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Abstract

Although panel data have been used intensively by a wealth of studies investigat-

ing the GDP-pollution relationship, the poolability assumption used to model these

data is almost never addressed. This paper applies a strategy to test the poolabil-

ity assumption with methods robust to functional misspecification. Nonparametric

poolability tests are performed to check the temporal and spatial homogeneity of

the panel and their results are compared with the conventional F-tests for a bal-

anced panel of 48 Spanish provinces on four air pollutant emissions (CH4, CO,

CO2 and NMVOC) over the 1990-2002 period. We show that temporal homogene-

ity may allow the pooling of the data and drive to well-defined nonparametric and

parametric cross-sectional U-inverted shapes for all air pollutants. However, the

presence of spatial heterogeneity makes this shape compatible with different time-

series patterns in every province - mainly increasing or decreasing depending on the

pollutant. These results highlight the extreme sensitivity of the income-pollution

relationship to region- or country-specific factors.

JEL classification: C14; C23; O40; Q53

Keywords: Environmental Kuznets Curve, Air pollutants, Non/Semiparametric

estimations, Poolability tests



1 Introduction

In the last fifteen years the relationship between economic growth and environmen-

tal quality has been one of the most investigated issues in the empirical literature.

Air, water or land pollution, global warming or resources depletion are clearly re-

lated to human activities but the nature of that link remains highly controversial.

The most famous example is probably the Environmental Kuznets Curve (EKC),

which posits an U-inverted relationship between some measure of economic activ-

ity and environmental damage. The existence of that hump-shaped pattern has

been challenged by a plethora of empirical research, particularly for atmospheric

pollutants.

Two main caveats affect the empirical estimation of the income-pollution rela-

tionship. Firstly, economic theory suggests that the reduced form function postu-

lated by the EKC hypothesis may not have a simple and unique functional shape.

Secondly, even if a single function were to exist, it would be very sensitive to country

or region specific factors, such as : factor endowments, sources of growth, differ-

ences in technology, social sensitivity to environmental damages, etc. These two

characteristics have oriented the current empirical investigations on the income-

pollution relationship in two directions: (i) parametric specifications have been

replaced by nonparametric fitting methods to avoid functional misspecification;

and (ii) controlling for heterogeneity in panel data has become a fundamental is-

sue in obtaining unbiased estimates.

The vast majority of EKC’s empirical papers use panel data structures (i.e.

data on individual countries/regions observed over time). These papers make use

of all the data points to get estimates of a common functional form to all coun-

tries/regions up to some deterministic vertical shift specific to every country/region

or year of the panel. These panel data models are referred to as fixed effects and

their estimates are said to be pooled because a unique function is assumed to hold
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for all countries or regions or years up to some intercept term. In most cases, and

whether the functional form is parametrically specified or not1, no formal check of

the homogeneity assumption is provided on the time (i.e. stability of the cross-

sectional regressions over time) and the spatial (i.e. equality of the time-series

regressions across countries/regions) dimensions of the panel. Yet, this assump-

tion is crucial to get robust and unbiased estimates. Moreover, among the few

authors who have tackled this issue2 for different kinds of environmental damage,

conflicting results have been reached for CO2 emissions data. Dijkgraaf and Volle-

bergh (2005), for the 24 OECD countries, overwhelmingly reject the hypothesis of

homogeneous income-pollution relationship between regions/countries made in the

fixed-effects panel data models commonly used in the literature. Pooled estimates

are consequently rejected. Azomahou, Laisney and Nguyen Van (2006) reach the

opposite conclusion when checking the temporal poolability on a much larger panel

of 100 countries with a poolability test robust to functional misspecification. This

discrepancy may be attributed to the different procedures used; but it also raises

a more fundamental question: to what extent is temporal homogeneity compatible

with spatial heterogeneity ?

This research contributes to the recent empirical literature on the EKC curve

by testing for the first time the adequacy of the homogeneity assumption on both

the temporal and the spatial dimensions with nonparametric tests robust to func-

tional misspecification. Following Azomahou et al. (2006), we make use of Baltagi,

Hidalgo and Li (1996)’s nonparametric poolability test to check the temporal ho-

mogeneity of a panel on anthropogenic emissions of four air pollutants (CH4, CO,

CO2 and NMVOC) for the Spanish provinces over the 1990-2002 period. These

pollutants are particularly interesting as they display different growth aggregate

patterns over the investigated period. Furthermore, we apply the simple procedures

of Yatchew (2003) to check the equality of non- and semiparametric estimations
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of the income-emissions relationship (IER) at the regional level. This allows us to

verify the spatial homogeneity hypothesis with a method robust to functional mis-

specification. We compare the results provided by the standard F-tests procedures

applied to the quadratic and cubic models to our nonparametric tests. We are able

to confirm the existence of robust and stable cross-sectional EKCs over time for

most of the air pollutants investigated. However, this does not mean that every

province displays the same IER for a given pollutant; for all of them, we find that

the spatial homogeneity hypothesis is overwhelmingly rejected. We show explicitly

that stable cross-sectional EKCs are perfectly compatible with either increasing or

decreasing emissions in most of the regions depending on the pollutant. Conse-

quently, pooled EKC estimates are compatible with all kinds of IERs at the most

aggregated level. These results confirm the warnings made by de Bruyn, van den

Bergh and Opschoor (1998) regarding the interpretation of the EKC shapes found

with pooled panel data models.

The structure of this paper is as follows. Section 2 offers a brief survey of the

main theoretical determinants of the income-pollution relationship. It includes a

review of empirical literature focused on CO2-IER encapsulating the main econo-

metric issues which are linked to EKC estimates for other pollutants. The main

findings for IER estimations on air pollutants with panel data at low level of

geographical aggregation are also provided. Section 3 presents the econometric

strategy. The Spanish data are described in Section 4 and Section 5 shows the

econometric results. We present our conclusions in Section 6.
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2 Income-pollution relationship: from theory to

empirics

Most of the empirical studies3 investigating the relationship between the level of

economic activity and some pollution indicator have faced two main issues: defining

the functional shape to be estimated; and getting robust estimates despite the short

time series available.

