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ABSTRACT 

This paper uses the cross-sectional variance of the betas from the CAPM model to study herd 

behavior towards market index in Romania. For time-varying beta determination, three different 

modeling techniques are employed: two bivariate GARCH models (DCC and FIDCC GARCH), 

two Kalman filter based approaches and two bivariate stochastic volatility models. A comparison 

of the different models’ in-sample performance indicates that the mean reverting process in 

connection with the Kalman filter and the stochastic volatility model with a t distribution for the 

excess return shocks are the preferred models to describe the time-varying behavior of stocks 

betas. Through the estimated values, the evolution of the herding measure, especially the pattern 

around the beginning of the subprime crisis is examined. Herding towards the market shows 

significant movements and persistence independently from and given market conditions and 

macro factors. Contrary to the common belief, the subprime crisis reduces herding and is clearly 

identified as a turning point in herding behavior. 

Key words: Herd Behavior, CAPM, GARCH Models, Stochastic Volatility Models, Kalman 

Filter 
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1. Introduction 

In financial markets, herding is usually defined as the behavior of an investor to imitate 

the observed actions of others or the movements of market instead of following his own beliefs 

and information. The implications of the herd behavior for stock market efficiency are well 

documented in the financial literature. According to Chang, Cheng and Khorana (2000), when 

investing in a financial market where herding is present, a larger number of securities are needed 

to achieve the same level of diversification than in an otherwise normal market. Moreover, 

herding effect on stock price movements can lead to mispricing of securities since rational 

decision making is disturbed through the use of biased views of expected return and risk (Tan et 

al. (2008), Hwang and Salmon (2004)). Finally, the results about the existence of herd behavior 

are very useful for modeling stock behavior and provide information to the policymakers about 

whether or not they should be concerned about potential destabilizing effects of it (Demirer and 

Kutan (2006)). 

Despite the number of studies that have been carried out on the stock markets, quite a 

rare have analyzed the tendency of herd behavior of European countries in general and of 

emerging European countries in particular. The emphasis is traditionally put on Asian countries 

and the United States. This study is relevant on two levels since, first, it focuses on an emerging 

European country, and second, it aims to verify the existence or non existence of the herding 

phenomena according to the method elaborated by Hwang and Salmon (2004, 2008). 

 In order to test for the existence of herding on the Romanian stock exchange, the concept 

of ―beta herding‖ is used, as define by Hwang and Salmon (2008): ―Beta herding measures the 

behavior of investors who follow the performance of specific factors such as the market index or 

portfolio itself or particular sectors, styles, or macroeconomic signals and hence buy or sell 

individual assets at the same time disregarding the underlying risk-return relationship‖. 

Although this measure can be easily applied to specific factors, say herding towards Fama-

French HML or SMB factor for stock markets, the focus here is on beta herding towards the 

market portfolio. 

One merit of the seminal paper of Hwang and Salmon (2004) is that they separate the real 

herding from ―spurious herding‖, i.e. common movements in asset returns induced by movement 

in fundamentals (Bihkchandani and Sharma (2001)). They propose an approach based on the 

movements in the cross-sectional dispersion of the CAPM betas which leads to a measure that 
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can empirically capture the extent of herding in the market, viewed as a latent and unobservable 

process. 

In order to determine the time varying betas, Hwang and Salmon (2004, 2008), as well as 

Khan, Hassairi and Viviani (2011) in a similar study, use the standard OLS technique. Wang 

(2008) adopts a rolling robust regression approach. In this paper a comparison between three 

different modeling techniques is employed: 

• GARCH conditional betas; 

• stochastic volatility conditional betas; 

• two Kalman Filter based approaches. 

To determine the performance of the models in generating the best measure of time-varying 

systematic risk, the different techniques are formally ranked based on their in-sample 

performance. 

 Empirical studies of herding in advanced and emerging markets have found mixed 

evidence regarding herding during crises. Contrary to common belief, a crisis appears to 

stimulate a return towards efficiency rather than an increased level of herding. This hypothesis is 

tested using weekly data for the period 2003-2012 which was characterized by the beginning of 

the subprime crisis.  

The rest of the paper is organized as follows: section 2 reviews the most important 

studies that appeared in the field of herd behavior, section 3 describes the concept of beta 

herding, as well as the competing modeling techniques used to investigate the time-varying 

behavior of systematic risk, section 4 presents the data, section 5 raises some problems regarding 

the estimation techniques employed and discusses the results, while section 6 concludes. 

 

2. Literature review 

In recent years there has been much interest in herd behavior in financial markets. In the 

middle of the current worldwide financial crisis, herd behavior seems a plausible explanation for 

the misalignment of prices and fundamentals. This part of the paper provides an overview of the 

main theoretical and empirical research on this topic. 
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2.1 Motives and determinants – theoretical models of herd behavior 

The phenomenon of herding was first studied in psychology. For instance, Asch (1952) 

observed that individuals often abandon their own private signal to rely predominantly on group 

opinion. Seminal articles by Banerjee (1992), Bikhchandani, Hirshleifer and Welch  (1992) and 

Welch (1992), among others, introduced herding models into the finance literature and 

highlighted its possible consequences for the overall functioning of financial markets and 

information processing by individuals. The main drawback of these seminal papers is the fact 

that they assume a perfectly elastic supply (investment opportunity is available to all individuals 

at the same price). This may be reasonable in some cases - for instance, Bikhchandani et al. 

(1992) refer to the choice of adoption of a new technology whose cost is fixed. However, this 

assumption makes them unsuitable to analyze stock market, where asset prices are certainly 

flexible. 

The assumption of fixed prices is relaxed in Avery and Zemsky (1998). The presence of a 

price mechanism makes it more difficult for herding to arise. Nevertheless, there are cases in 

which it occurs3.  

There are three main reasons identified in literature for rational herd behavior in financial 

markets4: imperfect information, concern for reputation and compensation structures. The 

articles mentioned above are part of the information-based herding literature. Other relevant 

models are the ones of Chari and Kehoe (1999) and Calvo and Mendoza (1998). Seminal works 

for reputation-based herding include Scharsfstein and Stein (1990) and Graham (1999). Maug 

and Naik (1996) provide a single risky-asset model to explain how the compensation-based 

herding can occur. Admati and Pfleiderer (1997) extent the research to a multiple risky-assets 

model of delegated portfolio management.  

 

2.2 Herding measures in empirical research 

There is a lack of a direct link between the theoretical discussion of herd behavior and the 

empirical specifications used to test for herding. On one hand, theoretical research has tried to 

identify the reasons and mechanism through which herd can arise; the models proposed are 

                                                           
3
 The case considered in Avery and Zemsky (1998) is when there is uncertainty about the average accuracy of trader 

information (for example uncertainty about the occurrence of an information event or about the model parameters). 
4 Not rational herd behavior is beyond the scope of this paper. According to Devenov and Welch (1996), the 
irrational view focuses on investor psychology where an investor follows other blindly. Momentum-investment 
strategies are a well known example of this type of herd behavior. 
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abstract and cannot easily be brought to data. On the other hand, the empirical studies usually 

does not test a particular model of herd behavior described in the theoretical literature5; instead, 

they gauge whether clustering of decisions, in purely statistical sense, is taking place in financial 

markets or within certain investors groups. The empirical herding literature, therefore, besides 

some special contexts or experimental settings – Cipriani and Guarino (2005, 2008), uses 

herding as a synonym for systematic or clustered trading.  

Two streams of empirical literature have been developed to investigate the existence of 

herding in financial markets. 

The first stream analyzes the tendency of individuals or certain groups of investors to 

follow each other and trade an asset at the same time. The statistical measures proposed to assess 

for herd behavior include LSV measure, proposed by Lakonishok, Shleifer and Vishny (1992) 

and PCM (portfolio-change measure) proposed by Wermers (1995). The first measure uses only 

the number of investors on the two sides of market and their tendency to buy and sell the same 

set of stocks. The second measure of correlated trading takes into account also the amount of 

stock the investors buy or sell, measuring herding by the extent to which portfolio-weights 

assigned to the various stocks by different money managers move in the same direction. Neither 

one of the 2 measure make possible to determine if the correlation trades results from imitation 

or merely reflects that traders use the same information. 

The second stream focuses on the market-wide herding, i.e. the collective behavior of all 

participants towards the market views. Two well known measures from this stream of the 

literature were developed by Christie and Huang (1995) and Huang and Salmon (2004, 2008). 

Christie and Huang (1995) propose a method of detecting herding behavior using stock 

return data. They regress the cross-sectional (market wide) standard deviation of individual 

security returns on a constant and two dummy variables designed to capture extreme positive and 

negative market returns. They argue that during periods of market stress, rational asset pricing 

would imply positive coefficients on these dummy variables, while herding would suggest 

negative coefficients (during periods of extreme market movements, individuals tend to suppress 

their own beliefs, and their investment decisions are more likely based on the collective actions 

in the market; individual stock returns under these conditions should tend to cluster around the 

overall market return). There are several drawbacks with this measure of herding. First, there 

                                                           
5 Exceptions include Wermers (1999), Graham (1999) and  Cipriani & Guarino (2010). 
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isn’t a fixed definition for ―extreme‖; in practice, investors may differ in their opinion as to what 

constitutes an extreme return. Second, this method captures herding only during periods of 

extreme returns. In addition, it does not control for movements in fundamentals, so it is hard to 

tell whether the negative coefficient, if there is any, is herding or just a sign of independent 

adjustment to fundamentals that is taking place. 

Chang, Cheng and Khorana (2000) extend the work of Christie and Huang (1995) by 

using a non-linear regression specification for examining the relation between the level of equity 

return dispersions (as measured by the cross-sectional absolute deviation of returns) and the 

overall market return. They find no evidence of herding in developed markets, such as the U.S., 

Japan and Hong Kong. However, they do find evidence of herding in the emerging markets of 

South Korea and Taiwan. 

Hwang and Salmon (2004) develop a new measure. They use the cross-sectional 

dispersion of the factor sensitivity of assets to detect herding towards the market index. More 

specifically, they offer a behavioral interpretation for the considerable empirical evidence that 

the CAPM betas for individual assets are biased away from their equilibrium values: significant 

changes in betas reflect changes in market sentiment rather than a time varying equilibrium, 

unless there are changes in fundamentals. When investors’ beliefs shift so as to follow the 

performance of the overall market more than they should in equilibrium, they disregard the 

equilibrium relationship and move towards matching the return on individual assets with that of 

the market. So, herding towards the market takes place. When considering this type of herding, 

the underlying movements in the market itself are taken as given, so the proposed measure 

capture adjustments in the structure of the market due to herding rather than adjustments in the 

market due to what Bikhchandani and Sharma (2001) refer to as ―spurious‖ or unintentional 

herding. Nevertheless, they use variables such as the dividend-price ratio, the Treasury bill rate, 

the term spread, and the default spread to check the robustness of the results in regards to 

fundamentals changes. 

