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An often overlooked, but nonetheless important purpose of derivatives modelling 

is to provide practitioners with actionable measures of risk, the “thinkable quantities” 

that Emanuel Derman has referred to.1 Dollar prices generally convey little information in 

the world of derivatives, and option pricing models are used — and abused — to convert 

them to and from a view on the market. 

The historical risk measure, the Black and Scholes (1973) volatility, remains a 

favourite on trading floors in spite of well-known model-inconsistent biases, embodied in 

an implied volatility skew or smile. One popular approach to addressing these biases has 

been to make volatility a function of time and the underlying asset price, as in the local 

volatility models of Dupire (1994), Derman and Kani (1994) and Rubinstein (1994). This 

offers a model-consistent fit to market prices, without introducing fundamentally new or 

overly esoteric quantities into the risk interface, as can happen with other models. 

In this paper, we present an alternative extension of volatility. Working first with a 

general stochastic process, we define a sequence of statistical parameters with an 

                                          
1 Emanuel Derman, “A guide for the perplexed quant”, Quantitative Finance 1(5) (September 2001), page 477. 
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intuitive gambling interpretation. We then derive moment formulae for the case when 

they are deterministic. Applied to a generic market quantity, the resulting risk interface 

features the familiar Black-Scholes handle on the variance of the underlying, along with 

“higher-order” analogues which capture departures from lognormality while retaining the 

look and feel of the original quantity. We provide snapshot implied values for the S&P 

500 index options market. 

 

 

1. j -TH ORDER VOLATILITY 

 

We begin by considering a general adapted process ( )tX  on a filtered probability 

space ( )( )Ω F F, , ,t Q . Let δ > 0t  denote a finite period of time, and define 

δδ += −t t t tX X X , so that the relative change of the process over the interval t  to 

δ+t t  reads δ t tX X . We let ⋅tE  denote expectation conditional on tF , and j  is a 

generic positive integer. 

Consider an agreement by which two parties undertake to exchange the amount 

( )δ
j

t tX X , as yet unknown but to be revealed imminently, and a predetermined amount 

which we tentatively write in the form ( ) δΣ ×,
j

j t t . We suppose that both parties are in 

possession of the information ฀Ft , and that given this information, the agreement is a fair 

gamble under the probability measure Q , by which we mean: 

 

( ) , 0
j

j
t t t j tE X X tδ δ⎡ ⎤− Σ =⎢ ⎥⎣ ⎦

. 

 

This leads us to formally define the quantity Σ ,j t  via the identity: 

 

( )δ δΣ ≡,
j

j
t t tj t E X X t , 

 

with the convention that Σ ,j t  equals the nonnegative root when j  is even. 
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For an intuitive interpretation of this quantity, consider the following 

extrapolation. Assume for convenience that δ× = 1m t  for some integer m , and 

consider a second agreement by which the original arrangement is extended to m  

successive periods, but with the predetermined side remaining a fixed δΣ ,
j
j t t  per period. 

In other words, the parties agree to exchange an unknown ( )δ
j

u uX X  and a 

predetermined δΣ ,
j
j t t  for each δ δ= + + −, ,..., 1u t t t t t , with the unknown leg to be 

revealed imminently.2 Observing that the predetermined leg sums to δ×Σ = Σ, ,
j j
j t j tm t , 

suppose next that the process variable has changed exactly once between times t  and 

+ 1t . Then if the relative change equals Σ ,j t , the unknown leg equals the 

predetermined leg and the parties are even. Thus, for such an agreement the quantity 

Σ ,j t  can be viewed as a break-even relative change. We shall refer to Σ ,j t  as j -th order 

finite-period volatility. 

Of particular interest will be the limit of vanishingly small δt , for which we define 

the quantity σ ,j t  via: 

 

δσ ≡ Σ0, ,limj j
tj t j t , 

 

again with σ ,j t  nonnegative when j  is even. Equivalently, δσ = Σ, 0 ,limj t t j t . We shall 

refer to σ ,j t  as j -th order instantaneous volatility. 