Theoretical background. As Copeland and Taylor (2003) point out, in

the absence of change in the structure and technology of the economy, increas-

ing economic activity would result in an equiproportionate growth in pollution

or other environmental impacts. This ‘scale’ effect suggests a monotonically in-

creasing relationship between real GDP and pollution and makes economic growth

and sustainable development two conflicting goals. However, economic growth

generates technological progress; polluting inputs are used more efficiently in the

production process or through abatment technologies. If the ‘technical’ effect is

strong enough to offset the scale effect, economic growth is compatible with less

pollution and the link may become locally decreasing. Three other mechanisms

also lead to changes in the output composition of countries: unbalanced growth

processes of production factors; biased technological progress between industries

or variations in relative world prices. These specialisation patterns between un-

equally pollution-intensive sectors are usually referred to as ‘composition’ effects.

The sources-of-growth explanation of the EKC shape relies on that particular ar-

gument. If economic growth is first induced by accumulation of a production factor

(capital) used relatively more intensively in a polluting sector but then shifts to-

ward accumulation of a factor (labor or human capital) more intensively used in a

less or non polluting sector, a straightforward application of Rybczinsky’s theorem

leads pollution to follow the same path as the production of the polluting good, an
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U-inverted pattern. A similar argument can be used to explain why capital abun-

dant economies (rich countries) are expected to pollute more than labor-abundant

ones (poor countries). All these supply side arguments have two major implica-

tions. Firstly, economic growth may not require any environmental policy measure

to be compatible with a more efficient use of polluting inputs or natural resources.

Secondly, as Copeland and Taylor (2003, Ch. 3.1) indicate, we can have a stable

relationship between pollution and technology and primary factors, and between

income and these same variables, without having a simple and stable relationship

between pollution and income. In plain words, the same level of income may be

linked to different levels of pollution, depending on the factor which generated this

income level.

From a social point of view, the willingness to tolerate the inconveniences of

pollution in order to increase income plays a major role in determining the strength

of policy responses to environmental damages. Consequently a pure scale effect

generated by neutral growth could be overcome by environmental policy measures

if, at some level of income, the relative willingness to pay for pollution reduction

exceeds the relative growth in income4. The income-pollution relationship is also

sensitive to the way pollution is measured (i.e. in levels, per capita or intensity

terms), as well as to the level of spatial aggregation of the data. In this paper, we

focus on per capita levels of pollution as it represents the most common specification

of the dependent variable in the IER literature on air pollutants.

Empirical estimations. Given the variety of theoretical foundations, no sin-

gle functional form can be advocated a priori to link indicators of environmental

degradation with measures of economic activity. As the income-pollution relation-

ship is a reduced form function, all the underlying forces which determine its shape

for a particular geographical area are subsumed, i.e. they remain unexplained. The

early empirical IER literature has addressed the functional uncertainty by retaining
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three main parametric flexible specifications: quadratic and cubic functions which

capture nonlinearities and spline linear functions which gauge thresholds effects.

More recently, researchers have turned to nonparametric and semiparametric re-

gressions which leave the functional form unspecified and avoid the risk of choosing

an inadequate parametric function. Moreover, the lack of long time series on pol-

lutants at the country level has made authors favour cross-country/region panel

data. The absence of a range of explanatory variables which consistently capture

the differences between countries may lead to biased estimates. This heterogeneity

issue has been neglected in most of the parametric and nonparametric analysis of

IER panels. Moreover, when it has been investigated, the F-tests used were not

robust to functional misspecification. Consequently, the estimated IER appears

to be highly sensitive to the pollutant or environmental damage considered, to

changes in the sample composition (size or/and time periods considered) and to

differences in econometric specifications.

The case of air pollutants is suggestive, particularly the one for CO2 emissions.

Many authors make use of different versions of the database from the Carbon Diox-

ide Information Analysis Center (CDIAC) to test the EKC hypothesis with a panel

of world countries. Holtz-Eakin and Selden (1995) (HES95), Heil and Selden (2001)

(HS01) and Schmalensee, Stoker and Judson (1998) (SSJ98) use similar countries’

panel data sets including over 120 countries and covering roughly 40 years5; they es-

timate time- and country-fixed effects quadratic functions (HES95 and HE01) and

a spline-regression model with the same fixed effects (SSJ98). HES95 and HE01

find U-inverted shapes with very different turning points, ranging from US$35,000

to several millions depending on whether per capita income and emissions are mea-

sured in levels or in logarithms. SSJ98 get a within sample maximum of US$10,000

with a 10-segment regression. A nonparametric pooled regression is used by Taskin

and Zaim (2000) to investigate the link between a CO2 environmental efficiency
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index and GDP per capita for 52 countries over 1975-1990. Their results point to-

wards a third order polynomial specification. A semiparametric version of the time-

and country-fixed effects models used by HES95, HS01, and SSJ98 is estimated by

Bertinelli and Strobl (2005) for a panel6 of 122 countries over the 1950-1990 period.

They find that the pooled regression are monotonically increasing.

Recently, Dijkgraaf and Vollebergh (2005) and Azomahou et al. (2006) tackle

the fundamental assumption of poolability for CO2-IER panels in parametric or

nonparametric frameworks respectively. Focusing on the sample of 24 OECD coun-

tries mainly responsible for the U-inverted shape found in HES95, HS01 and SSJ98,

Dijkgraaf and Vollebergh (2005) compare directly different versions of fixed-effects

models to country-specific time-series regressions (with and without trends) and

conclude that less than half (11) of the OECD countries display the U-inverted

shape depicted by the pooled fixed-effects estimates. Azomahou et al. (2006) check

the structural stability of the per capita IER with a nonparametric poolability test

for a panel of 100 countries over the 1960-1996 period. They conclude that there is

a stable cross-sectional relationship through time which allows the pooling of the

data. The pooled country-fixed effects nonparametric regression displays a mono-

tonically increasing pattern. In addition, nonparametric estimates are shown to be

preferred to parametric ones.