Hwang and Salmon (2004) apply their approach to the US, UK and South Korean stock 

markets and find that herding towards the market shows significant movements and persistence 

independently from and given market conditions as expressed in return volatility and the level of 

the mean return. Macro factors de not explain the herd behavior. In a similar research carried out 

for 21 markets divided into three groups (developed markets, emerging Latin American countries 
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and emerging Asian countries)6, Wang (2008) finds a higher level of herding in emerging 

markets then in developed markets. Additionally, the herding measure, like some 

macroeconomics aggregate variables, follows a pattern of cycles. Khan, Hassairi and Viviani 

(2011), using the same measure, find evidence of herding behavior occurring in countries 

classified as high-tech European markets (France, Germany, Italy and UK) in the period from 

2003 to 2008 which was characterized by two important events: the dotcom bubble and the 

beginning of the crisis (subprime). 

 This empirical research on herding is important as it sheds light on the behavior of 

financial market participants and in particular whether they act in a coordinated fashion. Policy 

makers often express concerns that herding by financial market participants destabilizes markets 

and increases the fragility of the financial system. As specified in a recent research conducted by 

IMF (2011)7, one of the key lessons that can be drawn regarding systemic crises is that pure 

contagion and herd behavior could propagate shocks beyond those related to trade and financial 

linkages.  

 

3. The methodology 
 

3.1 Risk-Return Equilibrium with the Existence of Herding towards the Market 

The CAPM (Sharpe (1964)) is widely used in defining the risk-return equilibrium 

relationship of equities. The framework proposed is as follows: risk determines the asset return. 

However, Hirshleifer (2001) argues that expected return of an asset is not only compensated by 

its fundamental risk, but also related to the investor misevaluation caused by cognitive 

imperfection of investors and social dynamics such as herding. 

The use of cross sectional distribution of stock returns as an indication of herding was 

first introduced by Christie and Huang (1995) in the form of the cross sectional standard 

deviation of individual stock returns during large price changes. Hwang and Salmon (2004, 

2008) build on this idea but instead advocate the use of a standardized standard deviation of 

factor loadings to measure the degree of herding. Their measure has the advantage of capturing 

                                                           
6 Included in the developed markets are France, Germany, Hong Kong, Japan, United Kingdom and the United 
States; included in the Latin American group are Argentina, Brazil, Chile, Colombia, Peru, Mexico and Venezuela; 
and included in the Asian group are China, India, Indonesia, Korea, Malaysia, Philippines and Thailand. 
7
 Analytics of Systemic Crises and the Role of Global Financial Safety Nets. 
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―intentional‖ herding towards a given factor, such as the market (the approach considered in this 

paper), rather than ―spurious‖ herding during market crises. They find that, in the case of US and 

South Korea, herding towards the market happens especially during quiet periods for the market, 

rather than when the market is under stress.  

In essence, Hwang and Salmon (2004, 2008) measure herding on observed deviations 

from the equilibrium beliefs expressed in the CAPM. In a market with rational investors, the 

CAPM in equilibrium can be expressed as:   (   )         (   )                                                                        ( ) 

where     and     are the excess returns on asset i and the market at time t;      is the systematic 

risk measure, E(∙) is the conditional expectation at time t. 

The assumption of Hwang-Salmon is that investors form firstly the common market-wide 

view,   (   ), and their behavior is then conditional on it. When herding towards the market 

occurs, the investors shift their beliefs to follow the performance of the overall market more than 

they should in the CAPM: they buy the asset with a beta less than 1, since it appears to be 

relatively cheap compared to the market, and sell an asset with a beta more than 1, since the asset 

appears to be relatively expensive compared with the market. In other words, they ignore the 

equilibrium relationship in the CAPM and move towards matching the return on individual 

assets with that of the market. So, instead of the above equilibrium relationship, the following 

relationship it’s assumed to hold in the presence of herding towards the market:    (   )  (   )                   (       )                                                ( ) 

where    (   ) and       are the market’s biased short run conditional expectation on the excess 

returns of asset i and its beta at time t, and     is a latent herding parameter that changes over 

time,     ≤ 1.  

 When     = 0, there is no herding and the equilibrium CAPM holds. 

 When     = 1, there is perfect herding towards the market portfolio and all the individual 

assets move in the direction and with same magnitude as the market portfolio.  

 In general, when 0 <    < 1, beta herding exists in the market and the degree of herding 

depends on the magnitude of     . In this situation we have               for an 

equity with        and                for an equity with       . The individual 

betas are biased towards 1. 
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 When     < 0, there is reversed herding and high betas (betas larger than 1) become 

higher and low betas (betas less than 1) become lower. This represents means reversion 

towards the long term equilibrium    , an adjustment back towards the equilibrium 

CAPM from mispricing both above and below equilibrium. 

So when there is beta herding in the market, betas less than 1 tend to increase while betas 

larger than 1 tend to decrease. Using the relation described in Eq. 2, this tendency can be 

measured by calculating cross-sectional variance of (biased) betas:     (    )       (   )(      )                                                   ( ) 

where      (∙) represents the cross standard deviation. 

The existence of herding makes the cross-sectional dispersion of the betas smaller than it 

would be in equilibrium. The impact of idiosyncratic changes in      is minimized by 

calculating     (   ) for all the assets in the market. So     (   ) is not expected to change 

significantly unless the structure of companies within the market changed dramatically (and this 

is not the case for a short time scale). The assumption of constant      (   ), although may 

appear strong, it is then justified. With this assumption, changes in     (    ) over a short time 

interval can be attributed to changes in    . 

Taking logarithms of Eq.3 on both sides, it is obtained:     [    (    )]       ,    (   )-     (      )                                  ( ) 

 Using the assumption on      (   ), it can be written:     ,    (   )-                                                                                       ( ) 

where      (    ,    (   )-) and           (      ), and then:     [    (    )]                                                                                ( ) 

where        (      ). 

 Moving forward,      is assumed to follow a mean zero AR(1) process:                                                                                                   ( ) 

where          (      ). 

This is now a standard state space model with Eq.6 as the measurement equation and 

Eq.7 as the transition equation. It can be estimated with the Kalman filter. 
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3.2 The determination of time varying betas 

The difficult part in applying the methodology described above is the determination of 

time-varying betas.  

Beta represents one of the most widely used concepts in finance: it is used to estimate a 

stock’s sensitivity to the overall market, to identify mispricing of a stock, to calculate the cost of 

capital etc. In the context of capital asset pricing model (Sharpe (1964)), beta is assumed to be 

constant over time and is estimated via ordinary least squares (OLS). However, there now exists 

widespread evidence across many markets that beta risk is unstable over time (Brooks, Faff  and 

Lee (1994), Fabozzi and Francis (1978) etc.). Based on this evidence, it is appropriate to specify 

beta as a conditional time-varying series.  

Several different econometrical methods have been applied in the recent literature to 

estimate time-varying betas of different countries and firms (see for example Choudhrya and Wu 

(2007), Brooks, Faff and McKenzie (2002) etc.). Given the different methods, the empirical 

question to answer is which econometrical method offers the best results in terms of in-the-                                         

sample and out-of-the-sample forecasting accuracy.  

This paper investigates the time-varying behavior of systematic risk for 65 stocks listed 

on Romania stock exchange. Using weekly data over the period January 2003 - March 2012, 

three different modeling techniques are employed: 

 GARCH conditional betas; 

 stochastic volatility conditional betas; 

 two Kalman Filter based approaches. 

The results are compared only in terms of in-sample forecasting accuracy, as for determining the 

herd behavior parameter there is no interest in evaluating the forecast performances out-of-

sample. 

 

3.2.1 GARCH Conditional Betas 

 While in the traditional CAPM returns are assumed to be IID, it is well established in the 

empirical finance literature that this is not the case for returns in many financial markets. Signs 

of autocorrelation and volatility clusters contradict the assumption of independence and identical 

return distribution over time. In this case the variance-covariance matrix of a stock and market 

excess returns is time-dependent and a non-constant beta can be defined as: 
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 ̂            (       )   (   )   

where the conditional beta is based on the calculation of the time-varying conditional covariance 

between a stock and the overall market and the time-varying conditional market variance. 

 There are numerous studies in finance literature on the estimation of conditional beta 

with bivariate GARCH models, including Choudhry and Wu (2007) and others. There is also a 

vast literature on multivariate models with a number of different specifications for the volatility 

processes (Bauwens, Laurent and Rombouts (2006) survey the most important developments in 

multivariate ARCH-type modeling). 

 In this paper the Dynamic Conditional Correlation (DCC) multivariate GARCH 

model is employed. In the initial form proposed by Engle and Sheppard (2001), a univariate 

GARCH model is considered for each return series. As the estimated GARCH model parameters 

sum very close to one, indicating a high degree of volatility persistence to a shock, an alternative 

statistical specification for the DCC GARCH model is also tested by replacing the univariate 

GARCH model with the Fractionally Integrated GARCH model (Baillie, Bollerslev and 

Mikkelsen (1996)). The fractionally integrated version of the DCC (FIDCC) GARCH model is 

quite new to the literature: Halbleib and Voev (2010) use FIDCC GARCH model for dynamic 

modelling and forecasting of realized covariance matrices for six highly liquid stocks from 

NYSE, while Butler, Gerken and Okada (2011) use the same model to test for long memory in 

the conditional correlation between assets. 

The multivariate DCC GARCH model of Engle and Sheppard (2001) can be formulated 

as the following statistical specification: 

 

Model 1 (DCC GARCH) 

     /      ~ N (0,    )                                                                                             (1) 

    =                                                                                                                 (2) 

   = diag{       
}                                                                                                      (3) 

      =    + ∑                  + ∑                                                                       (4) 

                     =                                                                                                                    (5) 

    = (1 – ∑         – ∑       )   ̅+ ∑       (         ) + ∑                    (6) 

    =              
 .                                                                                               (7) 
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The conditional variance-covariance matrix        is composed of diagonal    matrix of 

time-varying standard variation from univariate GARCH-processes (Eq. 4) and a correlation 

matrix    containing time-varying conditional correlation coefficients. The conditional 

correlation is also the conditional covariance between the standardized disturbances (determined 

in Eq. 5). The symbols   ,   , and    stand for constants and coefficients associated with ARCH 

and GARCH terms, respectively. 

The proposed dynamic correlation structure is presented in Eq. 6.   ̅ is the unconditional 

covariance of the standardized disturbances:   ̅ = Cov (     ) = E [     ]. 
As    has to be positive definite as it is a covariance matrix, it follows that    has to be 

positive definite. Furthermore, by the definition of the conditional correlation matrix, all the    elements have to be between -1 and 1. Eq. 7 guarantees that both these requirements are met.       rescales the elements in    to ensure |   |≤1. In other words       is simply the inverted 

diagonal matrix with the square root of the diagonal elements of   : 
       (  √             √    ). 