 

 

2. MOMENTS 

 

Now in the general case the volatilities we have defined are stochastic. In the 

appendix we show that when the finite-period volatilities of orders one to n  exist and are  

                                          
2 This variation on the first agreement need not itself be a fair gamble. 
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deterministic, the n -th conditional moment of the process can be obtained as: 

 

 τ δ+
=

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= + Σ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦
∑∏ ,
1

1

n
jn n

t t t j u
u j

n
E X X t

j
, (1) 

 

for any positive multiple τ  of δt , where the product is over δ τ δ= + + −, ,...,u t t t t t . 

If we next suppose that there exists a Δ > 0  such that this assumption holds for every 

δ ≤ Δt , then clearly the instantaneous volatilities, when they exist, are also 

deterministic. Further, fixing τ > 0  and taking the limit δ 0t  in (1) yields: 

 

 τ τ σ+
=

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦
∑
1

exp

n
jn n

t t t j
j

n
E X X

j
, (2) 

 

where the σj , which are assumed to exist, are defined via: 

 

,

1 t
j j
j j u

t
du

τ
σ σ

τ
+

≡ ∫ , 

 

again with the convention that σj  is nonnegative when j  is even. We shall refer to σj  as 

j -th order average volatility.3 We emphasise here that we have not established that 

deterministic instantaneous volatilities imply (2) in and of themselves. However, since 

the upper bound Δ  in the above argument can be chosen arbitrarily small, this would 

seem to be more of a technical than a conceptual issue. 

It is clear from (2) that the n -th moment of the process at time t  is fully 

determined by the average volatilities of orders one to n . Thus, first-order volatility σ1  

determines the first moment, and we may take the view that given σ1 , second-order 

volatility σ2  governs the second moment, and so on. It is also apparent that if σ = 0j  

for every > 2j , then ( )τ+ln t tX X  is normally distributed (with mean ( )σ σ τ− 21
1 22  

and variance σ τ22 ).4 Thus, nonzero values for higher-order average volatilities indicate 

                                          
3 Admittedly a misnomer since it is the j -th power that is averaged. 
4 We caution that an ad-hoc, higher-order truncation of the sequence of volatilities may not be compatible with 

any probability measure. 
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and quantify deviations from the lognormal distribution. In particular, σ3  and σ4  govern 

auxiliary skewness and kurtosis. 

 

 

3. AN IMPLEMENTATION 

 

We now take Q  to be an equivalent martingale measure, ( )฀Ft  to be the market 

information structure, and ( )tX  to be an adapted market process. For expediency we 

limit ourselves to the basic equity setting, with tX  as the price at time t  of a stock or 

index, with the money-market account as numeraire, and with the instantaneous 

dividend yield and riskless rate of interest both deterministic. In this context, it is easily 

verified that first-order volatility σ1,t  equals the instantaneous cost of carry, which is 

itself deterministic. 

In what follows, we shall treat the volatilities exclusively as attributes of the 

market measure, to be implied from a set of option prices, rather than as inputs to a 

pricing scheme. We begin with the assumption that the volatilities of orders two through 

n  are deterministic as per the previous section, and thus that the first n  moments have 

the form (2) (no assumption is necessary regarding higher orders). Note here that the 

first two model moments are now identical to those of the Black-Scholes model, with 

second-order volatility in the role of Black-Scholes volatility. We then propose to 

substitute a known distribution in place of the unknown one, fit it to the option prices, 

and compute the volatilities from the fitted statistics. For this it will prove convenient to 

use the canonical Merton (1976) jump-diffusion, which offers both a ready-to-use pricing 

capability and a reasonably good fit to market prices. 

Under the cost-of-carry parameterisation of Bates (1991), the asset price 

experiences the usual standard diffusive innovations with coefficient σ tX , along with 
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Poisson-driven jumps of size κ tX  at the rate λ . Here σ  and λ  are nonnegative 

constants, and ( )κ+ln 1  is normally distributed with mean γ δ− 21
2  and variance δ2 . 