Some authors have carried IER estimates with panels at low level of spatial

aggregation. List and Gallet (1999) use state levels of SO2 and NOx emissions for

the US spanning from 1929 to 1994. They estimate IERs with per capita data and

a linear trend. The state-fixed effects models produce global EKCs for all states;

quadratic and cubic state-specific regressions also yield a majority of respectively

79% and 98% hump-shaped functions for SO2 emissions and a rough 80% EKCs

for NOx with both specifications. However, the vast majority of the state-specific

turning points fall outside the confidence interval for the peak produced by the
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fixed-effects models. With the same data, Millimet, List and Stengos (2003) com-

pare pooled time- and individual-fixed effects cubic models and spline regressions

with time- and state-fixed effects semiparametric specifications7. They show that

while the EKC obtained for per capita NOx emissions is robust to the estimation

strategy, the functional forms for SO2 vary substantially. However, the null hypoth-

esis of equality between the spline or cubic models and the partial linear models is

rejected for both pollutants. These authors also compute specific semiparametric

estimates for selected US states8 and they conclude that the EKC shape remains

robust at the state level for NOx, but the results for SO2 are mixed. De Groot,

Withagen and Minliang (2004) utilise a panel dataset on Chinese provinces covering

the period 1982-1997. They investigate the IER for wastewater, waste gas (aggre-

gate emissions of CO2, NOx and SO2) and solid waste from the industrial sector

with the pooled region-fixed effects model. They contrast the results obtained when

expressing the dependent variable in levels, per capita and intensity terms. The

relationship is shown as being monotonically decreasing for wastewater regardless

of the dependent variable, increasing (respectively decreasing) for waste gas with

the explained variable in levels or per capita (respectively intensity) terms and very

versatile for solid waste depending on the dependent variable used. More recently,

Aldy (2005) tests the EKC hypothesis for production as well as consumption-based

per capita CO2 emissions in the US at the state level. The author globally validates

the EKC shape with the state- and year-fixed effects quadratic models as well as

with the spline regressions. He provides evidence of significant different peaks for

both CO2 series. When state-specific quadratic models are fitted, the equality of

the estimated functions and EKC peaks between states is rejected despite the fact

that the vast majority of the states does depict EKC-type relationships. Since the

data span over a long time period, Aldy (2005) also controls for common stochastic

trends in the time-series and concludes that only about 20% of the state-specific
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relationships were cointegrated9.

3 The nonparametric approach

The previous EKC literature has not tested the appropriateness of the homogeneity

assumption on both the cross-section and the time dimensions of panel data sets

in a nonparametric framework. This section proposes a simple strategy to fill this

gap.

Let us define a very general functional relationship between one pollutant and

an income indicator in a panel framework:

pit = git(yit) + ǫit with i = 1, . . . , N ; t = 1, . . . , T (1)

where pit represents per capita emissions for some pollutant in state i at time t,

yit and git() are respectively the per capita income and an unspecified heterogeneous

function for state i and time t and ǫit is an iid(0, σ2
ε) error term. As reported

by Vollebergh et al. (2005), equation (1) cannot be identified without further

restrictions, since for each (i,t) combination one single observation (yit, pit) is

available. Following Hsiao’s F-test strategy (2003, Ch.2) for the parametric case,

we can identify git() by imposing some general homogeneity assumptions on the

cross-sectional and time dimensions. We can assume that git() is constant over

time but varies across states, thus git() = gi(). Alternatively, we can make the

assumption that git() is constant across states but varies over time, thus git() = gt().

Therefore, two tests can be formulated :

H0 : gi(yit) = gj(yit), ∀i, ∀j H∗
0 : gt(yit) = gs(yit), ∀s, ∀t

H1 : gi(yit) 6= gj(yit), for some i 6= j H∗
1 : gt(yit) 6= gs(yit), for some t 6= s
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H0 is the individual or spatial homogeneity hypothesis and H∗
0 is the tempo-

ral homogeneity hypothesis. Given that H∗
0 is assumed to hold when testing H0

(and vice-versa), accepting either H0 or H∗
0 yield to the same pooled regression

pit = g(yit)+ǫit. A number of procedures exist for testing equality of nonparametric

regressions functions. Yatchew (2003) suggests a simple nonparametric test which

compares the weighted sum of the residual variance of every individual nonpara-

metric regressions (i.e the unrestricted residual variance s2
unr) with the residual

variance of the nonparametric pooled estimate (i.e the restricted residual variance

s2
res).

Under H0 or H∗
0 , the pooled estimates (p̂NPpool

it ) at some per capita income level

y0 can be computed by the Nadaraya-Watson estimator:

ĝ(y0) =
∑

i,t

wit(y0)pit =

∑NT

1 K(yit−y0

λ
)pit

∑NT

1 K(yit−y0

λ
)

(2)

where K() is a kernel function and λ is the bandwidth. We estimate the pooled

nonparametric10 regression by using a cross-validation11 bandwidth and a gaussian

kernel and we calculate its residual variance (s2
res) by simply averaging the sum of

squared residuals.

Under H1 (H∗
1), there exist Q = T cross-sectional (Q = N time-series) distinct

nonparametric regressions. Let q = 1, · · · , Q be the qth subpopulation of size

nq = N (nq = T ). The weighted sum of unrestricted residual variances (s2
unr) can

be computed by making use of mth order differencing estimators12. Yatchew (2003,

Ch.4) shows that if we make use of the optimal bandwidth for pooled estimates,

optimal differencing weights in s2
unr and under the classical assumptions that the

errors are iid(0,σ2
ε) and independent between and within subpopulations, H0 and
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H∗
0 can be tested with the following statistic:

V = (mn)
1
2
(s2

res − s2
unr)

s2
unr

D
−→ N(0, 1) (3)

where:

m is the order of differencing,

n = NT =

Q
∑

q=1

nq, q = 1, . . . , Q and where















Q = N and nq = T if we test H0

Q = T and nq = N if we test H∗
0 ,

s2
res =

1

n

N
∑

i=1

T
∑

t=1

(pit − p̂
NPpool
it )2,

s2
unr =

Q
∑

q=1

nq

n
s2

diff,q,

s2
diff,q =

1

nq

nq−m
∑

r=1

(d0pq,r + d1pq,r+1 + d2pq,r+2 + · · ·+ dmpq,r+m)2,

d0, d1, d2, · · · , dm are differencing weights that satisfy
m

∑

k=0

dk = 0,

m
∑

k=0

d2
k = 1.

