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Abstract

We present an application of the Dynamic Programming (DP) and of the Maximum

Principle (MP) to solve an optimization over time when the production function is

linear in the stock of capital (Ak model). Two views of capital are considered. In

one, which is embraced by the great majority of macroeconomic models, capital is

homogenous and depreciates at a constant exogenous rate. In the other view each piece

of capital has its own finite productive life cycle (vintage capital). The interpretation

of the time patterns of macroaggregates is quite different betweeen the two cases. A

technological shock generates an oscillatory movement in the time pattern of per capita

output when capital has a vintage structure; conversely an instantaneous adjustment

with no transitional dynamics occurs when capital is homogenous.

From a methodological point of view it emerges that the DP approach delivers

sharper results than the MP approach (for instance it delivers a closed form solution

for the optimal investment strategy) under slacker parameter restrictions.

Cross-time and cross-country data on investments, income, and consumption drawn

from the Penn World Table version 6.2 are used to evaluate the vintage and standard

Ak model.
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Introduction

Historic slowdowns or great leaps forward are almost invariably explained in first approx-

imation with a deceleration or an acceleration in the accumulation of capital. However,

considerable disagreement exists among empirical macroeconomists and growth theorists on

whether capital accumulation has a short or a long run effect on the growth rate of output.

One class of endogenous growth models, known as AK-models1, posits that the productivity

of capital does not diminish with accumulation. Jones (1995) has undertaken the task of

testing the consistency of the main implications of the AK-model by comparing the time

series behavior of investments and GDP for a subset of OECD countries. He concluded

that in several countries, including the US, the growth rate of income is loosely related to

the investment ratio — a finding that seems to contradict the prediction of the AK model.

However, some authors have recently questioned Jones’ finding on two grounds. First,the

data used to measure the investment ratio do not account for tax or subsidies to investments

are not adjusted to reflect movements in the relative price of capital. In places where this

has declined — for instance in the United States — the actual investment ratio is higher than

the one recorded (See McGrattan (1998)). Secondly, the standard Ak model is based on the

premise that capital is homogeneous and the depreciation rate is constant over time. As a

result, only variations in the gross investment ratio — the one usually recorded in aggregate

statistics — can affect per capita output. From a theoretical point of view constant depreci-

ation is a quite convenient simplification, but from an empirical point of view it seems quite

restrictive, especially in periods in which a whole class of machines embodying an obsolete

technologies are being scrapped. Boucekkine et al. (2005) argue that relaxing the assump-

tion of constant depreciation may reduce the odds that the Ak model is rejected by the

evidence because income growth rate with no trend (or stationary) is compatible with rising

investment ratios for long stretches of time. Indeed they show that if capital has a vintage

structure and depreciation is of a horse-shoe form — that is a machine is as good as new for a

predetermined number of years after which becomes useless — capital, and therefore output,

may exhibit an oscillatory behavior whenever investments deviate from a the value consistent

with a balanced growth path. Recently a small theoretical literature2 has emerged that tries

to solve a dynamic optimization problem of the kind posed by an Ak model with vintage

structure in a Hilbert space. This environment allows for solving the problem under more

general conditions than those set out in the work of Boucekkine et al. (2005). The purpose of

this paper is to provide a comprehensive account of these new developments and to evaluate

the extent to which the new techniques are helpful in understanding the post-war growth

1See Barro and Sala-i-Martin (2004) for a review.
2See Boucekkine et al. (2005), Fabbri and Gozzi (2006), Feichtinger et al. (2006), Barucci and Gozzi

(2001)
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experience of a large number of economies. Since we want to introduce the methodology to

as many scholars as possible, we first provide an overview of two well-known optimization

approaches and then move to solve the problem in a Hilbert space. In particular, next section

introduces a typical Ak model presents its solution following an intuitive maximum principle

(henceforth MP) approach. In section (2) this is contrasted with the DP approach. Section

(3) discusses the extent to which the evidence is in line with the implication of the model,

as far as the historical patterns of consumption, investment, and output are concerned. Sec-

tion (4) introduced the vintage version of the model and provides a solution for the optimal

investment policy following the MP approach. The DP solution in a Hilbert space is content

of Section (5) (the more technical aspects of the solution are collected in the appendix). In

order to gain further insights on the sequence of macroeconomic adjustments that follow a

shock affecting the scrapping time or the state of the technology, a few simulation exercises

are developed in section (6). Section (7) reconsiders the empirical evidence through the lens

of the vintage model. Section (8) concludes.

1 Optimization with Homogeneous Capital

In this section we state the standard optimization problem when capital is homogeneous and

depreciates at a constant rate. The economy is populated by a group of identical infinitely

lived individuals of measure one. Each individual runs a firm that produces final goods

according to the technology

y = Ak, (1)

where k is the amount of capital and A > 0 is a constant. The optimization problem of an

individual whose preferences are given by c1−σ
1−σ , where c denotes units of consumption goods

and σ is the inverse of intertemporal elasticity of substitution, is

max
c(·)

U(k0, c(·)) =

Z ∞

0

e−ρt
∙
c(t)1−σ

1− σ

¸
dt (2)

subject to the constraints:

k̇(t) = Ak(t)− c(t)− δk(t), (3)

k(0) = k0,

lim
t→+∞

e−r̄(t)tk(t) ≥ 0,

where the index t ≥ 0 refers to time. The function U(k0, c(·)) is the value of the objective

function for a consumption strategy c(·),when the initial stock of capital is k0. k(t) is value

of capital at time t, δ its (instantaneous) depreciation rate, r̄(t) = 1
t

R t
0
r(τ)dτ is the average

rate of interest between today and time t. A dot on a variable denotes the derivative of that
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variable with respect to time. The first constraint starting from the top, says that the part of

output not consumed is accumulated in the form of physical capital. The second constraint

defines the exogenous endowment of initial capital and the third one is the No-Ponzi game

condition that puts a restriction on the consumption strategy: In the long run the firm

cannot end up with negative capital.

1.1 Maximum Principle

The idea is to find a path of consumption such that the value of the integral contained in

problem (2) is maximum. We follow the Maximum Principle (henceforth MP) approach. We

construct a Lagrangian-type function for a similar problem in finite horizon starting from

k = k0 and perturbate it around an admissible consumption-capital path (c(·), k(·)):

U τ(k0, c(·)) =

Z τ

0

e−ρt
∙
c(t)1−σ

1− σ

¸
dt+

Z τ

0

λ(t)[Ak(t)−c(t)−δk(t)−k̇(t)]dt+νe−r̄(τ)τk(τ), (4)

where λ(·) is a dynamic Lagrange multiplier associated with the budget constraint and ν

is the multiplier associated with the end value of capital and τ is the end of time. These

multipliers are to be interpreted as the shadow values of capital in term of units of utility.

Specifically, λ(t) measures the change of utility associated with a marginal variation of net

investments. Integrating by parts the term λ(t)k̇(t) appearing in the right-hand side of the

previous equation we obtain

U τ (k0, c(·)) =

Z τ

0

e−ρt
∙
c(t)1−σ

1− σ

¸
dt+ λ(t)

Z τ

0

[Ak(t)− c(t)− δk(t)]dt−

− λ(t)k(t)|τ0 +

Z τ

0

λ̇(t)k(t)dt+ νe−r̄(τ)τk(τ). (5)

For an admissible modification (∆c(·),∆k(·)) the first variation of (5) is3:

∆U τ =

Z τ

0

¡
e−ρtc(t)−σ − λ(t)

¢
∆i(t)dt+

+

Z τ

0

((A− δ)λ(t) + λ0(t))∆k(t)dt+
¡
νe−r̄(τ)τ − λ(τ)

¢
∆k(τ). (6)

If the optimal-consumption path is optimal we have∆U τ ≤ 0 for any admissible modification.
Namely, for internal optimal paths (c∗(t), k∗(t)) we have

e−ρtc∗(t)−σ − λ∗(t) = 0, (7)

λ∗(t)(A− δ) + λ̇
∗
(t) = 0, (8)

3Note that we use the notation ∆Uτ for the first variation instead of the more common δUτ since we

have already used δ for the depreciation rate.
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and

ν∗e−r̄(τ)τ − λ∗(τ) = 0. (9)

In addition we have the Khun-Tucker complementarity-slackness condition

ν∗e−r̄(τ)τk∗(τ) = 0.

Taking logs and time derivative of (7) we get:

ċ∗(t)

c∗(t)
=
1

σ
[− λ̇(t)

λ(t)
− ρ], (10)

that combined with (8) yields
ċ∗(t)

c∗(t)
=
1

σ
[A− δ − ρ]. (11)

Finally, combining ν∗e−r̄(τ)τ = λ∗(τ) with the complementarity-slackness condition yields

the so called transversality condition

λ∗(τ)k∗(τ) = 0. (12)

Eqs. (11) and (12), along with the initial condition and the budget constraint are the

necessary conditions for the optimum in finite horizons. The only difference with the infinite

horizon is that the transversality condition needs to hold only for a time arbitrarily large:

lim
τ→∞

λ∗(τ)k∗(τ) = 0. (13)

Notice that the parameter restriction 1−σ
σ
[A− δ− ρ] < ρ is to be posed so as to be sure that

the criterion (2) has an upper bound. The condition simplifies to

ρ > (1− σ)(A− δ). (14)

Although we do not prove it, Eqs. (3), (11), and (13) are also sufficient conditions for

the optimization problem because the criterion function (2) is strictly concave whereas the

constraint (3) is convex. Therefore this is a case of concave programming in which necessary

and sufficient conditions coincide.

Good sources where maximum principle technique is fully developed and well done are

Fleming and Rishel (1975), and Bensoussan et al. (1974). The short-cuts allowed us to obtain

results with which most readers are familiar with. In the next session the same problem will

be solved following the Bellman’s principle of dynamic programming. But before moving to

that topic we want to elaborate more on an important feature of the solution.
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1.1.1 Smooth Patterns

A situation in which capital, consumption and output all grow at a constant, possibly differ-

ent, rates is referred to as balanced growth path (BGP). One important aspect of the solution

obtained above is that the economy is always on the BGP. An inspection of Eq. (11) reveals

the regularity of the consumption pattern. The behavior of capital can be learned from

the budget constraint (3): If the consumption-capital ratio (and therefore the consumption

output ratio) is constant so is the growth rate of capital. Next we show that this is the case.

