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Abstract

In this work we found first derivatives for the log likelihood function
of the multivariate probit model.

1 Introduction

The natural extension of the univariate probit model is the multivariate probit
model (MVPM) that consist of a system of simultaneous equations of several
non-observable dependent variables, in the case of the L-variate probit model
the structure is the following:
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where y{ is a L x 1 vector of non-observable variables, as before x;; is a vector
1 x k; of characteristics of the individual/observation i at the equation I, §; is
a coefficient vector k; x 1 and ¢, is an error.

By stacking the errors €, ; we define ¢; = (¢;1,...,&;,)) =~ N(0, P) where
P is a symmetric matrix L x L of pairwise correlations, such that:
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We will denote the multivariate normal density of a variable u = (uq,...,ur) €

RL with mean M and variance matrix € as
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where A; = [—o0,w; 1] X -+ X [—00, w; ] X -+ X [—00, w; ]
It’s straightforward to prove that in the multivariate case the log-likelihood

function is:
N

(B, Plz) = Y _log &1 (wi; 0, Ri)

i=1

where B = (B1,...,0,...,08L), wi = (win,...,wi,r), wig = 2yiy — D)z,
R; = Q;PQ; and Q); is a diagonal matrix N x N with diagonal (2y; — 1) and
zeros in the other elements.

2 Derivatives

In this section we will find analytical expressions for first and second derivatives
of the log-likelihood function, and for to begin we will introduce some nomen-
clature, Becuase R; = Q;PQ; we know that R; it is a symmetric matrix with
ones along the diagoinal:
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now by reordering this matrix we obtain:
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Proposition 1.
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where M} = Rz Wi, Qb= Riq1 — Ri1oR; 90 and wi 1 = (wi1, ...,
y Wi l—1, Wi l+1, - -, W; L)

Proof. By known facts

By (w;, Ry) / o1 (us 0, R, du—/ 611 (s My, Q24 (us: 0, L)du =

Wil
:/ ¢(ur;0,1)pr_1(u_y; My, QL)du = d(u;0,1)x P,y (wi_1; My, QL) duy
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because w;; = (2y;; — 1)x;;0; we have that
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where M} = R! | w;, QL = Rﬁ 1 Rz 12RZ 91- By using the last result and the
deﬁmtlon of €(ﬁ , P|z) we find the wished result
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Proposition 2.
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where M;" = Rz 12(Rz 22) (wi,lawi,k) , = Ri,l Rz 12(Rz 22) Rz 21
and Wi _x1 = (wl» vy WE—1, We—2, -+ -, W —1, W2, - '-wL)

Proof. By known facts
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where
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Without loss of generality we will rewrite M; 5; and €; 5 like
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Because we know that only ®o(wir, wik; My ki, Qi ki) depends on py, we will

just analyze the derivative of the second expression of the integrand in (6).
We know that

and
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Notice that the last expression is the density of the standard bivariate normal
distribution, then the limits w}j, w}, and the correlation coefficient p},, are
obtained by normalization using the mean M; j; and the variance matrix Qi ki,
notice too that only p; ., depends on py.

Then
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now by using the
O3 (wih, wi; pry)
s
(see Greene [1], pp 850) it is straightforward prove that
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By using the last result in (6), we obtain that
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and
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Finally using the last result and the definition of ¢(/3, P|z), we have that
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3 Conclusions

The first derivatives of the log likelihood function for the multivariate probit are
analytical expressions and without considerate the integral of the function it is
just necessary to calculate integral with one order less for obtain the derivatives.
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