This test13 is one-sided, so we do not accept H0 (or H∗
0 ) at the 95% confidence

level if the empirical V is greater than 1.645. An important advantage of this

test procedure is that it can easily be modified to check different kinds of null

hypotheses. If the poolability assumption (H0 or H∗
0 ) is accepted, we can verify

the pertinence of conditioning E(pit) on yit by replacing in equation (3) p̂
NPpool
it

by Ê(pit) in s2
res and s2

unr by s2
diff , where s2

diff is simply the residual variance

differencing estimator applied to the pit data as a whole. The same idea can be

followed to compare parametric and nonparametric specifications14. Given the

strong independence assumption imposed on the residuals, we also tested H∗
0 by

computing the Baltagi et al. (1996) J statistic15, which allows the error term to

have an arbitrary form of serial correlation and/or conditional heteroscedasticity

on the time dimension or to include individual effects. As for the V statistic, the
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J statistic follows a N(0,1) distribution and the test is one-sided.

Panel structures rarely display enough homogeneity to allow estimations under

H0 or H∗
0 . Therefore, the vast majority of the IER literature attempts to capture

the time and spatial nonhomogeneities by assuming isomorphic functions through

time and individuals up to some vertical deterministic shifts or intercept term

(the so-called ‘fixed effects’). This makes git() becomes a semiparametric specifi-

cation of the form git() = ϕit + z(yit). Taking it further, the latter model becomes

fully parametric by imposing z(xit) =
∑K

k=1 αkx
k
it. Consequently, the fixed-effects

assumption transforms equation (1) into the following two standard fixed-effects

models:

pit = ϕit + z(yit) + υit (4a)

Pit = α0it +

K
∑

k=1

αky
k
it + ηit, k = 1, · · · , K (4b)

where the intercepts ϕit and α0it in equations (4a) and (4b) are linear non-

stochastic fixed effects which gauge unobserved state-specific factors that affects

the differences in per capita emissions as well as time-specific factors which cap-

ture macroeconomic effects, changes in environmental legislation, etc; z(yit) and
∑K

k=1 αkx
k
it respectively in models (4a) and (4b) are the unrestricted and re-

stricted16 common functional forms to each year as well as to each state of the

panel; υit and ηit are stochastic error terms, both assumed iid over t and i and of

mean 0 and constant variance (σ2
υ and σ2

η).

Model (4a) is a partial linear model which can be consistently estimated in

three ways: (i) by Robinson (1988)’s double residuals as in Millimet et al. (2003),

Bertinelli and Strobl (2005) or Nguyen Van and Azomahou (2007); (ii) by differ-

encing as in Yatchew (2003, Ch. 4.5); or (iii) by replacing z() by a consistent

nonparametric estimate (some spline smoother of order r) and minimizing a pe-
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nalised residual sum of squares. The latter method has been preferred because

of its operational simplicity in R’s statistical environment17. Equation (3) can be

applied in the spirit of a specification test to assess if the semiparametric model

consistently captures the temporal or spatial heterogeneity. When the partial lin-

ear regression (4a) is not rejected, the pertinence of including its linear term ϕit

can be tested with a slightly modified version of the V-stat procedure, which is

equivalent18 to the standard linear restrictions test Rβ = r.

Finally, model (4b) is the standard parametric model used to check the EKC

hypothesis. Most authors control for fixed effects by applying the F-test that

involves the sum of squared residuals from the pooled (SSRp) and within (SSRw)

versions of model (4b). However, they omit a comparison of these magnitudes with

the unrestricted19 sum of squared residuals (SSRu). We apply in section 5 the full

F-test strategy on the spatial and time dimension.

4 Data

Our database is a balanced panel of 48 Spanish provinces over the 1990-2002 pe-

riod. The series come from two different sources. Spanish provinces’ statistics for

population and GDP, in constant 1996 USD and adjusted to PPP, are taken from

Herrero, Soler and Villar (2004). We focus on 48 provinces20 whose air pollutant

emissions are included in the inventory provided by Spain to the Convention on

Long-Range Transboundary Air Pollution (CLRTAP). The annual emissions data

on atmospheric pollutants have been supplied to us by the Spanish Ministry of

the Environment and are extracted from the European Corinair 1990 inventory21.

These data contain the anthropogenic and natural emissions of eight pollutants,

split at the most aggregated level into eleven source groups22. To be consistent

with our purpose, we excluded the natural emissions category and considered only
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the anthropogenic ones.

The pollutants included in the Corinair 1990 inventory are methane (CH4),

carbon monoxyde (CO) and dioxyde (CO2), nitrous oxide (N2O), ammonia (NH3),

non-methanic volatile organic compounds (NMVOC), nitrogen (NOX) and sulphur

oxydes (SOX). In order to keep our analysis manageable, we focus on four of them,

CH4, CO2, CO and NMVOC, which present very different evolution patterns at

the aggregate level. The first two (CH4, CO2) are greenhouse gases for which

Spain has commited, under the Kyoto Protocol, not to increase emissions by more

than 15% over the 1990 level by 2012. CO is a poisonous gas and NMVOC is a

ground level ozone precursor. In 1990, three main sectors were the source for the

majority of emissions: power generation (SNAP-group 1) for CO2; road transport

(SNAP-group 7) for CO and NMVOC; and agriculture (SNAP-group 10) for CH4.

Note that, according to this inventory, nature rarely accounts for more than 5% of

global emissions in Spain, except for NMCOV where it represents a roughly stable

45% share between 1990 and 2002.

Figure 1 shows the evolution of aggregate anthropogenic Spanish emissions for

the retained air pollutants. This figure also shows the changes of the Spanish

population and GDP over the sample period. CO2 emissions clearly follow the

exponential upward trend of GDP, while CH4 emissions grow along a fairly linear

path since 1990. NMVOC and CO emissions have been declining at different rates

over the period, 8.3% and 29.2% respectively.