Letting nm  and ′nm  denote the n -th moments (about zero) of κ  and κ+1  

respectively, we have γ= −1 1m e  and ( )[ ]γ δ′ = + − 21
2exp 1nm n n n , and the n -th 

conditional moment of the process reads: 

 

 ( ) ( ) ( )[ ]τ λ τ σ τ λτ+ ′= − + − + −21
1 2exp 1 1n n

t t t nE X X n b m n n m , (3) 

 

where b  is the instantaneous cost of carry. For convenience we recall the Merton (1973) 

version of the Black-Scholes formula for the price at time t  of a plain vanilla option: 

 

( ) ( )1 2
r b

tBSM e e X N d KN dτ τε ε ε− ⎡ ⎤= −⎣ ⎦ , 
 

with: 

 

( ) ( )ν τ

ν τ

+ +
=

21
2

1

ln tX K b
d ,  ν τ= −2 1d d , 

 

where K  is the exercise price, r  is the rate of interest, τ  is the time to expiration, ν  is 

the volatility, N ⋅  is the standard normal distribution function, and ε  equals one for a 

call option, negative one for a put. The price of the same option under the jump-diffusion 

can then be written: 

 

( )

0
!

n

n

n

e
BSM

n

λτ λτ∞ −

=
∑ , 

 

where nBSM  is the Black-Scholes-Merton formula, but with cost of carry 

1nb b m nλ γ τ= − +  and volatility 2 2
n nν σ δ τ= + .5 As for the relationship between 

                                          
5 This formula, found in Bates (1991), differs superficially from the one in Merton (1976), which involves the 

ordinary Black-Scholes formula, and applies only when the cost of carry equals the rate of interest. In the latter 

case, the two formulae are of course strictly equivalent. 
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the jump-diffusion parameters and the volatilities, it is easily verified that (2) agrees with 

(3) when: 

 

σ σ λ= = ≥= + +2
1 2 2

j
j j j jj b m1 1 1 , 

 

where ⋅1  is the indicator function, and jm  can be computed from the ′km  via: 

 

( ) −

=

⎛ ⎞⎟⎜ ⎟ ′= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑
0

1

j
j k

j k

k

j
m m

k
. 

 

 

4. AN EXAMPLE 

 

For an example we turn to the S&P 500 (European-exercise) index options from 

the Chicago Board Options Exchange. The option price data is sourced from the 

exchange’s web-based quote service on May 13, 2005, time-stamped 14:43 ET (fifteen 

minutes delayed), and consists of a snapshot of bid-ask quotes for all call and put 

contracts with under one year to expiration. The index level is 1,152.66. We discard all 

strikes for which the bid of either option is less than one-half a point, upon which for 

each contract the bid and ask are averaged to produce a price estimate. Rates of interest 

are linearly interpolated from the most recent Libor curve. For each expiration, the 

estimation of the jump-diffusion parameters (cost of carry included) is carried out by 

minimizing the sum of squared errors between market and model prices. Table 1 reports 

the estimated jump-diffusion parameters, and table 2 the corresponding average 

volatilities up to order four. Figure 1 shows the market price data in the form of implied 

Black-Scholes volatilities (computed with the cost of carry from table 1), and figure 2 

plots the implied average volatilities as per table 2. 

 Four aspects of these results stand out. The first is that the volatility estimates of 

orders one and two are broadly as expected, given that they correspond respectively to 
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the cost of carry and to the Black-Scholes volatility.6 A second feature is that the two 

higher-order volatilities show themselves to be of the same order of magnitude as 

second-order volatility, making good on their initial promise. In absolute value, all three 

are within a two-percent range at the 18-week mark. A third feature is that third-order 

volatility is markedly negative, which is to be expected since equity indices tend to drop 

more sharply than they rise. Fourth and finally, the third and fourth-order volatility 

estimates show a marked expiration dependence, with sharply lower absolute values at 

the short end compared with the long one. On this feature we limit ourselves to two 

comments. First, our assumption that the volatilities are deterministic is clearly 

counterfactual, and should be expected to result in parameter bias. This is the unhappy 

lot of most financial models. However, as our second comment we ask whether it is 

reasonable to expect perfect rationality from derivatives markets. For example, the 

writing of short-dated, out-of-the-money vanilla options is an ordinarily profitable 

operation, which could lead some participants to take chances, wittingly or not, for 

comparatively less remuneration than is demanded at longer expirations. This kind of 

misjudgement is all the more plausible in the absence of suitable risk metrics beyond 

those measuring and pricing ordinary market variability. 

