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Abstract

We implement a novel method to detect systemically important financial institutions in a

network. The method consists in a simple model of distress and losses redistribution derived

from the interaction of banks’ balance-sheets through bilateral exposures. The algorithm goes

beyond the traditional default-cascade mechanism, according to which contagion propagates

only through banks that actually default. We argue that even in the absence of other

defaults, distressed-but-non-defaulting institutions transmit the contagion through channels

other than solvency: weakness in their balance sheet reduces the value of their liabilities,

thereby negatively affecting their interbank lenders even before a credit event occurs. In this

paper, we apply the methodology to a unique dataset covering bilateral exposures among all

Italian banks in the period 2008-2012. We find that the systemic impact of individual banks

has decreased over time since 2008. The result can be traced back to decreasing volumes in

the interbank market and to an intense recapitalization process. We show that the marginal

effect of a bank’s capital on its contribution to systemic risk in the network is considerably

larger when interconnectedness is high (good times): this finding supports the regulatory

work on counter-cyclical (macroprudential) capital buffers.
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1. Introduction

Over the last decades, the global financial system has become increasingly large and

interconnected. In several countries, a sizable fraction of the growth in the balance sheet of

the financial sector before the crisis could be attributed to mutual claims and obligations

among financial firms. Interconnectedness has been a key factor in precipitating the crisis as

troubles to one financial institution quickly propagated to other entities. In the last quarter

of 2008 a number of markets remained dysfunctional for weeks as investors were kept away

by uncertainty over the actual structure of exposures. Events showed that contagion may

jeopardize the smooth functioning of the global financial system, eventually imposing large

social costs to the entire economy and forcing public authorities to step in. In the economic

literature, network theory has been used to study the financial sector as a complex system of

interlinked agents. Theoretical and empirical works have focused mainly on (i) the assessment

of the likelihood of systemic contagion episodes, (ii) different contagion propagation channels

and (iii) the link between the network topology and the resilience of the system. The vast

majority of contributions investigate the contagion due to direct credit exposure between

two counterparties. When bank i defaults, its creditor, say bank j, faces a loss that is

proportional to the amount lent to bank i and to a certain recovery rate. Whenever the loss

exceeds the equity, bank j also defaults. Bank j propagates the shock to its creditors and

this may trigger a cascade of defaults. A measure of the defaulting banks in the cascade

represents the systemic risk posed by bank i. This approach (contagion through default) fails

to predict large contagion episodes. In particular, networks appear to be resilient up to a very

high threshold (tipping point), defined in terms of the severity of the initial shock. Systemic

events (i.e. a large number of defaults in the cascade) may occur only in the presence of very

large exogenous shocks.

This paper proposes a novel method to study contagion in financial systems. The simple

idea is that distressed-but-non-defaulting institutions transmit contagion before they actu-

ally default. In the previous example, only the default of bank i affects the equity of the

bank j. However, even before a credit event occurs, bank j’s balance sheet might become

weaker: as distance-to-default shortens, the value of bank j liabilities - including interbank

obligations - declines, thereby negatively affecting the creditors of bank j. As creditor banks

themselves become weaker, in turn, they also transmit some degree of contagion to their own

counterparties. As a general result, even if no institution actually fails, the overall system

may become much more fragile, as a non-negligible portion of the network’s equity is likely

to be wiped out in a marked-to-market perspective.
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Our paper aims at assessing the evolution of systemic risk in the Italian interbank network

over the past few years: we analyze a dataset of bilateral exposures obtained from supervisory

reports to the Bank of Italy. In doing so, we modify and improve a novel method put

forward by Battiston et al. (2012), DebtRank, which implements the contagion through

distress idea discussed above. Our measure, DR, is able to measure losses incurred by the

network following the default of each participating bank even when no other default occurs.

For each bank we compute a synthetic indicator - the DR - that expresses the fraction of

the total equity of the network which would be affected by an exogenous shock to the bank.

The basic idea underlying the metric is that whenever a debtor institution is weakened, the

market value of creditor banks equity is affected even before the debtor institution actually

defaults. The DR of an institution proxies its negative externality on the network. The

increase over time of the DR of many individual institutions at the same time is a footprint

of increased fragility of the network. The method is particularly suited at capturing network

externalities as it quantifies systemic risk on a continuous scale and is not limited to the

estimation of the tipping point. Therefore, it can be used to evaluate systemically important

financial institutions and may also represent a benchmark to implement new stress testing

exercises targeting linkages in the financial network other than interbank lending. This is a

brief summary of the main results of the paper:

Traditional indicators underestimate contagion risk. DR captures features of a bank

systemic importance, such as its positioning in the network´s topology, that would not

be apparent under standard default cascades models. In most cases, systemically relevant

institutions under DR would pose no threat to the network if losses were computed through

standard default cascades models.

The DR of Italian banking groups. Systemic risk in the Italian interbank network has

decreased since 2008. The decline is mainly due to decreased interconnectedness in the

unsecured interbank market, as opposed to decreased leverage in the system due to banks´

recapitalization process. Decreased interconnectedness can be traced backed to the sovereign

bond crisis, which dramatically reduced the amount of wholesale funds reaching the domestic

interbank market from international markets. In a sense, a crisis in the interbank market

has become less likely over time as another crisis took place in the sovereign bond markets.

Such a result suggests the existence of a sort of “interconnectedness cycle”: the financial

system is intertwined and contagion risk is high in “normal/good ” times (in our sample

period, before the sovereign debt crisis), the latter decreases with leverage in “bad” times.