Table 1 presents some descriptive statistics on per capita emissions and real

GDP for the whole panel. We can observe that the mean of the variables is always

higher than the median, suggesting the presence of extreme values at the right

tail of the data distributions. The standard deviation remains close to, or below,

the median for most of the variables except for CO2. A more accurate picture of

the variability of the panel on its temporal and spatial dimensions is given by a
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one-way analysis of variance.

Table 2 summarizes the data inter- and intra-variation for provinces and years.

Variation here is predominantly ‘between’ provinces, ranging from 80.9% for per

capita GDP to 98.5% for NMVOC per capita emissions, while it is higher ‘within’

than ‘between’ years and it varies from 84.5% for GDP per capita to 99.6% for

NMVOC per capita emissions. Note that an ANOVA analysis (F-tests) always

reject strongly the equality of the regional means for all the variables while the

equality of the temporal means is accepted for per capita CH4, CO2 and NMVOC

emissions. These results indicate that between-region variation is a major source

of variation in our panel.

5 Econometric results

Nonparametric regressions are usually investigated through graphical devices. For

each pollutant, Figure 2 compares the nonparametric pooled regression with non-

parametric time-series regressions for each province; it roughly checks the equality

of the IER between regions, i.e. the spatial homogeneity hypothesis. Figure 3 com-

pares, for each pollutant, the pooled regression with nonparametric cross-sectional

regressions for selected years and aims at investigating the structural stability of

the relationship through time, i.e. the time homogeneity hypothesis. In all graphs,

the nonparametric pooled regression is surrounded by the 95% uniform confidence

band23 suggested by Yatchew (2003, p.36). It contrasts graphically the equality

between different pooled nonparametric and parametric functions by controlling

whether the parametric shape falls within the whole confidence band.

Spatial heterogeneity. It is clear from a visual inspection of the four panels

in Figure 2 that the pooled model with a single constant should be rejected as

almost none of the region-specific regressions lie within the 95% confidence band.
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The existence of a common function for every province up to a vertical shift is

neither strongly supported. Table 3 reports the results of the statistical tests

described in section 3. In lines 1 and 2 we can see the V-tests strongly reject

the H0 hypothesis for all pollutants as well as the semiparametric specification.

Consequently, the pooled nonparametric and partial linear estimates do not capture

consistently the state-specific IERs24. Poolability is therefore rejected with tests

robust to functional misspecification. The standard F-tests applied to the cubic25

parametric models yield similar results for most of the air pollutants. In lines 3

and 4 of Table 3 we clearly reject the joint hypothesis of equality of intercepts

and slopes in all cases, as well as the common slopes assumption for almost all

the pollutants. The only exception concerns CO2 emissions, for which state-fixed

effects should be included in the cubic26 model. However the latter results are not

supported by the nonparametric test.

These findings confirm those reported in section 2 by List and Gallet (1999),

Millimet et al. (2003) and Aldy (2005) for the SOX and CO2 emissions in the

US states. We reject the common IER in all Spanish provinces and for all the

investigated air pollutants. This also corroborates the main message of the the-

oretical body presented in section 2: the shape of the IER is very sensitive to

regional/country-specific factors. As these differences are expected to be lower

within regions pertaining to the same country than between countries, our results

highlight the potential bias introduced by the lack of variables which pick up the

regional or country differences when investigating the IER with fixed-effects panel

data. Another interesting point in Figure 2 is that global pollutants (CH4 and

CO2) are increasing with GDP in most of the provinces while local pollutants (CO

and NMVOC) are stabilised or decreasing. This is consistent with the political

economy of environmental protection, which points toward more stringent policies

when the environmental damage is local27.
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Temporal homogeneity. Time poolability would require that the cross-

regional regressions for most of the 13 years28 lie close to the pooled nonparametric

estimates shown in Figure 3, as stated by H∗
0 , or that most of the vertical shifts

of the yearly cross-sectional regressions consist of parallel translations of a com-

mon function. The pooled nonparametric and cubic estimated functions describe

well-defined U-inverted shapes for all the pollutants and so do the cross-sectional

estimates for the first, middle and last year of the panel. However, the latter appear

to be shifted horizontally and vertically, preserving approximately their shape but

leading to different turning points each year. Clearly, the abscissa of the turning

points always increases through time while the location of the ordinate depends on

the underlying dynamic of the specific air pollutant. When per capita emissions

(CH4, CO2) for most of the Spanish provinces are increasing with per capita in-

come on Figure 2, the turning points in Figure 3 move to the north-east. When

the estimated state-specific functions are mainly decreasing (constant), as for per

capita CO (NMVOC) emissions, the turning points move to the south-east (east).

Note, however, that the selected year-specific cross-sectional regressions in Figure 3

lie close to the 95% uniform confidence band, whatever the pollutant investigated.

Table 4 reports the results for the homogeneity tests applied to the time dimen-

sion. Lines 1 and 2 examine H∗
0 and compare the J and V statistics. We accept the

temporal homogeneity with both methods for three out of four air pollutants (CH4,

CO, CO2). We reject H∗
0 for NMVOC emissions with both J and V-stat at the

5% significance level. Consequently, the two nonparametric procedures converge

to the same conclusion. We conclude that the horizontal and vertical shifts of the

yearly regressions for the CH4, CO and CO2 panels in Figure 3 are not statistically

significant. However, the horizontal translation over time for the cross-sectional

NMVOC-IER is significant.

In line 3 of Table 4, we go a step further and contrast the partial linear mod-
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els with year dummies with the cross-sectional nonparametric estimates for each

year. We accept the equality of both specifications for the same previous group of

pollutants and reject it for NMVOC. For the latter pollutant, time poolability is

therefore rejected. Line 4 indicates that the coefficients for the time-fixed effects

are jointly equal to zero for CH4 and CO2. Consequently, the pooled nonparamet-

ric regressions consistently capture the cross-sectional regressions over the whole

period. For CO, even if neither of the pooled and semiparametric specifications

is rejected versus the unrestricted regressions, the pooled regression is rejected in

favour of the semiparametric one in line 4. Time-fixed effects appear to be appro-

priate in the CO case. Line 5 in Table 4 explores the relevance of conditioning the

annual per capita emissions on per capita real GDP when the data are poolable.