For simplicity the "∗" is dropped from the relevant variables. It is understood that these are

on their optimal path. The budget constraint on the optimal trajectory is

k̇(t) = (A− δ)k(t)− c(0)e
1
σ
(A−δ−ρ)t,

where c(0) is a constant to be determined. Multiplying both sides by exp(−(A−δ)t) we get:

−e−(A−δ)t[(A− δ)k∗(t)− k̇∗(t)] = −c(0)e[ 1σ (A−δ−ρ)−(A−δ)]t,

or

∂[e−(A−δ)tk∗(t)]/∂t = −c(0)e[ 1σ (A−δ−ρ)−(A−δ)]t.

By integrating both sides between 0 and t ≤ τ and after some rearrangements we get:

k(t) = − c(0)

[ 1
σ
(A− δ − ρ)− (A− δ)]

e[
1
σ
(A−δ−ρ)]t + (15)

+[
c(0)

[ 1
σ
(A− δ − ρ)− (A− δ)]

+ k(0)]e(A−δ)t.

The initial condition c(0) needs still to be determined (recall that the initial condition k(0)

is given). The transversality condition states that limt→+∞ λ(t)k(t) = 0. Replacing k(t) in

the previous expression with the right hand-side of Eq. (15) and noticing that from (10) and

(11) we have λ(t) = λ(0)e−(A−δ)t, we get

λ(t)k(t) = − λ(0)c(0)
1
σ
(A− δ − ρ)− (A− δ)

e
1
σ
(A−δ−ρ)te−(A−δ)t + (16)

+[
c(0)

1
σ
(A− δ − ρ)− (A− δ)

+ k(0)]λ(0).

Since 1
σ
(A− δ − ρ) < (A− δ), the first term of the right hand side of the previous equation

goes to zero as t approaches infinity. Hence, for the transversality condition to be satisfied

the sum of the two terms contained in the square brackets must be equal to zero (as long as

λ(0) > 0). This implies

c(0) = k(0)[(A− δ)− 1
σ
(A− δ − ρ)]. (17)
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It is easy to verify that by replacing c(0) with the previous expression Eq. (15) simplifies to

k(t) = k(0)e[
1
σ
(A−δ−ρ)]t. (18)

Hence capital expands at a constant pace. Incidentally notice that combining Eqs. (16) and

(17) we pin down the initial value of the capital shadow price: λ(0) = k(0)−σ[(A−δ)− 1
σ
(A−

δ − ρ)]−σ. Consequently,

λ(t) = α−σk(0)−σe−(A−δ)t, (19)

where α = 1
σ
[ρ− (A− δ)(1− σ)].

In sum, regardless of the initial level of capital (k(0)), the optimal path is always charac-

terized by a constant growth rate of capital, consumption, and output. Such a rate is equal

to 1
σ
(A− δ− ρ). The only parameter restriction needed for this result is ρ > (1− σ)(A− δ).

2 A Dynamic Programming Approach (Without Vin-

tage Capital)

Bellman (1956) proposed an alternative approach to solve dynamic choices as the one de-

scribed at the outset of the previous section. It is known as dynamic programming (DP).

This is usually preferred over the MP whenever uncertainty is an integral part of the problem

or when the problem is described in discrete rather than in continuous time. Nevertheless

the method is presented here in continuous time so as to lay out a solution technique which

will be extended in Section 4 to include situations in which capital has a vintage structure.

Three main mathematical instruments form the building blocks of Bellman’s method:

The Value Function, the Hamiltonians, and the Hamilton-Jacobi-Bellman (HJB) equation.

In what follows these tools are described and then applied to solve the individual’s problem

of utility optimization. Before proceeding we wish to emphasize that the problem studied

in this section is slightly different than the one described in (2), because a non negativity

constraint is imposed both on consumption and on the stock of capital. The solution via the

Bellman method could be carried out under the milder transversality condition. However,

in Sections 2 and 3 a non-negative condition on the stock of capital becomes an essential

simplification of the problem.

2.1 New Statement of the Problem

Given and initial level of capital k > 0 and a function

c : R+ → R
+,
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where R is the set of real number, and R+ the set of positive real number, a trajectory for

capital is given by the solution of the differential equation
(

k̇(t) = (A− δ)k(t)− c(t)

k(0) = k0 > 0
(20)

where k(t) is the value of capital at time t, which depends on the control variable con-

sumption, c(·). We focus our attention only on consumption strategies that satisfy the two

following conditions: (
c(t) ≥ 0 for all t ≥ 0
k(t) ≥ 0 for all t ≥ 0. (21)

In particular, we will search for a consumption strategy in the set of "admissible con-

sumption strategies"

Uk0
def
= {c : [0,+∞)→ R

+ : k(t) ≥ 0 for all t ≥ 0}, (22)

where c is locally integrable, namely it is integrable on a closed and bounded set. The

index k0 emphasizes the dependence of the set from the initial condition. We will drop

the index k0 from Uk0 whenever ambiguities are unlikely to arise. The objective is to

find an admissible control (that is a consumption strategy) that maximizes the functional

U(k0, c(·)) =
R∞
0

e−ρt
h
c(t)1−σ

1−σ

i
dt. For this purpose we introduce three mathematical tools.

Value function Let the value function associated with an optimization problem of an

individual with preferences given by c(·)1−σ

1−σ and non negativity constraints on capital and

consumption be (
V : R+ → R

V (k0)
def
= supc(·)∈Uk0

hR +∞
0

e−ρs c(s)
1−σ

1−σ ds
i
,

where the set Uk0 is the one defined in (22). This says that the value function is the supremum

value of discounted flow of utility which is possible to achieve for a given initial condition k0.

If an optimal trajectory exists (and we will prove that it does) the value function is exactly

the value of the functional
R +∞
0

e−ρs c(s)
1−σ

1−σ ds along the optimal trajectory.

Hamiltonians Let the current value Hamiltonian be the following mapping

(
HCV : R

+ × R×R+ → R

HCV (k, λ, c)
def
=
h
((A− δ)k − c)λ+ c1−σ

1−σ

i
,

(23)

where λ is the shadow price of capital, as in Section (1.1). The current value Hamiltonian is

the current value of utility given by the flow of consumption and of net investments converted
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utility units by the shadow value λ. The expression is similar to the Lagrangian contained

in equation (5), except that here the terms associated to the no-Ponzi game condition do

not appear because we imposed the constraint k(·) ≥ 0.
The maximum value Hamiltonian is given by

(
H : R+ × R→ R

H(k, λ)
def
= supc≥0 [HCV (k, λ, c)] .

(24)

Notice that the supremum is taken on the set of positive real numbers (c ≥ 0), whereas in
the definition of the value function, the supremum was picked on a set of functions (U).

The HJB equation If (c∗(·), k∗(·)) is an optimal strategy, from the definition of the value

function V it follows that

V (k0) =

Z ε

0

e−ρt
c∗(t)1−σ

1− σ
dt+ e−ρεV (k∗(ε)). (25)

Rearranging this equation and dividing all terms by ε we get

V (k0)− e−ρεV (k∗(ε)

ε
−
R ε
0
e−ρt c

∗(t)1−σ

1−σ dt

ε
= 0.

For ε→ 0 this expression leads to an ordinary differential equation called Hamilton-Jacobi-

Bellman equation:

ρV (k0)−H(k0, V
0(k0)) = 0, (26)

where V 0(k0) denotes
d
dk0

V (k0). This can be viewed as Eq. (25) in differential form. Below

we solve Eq. (26) in order to obtain the explicit expression for the value function and then

such expression will be used to solve the problem in feedback form.

2.1.1 Towards a Solution of the Optimization Problem: The Steps of the DP

Method

We solve the optimization problem in three steps

Step (1) find a solution to the HJB contained in Eq. (26);

Step (2) find an optimal feedback rule that indicates, at each point in time, the optimal choice

of consumption for a given stock of capital;

Step (3) determine an explicit form of the optimal consumption and capital on the basis of the

optimal feedback rule elaborated in the previous step.

To ensure that the discounted value of the utility does not grow too quickly we keep

imposing the same parameter restriction contained in Eq. (14).
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Step (1) It has been shown elsewhere (see Fleming and Rishel (1975), Yong and Zhou

(1999), and Zabczyk (1992)) that the value function is the only solution of the HJB in a

wide range of cases4. Here we can give an explicit expression for a solution of the (26) and

we will verify in Proposition 2.2 that it is an optimal one. The solution on the set R+ of the

HJB in Eq. (26) is given by

⎧
⎨
⎩

v : R+ → R

v(k)
def
= 1

1−σ

³
ρ−(A−δ)(1−σ)

σ

´−σ
k1−σ

. (27)

One can show, upon differentiation, that the function v(.) is a solution of the HJB.

The following remark, which will be used in step 2, links the optimal consumption to the

shadow price λ.

Remark 2.1 On the set R+ ×R+

argmaxc≥0HCV (k, λ, c) = λ−1/σ

and H(k, λ) assumes an explicit form given by

H(k, λ) =
³
(A− δ)k − λ−1/σ

´
λ+

λ1−
1
σ

1− σ
.

To prove this fact it is enough to use simple concavity arguments on R.

Step (2) We define the feedback function as

⎧
⎪⎨
⎪⎩

φ : R+ → R
+

φ(k)
def
= argmaxc∈R+HCV (k, v

0(k), c) = (v0(k))−1/σ

= αk

,

where the equality of the middle row follows from Remark 2.1 and where α =
³
ρ−(A−δ)(1−σ)

σ

´

(this result is derived from Eq. (27)). Notice that the condition in Eq. (14) guarantees

that α > 0. We will prove that such function is an “optimal feedback" function of the state

(capital k), which does not depend on time, and that gives the optimal consumption: At any

point in time, for a given level of capital k̄ the optimal strategy is to consume φ(k̄) = αk̄.