The typical element of    is of the form      = 
    √       . 

 The specification of the univariate GARCH models is not limited to the standard 

GARCH(P,Q), but can include any GARCH process with normally distributed errors that 

satisfies appropriate stationarity conditions and non-negativity constraints8. As mentioned 

before, an alternative approach taken in this paper is to model the volatilities as 

FIGARCH(P,d,Q) processes: 

ϕ (L) (   )      = ω + [1 – β(L)]  , 

where     =         can be viewed as an unexpected volatility variation, ϕ(L) =    ∑             

and   ( )   ∑          are polynomials in L of order J-1 and P, J=max{P, Q}. It is the 

fractional differencing operator (   )   that allows volatility to have the long memory 

                                                           
8 Engle and Sheppard (2001) present the sufficient, not necessary, restrictions on parameters to guarantee positive 
definiteness for   . Exact conditions are much more complicated and can be found in Nelson and Cao (1992). 
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property. The fractional differencing operator is in fact a notation for the following infinite 

polynomial:    

 (   )    ∑  (   ) (   ) (  )       , where Γ(∙) is the standard gamma function. 

To ensure stability of the process, it is assumed that all the roots of ϕ(L) and 

1Llie outside the unit circle and that d is a fraction number between 0 and 1. 

Furthermore, the parameters of the FIGARCH model must be subject to additional restrictions to 

ensure that the resulting conditional variances are all non-negative9.  

 The corresponding conditional variance    can be expressed more explicitly as: ,    ( )-      ,    ( )    ( )(   ) -   . 

 Using the FIGARCH model described above, the second statistical specification for the 

DCC GARCH model considered in this paper is: 

 

Model 2  (FIDCC GARCH) 

     /      ~ N (0,    )                                                                                             (1) 

    =                                                                                                                 (2) 

   = diag{       
}                                                                                                      (3) 

 ,    ( )-        ,    ( )    ( )(   ) -                                         (4) 

                     =                                                                                                                    (5) 

    = (1 – ∑         – ∑       )   ̅+ ∑       (         ) + ∑                   (6) 

    =              
 .                                                                                                (7) 

                  

 The assumption of normality in the first equation (Model 1 and Model 2) gives rise to a 

likelihood function: 

         ∑ (    (  )       (        )            ) 

Without this assumption, the estimator will still have the Quasi-Maximum Likelihood (QML) 

interpretation. 

                                                           
9 Two different sets of sufficient conditions, valid for the FIGARCH (P, d, Q), P≤1, Q≤1, are available: Baillie, 
Bollerslev and Mikkelsen, (1996) and Chung (2001). Higher order models don’t make the subject of this paper. The 
sufficient conditions imposed in estimation are presented in the results’ section. 
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The estimation takes place in two stages. In the first stage univariate GARCH models are 

estimated for each series by replacing R with I (the identity matrix). The second stage is 

estimated using the correctly specified likelihood, conditioning on the parameters estimated in 

the first stage likelihood. Peters (2008) discussed in details the DCC(1, 1) model employed in 

this paper. 

 

3.2.2 Stochastic Volatility Conditional Betas 

The stochastic volatility (SV) models (Taylor (1982)) are considered as a successful 

alternative to the class of Autoregressive Conditionally Heteroscedastic (ARCH) models 

introduced by Engle (1982) and generalized by Bollerslev (1986) and others. 

The basic SV model is commonly found in the literature under the following form: {         ∙           (    )  ∙                 ∙  (      )      ∙     

where *  + is a sequence of financial returns (or excess returns), *  + is a sequence of the log-

variances of the returns, φ is the persistence parameter, η is the standard deviation of the log-

variance process, and {  + and *  + are Gaussian white noises sequences with mean 0 and 

variance 1. In the basic model corr(  ,   ) = 0. The model allows for a leptokurtic unconditional 

distribution as is often seen on financial time series (Andersen, Chung and Sorensen (1999)).  

 Due to the inclusion of an unobservable shock to the return variance, the variance 

becomes a latent process which cannot be characterized explicitly with respect to observable past 

information. As a consequence, the parameters of the SV model cannot be estimated by a direct 

application of standard maximum likelihood techniques. This is the reason why there is a quite a 

large list of alternative methods to estimate SV models: 

 Generalized Method of Moments (Melino and Turnbull (1990)); 

 Quasi – Maximum Likelihood (Harvey et al. (1994)); 

 A Bayesian approach employing a Monte Carlo Markov Chain (MCMC) technique as 

proposed by Jacquier et al. (1994) etc. 

 The SV model considered in this paper for time-varying beta estimation is the one 

developed by Johansson (2009). He proposes a combination of two existing approaches: causal 

volatility and dynamic correlation (Yu and Meyer (2006)). The model is defined as follows: 

 



15 

 

Model 3 (SV model with a normal distribution for the excess return shocks)                    (    (   )) ∙               (      )                     (                     )                       ∙ (       )                 .       (             )/                                                 ∙ (       )     ∙           (   )         (  )       (  )                    
 

The second equation shows that the correlation between the variables is time-varying. 

The correlation process is based on an AR(1) process. However,    needs to be bounded and for 

this a Fischer transformation is used. The Fischer transformation clearly bounds    by -1 and 1. 

 For the particular case discussed in this paper (time varying beta estimation), the model 

described above allows to see the correlation between a specific stock and the market index as 

evolutionary, while, at the same time, allows for volatility spillover. Γ is thus a 2X2 matrix with 

parameters for persistence in volatility and volatility spillover. 

As an excess kurtosis is a common feature in asset return distributions, a second 

specification for the SV model is also considered, i.e. a Student distribution for the return shock. 

Hence excess kurtosis is allowed. 

 

Model 4 (SV model with a t distribution for the excess return shocks)                    (    (   )) ∙               (        )                     (                     )                       ∙ (       )                 .       (             )/                                                 ∙ (       )     ∙           (   )         (  )       (  )                    
 

The 2 SV models are estimated using a MCMC technique as the comparative studies in 

the literature are in favor of this approach (see for example Andersen, Chung and Sorensen 

(1999)).  

The method is based on the Bayesian approach to modeling. The Bayesian approach 

involves the specification of the full probability model, that is the specification of the likelihood, 
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p(y|θ), and the prior distribution for the parameters, p(θ). The likelihood represents the 

probability of the data, y, given the parameters, θ, and the prior distribution represents the prior 

knowledge about the parameter distribution. The posterior distribution (what we are looking for) 

is related to priors through Bayes’ rule: 

p(ϴ/y) = 
 (   )∙ ( ) ( )  . 

Furthermore, since the left-hand side is a density for ϴ, the observation y can be seen as a 

constant. The density p(y) can thus also be seen as a constant and the above expression may be 

generalized into: 

p(ϴ/y) ∝   (   ) ∙  ( ) 

 The prior for the parameters has to be specified independently from the data sample and 

here very common distributions from the empirical literature are used (Chang, Qian  and Jian 

(2012), Sima (2007), Meyer and Yu (2006), Meyer and Yu (2000)):  

   ~ N(0, 25) 

    ~ N(0, 25)                   ~ beta(20, 1.5),        = (     +1) / 2                   ~ beta(20, 1.5),        = (     +1) / 2 

     ~ N(0, 10) 

     ~ N(0, 10)      ~ Igamma(2.5, 0.025)       ~ Igamma(2.5, 0.025) 

 δ0 ~ N(0.7, 10)                   ~ beta(20, 1.5),       = (δ1  +1) / 2      ~ Igamma(2.5, 0.025)                  ~  ( )       = v / 2 

 

They imply very general prior information of the different parameters. The means and standard 

deviations of these prior distributions are reported in Appendix 3. 

The estimation is carried out in WinBUGS (Bayesian Analysis Using Gibbs Sampling 

for Windows). Although this limits the construction of Markov chains from the required 

distribution (the posterior distribution in this case) to the Gibbs algorithm, there are several 

advantages that stood at the base of this choice. First, WinBUGS includes an expert system that 

can choose the best algorithms for sampling from full conditional posterior distribution without 
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any needs for the user to specify the sampling method10. Second, WinBUGS contains a deviance 

information criterion (DIC) module, which can be used to assess and compare different models 

for the same data according to both model goodness-of-fit and complexity. Third, WinBUGS is 

free and user-friendly. Meyer & Yu (2003) illustrate the convenience and ease of estimating 

univariate SV model within WinBUGS, and Meyer and Yu (2006) compare nine multivariate SV 

specifications by use of it again. Chang, Qian and Jian (2012) extend Meyer and Yu’s work by 

showing that Bayesian estimation and comparison of multivariate generalized autoregressive 

conditional heteroscedasticity (MGARCH) and multivariate stochastic volatility (MSV) models 

with MCMC methods could be straightforwardly and successfully conducted in WinBUGS 

package. 

The comparison between the two proposed specifications of the SV model (Model 3 and 

Model 4) is realized through deviance information criteria (DIC), automatically implemented in 

WinBUGS as mentioned above. The deviance is the difference between the fitted and the 

―perfect‖ model for the data. It was proposed by Spiegelhalter, Best, Carlin and Linde (2002) and 

is defined as: 

DIC =  ̅ + pd , where: 

1. D(ϴ) = −2 ⋅ log(p(y/θ )) the posterior distribution of the loglikelihood or the deviance 

  ̅ = E [D(ϴ)] the posterior mean of the deviance 

2.  ̅ = E [ϴ] 

D( ̅) the deviance of the posterior mean   =  ̅ – D( ̅) the effective number of parameters. 

ϴ represents the model parameters, y the data and p(y|θ) the likelihood function. 

So, DIC combines a Bayesian measure of fit (the larger the  ̅ is, the worse the fit) with a 

measure of complexity (pd represents a penalty for increasing the model complexity). When 

computing the DIC, a smaller value of the criterion indicates a better-fitting model. Meyer and 

Yu (2006) demonstrate its usefulness in the model selection process for the family of stochastic 

volatility models. 

Once the conditional variance series of the stock i and the market, have been obtained, 

the time-varying beta for stock i is constructed as: 

                                                           
10 Lunn, Thomas, Best and Spiegelhalter (2000) present the sampling methods used in WinBUGS. 
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 ̂         ∙(   (          )))   (   (         ))   . 

 

3.2.3 Kalman Filter Based Approaches 

 In contrast to the volatility-based techniques where the conditional beta series can be 

constructed only after the conditional variances of the market and stock i have been obtained, the 

state space approach allows to model and to estimate the time-varying structure of beta directly.  