 

 

5. CONCLUSION 

 

 We have introduced a set of risk measures which translate and convey the 

information in option market prices in a new way. Whether skew and smile exposures 

can be managed effectively via these quantities remains to be seen. The primary function 

that is envisaged for them is as an alternative to implied volatility surfaces for the 

                                          
6 To be precise, under our estimation methodology the second-order volatility estimate is unchanged whether 

we assume zero average volatilities for 2j >  (tantamount to the Black-Scholes specification) or not. 
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monitoring of market conditions. This risk interface is suitable for other products besides 

equity derivatives. It applies in a straightforward way to foreign exchange options, as 

well as interest-rate caplets and swaptions, subject to the standard parameterisations 

and assumptions. 

 In the implementation of this interface, we have treated the volatilities as 

attributes of the market measure, and presented snapshot estimates for the first four. A 

potential next step is to investigate the volatilities as inputs into a pricing scheme. While 

those of order higher than four can be expected to have an impact on valuations, it could 

be that for some purposes, they need not be known with precision. A number of models 

offer enhanced versions of the Black-Scholes formula based on higher-order moments, 

for example the Edgeworth expansion of Jarrow and Rudd (1982). 
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APPENDIX 

 

To establish (1), we note that: 

 

 ( ) ( ) ( )τ δ δ+
=

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= + = + ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦
∑∏ ∏
1

1 1

n
n n j

t t u u u u

u u j

n
X X X X X X

j
, (A1) 

 

using the binomial theorem. Now δ τ δ+ + −⋅ = ⋅...t t t t t tE E E E , and assuming that the Σ ,
j
j u  

exist and are deterministic, taking expectations in (A1) and simplifying yields (1). To 

derive (2) we note that: 

 

( )δ δ δ
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟+ Σ = + Σ⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑, ,
1 1

1 exp

n n
j j
j u j u

j j

n n
t o t t

j j
, 

 

where ( )δo t  represents terms which vanish with δt  faster than δt  (that is, 

( )δ δ → 0o t t  as δ 0t ). Replacing in (1), we obtain: 

 

 ( ) ( )τ δ δ+
=

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= + Σ⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦
∑ ∑ ,

1

exp

n
n

j
t t t j u

u j

n
E X X o t t

j
. (A2) 

 

Now by definition σΣ →, ,
j j
j u j u  as δ 0t , hence δ σ τΣ →∑ ,

j j
j u j

u

t , and since 

( ) ( )δ δ τ δ= →∑ 0
u

o t o t t , taking limits in (A2) yields (2). 
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Table 1 

Jump-diffusion parameters 

 

 

Weeks to 

expiration 
b (%) σ (%) λ  γ (%) δ (%) 

1 0.73 11.38 9.09 -3.06 2.23 

5 1.25 10.13 2.47 -6.46 5.18 

9 1.46 10.16 1.12 -10.33 7.38 

18 1.53 9.79 0.68 -13.71 10.04 

31 1.65 9.64 0.46 -18.22 12.65 

44 1.71 9.64 0.33 -22.13 15.51 

 

 

 

Table 2 

Average volatilities (%) 

 

 

Weeks to 

expiration 
σ1  σ2  σ3  σ4  

1 0.73 15.95 -8.56 7.74 

5 1.25 16.05 -11.83 11.97 

9 1.46 16.15 -13.48 14.40 

18 1.53 16.09 -14.87 16.56 

31 1.65 16.45 -16.45 18.81 

44 1.71 16.58 -17.50 20.51 
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Figure 1 

S&P 500 implied Black-Scholes volatilities by expiration 
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Figure 2 

Implied average volatilities 
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