Therefore, along the optimal trajectory, namely the path of capital — the state variable —

when consumption is chosen optimally, the quantity c(t)
k(t)

is constant and equal to α.

4Also in the non-regular case it is true: the value function is, under quite general assumptions, the only

(viscosity) solution of the HJB, see Yong and Zhou (1999) or Fleming and Rishel (1975), a regular solution

is always a viscosity solution, so, when it is regular, the value function is the only regular solution of the

HJB).
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Step (3) Finally, we prove that the feedback strategy is admissible — it satisfies the con-

straints k ≥ 0 and c ≥ 0 — and optimal. To show the admissibility we replace c with

φ(k) = αk in equation (20),

(
k̇(t) = (A− δ)k(t)− φ(k(t)) =

³
(A−δ)−ρ

σ

´
k(t)

k(0) = k0
. (28)

By using the feedback rule c = αk the (candidate-optimal) trajectory of k(·) then is

k∗(t) = k0e
(A−δ−ρ)t = k0e

(A−δ−ρ)
σ

t, (29)

which is always positive and therefore an admissible trajectory.

Along such (candidate-optimal) trajectory, the (candidate-optimal) consumption is given

by c∗(t) = αk∗(t) for all t, which is the same expression obtained with the maximum principle

(see equations (11), (17), (18)). Next, we find the optimal consumption path.

Proposition 2.2 The admissible feedback φ(·) is optimal. Hence c∗(·) is the optimal control

and k∗(·) is the optimal trajectory. Moreover v, defined in (27), is the value function of the

problem. So v = V .

Proof. Define vE(t, k) = e−ρtv(k) where v defined in (27) and solves the HJB equation. Let

kς be the trajectory of the capital when the consumption is ς(·), which denotes a generic

admissible control ς(t). Then

v(k)− e−ρTv(kς(T )) = vE(0, k)− vE(T, kς(T )) =

=

Z T

0

− d
dt
v(t, kς(t))dt =

Z T

0

ρe−ρtv(kς(t))− e−ρtv0(k(t))k̇ς(t)dt. (30)

For T → +∞, Hypothesis (14) implies that the term e−ρTv(kς(T )) goes to zero. Therefore

v(k) =

Z +∞

0

ρe−ρtv(kς(t))− e−ρtv0(kς(t))k̇ς
∗
(t)dt (31)

Now we are going to prove that the control given in feedback form c = φ(k) = αk is optimal,

that is that the value of the utility function U(k, ς(·)) cannot be greater than the value

function v(k). More formally

v(k)− U(k, ς(·)) = v(k)−
Z ∞

0

e−ρt
(ς(t))1−σ

1− σ
dt, (32)

and substituting v(k) with the right side of Eq. (31) we get

v(k)− U(k, ς(·)) =

Z +∞

0

e−ρt
µ
ρv(kς(t))− v0(kς(t))k̇ς(t)−

(ς(t))1−σ

1− σ

¶
dt, (33)
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which, by using the v that solves Eq. (26) and HCV in Eq. (23)), can be expressed as

=

Z +∞

0

e−ρt (H(kς(t), v
0(kς(t)))−HCV (kς(t), v

0(kς(t)), ς(t))) dt.

The original maximization problem is equivalent to the problem of finding a control c∗(·)

that minimizes

v(k)− U(k, c∗(·))

Since H(kς(t), v
0(kς(t)))−HCV (kς(t), v

0(kς(t)), ς(t)) ≥ 0 in view of definition of H (equation

(24)) then for all admissible control ς(·):

v(k)− U(k, ς(·)) ≥ 0.

Because c∗(t) maximizes at every point in time the current value Hamiltonian, the feedback

strategy c(t) = φ(k(t)) = αk(t) satisfies

H(k∗(t), v0(k∗(t)))−HCV (k(t), v
0(k(t)), ς(t)) = 0.

Hence, v(k) − U(k, c(·)) = 0. Therefore, c∗(·) is an optimal control, k∗(·) is an optimal

trajectory and v is the value function.

Remark 2.3 In the dynamic programming knowing λ∗(t) is not as crucial for the sake of

characterizing the solution as it is in the MP approach. But for comparative purposes we

work out its explicit solution following the general results in Fleming and Rishel (1975).

Since λ∗(t) = d
dk
vE(t, k

∗(t)), and this is equal to e−ρt d
dk
v(k∗(t)),so we have that

λ∗(t) = e−ρt
µ
ρ− (A− δ)(1− σ)

σ

¶−σ
(k∗(t))−σ,

which combined with Eq. (29) gives α−σ(k0)−σe−(A−δ)t, namely the same expression contained

in Eq. (19).

2.2 Graphical Illustration

For a given level of initial stock of capital k there is an admissible (i.e. non negative) path of

capital and consumption that expands at a constant rate. Such optimal trajectories depend

only on the initial capital and on the parameters of the problem. We found that the optimal

growth rate of consumption is equal to the optimal growth rate of output and capital, that

such rate is equal to (A−δ−ρ)
σ

that the ratio between c(t)/k(t) = ρ−(A−δ)(1−σ)
σ

. Thus for a

given k0 it is very easy to characterize the state of the economy on the optimal trajectory

(sometimes also called ’saddle path’). To understand the feature of such optimal trajectory
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it is useful to consider situations in which the economy is not there. This can happen only

if the consumer ’makes mistakes’.

Imagine that the consumer guesses correctly the growth rate of consumption (A−δ−ρ)
σ

but

picks an initial level of consumption, c̃0, above the optimal one,
ρ−(A−δ)(1−σ)

σ
k0. Effectively

the consumer is savings less that he should. From the budget constraint we know that

k̇(t)/k(t) = A − c(t)/k(t) − δ. Hence c(0)/k(0) > ρ−(A−δ)(1−σ)
σ

, namely the ratio c(t)/k(t)

rises over time whereas k̇(t)/k(t) declines up to the point of becoming negative (in a way

the consumer starts ’eating’ the stock of capital). Because the Ponzi scheme is ruled out at

a certain point consumption must go to zero and remain at that level forever.

Conversely, when the initial choice is too parsimonious, c̃0 < ρ−(A−δ)(1−σ)
σ

k0, k̇(t)/k(t)

grows faster than consumption. If this behavior is protracted forever, in the long run the

consumer ends up with too much capital, that is λ(τ)k(τ) > 0 for τ −→ +∞, a violation of
the transversality condition in the MP approach and of the optimal feedback rule in the DP

setting.

Fig. (1) illustrates the reasoning in a phase diagram, with k and c, running on the hori-

zontal and vertical axis, respectively. The solid straight line represents the balanced growth

path, along which c(t) = αk(t). Along the other two lines the growth rate of consumption is

constant and equal to (A−δ−ρ)
σ

(or to zero in the kinked-growth-path after that capital dries

out), whereas the evolution of capital is driven by the budget constraints and the production

function.

Consequences of a Shock. The absence of a transitional dynamics can be shown by

varying any of the parameters of the model. We chose to reduce the depreciation rate from

5 to 4 percent. The left plots of Fig. (2) illustrate the effects of such a change on the phase

diagram representing the balanced growth path. The path jumps up at the shock’s arrival

and becomes more sloped. The right plot of the figure shows that as a response to the shock,

consumption jumps to a higher level instantaneously and grows at a faster pace, whereas

investment declines as an immediate response to the shock, but grows more quickly than

before. The immediate drop of investment is due to a ’wealth’ effect: households anticipate

that capital is going last longer and therefore can consume a larger share of production.

Output and capital exhibit a similar qualitative response (not shown) to that of consumption.

Fig. (3) compares the outcome of this experiment with one obtained through an alteration

of the subjective discount rate, ρ, from 2% to 3%. The direction of the ’jump’ is the same

in both scenarios. If the consumer becomes more impatient he will want to consume more,

therefore consumption will increase. But this means that fewer resources are being invested,

and a lower growth rate of output and of consumption will be compatible with the new set

of preferences.
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3 An Intermezzo: A First Look at the Empirical Evi-

dence

Are the implications of the Ak’s model corroborated by the empirical evidence? This question

has generated a small literature since the Jones (1995) undertook the task of testing several

hypotheses implied by the model. The answer is not straightforward because of the quality

of the data, the disagreement on how to measure investments and capital, and the choice of

the most appropriate econometric approaches to test the behavior of time series of macro

aggregates of several countries which potentially interact with each other. These issues are

addressed in a work that one of the authors of this paper is developing with Rehim Kilic.

Nevertheless we think that it is instructive to apply descriptive statistics and graphical

analysis to cross-time and cross-country data in order to gain insight on the plausibility of

the model’s predictions.

Parallelism between Consumption and Output Patterns. During the period 1950-2004

per capita consumption and per capita gross domestic product in the United States have

increased at an annual rate of 2.28% and 2.21%, respectively, according to data provided

by the Penn World Table (PWT) 6.2. Similar estimates are obtained with data from the

the Bureau of Economic Analysis (BEA). These numbers seem to agree with the prediction

of the Ak model that consumption and income grow at the same rate. Moreover Fig. (4),

which plots the logs of the two time series, shows that the two rates of growth have remained

roughly constant over the post war period.

This prediction however is not specific to the Ak model. For instance the Solow model,

which assumes decreasing return to capital, actually assumes that consumption and income

stay in the same proportion. A similar assumption is found in Keynesian models.

Positive Association between Capital Productivity and Growth Rates. An interesting pre-

diction specific to the model is that the difference in growth rates across countries is positively

correlated with differences in the returns to capital. Given the value of δ, ρ and σ the pro-

ductivity of capital, A, can be inferred through the growth rate of consumption (see Eq.