Among the different algorithms for estimating the state space, the Kalman filter is in the 

center. It is a recursive procedure for computing the optimal estimator for the state vector at time 

t, based on the information available at time t. The derivation of the Kalman filter rests on the 

assumption that the disturbances and the initial state vector are normally distributed. When the 

normality assumption is dropped, there is no longer any guarantee that the Kalman filter will 

give the conditional mean of the state vector. However, it is still an optimal estimator in the 

sense that it minimizes the MSE within the class of all linear estimators. 

The Kalman filter is based on the representation of the dynamic system with a state space 

regression, modeling the beta dynamics through an autoregressive process: {                                          
with    denoting the constant transition parameter. The observation error     and the state 

equation error     are assumed to be Gaussian:  (       )   {                        

 (       )   {                         

and to be uncorrelated at all lags:  (       )   ) for all t and T. 

 In this paper, two state space specifications of the evolution of time-varying beta are 

considered: 

 

Model 5 (beta coefficient develops as a random walk) {                                               
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Model 6 (beta coefficient develops as a mean-reverting process) {                                ̅     (            ̅ )       
 

 

4. Data 

Empirical studies of herding have found mixed evidence regarding herding during crisis. 

Using the framework developed above, the issue is addresses here for an emerging European 

country (Romania) using weekly excess returns of market index BET-C11 and weekly excess 

returns of stocks listed on Bucharest Stock Exchange, covering the period from January 2003 to 

March 2012 (65 stocks). The de-listed companies (either as a cause of bankruptcy or by own 

choice) are not excluded from the study, trying to avoid in this way selection bias. The newly 

listed stocks during the considered period are included in the analysis from the time they entered 

the market. The only condition for a stock to be kept in the study is to have at least 1 year of 

trading history. 

Weekly excess returns between period t and t-1 for stock i are computed as:        (    )    (      )        
where      is the average closing price in week t, ln is the natural logarithm and     is the risk-free 

interest rate (deposit facility interest rate). 

In the second appendix some statistical properties of the stocks returns are reported. For 

the sample period, all the stocks returns are leptokurtic and thus non-gaussian. 

 

5. EMPIRICAL RESULTS 

5.1 Modeling Conditional Betas 

 In this section empirical results as long with some estimations problems, for the 3 

techniques presented earlier, are discussed: 

 

                                                           
11 Reflects the evolution of all listed stocks, with the exception of Investment Funds. 
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5.1.1 GARCH Conditional Betas 

  A DCC(1, 1) – bivariate GARCH model12 is employed. The univariate GARCH(P, Q) 

models estimated for conditional variances (Model 1) are selected by finding the minimum of the 

Akaike information criterion (AIC), allowing for P ≤ 2 and Q ≤ 2. In the fractionally integrated 

version of the DCC (FIDCC) GARCH, the variances are modeled as FIGARCH(P, d, Q ) 

processes (Model 2), allowing for P ≤ 1 and Q ≤ 1. Like in the previous case, the specification 

with the minimum AIC value is chosen. The reason why the analysis is restricted to short and 

relatively few lag specification is simply to keep the burden of estimation of all the models at a 

manageable size. It is reasonable to expect that the models with more lag will not result in more 

accurate forecasts than more parsimonious models. So, limiting the attention to the models with 

short lags should not affect the analysis. 

The estimation is carried out in Matlab, using the MFE and UCSD GARCH Toolboxes 

provided by Kevin Sheppard. In order to ensure the stationarity and a positive definite variance-

covariance matrix the following conditions are imposed: 

 GARCH(P,Q) - the following constrains are used (they are right for the (1,1) case or any 

ARCH case): 

      (1) ω > 0 

      (2)    >= 0 for i = 1,2,...Q 

      (3)     >= 0 for i = 1,2,...P 

      (4) sum(   +   ) < 1 for i = 1,2,...Q and j = 1,2,...P 

 FIGARCH(P,d,Q) - the following constraints are used: 

     (1) ω > 0 

     (2) 0<= d <= 1 

     (3) 0 <= Φ <= (1-d)/2 

     (3) 0 <= β <= d + Φ 

The notations are the same with the ones used in section 3.2.1. 

For each of the chosen specification, Engle and Sheppard’s (2001) test for constant 

correlation is also considered. More information about this test are provided in Appendix 1. The 

test is implemented in the present study using 5 lags.  

                                                           
12 Engle and Sheppard (2001) shows that the DCC(1,1) - MVGARCH model demonstrates very strong performance 
especially considering the ease of implementation of the estimator. 
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For Model 1 the popular GARCH(1,1) and GARCH(2,1) specifications are chosen in 

more than 75% of the cases. 

 For Model 2 with only one exception, UAM stock, FIGARCH(1, d, 0) model is selected 

for modeling the conditional variances. For UAM stock FIGARCH (1, d, 1) is chosen.  

 The selected GARCH model specification for modeling conditional variances for each of 

the stocks is reported in Table 1 from Appendix 4. The results of Engle and Sheppard’s (2001) 

test for constant correlation are also provided (Table 2 from Appendix 4). The null of constant 

correlation, is rejected by the test in favor of a time varying correlation matrix for all the chosen 

specifications at the 10% significant level. 

A possible explanation for the poor results provided by FIDCC model may be related to 

the initial conditions required to start up the recursions for the conditional variance function 

when estimating the FIGARCH model. More specifically, unlike the finite-lag representation for 

the classical GARCH(P,Q), the approximate maximum likelihood technique (QMLE) for 

FIGARCH(P,d,Q) necessitates the truncation of the infinite distributed lags. Since the fractional 

differencing parameter is designed to capture the long-memory features, truncating at too low a 

lag may destroy important long-run dependencies, as shown in Baillie, Bollerslev and Mikkelsen 

(1996) who fix the truncation lag at 1,000 after performing Monte Carlo simulations. The 

estimation considered here was conducted using weekly data, and not daily data as in Baillie, 

Bollerslev a Mikkelsen (1996) and other papers that raise the problem of the truncation lag 

(Caporin (2003), Chung (2001)) and the maximum number of available observations for each 

security is 472. So fixing the truncation lag at 1,000 is not possible and anyway is not a suitable 

choice since the data is weekly and not daily. The lag length was set using all available past data. 

The descriptive statistics (mean and standard deviation) of the betas determined using the 

most suitable GARCH specification are provided in Table 5 from Appendix 4.  

 

5.1.2 Stochastic Volatility Conditional Betas 

Stochastic volatility models represent the second technique from the class of volatility 

models used in this study to model time-varying betas. 

Estimation for Model 3 and Model 4 is carried out in WinBUGS. The reasons for 

choosing this program have been already exposed in the section 3.2.2 of the paper. However, one 

drawback with this program is the fact that, due to the single move Gibbs sampler, convergence 
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can be slow. Therefore, to achieve a satisfactory precision for parameter estimates, a large 

number of iterations are needed, increasing the computational cost. 

The term convergence of an MCMC algorithm is referring to situations where the 

algorithm has reached its equilibrium and generates values from the desired target distribution. 

Generally it is unclear how much we must run an algorithm to obtain samples from the correct 

target distributions. However, a suitable large sample (e.g. 10,000 iterations) is considered to be 

an accurate approach (Gamerman and Lopes (2006)). Furthermore, there are several ways in 

WinBUGS  to monitor the convergence of the algorithm (Ntzoufras (2009)): 

 The simplest way is to monitor the Monte Carlo error since small values of this error will 

indicate that the quantity of interest was calculated with precision. The Monte Carlo error  

measures the variability of each estimate due to the simulation. 

 Monitoring autocorrelations is also very useful since low or high values indicate fast or 

slow convergence, respectively. 

 Another way is to monitor the plot of iterations: if all values are within a zone without 

strong periodicities and (especially) tendencies, then we can assume convergence.  

 Another tactic is to run multiple chains with different starting points. When the lines of 

different chains mix or cross in trace then convergence is ensured. 

 Finally, several statistical tests have been developed and used as convergence 

diagnostics. CODA and BOA software programs have been developed in order to 

implement such diagnostics to the output of BUGS and WinBUGS software. 

In this paper, the first 3 ways of monitoring convergences are considered. In determining 

time-varying beta estimates, a number of 310,000 iterations for each stock are employed. To 

minimize the dependence of the choice of starting values, a burn-in-sample of 10,000 iterations 

that are discarded from the final sample is used. Then, every 30th iteration of the following 

300,000 iterations are stored (in order to control for autocorrelation). So, a number of 

approximately 10,000 values are used for determining the posterior summary estimates of the 

MCMC output: mean, standard deviation, Monte Carlo (MC) error, histograms etc. 

For the two stochastic volatility models (Model 3 and Model 4), the value of deviance 

information criteria (DIC) is determined in order to establish which one of the two models fits 

better the data (Table 3 from Appendix 4). As shown in section 3.2.2 of the paper, a smaller value 
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of the criterion indicates a better-fitting model. With no exception, the second model (the return 

shocks modeled by a Student distribution) is chosen. 

The conditional correlation parameters indicate persistent correlation patterns between 

the stocks and the market, with a posterior mean larger than 0.5 in all cases. The significance of 

the parameters in the correlation process indicates the importance of allowing for a dynamic 

correlation structure in the model specification. 

The descriptive statistics (mean and standard deviation) of the betas determined using the 

2 SV models are provided in Table 5 from Appendix 4.  

 

5.1.3 Kalman Filter based approaches 

 The Kalman Filter has been applied to the two proposed specifications according to 

which the state vector      is either modeled as a random walk (Model 5) or as a mean-reverting 

process (Model 6). Even though the mean-reverting model requires the estimation of two 

additional parameters, the AIC is generally smaller than for the simpler random walk 

specification. So, for most of the stocks the second Kalman Filter specification is preferred 

(Model 6).  

Although according to Faff et al. (2000) the random walk gives the best characterization 

of the conditional beta with highest convergence rates and shortest time to converge, seven firms 

(CBC, COTR, EPT, SNO, SPCU, UAM, UZT) fail to converge to a unique solution when the 

random walk is chosen as the form of transition equation. This is indicative of a misspecification 

in the transition equation. 

The parameter estimates are presented in Table 4 from Appendix 4, along with the AIC 

value. In the mean-reverting model, the estimates for the speed can be clustered into three 

groups: 

    is close to unity: the resulting series of conditional betas become similar to the random 

walk series; 

    is around 0.5: the conditional betas return faster to their individual means; 

    is not statistically different from 0: the resulting beta series follow a random 

coefficient model. 