We reject the simple mean in favour of the conditional mean for two out of three

cases at the 5% significance level29. The equality between the two means for CO2

emissions would have been rejected at the slightly relaxed cutoff of 10%. In line

6, the pooled estimates of the cubic models are compared with the nonparametric

ones. Nonparametric regressions do perform generally better30 than cubic OLS

models but the differences are not always significant as only two out of the four

parametric specifications are rejected.

Lines 7 to 9 from Table 4 contain the results of Hsiao’s poolabilty test strat-

egy. The first two F-tests compare cross-sectional regressions for each year with

respectively a pooled cubic regression (SSRp vs SSRu) and a cubic regression with

time-fixed effects (SSRw vs SSRu). The third F-test verifies the adequacy of in-

cluding time-fixed effects in the pooled data (SSRw vs SSRp). The results are

similar to the nonparametric ones for CH4, CO and CO2. We accept the poola-

bilty of the data for all pollutants and reject the time-fixed effects specification

for all pollutants with the exception of CO per capita emissions. Contrary to the

V-tests, the F-tests do not reject the poolabililty for the NMVOC-IER, suggesting
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a misspecification bias in the parametric procedure31. The equality between the

unconditional and conditional mean is also rejected for all the pooled parametric

estimates in line 10. Finally, line 11 and 12 compare the turning points for the

nonparametric and parametric pooled regressions. The ordinates of the turning

points are systematically larger for nonparametric specifications.

In sum, these results show that a U-inverted pooled regression is compatible

with different income-emissions dynamics at the regional level. Structural stability

for CH4, CO and CO2 suggests that the underlying data generation process in all

regions appears to be stable over the 1990-2002 period, i.e. the regions tend to

keep their relative position when cross-sectional IER are estimated for different

years. This may be good news if the income-pollution relation in the regions is

mainly decreasing. In Spain, for the period investigated, this is the case for CO

emissions. But when the underlying dynamic is increasing, as for the greenhouse

gases CH4 and CO2, structural stability indicates that no offseting force is at work

to change the underlying dynamic of the IER.

6 Conclusion

In this paper, we use a balanced panel of 48 Spanish provinces on four pollutant

emissions (CH4, CO, CO2 and NMVOC) covering the 1990-2002 period to inves-

tigate systematically the time and spatial heterogeneity which characterizes the

relationship between per capita air pollutant emissions and per capita income.

In order to avoid functional specification bias, we follow many authors who

turned to nonparametric estimation techniques to model this reduced form func-

tion. Most of them made the implicit assumption that every region or country

included in the panel shares the same pollution-income relationship, up to some

specific fixed temporal and/or individual effects. Our findings show that the tempo-

19



ral poolability assumption holds in the Spanish provinces for three (CH4, CO, CO2)

out of four air pollutants when poolability tests robust to functional misspecifica-

tion are employed. The pooled nonparametric regressions give rise to U-inverted

income-pollution relations. However, these hump-shaped functions only reflect rel-

atively short-run cross-sectional regressions for different periods. Our parametric

and nonparametric tests reject overwhelmingly the null hypothesis of spatial ho-

mogeneity as well as the goodness-of-fit of the time- or individual-fixed effects

semiparametric models. Investigating the reduced form function of the pollution-

income relationship for per capita air pollutants emissions with fixed-effects panel

data models, be it parametric or semiparametric, failed to account for differences

in functional shapes between regions. It is likely that heterogeneity would be even

greater when applied to cross-country rather than cross-regional panels.

Having established that spatial heterogeneity matters in panels and blurs the

EKC picture, one may consider three avenues of future research when assessing

the income-pollution reduced form function. From an econometric point of view,

the evidence points toward the use of estimation methods which better account for

differences between countries/regions such as non- or parametric quantile regres-

sions, parametric random coefficients estimators or country/region specific regres-

sions. From an economic point of view, the persistent heterogeneity in patterns

between regions/countries support the extreme sensitivity of the income-pollution

relation to differences in regional/country-specific factors, such as factors endow-

ment, sources of growth, differences in production and abatment technologies or

local sensitivity to environmental damages. At the same time, structural stability

through time points toward the existence of some stable structural determinants

which shape the income-pollution relation. The identification of these determinants

certainly would deserve more research effort.
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7 Tables

Table 1: Descriptive statistics. Period 1990-2002.
Variables Median Mean Std. dev. Min. Max
CH4 48.4 68.50 53.6 7.3 263.0
CO 98.3 107.6 49.4 17.8 317.8
CO2 6146.7 8818.3 9071.3 836.0 68013.4
NMVOC 47.2 57.8 31.0 13.5 158.1
GDP 1.5 1.6 0.4 0.9 2.7
Obs. 624

Data source: Spanish Ministry of Environment (MMA) for air pollu-
tants and Herrero et al. (2004) for GDP and population. All figures
are per capita. Spanish provinces anthropogenic air pollutant emissions
are in kg and real GDP in 10’000 USD1990 corrected by PPP.

Table 2: Analysis of variance
Variables σ2

tot σ2
b,i σ2

w,i σ2
b,t σ2

w,t

CH4 2865.9 (100%) ∗96.0% ∗4.0% 1.4% 98.6%
CO 2442.6 (100%) ∗90.7% ∗9.3% ∗5.2% ∗94.8%
CO2 82.3 (100%) ∗96.1% ∗3.9% 1.2% 98.8%
NMVOC 963.1 (100%) ∗98.5% ∗1.5% 0.4% 99.6%
GDP 14182 (100%) ∗80.9% ∗19.1% ∗15.5% ∗84.5%

*: significant at the 5% level. All figures are in per capita terms. CH4, CO,
and NMVOC are in kg, CO2 in tonnes and GDP in USD90 and PPP-corrected.
Total, between and within variances are given by σ2

tot, σ2
b
, σ2

w . The ratios
of the mean squares are F-distributed with (47;576) and (12;611) degrees of
freedom respectively. The corresponding critical F-values are 1.384 and 1.768.

