respective values at t = 0.

Uniqueness of the equivalent representation is guaranteed by the unique-

ness of ��1 and of the changes of sign which are necessary to get bu � 0.

Finally, note that rede�ning the unobservable factors also a¤ects the

law of Yt under Q, so that in general no restriction can be imposed on the

Q-dynamics.

Proof. The proof of Proposition 2 is a trivial extension of that of Proposi-

tion 1. The rotation matrix C is de�ned as follows:

C =
h
e1 : : : eko v>1 : : : v>ku eko+ku+1 : : : e

ko+ku+kl

i>

where the vectors vi are de�ned exactly as in the previous proof.

It su¢ces to note that the rotation leaves the equation

X l
t = �

loXo
t�1 + �

llX l
t�1

unchanged in (8). The vector m is also obtained as in the previous proof,

with the only di¤erence that you must adjoin a vector of zeros of length kl.
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6 Tables

Table 1

Goodness of Fit - Selection Criteria

M(3,3,U) M(3,3,R1) M(3,3,R2) M(3,3,R3)

Log-likelihood 1374.9 1357.2 1356.6 1342.2

AIC -2575.7 -2570.3 -2563.1 -2564.5

BIC -2297.9 -2340.4 -2323.7 -2372.9

M(3,2,U) M(3,2,R1) M(3,2,R2) M(3,2,R3)

Log-likelihood 1368.9 1351.0 1344.5 1336.9

AIC -2575.8 -2569.9 -2551.0 -2565.7

BIC -2317.1 -2359.2 -2330.7 -2393.3

M(3,1,U) M(3,1,R1) M(3,1,R2) M(3,1,R3)

Log-likelihood 1364.0 1343.2 1340.1 1322.5

AIC -2578.1 -2566.4 -2554.2 -2549.0

BIC -2338.6 -2374.8 -2353.0 -2395.8

M(3,0,U) M(3,0,R1) M(3,0,R2) M(3,0,R3)

Log-likelihood 1359.2 1338.9 1335.7 1318.1

AIC -2580.6 -2569.7 -2557.5 -2552.2

BIC -2360.2 -2397.3 -2375.5 -2418.1
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Table 2

Goodness of Fit - �2 tests

Encompassing model: M(3,3,U)

M(3,3,R1) M(3,3,R2) M(3,3,R3)

�2 35.4 36.6 65.4

d.f. 15 12 27

p-value 0.21% 0.02% 0.00%

Encompassing model: M(3,2,U)

M(3,2,R1) M(3,2,R2) M(3,2,R3)

�2 35.8 48.8 64.0

d.f. 15 12 27

p-value 0.18% 0.00% 0.01%

Encompassing model: M(3,1,U)

M(3,1,R1) M(3,1,R2) M(3,1,R3)

�2 41.6 47.8 83

d.f. 15 12 27

p-value 0.03% 0.00% 0.00%

Encompassing model: M(3,0,U)

M(3,0,R1) M(3,0,R2) M(3,0,R3)

�2 40.6 47.0 82.2

d.f. 15 12 27

p-value 0.03% 0.00% 0.00%
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Table 3

Goodness of Fit - �2 tests

Encompassing model: M(3,3,U)

M(3,2,U) M(3,1,U) M(3,0,U)

�2 12.0 21.8 31.4

d.f. 6 12 18

p-value 6.19% 3.98% 2.58%

Encompassing model: M(3,3,R1)

M(3,2,R1) M(3,1,R1) M(3,0,R1)

�2 12.4 28.0 36.6

d.f. 6 12 18

p-value 5.36% 0.55% 0.59%

Encompassing model: M(3,3,R2)

M(3,2,R2) M(3,1,R2) M(3,0,R2)

�2 24.2 33.0 41.8

d.f. 6 12 18

p-value 0.05% 0.09% 0.12%

Encompassing model: M(3,3,R3)

M(3,2,R3) M(3,1,R3) M(3,0,R3)

�2 10.6 39.4 48.2

d.f. 6 12 18

p-value 10.16% 0.01% 0.01%
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Table 4 - M (3; 0; U) model - Parameter estimates

(continued on the next two pages)

a0

2.0506

(0.1196)

a1 a2 a3 a4 a5

0.2500 0.4271 0.4348 0.6879 0.5050

(0.0332) (0.0586) (0.0526) (0.2675) (0.1340)

�1 �2 �3 �4 �5

0.1955 0.1821 -0.1168 -0.1776 0.3984

(0.0661) (0.0705) (0.1270) (0.1442) (0.1922)

�1 �2 �3 �4 �5

0.6865 -0.2511 0.0001 0.2660 0.0481

(0.1405) (0.1692) (0.0559) (0.0629) (0.0808)

�i1 �i2 �i3 �i4 �i5

�1j 0.9759 0.2011 -0.0201 -0.0038 0.0451

(0.0043) (0.0233) (0.0108) (0.0204) (0.0243)