The estimation is carried out in Eviews.  
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5.2  Comparison of Conditional Betas Estimates 

All conditional betas series are summarized by their respective mean and standard 

deviation in Table 5 from the Appendix 4. The GARCH based technique display the greatest 

variation, while the Kalman Filter based techniques the lowest one: 

 

Figure 1: The mean and the standard deviation of time-varying beta  
 

 

     

          

 

To determine which approach generates the relatively best measure of time-varying 

systematic risk, the different techniques are formally ranked based on their in-sample 

performance. Having forecast  ̂   using each of the conditional beta series (the excess return 

forecasts for security i is calculated as the product of conditional beta series estimated over the 

entire sample and the series of excess market return which is assumed to be known in advance), 

one may assess their accuracy using a measure of forecast error which compares the forecasts 

with the actual data. As is very possible that a large error will have a significant impact on the 

measure of herd behavior, the chosen measure for determining the in-sample performance is the 

root mean squared error (RMSE): 
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      √∑ (      ̂  )       

Since the errors are squared before they are averaged, the RMSE gives a relatively high weight 

to large errors, placing a heavier penalty on outliers than other measures (for example the mean 

absolute error). 

 The resulting RMSE for the different modeling techniques are reported in Table 6 from 

Appendix 4. The RMSE is calculated only after the best specification for each of 3 different 

modeling techniques is determined based on information criteria: Akaike for Kalman Filter 

approaches and DCC GARCH models, DIC for SV models, respectively. 

 Within the class of volatility models, the SV approach with a t-student distribution clearly 

outperforms the GARCH model. Only in one case (RPH stock), the DCC GARCH model with a 

GARCH(0,1) specification for modeling conditional variances performs better in terms of 

RMSE. Kalman Filter technique also performs well in terms of RMSE, and in almost half of the 

cases considered ranks first, outperforming the SV model. 

 

5.3 Results for the herding measure 

 As a final step, the Kalman filter is employed to estimate the herding indicator (   ) 
using Eq. 6 and Eq. 7 from section 3.1. The main results are reported in the first column of Table 

7 from Appendix 4.     is highly persistent with    large and significant. More important the 

estimate of     (the standard deviation of    ) is highly significant and thus we can conclude 

that there is herding towards the market portfolio. 

The below figure shows the evolution of the herding measure           (   ) along 

with the 95% confidence interval (primary axis). For a more comprehensive view, the evolution 

of the market index BETC is also plotted (secondary axis). 
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Figure 2: The evolution of the herding measure (   ) 

 

 

The largest value of     is far less than one which indicates that there was never an 

extreme degree of herding towards the market portfolio during the sample period considered. 

The figure shows several cycles of herding and adverse herding towards the market portfolio as     has moved around its long term average of zero over the last 9 years since 2003: 

 The Romanian market was on an upward trend during the first part of the analysis (years 

2003 and 2004). In this period the herding measure is significantly different from zero 

within a 95% confidence interval. As shown by Wang (2008), investors in newly 

established or emerging markets, with very little experience regarding stock exchange 

transactions, find it difficult or expensive to gather information in order to conduct 

fundamental analysis. Instead, observing and imitating other investors’ decision or the 

market index is relative cheap and easy. 

 In 2005 and 2006 the BET-C evolution is quite similar. The upward trend continued, but 

there was two suddenly falls in the index value, both in the first quarter of the year. The 

two periods coincide with a small decline in herd behavior, but only the second fall 

convinced the investors to stop herding.  

 Starting with the second quarter of 2006 the market shows an adverse herding behavior. 

This is in place with the findings of Hwang and Salmon (2004) for the US and South 

Korea markets: herding behavior turned before the market itself turned. However what is 

interesting in the Romania case is the fact that the herd behavior turned with more than 1 
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year before the market.13 As shown in section 3.1 adverse herding must exist if herding 

exists since there must be some systematic adjustments back towards the equilibrium 

CAPM relation from mispricing both above and below equilibrium. However there are 2 

periods with extreme adverse herd behavior: July 2007 and November 2007. The first 

period coincides with is considered to be the beginning of the worldwide financial crisis: 

Bear Stearns liquidates two hedge funds that invested in various types of mortgage-

backed securities. The second one is a result of a period of high volatility of the market 

index, with November being the month from which a downward trend began. 

 From 2007 the market doesn’t show important movements in herding. During market 

stress investors turn to fundamentals rather than overall market movements. However 

there are some periods of interest. The first one is the 4th quarter of 2008 – 1st quarter of 

2009: before the BET-C index reached its minimum value14, the market experienced once 

again a period of adverse herding, with betas moving away from their long run average 

levels. The next ones are June-July 2009 and December 2009 when herding behavior is 

again significantly different from zero within a 95% confidence interval. However, this is 

only for a short period of time; the important correction suffered by the index in 2008 and 

the beginning of 2009 made the investors more risk-adverse and less willing to follow the 

market movements. 

 

5.4  Robustness of the herding measure 

The main assumption done for detecting and measuring herding is regarding     (    ) that 

is expected to change over time in response to the level of herding in the market. However, as 

shown by Hwang and Salmon (2004, 2008), an important question remains as to whether the 

herd behavior extracted from     (    ) is robust in the presence of variables reflecting the state 

of the market, in particular the degree of market volatility or the market returns, as well as 

potentially variables reflecting macroeconomic fundamentals.  

 To check if changes in     (    ) could be explained by changes in these fundamentals 

rather than herding the following two alternatives models are considered: 

                                                           
13 According to Hwang and Salmon (2004), in the US case, herding started to fall with 4 months before the Asian 
crisis of 1997 and Russian crisis of 1998. This same pattern is repeated for the market fall in September 2000, 
except that herding started to fall some 9 months beforehand in this case. 
14 On the 02/25/2009 BET-C reached its minimum value: 1,887.14 points. 
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Alternative model 1 

{    [    (    )]                                               (      )                               (      )                                                                

 

Alternative model 2 {    [    (     )]                                                                (      )                              (      )                                                                                                       

 

where        = market log-volatility15  

          = market return 

          = average deposit interest rate for population 

             = average dividend ratio. 

 The results of the estimation are reported in the second and third column of Table 7 from 

Appendix 4. Only the market return (Alternative model 1) and the market return and the dividend 

ratio (Alternative model 2) are found to be significant.     is still significantly different from 

zero in both the alternatives models, although the degree of persistence is lower.  

 So with or without these independent variables, we find highly persistent herd behavior in 

the market. 

 

6. Conclusions 

Herding is widely believed to be an important element of behavior in financial markets 

and particularly when the market is in stress, such as during the current worldwide financial 

crisis. The study of the herd behavior is important due to its implications for stock market 

efficiency.  

In this paper the approach of Hwang and Salmon (2004, 2008) is proposed for measuring 

and testing herding. This measure conditions automatically on fundamentals and also accounts 

for the influence of time series volatility.  

In order to determine the measure of beta herding, explicit modeling of time-varying 

systematic risk for all the assets in the market is needed. The present paper has realized a 

                                                           
15 Determined as in Schwert (1989). 
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comparison between three different modeling techniques: two bivariate GARCH models (DCC 

and FIDCC GARCH), two Kalman filter based approaches (beta develops as a random walk 

process and beta develops as a mean-reverting process, respectively) and two bivariate stochastic 

volatility models (with a normal and a Student distribution, respectively, for the stock return 

shocks). Within the class of volatility models, the stochastic volatility approach with a t-student 

distribution clearly outperforms the GARCH model in terms of in-sample forecasting accuracy. 

Only in one case (RPH stock), the DCC GARCH model performs better in terms of RMSE. 

Kalman Filter technique also performs well in terms of RMSE, and in almost half of the cases 

considered ranks first, outperforming the stochastic volatility models. 

Through the estimated values obtained from a state space model, the evolution of the 

herding measure is examined, especially the pattern around the beginning of the subprime crisis. 

Herding towards the market shows significant movements and persistence independently from 

and given market conditions (the market volatility and the market return – Alternative model 1) 

and macro factors (average deposit interest rate for population and average dividend ratio – 

Alternative model 2). Contrary to the common belief, the crisis has contributed to a reduction in 

herding and is clearly identified as a turning point in herding behavior.  

 This study has focused entirely on one emerging European country (Romania). An 

extension of the research to other emerging European countries (Poland, Czech Republic, 

Hungary) can contribute to a better understanding of the phenomenon. Also, this paper does not 

take into account the herding behavior towards other factors like size and book to market value 

(Fama-French factors). It would be interesting to incorporate these in the econometric 

formulation to study the behavior of agents in the markets. 
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APPENDIX 

 

Appendix 1: Engle and Sheppard’s (2001) test for constant correlation 

 

 

 

Given the equations of the DCC GARCH model (section 3.2.1), Engle and Sheppard (2001) 

propose the following test:          ̅ ∀ t ∈ T 

against           (  )        ( ̅)          (    )          (    )              (    )  
where       is a modified      which only selects elements above the diagonal. 

 The standardized residuals from the estimation of the first stage (             ) are used. 

These residuals are standardized again by the symmetric square root decomposition of the 

constant correlation  ̅:          ̅    . 

 Let          ,         -. Under the null of constant correlation, the residuals    

should be i.i.d., and the constant and the lagged parameters in the vector autoregression                                          should be zero. The test statistic is thus given by:  ̂    ̂  ̂       (   ) 

where  ̂ are the estimated regression parameters and X is a matrix consisting of the regressors. 
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Appendix 2: The data (Statistical properties of the weekly stock returns) 
 

 
Mean Std. Dev. Skewness Kurtosis Jargue-Bera 

ALR -0.0035 0.0665 -0.6330 8.6171 355.0380 

ALT -0.0048 0.0646 0.3332 9.2261 480.3121 

ALU -0.0079 0.0672 -0.8309 9.8184 523.3005 

AMO -0.0003 0.0824 0.6049 8.1301 546.3757 

APC 0.0044 0.0588 1.2343 8.5367 575.7493 

ARS 0.0068 0.0512 0.7684 4.7888 59.0895 

ARTE 0.0035 0.0712 0.7581 8.5717 655.7389 

ART 0.0012 0.0693 0.1245 8.6725 441.9518 

ATB 0.0032 0.0479 -1.0084 12.3131 1,785.7360 

AZO 0.0073 0.0879 1.0917 12.5392 1,209.0130 

ARM -0.0011 0.0599 0.5821 7.4184 255.7476 

BIO 0.0004 0.0686 -0.0527 8.5389 343.9900 

BCC -0.0028 0.0492 -0.2422 14.2254 1,967.3090 

 BRD -0.0003 0.0495 -0.7785 8.1673 415.0264 

BRK -0.0074 0.0923 -0.3471 4.9850 23.4019 

BRM -0.0005 0.0589 -0.0138 6.7567 209.3489 

CBC 0.0086 0.0763 0.8509 8.0325 316.3198 

CEON -0.0113 0.0667 -0.2118 10.9441 495.7968 

CGC -0.0141 0.0905 -2.1093 11.1084 428.1591 

CMF 0.0074 0.0573 2.1043 12.4436 766.0748 

CMP 0.0032 0.0699 -0.7577 14.2747 2,545.1800 

COFI -0.0063 0.1231 0.2449 10.8717 677.4001 

COMI -0.0060 0.0870 0.1873 8.2711 281.5789 

COTR -0.0002 0.0940 1.0386 9.9931 558.7952 

DAFR -0.0107 0.0973 -2.4569 23.2908 4,885.2810 

ECT 0.0003 0.0602 0.9307 7.8526 509.8606 

EFO 0.0011 0.0679 2.1691 16.8792 3,365.6080 

ELGS 0.0135 0.0883 0.8724 10.1999 384.1743 

ELMA 0.0012 0.0709 1.3541 14.5446 1,224.5030 

ENP -0.0052 0.0782 0.9357 6.5495 67.0905 

EPT -0.0012 0.0871 2.1861 21.2554 6,390.0250 

EXC 0.0075 0.0534 1.9641 14.7339 1,020.7720 

FLA -0.0136 0.0650 -0.6508 15.0125 1,374.7780 

IMP 0.0064 0.0829 0.2242 16.7550 2,359.6230 

MEF -0.0016 0.0638 0.6090 3.8345 23.4338 

MJM 0.0075 0.0616 1.0934 8.4229 183.7729 

MPN -0.0007 0.0602 0.9714 8.4319 293.9791 

OIL 0.0019 0.0629 0.7198 13.0976 2,045.9810 

OLT 0.0161 0.0706 1.2204 6.3439 74.9847 
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PCL 0.0069 0.0539 0.1832 5.8955 107.1880 