(11)). Let the preference parameters ρ = 0.02 and σ = 1.5, and let the depreciation rate

be δ = 0.05. Then the (marginal) productivity of capital for the U.S., A, is predicted to be

0.1051 and that the net return, A − δ is 0.055. Table (1) reports similar calculations for a

group of 20 countries which in 1975 had a per capita level of income above 50% of that of

the US. Unfortunately there isn’t an easy way to infer the absolute value of the technological

index A. But at least it can be obtained as a relative term. If we know how countries stand

with each other in terms of output and capital we can infer the relative productivity of cap-

ital. This kind of calculation was performed relating each country’s output and capital per

worker to that of the U.S. The outcome is shown in Fig. (5) that plots the percentage average
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growth rate of per capita income against the average relative productivity of capital (the

US is normalized to 100), over the 1950-2004 period. It suggests that a positive relationship

exists between the two variables. The correlation coefficient is 0.55. The highest return is

recorded in Japan where it is about twice as large as in the U.S., whereas the lowest one is

about half of that of the US and is found in UK.

Initial Consumption and Intertemporal Elasticity of Substitution. The model conjectures

that individuals choose their level of initial consumption on the basis of the expected future

expansion of income, which in turn depends on the returns on capital. In particular, Eq. (17)

implies that the initial consumption-income ratio is equal to [(1−σ)(δ−A)+ρ]/σA. It follows
that this ratio is decreasing in A as long as the elasticity is smaller than (1+ρ/δ), otherwise

it rises with A. Intuitively, a larger return generates a wealth and a substitution effect. The

former tends to raise initial consumption, whereas the latter acts in the opposite direction.

The smaller σ,which represents the inverse of the intertemporal elasticity of substitution,

the stronger is the substitution effect. In order to verify which one of the two effects is more

likely to dominate, we computed the association between the consumption-per-capita-income

ratio, averaged over the decade 1950-60, and the growth rate of consumption between 1950-

2004. We selected countries that had at least five observations in the initial decade, and at

least 40 on the overall period. The resulting sample of 67 countries yielded a correlation of

-0.185, indicating that the substitution effect slightly dominates and that the elasticity of

substitution in this model is close to one.

Investments and Growth. An intensely debated issue is the assumption of constant mar-

ginal productivity of capital. In most pre-1990 growth models this is assumed to decline and

consequently accumulation alone cannot lead to sustained growth. To test the hypothesis of

constant returns it is useful to differentiate the production function (1) with respect to time.

This operation yields ẏ/y = A k̇
y
, which can be rearranged as

ẏ

y
= A

i

y
− δ. (34)

where i is the per capita gross investment. If the depreciation rate is time invariant, the

previous relationship predicts that the rate of growth of average income and the investment

rate should move in lockstep. We verify this statement in three simple ways. First, we look at

the association between the post-war average investment ratio and average post-war income

growth rates of countries with at least 40 years of data (99 countries satisfy the criterion).

Fig. (6) shows that for a large subset of countries the correlation is positive, although

there are a few outliers with a relatively low investment rate and impressive growth record

(since the outliers are developing countries one might question the quality of the data). A

second method is to consider the cross-time dimension of the data and search for consistency

between the time trend of income growth rates and that of investment ratios. Fig. (7) plots
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the two time trends — the plot is restricted to countries whose estimates are within the [-0.5,

0.5] interval. Evidence in favor of the Ak model is represented by observations that fall

in the first and third quadrant. Overall the data convey a mixed message. A large group

of countries falls in the predicted quadrants, but there is a good number of observations

in the second and fourth quadrants as well. However, if we restrict our attention only to

countries whose trends are significantly different than zero for both variables, the number

of observations declines dramatically, and the outcome, shown in Fig. (8), is remarkably in

line with the prediction of the Ak model: the slopes of the two variables are roughly aligned

around a 45-degree line. A third method is to test whether there is any structural break

in the time series, that is if a permanent change in the investment ratios is paralleled by a

similar occurrence in the growth rate of income. We tested the hypothesis for both variables

that the mean has not changed over the post-war period against the alternative, that in the

post-1980 period it was lower than in the pre-1980 period. Out of the 99 countries with 40

data points, in 13 cases the null hypothesis was rejected. (We also considered an upward

shift of the means but could not detect any such a case). For 21 countries the hypothesis of

difference in means was not rejected for either variable. If the break point is 1970 instead,

the rejection cases in favor of a (joint) downward shift are 20 instead of 13 and the rejection

failures go down from 21 to 14. In sum, regardless whether the break point is 1970 or 1980,

in about one third of the cases the outcome is in line with the prediction of the AK model

and in two thirds of the cases it is not. The part of this study that follows the coming section

explores a more sophisticated version of the Ak model, with the purpose of verifying whether

its ability to account for the growth experiences is enhanced. In particular, we will show

how to endogenize the depreciation rate, currently represented by the constant parameter δ.

4 AK model with vintage capital

We now expand the analysis by taking the view that capital is the ensemble of machines that

are taken out of production after T years of service. They are productive as new while they

are in place; in other words capital is not subject to wear and tear but to a horse-shoe type

of depreciation. Here we do not consider obsolescence — the scrapping time is exogenously

given — and there is no quality difference across vintages. Formally, the stock of capital is

defined as

kt =

Z t

t−T
i(s)ds, (35)

where i(s) is the investment at time s. The instantaneous net investment, k̇(t), is now the

difference between the gross investment and the value of equipment that was put in place T
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periods ago, that is

k̇(t) = i(t)− i(t− T ). (36)

This law of motion is different than the standard one because the depreciation of capital at

time t is not proportional to the overall stock of capital but depends only on the amount

of investment carried out T periods ago. An investment boom is going to be followed

at a depreciation spike sometime in the future. Unless an extra amount of resources are

saved, the stock of capital, and with it labor productivity, is going to decline after the

machines introduced in the boom years are scrapped. If the depreciation were to follow

these mechanics, the proportionality between growth rates and investment ratio implied by

the simple version of the Ak model no longer holds. To see this more formally, if both sides

of Eq. (36) are divided by k(t) one gets k̇(t)/k(t) = i(t)/k(t) − i(t − T )/k(t). Since A is

constant
ẏ(t)

y(t)
= A

i(t)

y(t)
− δ(t, T ), (37)

where δ(t, T ) ≡ i(t−T )
k(t)

. This expression is similar to that of Eq. (34) except that here the

depreciation rate is not constant.

We are interested in determining the optimal consumption and investment path for an

individual with the same utility function as in section (1). The below analysis draws mostly

on Boucekkine et al. (2005). It is easier to focus on the choice variable i(t), rather than

consumption. Thus the optimization problem to be studied is

max
i(·)

U(.) =

Z ∞

0

e−ρt
µ
(Ak(t)− i(t))1−σ

1− σ

¶
dt (38)

subject to the state equations

k̇(t) = i(t)− i(t− T ),

i(s) = i0(s) for s ∈ [−T, 0), (39)

k(0) =

Z 0

−T
i0(s)ds,

where i0(s) for s ∈ [−T, 0) is a given distribution of preexisting investments at time t = 0,.
Furthermore we impose the non-negativity constraints on i(s) for all s > 0: it is not possible

to consume more than current production. Note that such a condition guarantees that k(·)

remain always positive and then it includes the no-Ponzi condition we have imposed in the

one-dimensional case.

There are two departures from the problem posed in section (1). First of all, the initial

stock of capital k0 is replaced by the sum of the past flow of investments. Secondly, the

accumulation of capital depends on the amount of equipment that was installed T years ago,

which is about to be scrapped, as well as on the addition of new capital. These modifications
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of the original Ak model where capital was homogeneous will yield oscillatory trajectories

for investment and output.

4.1 The Maximum Principle Approach

4.1.1 Interior Solution

We deal with an interior solution. We consider a investment-capital path (i(·), k(·) with

i(·) > 0 and c(t) = Ak(t)− i(t) > 0 for every t. (5) changes to

U τ (i0, i(·)) =

Z τ

0

e−ρt[
[Ak(t)− i(t)]1−σ − 1

1− σ
]dt+

Z τ

0

λ(t)[i(t)− i(t− T )]dt−

λ(t)k(t)|τ0 +

Z τ

0

λ̇(t)k(t)dt. (40)

We compute the first variation for an admissible modification (∆i(·),∆k(·)) obtaining

∆U τ(i0, i(·)) =

Z τ

0

³
e−ρtA[Ak(t)− i(t)]−σ + λ̇(t)

´
∆k(t)dt+

+

Z τ

0

¡
−e−ρt(Ak(t)− i(t))−σ + λ(t)

¢
∆i(t)dt−

−
Z τ

0

λ(t)∆i(t− T )dt− λ(τ)∆k(τ). (41)

Following Boucekkine et al. (2005) (page 52) we can use a change of variable (and use the

fact that i(t) is given for t < 0 and then ∆i(t) = 0 for t < 0) to obtain
Z τ

0

λ(t)∆i(t− T )dt =

Z τ−T

0

λ(t+ T )∆i(t)dt.