Table 3: Spatial homogeneity tests
Test type Null Hypothesis Df. n. Df. d. 5% cutoff CH4 CO CO2 NMVOC

Pooled nonparametric and semiparametric regressions

V-test gi(yit) = gj(yit), ∀i, ∀j - - 1.65 20.20* 16.99* 16.15* 18.64*

V-test ϕi + z(yit) = gi(yit), ∀i - - 1.65 10.52* 10.16* 2.03* 9.78*

Pooled parametric (cubic) regressions with and without individual-fixed effects

F-test α0i = α0 ; αki = αk , ∀i 188 432 1.22 278* 125* 105* 290*

F-test αki = αk , ∀i 141 432 1.24 7.81* 5.90* 1.21 2.65*

F-test α0i = α0 | αki = αk , ∀i 47 573 1.38 - - 394* -

*: significant at the 5% level. The value of the V-statistic can vary depending on the order of differencing
m used to compute the variance differencing estimator. We took the conservative option to fix m = 1 for all
pollutants. Increasing m tends to increase the empirical V-stat. This latter statistic is always the version
robust to heteroskedasticity (see Yatchew (2003)) and uses optimal differencing weights. The semiparametric
regressions are estimated with the gam function from the mgcv package. All computations have been
implemented on R.2.4.1.
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Table 4: Temporal homogeneity tests. Period 1990-2002.
Test type Null Hypothesis Df. n. Df. d. 5% cutoff CH4 CO CO2 NMVOC

Pooled nonparametric and semiparametric regressions

J-test gt(yit) = gs(yit), ∀t,∀s - - 1.65 -1.65 -0.38 0.89 1.66*

V-test gt(yit) = gs(yit), ∀t,∀s - - 1.65 -0.93 -0.18 0.68 1.88*

V-test ϕt + z(yit) = gt(yit), ∀t - - 1.65 -1.32 -1.16 0.78 1.84*

V-test(a) ϕt + z(yit) = g(yit), ∀t - - 21.03 7.22 26.11* 4.80 -

V-test E(Pit) = E(Pit | yit) = g(yit) - - 1.65 4.27* 1.79* 1.64 -

V-test α0 +
∑3

k=1 αkyk
it = g(yit) - - 1.65 3.80* 0.83 0.55 3.02*

Pooled parametric (cubic) regressions with and without time-fixed effects

F-test αkt = αk , ∀t 48 572 1.38 0.87 0.90 0.72 0.68

F-test α0t = α0 ; αkt = αk, ∀t 36 572 1.44 0.91 0.29 0.89 0.85

F-test α0t = α0 | αkt = αk, ∀t 12 608 1.77 0.75 2.85* 0.23 0.17

F-test α0 6= 0 ; αk = 0 3 620 2.6 8.53* 11.70 * 14.80* 8.55*

Turning points of the pooled nonpapametric and parametric(cubic) regressions

Max(p̂it = ĝ(yit))
(b) [1.77;79.6] [1.59;118.1] [1.68;11.0] [1.71;63.4]

Max(α̂0 +
∑3

k=1 α̂kyk
it)

(b) [1.73;84.4] [1.68;120.6] [1.64;13.7] [1.72;67.3]

*: significant at the 5% level. The J-statistic has been computed with c = 1, α = 5 and α
′

= 2 (cf. footnote 15). These results are

robust for almost all combinations of c = (0.8, 1, 1.2) with (α, α
′

) = (5, 2). The value of the V-statistic can vary depending on the

order of differencing m used to compute the variance differencing estimator. We took the conservative option to fix m = 1 for all

pollutants. Increasing m tends to increase the empirical V-stat. This latter statistic is always the version robust to heteroskedasticity

and uses optimal differencing weights (see Yatchew (2003)). The semiparametric regressions are estimated with the gam function

from the mgcv package. All computations have been implemented on R.2.4.1. (a): This V-test is a slightly modified version of

equation (3) which follows a χ2
rank(R)

distribution, see ibid. (b): [a;b] represent the maximum’s abscissa and ordinate for the pooled

regressions.
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8 Figures

Figure 1
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Figure 2: Spatial heterogeneity
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Figure 3: Temporal heterogeneity
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9 Appendix

List of Spanish Provinces: Alava, Albacete, Alicante, Almería, Asturias, Ávila,

Badajoz, Barcelona, Burgos, Cáceres, Cádiz, Cantabria, Castellón, Cuidad Real,

Córdoba, La Coruña, Cuenca, Gerona, Granada, Guadalajara, Guipúzcoa, Huelva,

Huesca, Jaén, León, Lérida, Lugo, Madrid, Málaga, Múrcia, Navarra, Orense,

Palencia, Pontevedra, La Rioja, Salamanca, Segovia, Sevilla, Soria, Tarragona,

Teruel, Toledo, Valladolid, Valencia, Vizcaya, Zamora, Zaragoza.
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Notes

1For parametric specifications, see among others Selden and Song (1994), Grossman and

Krueger (1995), Holtz-Eakin and Selden (1995), Schmalensee et al. (1998), Heil and Selden (2001),

De Groot et al. (2004) or Aldy (2005); for non- or semiparametric ones, see Taskin and Zaim

(2000), Millimet et al. (2003), Bertinelli and Strobl (2005) or Azomahou et al. (2006).
2See List and Gallet (1999), Koop and Tole (1999), Dijkgraaf and Vollebergh (2005) or Aldy

(2005) or Azomahou et al. (2006)
3See Brock and Taylor (2004) for an empirical and theoretical review of the literature on

the relationship between economic growth and the environment or Stern (2003) for the EKC

literature.
4This is usually referred to as an income elasticity of marginal damage greater than one in

the literature.
5HES95, HE01 and SSJ98 make use of respectively 130, 135 and 141 countries and the time

span is 1951-1986, 1951-1992 and 1950-1990.
6In that case, the data come from the World Resource Institute.
7The linear trend from state-fixed effects cubic models of List and Gallet (1999) are here

replaced by time-fixed effects.
8The time-fixed effects are replaced by state-specific linear time trends.
9This result confirms the concerns raised by Perman and Stern (2003).