PEI -0.0011 0.0617 1.0128 9.1069 814.1324 

PPL 0.0119 0.0697 2.3576 13.7029 815.0143 

PREH -0.0008 0.0964 1.7694 15.6717 2,048.2960 

PTR 0.0075 0.0702 1.5938 16.6975 3,889.7000 

RMAH 0.0006 0.1242 -4.6789 62.6578 3,657.0500 

ROCE -0.0096 0.0589 -0.9627 9.5735 471.1408 

RPH 0.0144 0.0851 7.0012 70.7887 2,946.7800 

RRC -0.0005 0.0606 1.0212 10.0365 914.8586 

RTRA 0.0032 0.0492 0.3181 5.4374 39.6620 

SCD 0.0027 0.0471 0.4093 12.9919 1,976.6570 

SNO -0.0017 0.0597 0.8755 9.9088 609.5729 

SNP 0.0026 0.0467 -0.4455 7.4414 403.5552 

SOCP 0.0007 0.0556 1.0178 9.1029 563.9257 

SPCU 0.0039 0.0880 1.4043 10.2112 776.0631 

SRT -0.0068 0.0535 0.1252 9.1370 507.7194 

STZ 0.0055 0.0756 0.5549 8.6505 449.0428 

TBM -0.0093 0.0609 0.3101 6.9597 201.4675 

TEL -0.0013 0.0459 -0.2410 5.3302 67.7116 

TLV 0.0074 0.0449 3.7090 25.7996 6,922.1190 

TUFE -0.0082 0.0560 -0.8505 7.5219 251.8906 

UAM 0.0043 0.0725 0.9075 6.5114 201.1596 

UZT 0.0021 0.0923 -1.0325 10.1936 282.3920 

VESY -0.0027 0.0649 0.3716 8.2218 381.3693 

VNC -0.0017 0.0482 -0.0275 5.9273 123.2204 

ZIM 0.0055 0.0583 0.6617 4.8807 59.5841 
 
 
Source: www.bvb.ro 
              www.kmarket.ro 
              www.tranzactiibursiere.ro 

 

 

 

 

 

 

http://www.bvb.ro/
http://www.kmarket.ro/
http://www.tranzactiibursiere.ro/
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Appendix 3: Means and standard deviations of the prior distributions for the parameters in 

the SV models 

 

                                       δ0 δ1    v   

Prior mean 0 0 0.86   0  0 0.86 0.12 0.12 0.7 0.86 0.12 8 
Prior SD 5 5 0.11  3.3 3.3 0.11 0.05 0.05 3.3 0.11 0.05 4 
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Appendix 4: Estimation results 

 
Table 1: GARCH specification chosen by the AIC for modeling conditional variances in 

DCC(1,1) GARCH model 
 

For every asset, the second series considered in the bivariate DCC GARCH specification is the excess return of the 
market index BET-C. 
 
 

Specification Stock 

GARCH(1,0) RTRA, BRK, COMI, ELGS, IMP, SOCP, STZ, TLV 

GARCH(2,0) - 

GARCH(0,1) ART, CBC, CGC, RMAH, RPH 

GARCH(1,1) 
ALR, ALU, ARTE, ARM, BRD, CEON, CMF, EFO, 
FLA, MEF, MJM, MPN, OLT, PEI, PPL, RRC, SNO, 
SRT, TBM, VESY, VNC, ZIM 

GARCH(2,1) 
AMO, APC, ARS, ATB, AZO, BIO, BCC, BRM, CMP, 
COFI, DAFR, ECT, EPT, EXC, OIL, PCL, PREH, ROCE, 
SCD, SNP, SPCU, TEL, TUFE, UAM 

GARCH(0,2) ELMA, ENP 

GARCH(1,2) ALT, COTR, PTR 

GARCH(2,2) - 

FIGARCH(0,d,1) - 

FIGARCH(1,d,0) - 

FIGARCH(1,d,1) - 

 

Table 2: Results for Engle and Sheppard’s test for constant correlation 

For every asset, the second series considered in the bivariate DCC GARCH specification is the excess return of the 
market index BET-C. The GARCH specification used to model the conditional variances was chosen using the AIC 
and it is specified in Tabel 1.  
 

Symbol p-value Symbol p-value Symbol p-value Symbol p-value 

ALR 0.015 CEON 0.0132 IMP 0.0009 SCD 0.0004 

ALT 0.0512 CGC 0.0345 MEF 0.0163 SNO 0.0001 

ALU 0.0072 CMF 0.0812 MJM 0.0001 SNP 0.0003 

AMO 0.0021 CMP 0.0010 MPN 0.0033 SOCP 0.0000 

APC 0.0056 COFI 0.0100 OIL 0.0003 SPCU 0.0001 

ARS 0.0502 COMI 0.0005 OLT 0.0004 SRT 0.0004 

ARTE 0.0007 COTR 0.0387 PCL 0.1165 STZ 0.0040 

ART 0.0026 DAFR 0.0227 PEI 0.0002 TBM 0.0102 

ATB 0.0012 ECT 0.0017 PPL 0.0015 TEL 0.0023 

AZO 0.0582 EFO 0.0309 PREH 0.0162 TLV 0.0106 

ARM 0.0137 ELGS 0.0008 PTR 0.0423 TUFE 0.0058 

BIO 0.0281 ELMA 0.0061 RMAH 0.0399 UAM 0.0041 

BCC 0.0246 ENP 0.1024 ROCE 0.0001 UZT 0.0561 
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 BRD 0.0065 EPT 0.0193 RPH 0.096 VESY 0.0042 

BRK 0.0009 EXC 0.0952 RRC 0.0044 VNC 0.0174 

BRM 0.0007 FLA 0.0363 RTRA 0.0285 ZIM 0.0723 

CBC 0.0076         

   

Table 3: The values of deviance information criteria (DIC) for the 2 stochastic volatilities 

models (Model 3 and Model 4) 

Symbol 
Model 3 

(Normal 

distribution) 

Model 4 

(Student 

distribution) 

Symbol 
Model 3 

(Normal 

distribution) 

Model 4 

(Student 

distribution) 

Symbol 
Model 3 

(Normal 

distribution) 

Model 4 

(Student 

distribution) 

Symbol 
Model 3 

(Normal 

distribution) 

Model 4 

(Student 

distribution) 

ALR -1,797.50 -2,074.34 CEON -1,220.46 -1,429.59 IMP -2,114.47 -2,406.52 SCD -3,626.79 -4,131.01 

ALT -2,052.00 -2,369.47 CGC -766.58 -909.44 MEF -1,668.30 -1,943.28 SNO -1,963.72 -2,284.48 

ALU -1,839.28 -2,108.06 CMF -1,245.93 -1,431.28 MJM -813.99 -955.05 SNP -3,852.14 -4,370.05 

AMO -3,105.48 -3,603.23 CMP -3,365.53 -3,869.65 MPN -1,336.34 -1,569.34 SOCP -2,288.72 -2,893.50 

APC -2,509.12 -2,940.91 COFI -1,535.08 -1,813.15 OIL -3,360.49 -3,855.27 SPCU -1,997.00 -2,344.99 

ARS -1,801.95 -2,082.56 COMI -1,557.52 -1,799.38 OLT -1,960.33 -2,307.48 SRT -2,186.10 -2,547.69 

ARTE -3,114.70 -3,641.35 COTR -1,476.80 -1,741.29 PCL -2,052.18 -2,383.30 STZ -2,059.67 -2,400.89 

ART -2,264.74 -2,619.25 DAFR -1,847.57 -2,117.55 PEI -3,230.58 -3,753.95 TBM -2,174.84 -2,500.93 

ATB -3,925.14 -4,158.81 ECT -3,014.26 -3,509.79 PPL -1,061.14 -1,214.07 TEL -2,224.24 -2,552.87 

AZO -2,058.29 -2,359.86 EFO -2,580.56 -2,979.36 PREH -1,678.64 -1,960.45 TLV -2,411.92 -2,688.00 

ARM -1,979.04 -2,286.89 ELGS -991.21 -1,176.16 PTR -3,347.09 -3,842.65 TUFE -1,814.91 -2,094.29 

BIO -2,021.62 -2,297.57 ELMA -1,542.99 -1,775.89 RMAH -1,648.94 -1,909.84 UAM -1,979.43 -2,306.83 

BCC -2,861.53 -3,247.79 ENP -567.17 -663.15 ROCE -1,521.05 -1,792.47 UZT -721.47 -850.69 

 BRD -2,928.66 -3,294.26 EPT -3,084.32 -3,610.89 RPH -1,082.48 -1,215.73 VESY -2,140.03 -2,514.43 

BRK -1,203.24 -1,381.70 EXC -1,254.37 -1,413.47 RRC -2,968.09 -3,414.96 VNC -2,609.43 -2,988.17 

BRM -2,467.41 -2,851.99 FLA -1,607.89 -1,842.64 RTRA -1,056.79 -1,237.69 ZIM -1,808.26 -2,097.62 

CBC -1,652.30 -1,970.60 
  

    
 

  
   

 

Table 4: Parameters’ estimates for Kalman Filter based models 

This table reports the estimated parameters for the two Kalman-Filter based models, along with the value for AIC. 
* means that the estimated parameter is not significant at the 10% level. 
 