Using such an expression in (41) and imposing that, along an optimal path (i∗(·), k∗(·)),

∆U τ(i0, i
∗(·)) ≤ 0 for every admissible variation, we obtain

e−ρt[Ak∗(t)− i∗(t)]−σ = [λ∗(t)− λ∗(t+ T )], (42)

A[λ∗(t)− λ∗(t+ T )]− λ̇
∗
(t) = 0, . (43)

which is the equivalent of Eq. (8). The novelty here is that we are dealing with an advanced

differential equation (ADE). Moreover we have the transversality condition

λ(τ)k(τ) = 0

that gives, letting τ → +∞
lim
τ→∞

λ(τ)k(τ) = 0. (44)

As in the non-delay setting it can be proved that, since the functional is strictly concave, the

conditions (42), (43) and (44) are sufficient for an internal path to be optimal (see Boucekkine

et al. (2005) (Proposition 9) for details).
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4.2 Balance growth paths

Let gx be the growth rate of the variable x at time t. We focus for now the attention on

a situation in which gx(t) are constant for every positive t. This implies that the evolution

of all the variables is exponential and the initial datum i0 is exponential as well. If gλ is

constant Eq. (43) implies that it is a root of the equation

A[1− e−gλT ] = gλ. (45)

To ensure that such an equation admits exactly one positive root we impose

AT > 1

(see also Section 5). For the determination of the value of consumption and investments on

the balanced growth path, notice that since c(t) = Ak(t)− i(t) Eq. (42) can be written as:

e−ρtc∗(t)−σ = λ∗(t)− λ∗(t+ T ), (46)

which is the same as (7) except for the additional term λ∗(t + T ). Under the assumption

that gλ(t) is constant the above equation becomes

e−ρtc∗(t)−σ = λ∗(t)[1− egλ]

Taking logs and differentiating with respect to time the above equation one obtains the

equivalent of Eq.(10). On the balanced growth path the stock of capital is k∗(t) = i∗(t) 1
gi
[1−

e−giT ], where gi is constant (that i(t) = i(t− s) exp(gi)s for s < T ). The budget constraint

implies that on the BGP

c∗(t) = i∗(t)[A
1

gi
(1− e−giT )− 1],

and hence gc = gi. Therefore, consumption, gross investments and capital grow at the same

common rate g, which, according to Eq. (8) is

gc =
1

σ
(−gλ − ρ), (47)

which is the same as Eq. (10). In conclusion, on the balanced growth path the following

equalities hold

gi = gc =
1

σ
(−gλ − ρ),

where gλ satisfies (45). As for the initial conditions, from the budget constraint we get that

c(0) = Ak(0)− i(0), where k(0) =
R 0
−T i0(s)ds is given, whereas i(0) is to be determined. If

the initial investments are spread across vintages in the same way as they are on the balanced

growth path (except for a scalar) then k(0) = i(0) 1
gi
(1− e−giT ), where gi =

1
σ
(−gλ − ρ) and
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gλ satisfies (45). Therefore, the budget constraint and the condition just obtained on the

composition of capital imply that the initial level of consumption is:

c(0) = k(0)[A−
1
σ
(−gλ − ρ)

(1− e−
1
σ
(−gλ−ρ)T )

].

The initial value of the shadow value can be recovered by eq. (42) when t = 0 :

λ(0) = [c(0)]−σ[1− e−gλT ]−1.

4.3 The dynamics out of the BGPs

In sum, the MP allows for the characterization of the solution of the Ak model in a straight-

forward way even when capital is not homogeneous, as long as investments are distributed

across vintage in a very special way. What happens if in one period, for whatever exogenous

factor, investments are above or below the one compatible with the balanced growth path?

Interestingly, the model generates some oscillatory trajectories. Boucekkine et al. (2005)

analyze with great care the features of these trajectories.

In the general case (with a non-exponential initial datum) it can be proved that along an

hypothetical internal optimal path (characterized by equations (42) (43) and (44)) gλ and gc

remain always constant (see Boucekkine at al. (2005) Proposition 11 for a detailed proof).

To study the dynamics of i∗(·) and k∗(·) they use a numerical method. See also Boucekkine

et al. (1997) and Boucekkine et al. (2001).

However we find that Dynamic Programming illuminates more sharply the patterns of

adjustment of macrovariables as a response to a shock that generates an investment book or

slum. Therefore, we turn our attention to the presentation of this approach.

5 Dynamic Programming in an Hilbert Space

The objective of this section is to solve a problem of the type contained in (38) using a

dynamic programming approach in Hilbert space (henceforth DPHS) instead of the maximum

principle. We draw from (Fabbri and Gozzi (2006)) where a more formal account of this

methodology can be found. From this section it will emerge that the DPHS approach has

some advantages over the more popular maximum principle. First it could be the case that

the interior solutions of the problem do not exist because the constraints of the problem

are not satisfied (this issue was mentioned by the authors of Boucekkine and al. (2005)

p. 60). Secondly, the DPHS analysis is carried out under milder parameter restrictions.

Thirdly, the DPHS conveniently delivers AN explicit form of the optimal consumption path
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and a closed loop solution for the optimal trajectory of capital and investment, which will

depend only on the initial conditions and the parameters’ values. Similarly the value function

and the optimal feedback function can be written in an explicit form. We will proceed as

follows: introduction of the tools of dynamic programming in Hilbert setting; re-proposal

of the consumer’s optimization problem as in (38); re-derivation of the optimal path of

consumption in feedback form, as well as the optimal feedback function.

5.0.1 Instruments of DP in vintage capital model

Three technical conditions are needed.

Hypothesis

AT > 1. (H1)

This hypothesis guarantees the existence of a unique strictly positive root of the equation5

ξ = A(1− e−ξT ). (48)

As it will be clarified below, ξ plays a key role in the characterization of the value function

(see Proposition 5.2) and of the optimal feedback (Proposition 5.4). Notice that an identical

restriction was imposed in the MP approach to guarantee the existence of a root to equation

Eq. (45).

A second restriction similar to Hypothesis (14) imposed in the one dimensional case is

needed to rule out trajectories that lead to unbounded utility, that is we want

Z +∞

0

e−ρt
(c(t))1−σ

1− σ
dt < +∞

for every control c(.). As a way to determine such restriction, imagine that in each period the

overall level of output is reinvested — an admissible, but hardly optimal strategy. Then capital

expands at the fastest possible pace, given the state of technology. Let the accumulation of

capital along such trajectory be described by the delayed differential equation (DDE)

k̇M(t) = AkM(t)−AkM(t− T ). (49)

Clearly the capital associated with the actual choice of investments, denoted with ki(·)(t),

does not exceed the one of the maximum- accumulation trajectory, namely ki(·)(t) ≤ kM(t)

for every choice of an admissible control i(·). Since the economy is closed c(t) ≤ Ak(t).

Therefore the chain of relationships c(t) ≤ Ak(t) ≤ AkM(t) implies that

Z +∞

0

e−ρt
(c(t))1−σ

1− σ
dt ≤ A1−σ

Z +∞

0

e−ρt
(kM(t))

1−σ

1− σ
dt.

5This existence and uniqueness can be seen using simple concavity arguments.
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An upper bound on the right hand side of the inequality would guarantee a finite utility’s

value associated with any admissible trajectory. The maximal root of the DDE in (49) is ξ

(see Eq. (48)) implying that the ξ− detrended value of kM(t) is always a finite number6
¯̄
¯̄kM(t)

eξt

¯̄
¯̄ ≤M for all t ≥ 0.

Therefore a sufficient condition for bounded utility is that

Hypothesis

ρ > ξ(1− σ). (H2)

A third condition guarantees that consumption and investment in optimum are always

positive, namely

Hypothesis
(ρ− ξ(1− σ))

σ
≤ A. (H3)

Notice that the conditions corresponding to (H2) and (H3) in the MP approach were

more restrictive (that is ρ > (1 − σ)A and ρ−ξ
σ

< 0), whereas the restriction AT > 1 is

the same in both cases.7 As we will see later (Eq. (53)) g = ξ−ρ
σ
is the growth rate of the

consumption on the optimal trajectories, then the condition ρ−ξ
σ

< 0 ensure positive growth

while the condition (H3) allows to treat also non-positive growth cases.

5.1 Solution for the vintage model

Reformulating the problem in an infinite dimensional space has the major advantage of

sidestepping the issue of dealing with a delay-state equation. Appendix (A), which is based

on Fabbri and Gozzi (2006), presents the main aspect of its solution. The methodology closely

follows the Bellman’s DP principle, except that it is developed in a Hilbert space setting. To

keep the presentation comparable with that in Section 2) we list three propositions dealing

respectively with the value function, the optimal consumption trajectory, and the optimal

investment strategy. The value function informs us of the maximum utility at a given time

for a given history of investment in the period [−T, 0).
The set of the admissible controls is

Ii0 =
©
i(·) ∈ L2loc([0,+∞);R+) : i(t) ∈ [0, aki0,i(t)], a.e.

ª
,

where L2 and L2loc are spaces discussed in the Appendix A. The value function of the problem

is defined as

V (i0) = sup
i(·)∈Iῑ

½Z ∞

0

e−ρs
(akῑ,i(t)− i(t))1−σ

(1− σ)
ds

¾
. (50)

6See Diekmann and al. (1995), page 27 for a proof.
7From Eq. (48) it follows that ξ < A (it can be easily seen ) and (H3) can be rearranged as ρ−ξ

σ < A− ξ.
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In the non-delay case V depended on the one dimensional variable k0; here it depends on

how the distribution of initial capital is spread across vintages as indicated by the function

i0 : [−T, 0)→ R
+. For this reason the problem is to be defined in a Hilbert space. We stress

this point in the following observation.

Remark 5.1 In the one dimensional case the stock of capital describes the state of the

system: The set of admissible controls depends only on the stock of capital at each t, and

the optimal trajectory as well as the optimal control in the set [t,+∞) depend only on the
value k(t). In particular, the value function depends only on k0 ∈ R. In the delay setting the
state of the system is described by the history of investments in the interval [t− T, t], which

is a more detailed kind of information than k(t). Also, the value function depends on i0 as

function [−T, 0]→ R. For this reason we use as a state space the functional space the space

L2 (see Appendix A).

Proposition 5.2 The explicit expression of the value function V defined in (50) is

V (i0) = ν

µZ 0

−T
(1− eξs) i0(−T − s)ds

¶1−σ

where the constant ν is given by

ν =

µ
ρ− ξ(1− σ)

σξ/A

¶−σ
1

(1− σ)ξ/A
.

Proof. See the Appendix (A.2.1) Step (1).

This expression is similar to that in Eq. (27) for the non-delay case, except that this one

depends on a function of the history of i0 in the interval [−T, 0] whereas in the non-delay case
the value function depended only on a real number (aggregate capital). The term (1− eξs)

inside the integral can be interpreted as the value (in utils) of machines: older machines are

worth less then younger ones. More precisely the value ranges between 0 and 1− e−ξT .

Consumption grows is an exponential way, even when the state variables (capital and

investment) exhibit an irregular behavior. Intuitively, the concavity of the utility function

and the ability to make intertemporal transfers through investments allow the individual to

smooth out his consumption path.

Proposition 5.3 The optimal growth rate of consumption is constant and equal to g = ξ−ρ
σ
.