10Equation (2) shows explicitly the intuition behind nonparametric regressions. The estimated

conditional mean at the local point y0, ̂E(pit|y0) = ĝ(y0), is a weighted average of all NT pit

values of the panel, with weights inversly proportional to the distance between each of the NT yit

observations of the independent variable and the local value y0. The kernel function K() is a

density-shaped function which defines the weights while the λ term simply determines how many

of the NT yit points are included in the neighborhood of y0 to compute the local conditional

mean. The larger the bandwidth λ, the closer each local conditional mean to the unconditional

mean and the smoother the estimate.
11In large samples, selecting λ through cross-validation is the same as computing the bandwidth

that minimizes the integrated mean-squared error. This method balances optimally the bias and

the variance of the estimate.
12Note that the data must be previously reordered so that within each subpopulation the

(yq,1, pq,1), (yq,2, pq,2), · · · , (yq,nq
, pq,nq

) observations are in increasing order relative to the y’s.
13When the residuals are heteroscedastic with unknown covariance matrix Ω, the denominator

in equation (3) can be replaced, without modifying the asymptotic properties of the V statistic,

by ξ = 1
m

( 1
n
ǫ̂

′
ǫ̂−1 + · · ·+ 1

n
ǫ̂

′
ǫ̂−m), where ǫ̂ is the vector of the pooled nonparametric regression

residuals and the subscript −i stands for the lag order of ǫ̂. Note also that, under the null

hypothesis, s2
unr in equation (3) can be replaced by s2

res because both estimators of the residual

variance are consistent, see Yatchew (2003, p.64).
14Ibid. The null hypothesis that a known parametric regression function estimated by Least

Squares h(yit, γ
LS) is similar to some pooled pure nonparametric alternative f(yit) can checked

by replacing p̂
NPpool
it by p̂LS

it in s2
res and applying s2

diff to pit in equation (3).
15This statistic must be computed ensuring that some specific conditions on arbitrary pa-

rameters are satisfied, cf. Baltagi et al. (1996, p.349, condition C3). Note that the asymptotic
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properties of the J statistic relies on convergence properties of the residuals and not on differences

between sum of squares of the pooled and unpooled nonparametric regressions. We would like to

thank P. Nguyen Van for providing the Gauss code that we adapted to R.2.4.1 to compute this

test. All errors are my own.
16The polynomial function is usually limited to K=3 when checking the EKC hypothesis. When

the coefficient of its linear component is positive and significant, the coefficient of the quadratic

component is negative and significant and the slope of the cubic component is nonsignificant, the

EKC hypothesis is validated.
17This procedure consist in minimizing

min
β,r,λ

n
∑

i=1

(yi − Xiβ − θ(Zi − z, r))2 + λ

∫ zmax

zmin

[θ′′(z)]2dx,

where θ() is a rth-order polynomial function and the integrated term is a roughness penalty.

The gam function in the mgcv package proposes a consistent procedure to fit Generalized Additive

Models that can be used to estimate semiparametric specifications. See Wood (2006) for further

details.
18Yatchew (2003, p.179) shows that

(Rβ̂ − r)′(RΣ̂βR′)(Rβ̂ − r) =
n(s2

res − s2
unr)

s2
unr(1 + 1

2m
)

D
−→ χ2

rank(R)

where the right-hand side ratio correspond to the modified V-stat. This equality is directly linked

to the differencing estimation method for the semiparametric model. Following Yatchew (2003,

Ch. 4.5), we can rewrite the SP model (4a) in matrix notation as p = Fϕ+z(y)+υ. The nonlinear

component z(y) can be removed by differencing, i.e. Dp = DFϕ + Dz(y) + Dυ ≈ DFϕ + Dυ,

where D is a (n x n) differencing matrix. The OLS estimator of ϕ is therefore given by ϕ̂ols =

[(DF )′(DF )]−1(DF )′Dp. With these notations at hand, the components of the modified V-stat

can be defined as s2
unr = 1

n
(Dp − DFϕ̂ols)

′(Dp − DFϕ̂ols)), s2
res = 1

n
(Dp)′(Dp) and D is the

differencing matrix of order m computed with optimal weights. Note that the p’s can then be

purged from its parametric effects (p − Fϕ̂ols) and a standard nonparametric method can be

applied to get the estimated nonlinear portion of the semiparametric model (ẑ(x)).
19This term is contructed from either the cross-sectional parametric regressions for all years or

the time-series parametric regressions for all regions/countries, see Hsiao (2003, Ch.2).
20See Appendix 9. Spain comprises 50 provinces. We excluded the overseas provinces of Las

Palmas and Tenerife.
21Note that Roca, Padilla, Farre and Galletto (2001) used the same database at the national

level for different periods in a parametric context.
22These eleven categories are the first level of the Selected Nomenclature for Air Pollution

(SNAP) and can be further divided into 57 sub-sectors, which include 277 detailed activities.
23This interval is more interesting than the pointwise one as 95% of the estimated confidence

intervals contain the entire true function.
24It is apparent in the panels of Figure 2 that clusters of regions with close income-emissions

patterns could be investigated and may show spatial homogeneity. However, the information

at hand do not allow a systematic grouping of the provinces according to existing theories.
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By its very nature, using the reduced form model suggested by the EKC hypothesis render

any structural interpretation arbitrary. That is why no attempt is made here to find spatial

homogeneous clusters.
25The results for the quadratic specifications are similar and available upon request.
26For CO2 emissions, the empirical F for the quadratic model is 146.6 for the joint equality of

intercepts and slopes and 1.67 for the common slopes. Compared to F(5%;141;480) = 1.24 and to

F(5%;94;480) = 1.28 respectively, we reject both null hypotheses.
27We thank an anonymous referee for pointing this out.
28In Figure 3, we only show years 1990, 1996 and 2002 to keep the graphs readable.
29On Figure 3, we notice that the emissions’ unconditional means (dashed grey lines) lie close

to or above the upper uniform confidence intervals for low GDP levels, below it in the turning

point proximity and close to or above the confidence band for high GDP level for most of the

pollutants. This suggests that the pooled relationship is concave.
30A positive V-stat indicates that the residual variance for the nonparametric regression is

lower than the parametric one.
31A wrong specification of the parametric function can lead to a false acceptance of the poolabil-

ity assumption with the F-test. This seems to be the case here as the equality of the nonparametric

and parametric pooled estimates are rejected in line 6 of Table 4 for NMVOC.
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