 
RW MR 

 
     AIC       ̅        ϕ AIC 

ALR 0.0022 0.0269 -3.0957 0.0017 0.2413 1.0317 0.6036 -3.1827 

ALT 0.0025 0.0026 -3.1070 0.0023 0.0661 1.0389 0.5084* -3.1290 

ALU 0.0020 0.0613 -3.1120 0.0011 0.6024 1.0449 0.0658 -3.3110 

APC 0.0030 0.0002 -2.3825 0.0029 0.0123 0.8485 0.8467 -2.3767 

ARS 0.0026 0.0015 -2.9435 0.0022 0.1648 0.8886 0.0110* -2.9468 

ARTE 0.0043 0.0005 -2.5777 0.0044 0.0000* 1.0951 0.9965 -2.5705 

ART 0.0037 0.0016 -2.7328 0.0025 0.5179 1.0380 0.1598* -2.8187 
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ATB 0.0011 0.0072 -3.8605 0.0010 0.0546* 0.9197 0.5923 -3.9176 

AZO 0.0043 0.2341 -2.2989 0.0032 1.0117 0.7665 0.5282 -2.4225 

ARM 0.0033 0.0000 -2.8684 0.0024 0.3007 0.8747 0.0677* -2.9144 

BIO 0.0020 0.0010 -3.3233 0.0018 0.0556 1.0911 0.5454 -3.3392 

BCC 0.0014 0.0211 -3.5564 0.0012 0.1533 0.9340 0.4488 -3.6532 

BRD 0.0005 0.0095 -4.5786 0.0004 0.0540 1.0676 0.4964 -4.6458 

BRK 0.0045 0.0010 -2.5763 0.0042 0.0000* 1.4589 0.9675 -2.5874 

BRM 0.0029 0.0002 -2.9853 0.0025 0.1500 0.8691 0.0410* -3.0027 

CBC                -2.3463 0.0105* 0.7958 0.9265 -2.3407 

CEON 0.0030 0.0308 -2.7913 0.0028 0.1208 0.9930 0.6722 -2.8318 

CGC 0.0065 0.0268 -2.0885 0.0070 0.0000* 1.1706 -0.6388* -2.0551 

CMP 0.0028 0.0078 -2.9734 0.0024 0.2271 1.0184 0.1869* -3.0233 

COFI 0.0118 0.0126 -1.5354 0.0110 0.1807 1.2658 0.7970 -1.5483 

COMI 0.0037 0.0288 -2.6112 0.0034 0.1430 1.0645 0.7782 -2.6413 

COTR                0.0077 0.0000* 0.9848 -0.8573* -1.9909 

DAFR 0.0059 0.0093 -2.2200 0.0031 0.6627 1.3085 -0.9111 -2.3884 

ECT 0.0031 0.0000 -2.9217 0.0030 0.0268 0.8952 -0.6773* -2.9244 

EFO 0.0042 0.0000 -2.6281 0.0042 0.0000* 2.9143 1.0004 -2.6231 

ELGS 0.0131 0.0004 -1.4679 0.0130 0.0000* -0.0080* 0.9956 -1.4545 

ELMA 0.0046 0.0000 -2.7864 0.0035 0.0000* 0.9271 -0.8880* -2.7759 

ENP 0.0055 0.0002 -2.3156 0.0053 0.0141* 0.8908 0.7210 -2.2914 

EPT 1.0000 1.0000 -2.2598 0.0058 0.0623* 1.1368 0.4338 -2.2606 

EXC 0.0028 0.0018 -2.9986 0.0028 0.0000* 0.3097* 0.9780 -3.0075 

FLA 0.0036 0.0288 -2.6509 0.0024 0.6436 0.9600 0.1097* -2.7375 

MEF 0.0040 0.0000* -2.6702 0.0040 0.0000* 2.2701 1.0009 -2.6605 

MPN 0.0037 0.0013 -2.7150 0.0037 0.0012 0.6666 0.9510 -2.7110 

OIL 0.0026 0.0000 -3.1062 0.0024 0.0865 1.0272 0.0230* -3.1146 

OLT 0.0037 0.0000 -1.9631 0.0037 0.0000* 1.5292 0.9948 -1.9547 

PEI 0.0034 0.0001 -2.8312 0.0034 0.0000* 2.3926 1.0003 -2.8271 

PPL 0.0040 0.0001* -2.6469 0.0037 0.1059 0.9966 0.7679 -2.6307 

PTR 0.0035 0.0136 -2.7282 0.0027 0.3743 0.9385 0.4041 -2.8049 

RMAH 0.0110 0.1938 -1.4682 0.0078 1.9095 1.3012 0.5992 -1.5333 

ROCE 0.0030 0.0002 -2.9369 0.0028 0.0384 0.8714 0.4355 -2.9509 

RRC 0.0024 0.0029 -3.1402 0.0022 0.0596 1.0134 0.7772 -3.1484 

RTRA 0.0010 0.0016 -3.9809 0.0009 0.0563 0.5011 0.2562* -4.0128 

SCD 0.0014 0.0058 -3.6641 0.0013 0.0155 0.7786 0.9264 -3.6742 

SNO                0.0028 0.0015* 0.8924 0.9467 -3.0169 

SNP 0.0007 0.0032 -4.3440 0.0006 0.0502 1.0235 0.5038 -4.4112 

SOCP 0.0027 0.0001 -3.0714 0.0026 0.0130* 0.8503 0.7369 -3.0723 

SPCU                0.0080 0.0000* 0.8444 -0.7923* -2.2494 

SRT 0.0025 0.0011 -3.1308 0.0025 0.0005* 0.8954 0.9342 -3.1124 

STZ 0.0049 0.0000 -2.4605 0.0043 0.1590 0.9165 0.4413 -2.4730 

TBM 0.0022 0.0000 -3.2512 0.0019 0.1193 1.1196 0.3048* -3.2691 
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TEL 0.0009 0.0000* -4.1450 0.0009 0.0020* 0.9614 -0.5478* -4.1405 

TLV 0.0018 0.0003 -3.4436 0.0017 0.0406 0.8266 0.7180 -3.4513 

TUFE 0.0019 0.0017 -3.3901 0.0018 0.0112 1.0124 0.8426 -3.3966 

UAM                0.0043 0.0000* 0.8699 0.9863 -2.5788 

VESY 0.0041 0.0001 -2.6358 0.0041 0.0000* 0.7672 0.8994 -2.6392 

VNC 0.0015 0.0000* -3.6319 0.0013 0.1090 0.9155 0.2150* -3.6668 

ZIM 0.0032 0.0008 -2.8637 0.0032 0.0000* 3.7446 1.0010 -2.8671 
 

a Failed to converge 

 

Table 5: Properties of the time-varying beta estimates 

The mean of the time-varying beta estimates is presented for each security. In the brackets the standard deviation is 
shown. 
For the DCC Garch model, only the results obtained through the most suitable GARCH specification for the 
conditional variances (chosen using AIC) are shown because of the space limitation (11 specifications were tested). 
Observation: First two months’ data for each security were deleted in order to eliminate the effect of IPO (Initial 
Public Offerings) underpricing. 

 

Symbol KF RW KF MR 
DCC 

GARCH 

SV normal 

distribution 

SV t-student 

distribution 
 

ALR 1.0422 1.0345 0.9904 1.0367 0.9990 

  (0.3397) (0.3468) (0.3089) (0.1651) (0.1249) 

ALT 1.0303 0.8327 0.8327 1.0380 1.0434 

  (0.2008) (0.4308) (0.39) (0.2432) (0.2013) 

ALU 1.0494 1.0431 1.0254 1.0168 1.0064 

  (0.3936) (0.4818) (0.3) (0.1824) (0.1497) 

AMO 1.0015 1.0861 0.8199 0.9379 0.9579 

  (0.1341) (0.0624) (0.4679) (0.43) (0.3721) 

APC 0.9027 0.8468 0.7926 0.8814 0.8737 

  (0.0973) (0.0673) (0.4114) (0.194) (0.1375) 

ARS 0.9193 0.8624 0.7641 0.8989 0.9295 

  (0.0581) (0.0151) (0.3081) (0.2142) (0.2135) 

ARTE 0.8821 0.9867 0.7379 0.8731 0.8617 

  (0.1655) (0.041) (0.4992) (0.2797) (0.2639) 

ART 1.0405 1.0379 1.0698 1.0789 1.0698 

  (0.1554) (0.3343) (0.4367) (0.2504) (0.226) 

ATB 0.8997 0.9189 0.8761 0.8865 0.8840 

  (0.2103) (0.1185) (0.2298) (0.1214) (0.0894) 

AZO 0.7670 0.7723 0.7584 0.9110 0.9056 

  (0.7931) (0.6906) (0.4628) (0.2851) (0.2004) 

ARM 0.7273 0.8734 0.7606 0.8276 0.8608 

  (0.0287) (0.2342) (0.2086) (0.1377) (0.1029) 

BIO 1.0812 1.0921 0.9739 1.0180 1.0142 

  (0.1337) (0.0944) (0.4549) (0.2486) (0.2204) 
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BCC 0.9253 0.9340 0.8478 0.9156 0.9090 

  (0.2943) (0.2003) (0.2704) (0.1662) (0.1226) 

 BRD 1.0739 1.0681 1.0444 1.0543 1.0465 

  (0.2017) (0.1209) (0.1832) (0.1405) (0.1267) 

BRK 1.0562 1.3886 1.5718 1.3561 1.3376 

  (0.0354) (0.0874) (0.3543) (0.2836) (0.2298) 

BRM 0.9129 0.8686 0.6755 0.7680 0.7905 

  (0.076) (0.1152) (0.3922) (0.1694) (0.1223) 

CBC      0.7916 0.6908 0.7563 0.7232 

  
 

(0.091) (0.3586) (0.3382) (0.2036) 

CEON 1.0264 1.0009 0.8297 1.0292 1.0455 

  (0.3744) (0.206) (0.2742) (0.1449) (0.1086) 

CGC 1.0815 1.1706 1.2624 1.1334 1.0227 

  (0.2874) (0.0003) (0.6846) (0.3487) (0.1243) 

CMF 0.6737 0.7159 (0.4216) 0.5550 0.5604 

  (0.2085) (0.157) (0.4471) (0.2646) (0.2386) 

CMP 1.0106 1.0183 0.9700 1.0023 0.9962 

  (0.2874) (0.183) (0.4506) (0.2878) (0.2545) 

COFI 1.1951 1.2586 1.2615 1.5054 1.4908 

  (0.4275) (0.2947) (1.1517) (0.7939) (0.7325) 

COMI 1.0617 1.0694 1.1008 1.1581 1.1527 

  (0.5067) (0.3243) (0.0205) (0.3849) (0.2922) 

COTR      0.9850 0.7861 1.0166 0.9682 

    (0.011) (0.3362) (0.2523) (0.1779) 

DAFR 1.2170 1.3071 1.3384 1.2885 1.2829 

  (0.2671) 1.4303 0.7522 (0.3273) (0.2212) 