Moreover given an initial distribution of investments i0(·) ∈ L2([−T, 0);R+) in equation (39),
the optimal initial value of consumption is

c0 =

µ
ρ− ξ(1− σ)

σξ/A

¶Z 0

−T
(1− eξs) i0(−T − s)ds. (51)
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Proof. See Appendix (A.2.1) in particular Step (2) and Step (3) for a sketch of the proof

and for the references.

We wish to emphasize that propositions (5.2) and (5.3) did not assume that the economy

is on the balanced growth path.

Contrary to consumption, both output and investment exhibit oscillatory movements

when the economy is not on the balanced growth path. Interestingly we are able to describe

these movements with explicit functional forms that link the optimal investment at time t

as to the stock of capital at time t and to the sequence of investment in the period [t−T, t).

Proposition 5.4 The optimal investment strategy i∗(·) and the capital stock trajectory k∗(·)

satisfy for all t ≥ 0:

i∗(t) =
A

σ

∙
1− ρ

ξ

¸
k∗(t) +

ρ− ξ(1− σ)

σξ/A

Z 0

−T
eξs i∗(−T + t− s)ds.

Moreover along the optimal trajectories we have

i∗(t) = Ax∗0 −
µ
ρ− ξ(1− σ)

σξ/A

¶µZ 0

−T
eξsx∗1(s)ds+ x∗0

¶
. (52)

Proof. Appendix (A) shows a sketch of the proof. In particular Step (2) and Step (3)

give indications on how to go from an explicit form of the value function to the optimal

feedback . Therein are also contained references of previous works where these results have

been derived.

Finally, we observe that from the budget constraint it follows that i∗(·) is connected with

the state trajectory k∗(·) by the following optimal feedback strategy for all t ≥ 0:

i∗(t) = Ak∗(t)− c0e
gt (53)

where c0 is given by Eq.(51) and g = ξ−ρ
σ
. Alternatively, Eq. (53) can be also be expressed

as

i∗(t) = A

Z t

−T+t
i∗(s)ds− c0e

gt,

where instead of capital the history of investments appears. In differential form the above

equation becomes ⎧
⎪⎨
⎪⎩

di(t)
dt
= Ai(t)−Ai(t− T )− gc0e

gt

i(0) = A
R 0
−T i0(s)ds− c0

i(s) = i0(s) for all s ∈ [−T, 0).
. (54)

(See Appendix A for more details). When capital was homogeneous k∗(t) expanded at a

constant rate g and so did investments. Here the optimal investment and the capital stock

may have an irregular growth pattern. Only a very special initial vintage distribution would

lead to smooth exponential growth.
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6 Simulations

This section illustrates the adjustment process of the economy when a shock affects the

productivity of capital and its retirement time. The mathematical details of the dynamics

are collected in appendix (B).

6.1 Technological Shock

In the Ak model the parameter A is usually kept constant, because the growth process is ex-

clusively accounted for by the accumulation of physical and human capital. Nevertheless, as

a way to illustrate the working of the model in the transitional dynamics, consider a scenario

in which a one-time technological shock hits the economy. This might be the consequence of

a major institutional change, such as the introduction of property rights, or of a modification

of the form of government; somehow all capital in place becomes more productive. How does

a drastic innovation of this kind affect the behavior of macroaggregates?

Let t0 = 0 be the time when the shock occurs, and denote withA0 and A the technological

parameter before and after the shock, respectively. The other parameters, T, ρ, and σ remain

constant. Let g0 (g) be the asymptotic growth rate associated to the parameters A0 (A), T, σ,

and ρ. And imagine that the system is along a balance growth path before the shock’s arrival,

so that the initial datum is i0(s) = Ieg0s for 0 ≤ s ≤ t0. Fig. (9) illustrates the g−discounted
patterns of consumption, output, investment and the behavior of the investment ratio when

the parameters are set according to Table (2) (g0 and g are 4.86% and 5.57%, respectively

the after shock ξ is 0.7998).

Before the shock the ratio is constant, because the system is along a balanced grow path.

Following Eq. (52) the investment ratio for t < 0 is

i(t)

y(t)
≡ 1

A0
g0
(1− e−g0T )

∼ 18.04% for all t < 0.

As a consequence of the technological shock, Proposition (5.3) tells us that the investment

ratio decreases. To disentangle the forces behind this outcome, it is useful to see separately

the reaction of investments and consumption at time 0+ (an instant after the shock). The

initial optimal level of consumption determined through Eq. (52):

c0+ =

µ
ρ− ξ(1− σ)

σ

A

ξ

¶
e−g0T

µ−1
g0

¡
1− eg0T

¢
− 1

ξ − g0

¡
1− e−(ξ−g0)T

¢¶

(thereafter expands at a constant rate g). Therefore investments and the investment ratio

are respectively

A
1

g0

¡
1− e−g0T

¢
− c(0+),
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and

1− c0+

A 1
g0
(1− e−g0T )

∼ 16.54%.

Although consumption expands at a constant rate g thereafter, output, and consequently

investments and the investment ratio, follow an irregular pattern for a while. For t→∞ the

system tends to a new BGP with growth of the investment g. So, asymptotically, we have

i(t)

y(t)
t→∞−−−→ 1

A
g
(1− e−gT )

∼ 16.30%.

The discounted investment and production have a non-differentiability point at t = T

(= 10). This fact can be understood seeing to (54): the derivative of the function in the

point T depends on the value of the function at 0, but in 0 the function as a discontinuity

and then a discontinuity of the derivative appears in T . In the same way we will have a

discontinuity in the second derivative in t = 2T etc...

Why do growth-discounted investments and production show a cyclical-like behavior?

Since discounted consumption is always constant during the transition, from Eq. (52) it

follows that the same holds for the following quantity:

e−gt
µ
ρ− ξ(1− σ)

σξ/A

¶µZ 0

−T
eξsx∗1(s)ds+ x∗0

¶
,

which can be written as

H(ig)(t) :=

Z 0

−T
egs
¡
1− e−ξTe−ξs

¢
ig(s+ t)ds

where ig(·) is the discounted investment ig(t) := e−gti(t). Note that the function s 7→
egs
¡
1− e−ξTe−ξs

¢
is continuous and strictly positive in (−T, 0) and it weights the history

of the discounted investment. This means that the evolution of the discounted investment

cannot be strictly increasing or decreasing. In particular, since H(ig)(t) is constant, we have

only two possibilities: either ig is constant — a balance growth situation — or it oscillates

forever, with smaller and smaller oscillations — as in Fig. (9.B). Fig. (9.C) reports the

qualitatively similar behavior of the growth rate of the income. Note that two discontinuities

appear in its dynamics: the first on 0 and the second in T . This fact can be easily understood

if we write the expression of the growth rate of the income: it is y0(t)
y(t)
. So, there is a

discontinuity of y(t) in 0, arguing as above, we have a discontinuity of y0(t) in T and then

we have a discontinuity of y0(t)
y(t)

in T . Later we have a discontinuity of the derivative of the

growth rate of the income in t = 2T . The initial value of the growth rate of the income

is constant with value g0, since the system is along a BGP with growth g0, the asymptotic

value is g.
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Intuitively, part of the excess production is consumed (wealth effect) and part of it is

invested, leading to an amount of investments which is larger than would have been otherwise.

The investment ratio may decline however, because the change in investments may not be

as large as the increased productivity of past investments (Fig. (9.D)).

After the shock, investments must be chosen in a way to keep consumption growing at

a constant rate. This requires a quite sophisticated choice. Imagine first that the rule is

to expand investments according to the new balanced growth path rate. Then production

would increase not only faster than before the shock, but also faster than the rate compatible

with the new balanced growth path. This is hardly optimal, because it means that actually

consumption can increase less than what the long run path requires. Indeed any other

strategy of smooth investment will deliver a bumpy consumption profile. It then must be

that the growth rate of investment fluctuates. In the case simulated, the smoothness of

consumption is obtained by keeping investment below the long run trend in the periods

that follow the shock. By doing so, the consumer keeps eating an increasing fraction of

output, and the post-shock investment profile looks flatter than the new balanced growth

path. Although the flattening of the investment profile serves the purpose of consumption

smoothing, at a certain point it poses a constraint on the growth of output. Indeed, if

the individual stubbornly kept the same investment strategy he would end up having output

growing at the same lower rate, which is not compatible with the desired higher consumption

rate. It must be that at a certain point in time τ < T , it is actually optimal to reverse the

strategy by steepening the investment profile. The investment pattern thereon is chosen in

a way to counter balance the flat profile observed in the aftermath of the shock. When all

the pre-shock investments have been scrapped out, a new smooth distribution of investments

over age is observed. However it does not look like the long run one: The left (right) side

is still flatter (steeper) than that of the long run distribution. All the subsequent T− cycle
look similar, except that the deviation of investments with respect to the long run pattern

required to keep consumption on a smooth profile are smaller and smaller. Next we consider

an exogenous shock on the equipment retirement’s age.

6.2 Shock on Replacement Time

The composition of investment during the post-war period has changed in favor of equipment

and software, as it is illustrated by Fig. (10), which plots the ratio between equipment and

structure from 1950 to 2004. The ratio has almost doubled in the second part of the century,

and especially in the 1990s. Indeed the upward trend of the ratio shown in the diagram is

quite conservative, because the price of equipment relative to that of structure has declined

in the same period, implying an even steeper rise of investment over structures in ’real’ terms.

Since equipment are kept in service for a shorter period than structures, it is reasonable to
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assume that the average scrapping time of capital has gradually declined in recent decades.

The vintage AK model allow us to see how the optimal investment ratio responds to a

variation in the replacement time.

We propose a simulation consisting in a reduction of the replacement time at a rate of

0.05 for fifty periods, which amounts to a gradual decline from 10 to 7.5 in the retirement age.

The other parameters are the same collected in Table (1) before the technological shock. The

system is along a balance growth path for t < 0. Then the dynamics from t = 0 and t = 1

can be obtained as in the previous simulation. For the period between 0 and 1 the initial

datum is investment history that unfolded in the time interval (−9, 0). Between between
1 and 2 the initial condition is the (non-BGP) history of investments between t = −9 and
t = 1. Through this recursive method are built the dynamics for the following periods (2, 3),

(3, 4), etc..