�2j -0.0467 0.8663 0.0000 -0.0319 0.0252

(0.0167) (0.0248) (0.0136) (0.0233) (0.0318)

�3j 0.1139 -0.0169 0.9339 0.0022 0.0003

(0.0243) (0.0431) (0.0167) (0.0418) (0.0593)

�4j 0.0843 0.0227 -0.0432 0.7652 0.0900

(0.0226) (0.0511) (0.0213) (0.0308) (0.0545)

�5j -0.0630 0.1917 0.0390 0.0007 0.5211

(0.0314) (0.0430) (0.0415) (0.0462) (0.0430)
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�i1 �i2 �i3 �i4 �i5

�1j 0.6763 0.7031 0.4095 0.6441 -1.2805

(0.0450) (0.0562) (0.0737) (0.0376) (0.1500)

�2j -0.0244 0.5147 -0.1950 -0.1551 0.9127

(0.0286) (0.0246) (0.0333) (0.0204) (0.0844)

�3j 0.0825 0.0002 0.9682 -0.1239 0.0000

(0.0189) (0.0069) (0.0272) (0.0151) (0.0216)

�4j -0.0204 0.1401 0.0925 1.0152 -0.4309

(0.0145) (0.0096) (0.0200) (0.0212) (0.0451)

�5j 0.0444 -0.0654 -0.0238 -0.1362 1.001

(0.0171) (0.0333) (0.0211) (0.0285) (0.0386)

�i1 �i2 �i3 �i4 �i5

�1j 0.5695 0 0 0 0

(0.1619) - - - -

�2j 0.1572 0.7077 0 0 0

(0.0410) (0.3920) - - -

�3j 0 0 1 0 0

- - - - -

�4j 0 0 0 1 0

- - - - -

�5j 0 0 0 0 1

- - - - -
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Standard deviations of pricing errors

2y 3y 4y 6y

0.0726 0.0375 0.0360 0.0707

(0.0427) (0.0340) (0.0081) (0.0210)

7y 8y 9y

0.0592 0.0845 0.0422

(0.0619) (0.0319) (0.0212)
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Table 5 - M (3; 0; R3) model - Parameter estimates

(continued on the next two pages)

a0

2.164

(0.0992)

a1 a2 a3 a4 a5

0.2379 0.5614 0.8095 0.5156 0.2789

(0.0172) (0.0423) (0.1189) (0.3766) (0.1475)

�1 �2 �3 �4 �5

0.1780 0.2357 0.0045 0.0007 0.2019

(0.0527) (0.0618) (0.1003) (0.0981) (0.1581)

�1 �2 �3 �4 �5

1.0393 -0.2653 0.0012 0.1545 0.0115

(0.1495) (0.0751) (0.0487) (0.0441) (0.0298)

�i1 �i2 �i3 �i4 �i5

�1j 0.9609 0.2261 0 0 0

(0.0363) (0.0214) - - -

�2j -0.0551 0.8743 0 0 0

(0.0121) (0.0219) - - -

�3j 0 0 0.9866 0 0

- - (0.0220) - -

�4j 0 0 -0.0908 0.8118 0

- - (0.0362) (0.0414) -

�5j 0 0 0.0037 0.0033 0.5451

- - (0.0609) (0.0430) (0.0504)
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�i1 �i2 �i3 �i4 �i5

�1j 1.0959 0.2900 0 0 0

(0.0582) (0.0173) - - -

�2j -0.0754 0.7662 0 0 0

(0.0073) (0.0053) - - -

�3j 0 0 0.9788 -0.0497 -0.0219

- - (0.0131) (0.0081) (0.0291)

�4j 0 0 0.0002 0.9536 -0.1164

- - (0.0185) (0.0230) (0.0099)

�5j 0 0 0.0000 -0.0323 0.9201

- - (0.0101) (0.0076) (0.0118)

�i1 �i2 �i3 �i4 �i5

�1j 0.5752 0 0 0 0

(0.1985) - - - -

�2j 0.1538 0.7112 0 0 0

(0.0420) (0.5591) - - -

�3j 0 0 1 0 0

- - - - -

�4j 0 0 0 1 0

- - - - -

�5j 0 0 0 0 1

- - - - -
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Standard deviations of pricing errors

2y 3y 4y 6y

0.0835 0.0416 0.0454 0.0717

(0.0618) (0.0379) (0.0119) (0.0228)

7y 8y 9y

0.0652 0.0875 0.0491

(0.0755) (0.0369) (0.0266)
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Figure 1 - Model comparison

Estimated risk premium on the 10-year bond
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Figure 2 - Model comparison

Response of the 10-year yield to a one standard deviation shock

to in�ation
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Figure 3 - Model comparison

Response of the 10-year yield to a one standard deviation shock

to output gap
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Figure 4 - Model comparison

Percentage of variance of the 10-year yield due to in�ation and

output shocks

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 4 8 12 16 20 24 28 32 36

M(3,0,U) (no overidentifying restrictions) M(3,0,R3) (overidentifying restrictions)

37