ECT 0.9431 0.8952 0.7677 0.8579 0.8766 

  (0.0586) (0.0549) (0.225) (0.153) (0.1154) 

EFO 0.9526 0.8935 0.7120 0.8596 0.8449 

  (0.0344) (0.06) (0.4023) (0.2561) (0.2155) 

ELGS 0.9798 0.7115 1.1003 1.1333 1.0559 

  (0.0676) (0.1475) (0.4235) (0.448) (0.312) 

ELMA 0.9721 0.9270 0.9038 0.8779 0.8652 

  (0.0244) (0.0052) (0.5787) (0.2019) (0.0941) 

ENP 1.0010 0.8907 0.8795 0.9952 0.9887 

  (0.0415) (0.0372) (0.4697) (0.1392) (0.0971) 

EPT      1.1366 1.0824 1.2508 1.2202 

    (0.051) (0.6467) (0.5506) (0.4423) 

EXC 0.6442 (0.4785) (0.4743) (0.4945) (0.4635) 

  (0.2228) (0.1509) (0.3398) (0.2784) (0.2066) 

FLA 0.7158 0.9617 0.6061 0.6944 0.7055 

  (0.3749) (0.4188) (0.2962) (0.2243) (0.2048) 

IMP 0.7760 1.1699 1.1712 0.8316 0.8799 

  (0.3053) (0.1422) (0.0903) (0.3271) (0.2373) 
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MEF 0.9958 0.8773 0.7266 0.9248 0.9343 

  (0.0276) (0.0771) (0.3863) (0.1174) (0.123) 

MJM 0.9380 0.7908 0.7753 0.8410 0.8457 

  (0.161) (0.128) (0.471) (0.2343) (0.1934) 

MPN 0.7678 0.6845 0.6997 0.8588 0.8466 

  (0.1716) (0.0559) (0.2268) (0.2856) (0.2688) 

OIL 1.0092 1.0267 0.9666 1.0132 0.9829 

  (0.0142) (0.0762) (0.5363) (0.2243) (0.1486) 

OLT 1.0236 1.1096 1.1096 1.2094 1.1814 

  (0.0220) (0.0607) (0.0607) (0.3989) (0.3365) 

PCL 0.8793 0.7580 0.7593 0.7734 0.7999 

  (0.1633) (0.1571) (0.3127) (0.1728) (0.1794) 

PEI 0.9318 0.8989 0.7154 0.9174 0.9134 

  (0.0388) (0.0572) (0.4325) (0.1837) (0.1138) 

PPL 1.0256 0.9924 1.0287 0.9998 0.9640 

  (0.0371) (0.2037) (0.7329) (0.4037) (0.2182) 

PREH 1.0084 0.9416 0.9416 1.1224 1.1231 

  (0.0137) (0.0318) (0.0318) (0.3252) (0.2370) 

PTR 0.9732 0.9380 1.0289 1.0211 1.0076 

  (0.2946) (0.3016) (0.3363) (0.2886) (0.2431) 

RMAH 1.2391 1.2645 1.1119 1.1602 1.0664 

  (1.2346) (1.0396) (1.1364) (0.7416) (0.4963) 

ROCE 0.9242 0.8715 0.8950 0.9490 0.9261 

  (0.0647) (0.0507) (0.2498) (0.1256) (0.0958) 

RPH 0.5807 0.6286 (0.3477) 0.6724 0.5989 

  (0.2075) (0.1929) (0.6286) (0.3706) (0.1843) 

RRC 1.0116 1.0092 0.9590 1.0793 1.0557 

  (0.2899) (0.1674) (0.2943) (0.3179) (0.242) 

RTRA 0.5223 (0.4981) 0.6730 0.7609 0.7686 

  (0.1589) (0.0805) (0.0316) (0.1138) (0.0591) 

SCD 0.7345 0.7828 0.6260 0.7371 0.7219 

  (0.3359) (0.1899) (0.3398) (0.3438) (0.2847) 

SNO      0.8925 0.9476 1.0335 1.0343 

    (0.0399) (0.2479) (0.1729) (0.1407) 

SNP 1.0337 1.0228 1.0118 1.0244 1.0206 

  (0.136) (0.1101) (0.187) (0.0856) (0.0854) 

SOCP 0.8948 0.8499 0.6933 0.9895 0.9728 

  (0.0947) (0.0372) (0.0382) (0.2761) (0.2207) 

SPCU      1.0720 1.0867 1.2013 1.2055 

    (0.0451) (0.473) (0.2848) (0.2541) 

SRT 0.9189 0.8953 0.8511 0.8994 0.8980 

  (0.1804) (0.0156) (0.3684) (0.2846) (0.2502) 

STZ 0.9664 0.9173 0.7976 0.8966 0.8620 

  (0.0264) (0.1456) (0.4235) (0.2601) (0.2188) 
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TBM 1.0583 1.1200 0.9881 1.0825 1.0975 

  (0.0629) (0.126) (0.2747) (0.1295) (0.1407) 

TEL 0.9907 0.9614 0.9068 0.9296 0.9260 

  (0.0263) (0.0061) (0.2109) (0.1267) (0.1258) 

TLV 0.8264 0.8276 0.8217 0.9106 0.8777 

  (0.1224) (0.108) (0.2351) (0.2744) (0.1849) 

TUFE 0.9991 1.0119 0.9844 0.9934 0.9892 

  (0.1384) (0.0706) (0.2658) (0.1836) (0.161) 

UAM      0.8697 0.8045 0.8910 0.8949 

    (0.0454) (0.3244) (0.2503) (0.235) 

UZT      0.9428 1.3501 1.2921 1.1564 

    (0.0287) (0.6506) 0.6185 (0.3727) 

VESY 0.8781 0.7699 0.6074 0.7755 0.8185 

  (0.0676) (0.0111) (0.4644) (0.2974) (0.2414) 

VNC 0.9676 0.9125 0.8153 0.8900 0.9082 

  (0.0418) (0.1183) (0.2529) (0.1364) (0.129) 

ZIM 0.7917 0.6652 0.6993 0.6882 0.7221 

  (0.2228) (0.2336) (0.232) (0.2676) (0.2511) 
 

a Failed to converge 

 
 

Table 6: In sample root mean squared errors 

This table reports the estimated in-sample RMSE for the 65 securities listed on Romanian Stock Exchange. The 
RMSE is calculated only after the best specification for each of 3 different modeling techniques is determined based 
on information criteria: AIC for Kalman Filter approach and DCC GARCH model, DIC for SV model, respectively. 
 

Symbol KF RW KF MR 
DCC 

GARCH 

SV normal 

distribution 

SV t-student 

distribution 
 

ALR 

 
0.0351 0.0523 

 
0.0481 

ALT   0.0530 0.0525   0.0476 

ALU 0.0388   0.0536   0.0478 

AMO 0.0731   0.0748   0.0687 

APC   0.0527 0.0548   0.0527 

ARS 0.0494   0.0501   0.0480 

ARTE 0.0655   0.0681   0.0633 

ART   0.0455 0.0626   0.0588 

ATB   0.0299 0.0357   0.0336 

AZO   0.0489 0.0783   0.0763 

ARM   0.0454 0.0592   0.0560 

BIO   0.0417 0.0473   0.0425 

BCC   0.0362 0.0490   0.0464 

BRD   0.0192 0.0251   0.0221 

BRK   0.0430 0.0456   0.0412 
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BRM   0.0470 0.0538   0.0509 

CBC   0.0730 0.0757   0.0726 

CEON   0.0502 0.0639   0.0600 

CGC 0.0674   0.0690   0.0717 

CMF 0.0589   0.0624   0.0580 

CMP   0.0454 0.0573   0.0509 

COFI   0.1019 0.1071   0.1035 

COMI   0.0540 0.0666   0.0628 

COTR   0.0758 0.0786   0.0746 

DAFR   0.0392 0.0571   0.0512 

ECT   0.0535 0.0571   0.0543 

EFO 0.0649   0.0664   0.0638 

ELGS 0.1130   0.1146   0.1120 

ELMA   0.0694 0.0706   0.0683 

ENP   0.0450 0.0495   0.0447 

EPT   0.0759 0.0796   0.0717 

EXC   0.0522 0.0536   0.0520 

FLA   0.0434 0.0656   0.0624 

IMP 0.0611   0.0678   0.0650 

MEF   0.0626 0.0640   0.0616 

MJM 0.0586   0.0661   0.0582 

MPN 0.0577   0.0590   0.0573 

OIL   0.0474 0.0533   0.0494 

OLT   0.0910 0.0915   0.0885 

PCL   0.0498 0.0513   0.0489 

PEI 0.0586   0.0617   0.0573 

PPL 0.0591   0.0598   0.0556 

PREH 0.0894   0.0923   0.0876 

PTR   0.0469 0.0618   0.0561 

RMAH   0.0625 0.1121   0.1022 

ROCE   0.0476 0.0532   0.0496 

RPH   0.0866 0.0840   0.0845 

RRC   0.0427 0.0486   0.0445 

RTRA   0.0462 0.0461   0.0454 

SCD   0.0351 0.0391   0.0359 

SNO   0.0476 0.0499   0.0468 

SNP   0.0222 0.0282   0.0256 

SOCP   0.0501 0.0517   0.0492 

SPCU   0.0777 0.0791   0.0756 

SRT 0.0493   0.0520   0.0485 

STZ   0.0638 0.0713   0.0680 
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TBM   0.0414 0.0495   0.0456 

TEL   0.0288 0.0300   0.0278 

TLV   0.0399 0.0439   0.0411 

TUFE   0.0389 0.0432   0.0394 

UAM   0.0657 0.0678   0.0635 

UZT   0.0900 0.0902   0.0857 

VESY   0.0601 0.0621   0.0585 

VNC   0.0322 0.0392   0.0369 

ZIM 0.0560   0.0574   0.0556 

 

 

Table 7: Estimates of state-space models for herding in the Romanian Market 

 

 

No exogenous 
variables 

 (Basic model) 

Excess market return 
and volatility 

(Alternative Model 1) 

Excess market return and 
volatility, deposit interest 

rate, dividend rate 
 (Alternative model 2)    -1.4461 -1.4518 -1.3666 

 
(0.0000) (0.0000) (0.0000)    0.9052 0.9025 0.8489 

 
(0.0000) (0.0000) (0.0000)     0.1048 0.1028 0.0986 

 
(0.0000) (0.0000) (0.0000)     0.1228 0.1234 0.1284 

 
(0.0000) (0.0000) (0.0000)     

 
0.0008 0.0001 

  
(0.8715)* (0.986)*     

 
-0.5734 -0.6141 

  
(0.0081) (0.0052)     

  
0.2315 

   
(0.8526)*     

  
-1.1535 

   
(0.0000) 

 
*The estimate is not significant at 5% level. 

 
 