The patterns associated with output growth and the investment ratio are shown in Fig.

(11). The two dynamics go in opposite directions. The growth rate of the capital slightly

decreases, going from 4.53% to 4.49%. On the contrary, the investment ratio shows a strong

tendency to increase (from the 17.8% of time t = 0 to over the 22% of time t = 50.)

The qualitative patterns just shown are somehow consistent with those observed in the

US in the postwar period, during which the growth rate of GDP has remained constant or

slightly declined whereas the investment share has increased at a regular pace. This is shown

in Fig (12) (each variable is deflated by its own deflator). A more rigorous test confirms the

visual impression of a rise in the investment ratio. A linear least square regression of the

investment ratio against a constant and time suggests a positive and statistically significant

time trend, whereas the growth rates exhibit a negative and statistically insignificant trend.

7 Another Look at the Cross-Country Evidence

In section (3) we found that the tight relationship between investment ratios and income

growth predicted by the standard Ak model is only partially supported by the evidence.

How does a variable depreciation rate change that conclusion?

Eq. (37) calls for the use of additional information on the investment series relative to

Eq. (34). The former one can be written as ẏ(t)
y(t)

= A[ i(t)
y(t)
− i(t−T )

y(t)
],which can be rearranged

as
ẏ(t)

y(t)
= A[

i(t)

y(t)
− i(t− T )

y(t− T )

y(t− T )

y(t)
]. (55)

The ratio preceded by a negative sign timesA corresponds to what used to be the depreciation

rate in Eq. (34). Here today’s depreciation rate is determined by what events occurred in

the economy T periods ago. We replicate the two tests proposed in section (3). Figs. (13)

and (14) present the scatter plot of the time-trends of the two sides of the Eq. (55) In
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one, only countries whose coefficients are statistically different than zero for both variables

appear, whereas the other one includes all the countries for which the required data were

available, regardless of the statistical significance — we eliminate a few observations that

yield extremely large estimates (in absolute terms)of the right hand side of Eq. (55), so as

to locate more precisely on the diagram the remaining countries. A visual inspection of the

two diagrams indicates that the Ak model with vintage structure is more easily rejected by

this kind of cross-country evidence, for in both cases most of the countries fall in the ’wrong’

quadrants. However, the vintage Ak model is more likely to pass the consistency test than

the standard Ak model. This result can be grasped by comparing the two plots in Fig. (15).

The association between income growth rates and investment ratios is greater in the graph

were these appear in differences, as in Eq. (55), rather than in levels. The partial correlation

is about zero and 0.68, respectively.

8 Conclusion

This paper presented and evaluated the use of mathematical optimization tools applied to

the Ak growth model. We have neither developed new methodologies, nor supplied new

data. Yet, the journey was able to provide suggestive conclusions, one of which is presently

revisited.

The mathematical representation of the stock of capital has important consequences

for the interpretation of the time patterns of macrovariables. When capital has a vintage

structure, more information from a given set of data can be extracted. A spike of investment

today has positive and negative consequences over time. The positive ones, which are usually

picked up by models with no vintage structure, is given by the augmented productivity of

labor which is endowed with more capital. The negative ones appear when the machines of

a given age are being scrapped.

Despite the fact that the Ak vintage model contains a more detailed — although not

necessarily more realistic — representation of the stock of capital, its predictive power does

not seem to be any better than the original Ak model. Quite the contrary a cross-country

analysis showed that the association between the behavior of investments and per capita

growth rates is more likely to come out negative when differences in investment ratios are

being used (as suggested by the vintage model) than the current investment ratios (as implied

by the model with homogenous capital). But this outcome does not diminish the potential

returns of using optimization techniques in which the state variable is not a real number

but rather a distribution of an attribute. One potential area of application is the extensive

literature on inequality and growth.

From the methodological point of view, it emerged that the use of Dynamic Programming
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to solve the vintage Ak model is more appealing that the MP for it delivers a closed form

solution to the investment strategy which can be easily compared with the actual investment

time series of an economy. Unfortunately, if the production function is not linear in the

stock of capital, neither of the two methodologies surveyed here can be readily applied. This

means that for the time being the dynamics of vintage growth models with increasing or

diminishing returns cannot be fully described — unless, the production function can somehow

be transformed to look linear in the stock of capital. Finally, an issue that hopefully will be

addressed in the future is the choice of the scrapping time. The decision of when to adopt

a new piece of equipment is as important as that about the amount of investments to be

undertaken.8

A DP for vintage capital model

The content of this appendix is based on Fabbri and Gozzi (2006). The purpose is to

describe how to use dynamic programming to solve an optimization problem when capital

has a vintage structure.

A.1 Statement of the Problem

First we need to define a set that contains function mapping from the vintage span of

investment [−T, 0) into the set of real numbers. Let

L2([−T, 0);R+) =
½
f : [−T, 0)→ R

+ :

Z 0

−T
|f(s)|2ds < +∞

¾
,

For example every continuous (and every bounded) function on [−T, 0] is in L2(−T, 0).
Similarly,

L2loc([0,+∞);R+) =
½
f : [0,+∞)→ R

+ :

Z b

0

|f(s)|2ds < +∞ for all b > 0

¾

Secondly, we define the Hilbert space in which we will set the problem. This is M2 def
=

R× L2([−T, 0);R). Thirdly, we refer to x(t) ∈M2 as an Hilbert state. Therefore, if we call

γ(t)[·] ∈ L2([−T, 0);R) the function:
(

γ(t)[·] : [−T, 0)→ R

γ(t)[s]
def
= −i(t− s− T ),

the Hilbert state is

x(t) = (k(t), γ(t)[·]). (56)

8A recent discussion of this point can be found in Iacopetta (2007).
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Below we will denote the two components of x(t) as x0(t) ∈ R and x1(t) ∈ L2([−T, 0);R).
The set of the admissible controls is

Ii0 =
©
i(·) ∈ L2loc([0,+∞);R+) : i(t) ∈ [0, aki0,i(t)], a.e.

ª

and we can rewrite the functional we want to maximize in terms of the Hilbert state:

J(i0, i(·)) =

Z ∞

0

e−ρs
(Ax0(t)− i(t))1−σ

(1− σ)
ds.

A.2 The tools of the dynamic programming and the comparison

with the unidimensional case

The state equation The evolution of the system in the one-dimensional case is described

by the differential equation (20). Here the evolution of the system is described by a differ-

ential equation in the Hilbert space M2. Namely it can be proved, following Delfour (1986)

and Bensoussan and al. (1992), that the Hilbert state defined in (56) satisfies the following

differential equation in M2 that the state equation of our system:

(
d
dt
x(t) = G∗x(t) + i(t)(0, δ0 − δ−T ), t > 0

x(0) = x0,
(57)

where δ0 and δ−T is the Dirac measure in 0 and −T , and G∗ a suitable generator of a

C0-semigroup. See Pazy (1983) for a definition of C0 semigroup and for a definition of the

solution of the evolution equation in Hilbert space. The complete expression of G∗ is the

following:

⎧
⎪⎪⎨
⎪⎪⎩

D(G∗)
def
= {(ψ0, ψ1) ∈M2 : ψ1 ∈W 1,2(−T, 0;R), ψ0 = ψ1(0)}

G∗ : D(G∗)→M2

G∗(ψ0, ψ1)
def
= (0, d

ds
ψ1)

where W 1,2(−T, 0;R) is the Sobolev space of indexes 1, 2 (see Ziemer (1990)).

The value function . Once we have described the set of the admissible controls as

Ii0 =
©
i(·) ∈ L2loc([0,+∞);R+) : i(t) ∈ [0, aki0,i(t)], a.e.

ª

the value function of the problem is defined similarly to the one dimensional case (Eq. (27)

as

V (i0) = sup
i(·)∈ Iῑ

½Z ∞

0

e−ρs
(akῑ,i(t)− i(t))1−σ

(1− σ)
ds

¾

31



The Hamiltonians and the HJB equation To write properly the Hamiltonians it is

useful to recall the definition of the scalar product in M2: Given two elements (x0, x1) and

(y0, y1) of M2 we define h(x0, x1), (y0, y1)iM2 as


(x0, x1), (y0, y1)

®
M2 := x0y0 +

Z 0

−T
x1(s)y1(s)ds.

The current value Hamiltonian is defined as

HCV (x, p, i) = h( x
0, x1), GpiM2 + hi, δ0(p)

1 − δ−T (p)
1iR +

(A x0 − i)1−σ

(1− σ)
(58)

while the maximum value Hamiltonian is given by

H(x, p)
def
= sup

i∈[0,Ax0]
[HCV (x, p, i)] (59)

Note the formal analogy with the one-dimensional case: HCV (x, p, i) is obtained pairing the

state equation with a co-state variable (that here we call p) and adding the current utility.

The only difference is that in the one-dimensional case the pairing is obtained through a real

multiplication, here we need the scalar product in M2. Note also that the costate variable

in this case belongs to the space M2 (instead of R). Other difficulties arise from the non-

regularity of the term δ0−δ−T that does not belong to a functional space but is a distribution
(see for example Yosida (1995)), this means that the term hi, δ0(p)

1− δ−T (p)1iR makes sense

only if p1 is regular enough.

HCV (x, p, i) and H(x, p) are both written in quite an informal way (for example we have

not specified the domains of such functions) indeed here we want only to give a scheme of

the approach, avoiding details (that can be found in Fabbri and Gozzi (2006)).

The HJB equation The HJB is formally not very different from the HJB we introduced

in the one-dimensional case (26)

ρv(x0, x1)−H((x0, x1), Dv(x0, x1)) = 0. (60)

Nevertheless note that in the above HJB the differential Dv(x0, x1) is intended as a differen-

tial in a Hilbert space (see for example Yosida (1995)) and the Hamiltonian H has the more

complex formulation we described believe.

A.3 The steps of the DP method

Similar to the one-dimensional case (section 2) the application of the dynamic programming

to the solution of the vintage model is described in three steps.
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Step (1) - Solution of HJB We first look for a solution of the HJB. The solution, as

in the one-dimensional case, is found though a “guess”. A candidate solution is given and,

through direct computations, such function can be proved to be a solution of the HJB. A

solution of the HJB is given by

v( x0, x1)
def
= ν

µZ 0

−T
eξs x1(s)ds+ x0

¶1−σ
(61)

with

ν =

µ
ρ− ξ(1− σ)

σξ/A

¶−σ
1

(1− σ)ξ/A
.

To check that such function is a solution of the HJB (60) we have to differentiate it inM2,to

check that its differential is in the domain of G∗ and prove by direct computations that the

(60) is satisfied.

Step (2) - The feedback function The optimal feedback is given as in the one-dimensional

case by the argmax of the current value Hamiltonian (58). Namely it is defined as

φ(x)
def
= argmaxi≥0HCV (x,∇v(x), i) = Ax0−

µ
ρ− ξ(1− σ)

σξ/A

¶µZ 0

−T
eξsx1(s)ds+x0

¶
. (62)

This feedback function has to proved to be admissible and optimal, namely in order to prove

that φ(x) is an optimal feedback we should prove first that the trajectory driven by φ(x(t))

satisfies the positivity constraints for all the times and then, using the fact that v solves the

HJB (the idea is similar to the one used in Proposition 2.2 but some technicalities appear)

prove that such trajectory is optimal. This means that φ(·) is an optimal feedback and that

the function v is in fact the value function of the problem, thus v = V .

Step (3) - The explicit optimal trajectory To find the optimal trajectory we use, as

in the one-dimensional case (see (29)), the optimal feedback φ(x) and we express the optimal

control as

i∗(t) = φ(x∗(t))

that can be explicitly written as

i∗(t) = Ax∗0 −
µ
ρ− ξ(1− σ)

σξ/A

¶µZ 0

−T
eξsx∗1(s)ds+ x∗0

¶
. (63)

Now, recalling the definition of the Hilbert state x that was given in (56) φ(x∗(t)) can be

expressed in terms of the history of the investment and find a delay differential equation

(DDE) solved by the optimal investment. It is

i∗(t) =
A

σ

∙
1− ρ

ξ

¸
k∗(t) +

ρ− ξ(1− σ)

σξ/A

Z 0

−T
eξs i∗(−T + t− s)ds.
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Differently from the one-dimensional case such DDE cannot be solved explicitly and numer-

ical techniques will be used to obtain the graphics.

Nevertheless it is possible, considering the element of ψ = (1, s 7→ eξs) ∈ M2, to define

the function (
f : R+ → R

f : t 7→ hψ, x∗(t)iM2

and calculate its derivative. The computations are quite technical because they involve the

differential in M2 but it is possible to prove that c∗(t) = cf(t) for some constant c and

that df
dt
(t) = gf(t) for g = ξ−ρ

σ
. So that c∗(t) is an exponential and its initial value can be

computed using (63). Eventually we have that

c∗(t) = Ak∗(t)− i∗(t) = A(x∗)0(t)− i(t) = c0e
gt

where

c0 =

µ
ρ− ξ(1− σ)

σξ/A

Z 0

−T
(1− eξs) i0(−T − s)ds

¶

and g = ξ−ρ
σ
.

A.4 The limit for T →∞
It can be seen that the model for T → ∞ tends to the one-dimensional AK model. Note

that in the vintage case the term A included also the discounting factor δ that appears in

the classical case (or, that is formally the same, δ = 0). We have

ξ
T→+∞−−−−→ A ν

T→+∞−−−−→ α−σ
1−σ

g
T→+∞−−−−→ A− α = A−ρ

σ
c0

T→+∞−−−−→ αk

Moreover the value function tends to the one-dimensional one and the optimal trajectories

tend to the one-dimensional ones, indeed if i0 ∈ L2(−∞, 0) the term

µZ 0

−T
(1− eξs) ῑ(T − s)ds

¶
T→+∞−−−−→ k

and so the value function:

V (̄ι) = ν

µZ 0

−T
(1− eξs) ῑ(T − s)ds

¶
T→+∞−−−−→ α−σ

1− σ
k1−σ

that is the value function in the non-delay case.
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B The tools used in the simulations

As observed in Proposition 5.4 the problem of finding an optimal investment trajectory i∗ is

reduced to the one of solve the DDE (53). This can be rearranged as

i∗(t) = A

Z t

−T+t
i∗(s)ds− c0e

gt,

where instead of capital the history of investments appear. In differential form the above

equation becomes ⎧
⎪⎨
⎪⎩

di(t)
dt
= Ai(t)−Ai(t− T )− gc0e

gt

i(0) = A
R 0
−T i0(s)ds− c0

i(s) = i0(s) for all s ∈ [−T, 0).
(64)

In order to solve it numerically we first need to find ξ as root of the equation (48) using a

simple bisection algorithm. Secondly we use Matalb 6.5 DDE solver called ’dde23’ developed

by L.F. Shampine and S. Thompson. The routine allows to solve DDEs of the form

ẏ(t) = f(t, y(t), y(t− τ 1), ...y(t− τn))

and use an explicit Runge-Kutta triple. See Shampine and Thompson (2000) for a description

of the algorithm and to learn more on convergence results.

In both simulations presented in the text it was assumed that the system was on a

balance growth path before the shock. So the initial datum i0 is equal to i0(s) = Ieg0s where

I is a constant. The constant I does not alter the qualitative dynamics of the system, for it

appears in equations as a scale factor. In the simulation involving a shock in the technological

parameter the growth rate of the consumption and the asymptotic growth rate of capital,

output and investment go to a higher level, but in the short run oscillatory movements are

detectable for output and investments.
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Kōsaku Yosida (1995). Functional analysis. Berlin: Springer-Verlag.

Jerzy Zabczyk (1992). Mathematical control theory: an introduction. Boston: Birkhäuser.

William P.Ziemer (1990). Weakly differentiable functions. NewYork: Springer.

37



Country

Growth Rate 
of per Capita 
Consumption

Marginal 
Product. of 
Capital (A)

Net Return of 
Capital

Average 
Investment 

Ratios: 1950-
2000

Argentina 1.00 8.51 3.51 18.88

Australia 2.10 10.16 5.16 26.88

Austria 4.11 13.17 8.17 27.45

Belgium 2.92 11.39 6.39 26.27

Canada 2.24 10.36 5.36 23.85

Switzerland 1.65 9.48 4.48 30.85

Denmark 2.17 10.25 5.25 25.17

Spain 3.25 11.87 6.87 25.84

Finland 3.32 11.99 6.99 28.73

France 3.89 12.84 7.84 26.02

United Kingdom 0.08 7.12 2.12 19.32

Iceland 3.37 12.06 7.06 29.59

Israel 2.18 10.27 5.27 32.28

Italy 4.21 13.32 8.32 28.03

Japan 5.85 15.78 10.78 30.68

Luxembourg 3.19 11.79 6.79 26.95

Netherlands 3.09 11.64 6.64 26.23

Norway 2.89 11.33 6.33 32.48

New Zealand 1.24 8.86 3.86 23.64

USA 2.35 10.52 5.52 19.67

Source: Authors’ elaboration based on PWT 6.2

Note: The rates are in percentage. A country’s growth rate of consumption

is the estimated time trend coefficient of its log of per capita consumption
time series. The value of A is obtained from Eq. (11),

using the following parameters’ values: ρ = 0.02, δ = 0.05, and σ = 1.5.

Table 1: Growth Rates of Consumption and Capital Returns
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Parameter Value
T 10
A0 0.70
A 0.80
ρ 0.02
σ 14

Note: Parameters used for Simulation described in Section (6).

Table 2: Technological Shock

Figure 1: Phase diagram for the simple Ak model
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Source: Authors’ elaboration. Initial condition: k0 = 1.
Parameters’ values: ρ = 0.02, δ = 0.05, σ = 1.5, and A = 0.1051.
The error in choosing the initial consumption, c̃0, is 10% above or

below the optimal one.

39



Figure 2: No Transitional Dynamics in the Simple Ak model
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Note: The shock consists in a one-time reduction of the depreciation rate

from 5 to 4 percent. For other parameters’s values see note in Fig. (1).
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Figure 3: Comparing the Effects of a shock on rho and on delta

1 1.5 2 2.5 3
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

k

c

Phase Diagram

0 10 20 30 40
-3.5

-3

-2.5

-2

-1.5

Time

C
o

n
s
u

m
p

ti
o
n

 a
n

d
 I

n
v
e

s
tm

e
n

t 
(i
n

 L
o

g
s
)

Consumption and Investment Paths

Investment

Consumption

shock on ρ

shock on δ

shock on ρ

shock on δ

Source: Authors’ elaboration.

Note: The two plots compare the effect of a decline of δ from 5 to 4 percent.
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Figure 4: Per Capita Consumption and GDP in Constant US dollars
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Note: The top (bottom) line is the log of per capita income (consumption).
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Figure 5: Growth Rates and Capital Productivity
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Figure 6: Income Growth and Investment Ratio: 1950-2004
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Figure 7: Consistency of Time Trends
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Note: the time trend is estimated over the period 1950-2000.
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Figure 8: Consistency of "Significant" Time Trends
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Figure 9: Positive Technological Shock
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Figure 10: Share of Equipment over Structures in the US: 1950-2000
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Figure 11: Gradual Reduction of Scrapping Time

Note: Reduction of the replacement time at a rate of 0.05 for fifty periods,

from 10 to 7.5 years (see text).
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Figure 12: Growth Rate of per Capita Real GDP and Investment Ratio in
the US: 1950-2000
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Figure 13: Consistency of "Significant" Time Trends (Vintage-Version)
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Figure 14: Consistency of Time Trends (Vintage-Version)
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Figure 15: Vintage vs. non Vintage with Average Growth Rates
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Source: See Fig. (7)

Note: The horizontal axis of the bottom plot considers changes in investment ratio

over a 10-year window.

53


	spet25.pdf
	plots.pdf