Interconnectedness and macroprudential regulation. The evolution over time of the DR
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of Italian banks offers supports the case for counter-cyclical (macroprudential) capital reg-

ulation of banks. Through simple comparative statics, we show that the effect of a bank’s

capital on its systemic risk is much higher when the financial network is tightly intercon-

nected, which is most likely to happen in good times. Counter-cyclical capital buffers as

agreed by the Basel III accord may therefore substantially decrease systemic risk in good

times. On the other hand, the release of the buffer in bad times would have a marginal

impact on financial stability in the network.

Relationship to the literature. Interconnectedness has an ambiguous effect on the

stability of financial systems (Stiglitz (2010)). On the one hand, linkages across agents may

improve risk sharing and help allocating risks to those that are better equipped to bear them.

On the other hand, such linkages swell complexity and ease the propagation of propagation of

contagion if a shock affects the system. Interconnectedness is on the top of the international

reform agenda. Over the past few years, researchers across the board have been working

on the identification of early warning indicators beyond the micro-prudential risk metrics.

Recently the literature proposed different methodologies to measure sources of systemic risk.

Shapley values (Drehmann and Tarashev (2011)), the systemic expected shortfall (Acharya

et al. (2010) ) and CoVaR (Adrian and Brunnermeier (2011)) are among the most relevant

proposals for micro-level indicators that do not rely on network analysis. However, several

critics argued that these asset prices-based indicators might perform well as thermometers

(coincident measures), but not as well as barometers (forward looking indicators). To the

extent that they are backward-looking, these risk metrics are typically at their lowest just

before financial collapse takes place and have therefore little predictive value.

In many cases, these indicators have been proposed to circumvent the lack of data on

the real topology of financial systems and the associated impossibility to identify effective

contagion paths among institutions. As an alternative, network analysis based on real data,

when available, has been widely employed to explore the resilience of the system to conta-

gion of the financial system. These techniques allow to take into account the simultaneous

distribution of risks across agents, beyond the evaluation of the risk-bearing capacity of each

of them. Ultimately, however, the success of network techniques is intimately linked to data

availability and, in turn, new initiatives on data reporting and collection at both national

and international level may be affected by the success of the network approach.

Complex systems in which agents interact can have a simple network representation. In

the specific case of financial networks, each financial institution represents a node and bi-

lateral exposures between financial institutions are the links (or edges). Network analysis
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can be positive or normative. The positive, or static network, analysis allows the character-

ization of the network topology by means of statistical tools. This helps reaching a better

understanding of linkages, hubs and clustering within a financial system. The normative, or

dynamic network, analysis consists in the computation of outcomes that follows from an ini-

tial network structure that is exogenously perturbed. These exercises provide an assessment

of the relationship between the financial system architecture and its stability: results carry

relevant information for regulators, to the extent that they help identifying non-linearities

due to the network structure.

The interest and the number of contributions on financial networks are expanding consid-

erably. Beyond the well established theoretical literature on financial contagion (Allen and

Gale (2000), Freixas et al. (2000), Acemoglu et al. (2012)), the vast majority of empirical

contributions finds that the default of an individual institution is typically not able to trigger

a domino effect (see, e.g., Boss et al. (2004); Elsinger et al. (2003); Furfine (2003), Mistrulli

(2011)6). On the basis of the large sequence of contagion episodes of the recent years, the

adequacy of procedures used to carry out these contagion simulation exercises is under a

severe scrutiny. Recent research tries to fill the gap between the predictions of models of

contagion and the evidence from financial crises. More in detail, standard contagion analyses

in network economies are characterized by a common, basic idea. An initial shock that hits

a region of the network (e.g. a single bank) propagates through interconnected counterpar-

ties. In general, different kinds of shocks (default of a single or a group of entities, market

freeze, macro shock to common risk factors, ...), contagion channels (direct exposures, fire

sales, liquidity hoarding, ...) and indicators to express the systemic importance of individual

institutions have been proposed and analyzed.

Cont et al. (2011) propose to complement the idiosyncratic shock with a macro shock

that reduces the equity positions of all the banks in the network at the same time, reflecting

some sort of common risk exposures. An additional mechanism that may concur to the

aggravation of the contagion is the fire sale of assets from distressed institutions (Cifuentes

et al. (2005), Caballero and Simsek (2009), Shleifer and Vishny (2011)): such a response is

individually rational for a distressed bank, but it imposes a negative externality on other

institutions in the network, depressing asset prices and producing an inefficient aggregate

outcome (Gai and Kapadia (2010)).

6In the specific case of Mistrulli (2011), the paper considers unconsolidated exposures. In other terms, it
focuses on individual banks and not on banking group. In this respect, differently from our work, the paper
neglects the possibility of internal capital markets to efficiently manage the liquidity of the banking group.

5



2. Contagion through distress: the DR

Our work proposes a novel method to assess the systemic importance of individual banks.

The key idea is that a clear limitation of contagion through default models is their inability

to account for the fact that, even when the default does not propagate from a bank to its

counterparties, some distress do propagate nevertheless. In this sense, the contagion through

default approach implies an underestimation of the intensity of contagion mechanisms. On

the other hand, regulatory constraints (such as BCBS rules on Large Exposures) should make

the possibility of a default following the failure of a single counterparty highly unlikely.

In our work, we explicitly account for the fact that the bank j importing the contagion

becomes more fragile even in the case its equity is large enough to withstand the loss. The

higher fragility reduces the (market) value of its debt, making (at least) unsecured bank j’s

claimholders more fragile as well. The idea is fully consistent with the Merton’s view on the

market value of the bank’s debt. As a result, even in the absence of subsequent defaults in

the cascade, there can still be a significant systemic impact of an initial adverse shock. The

DR is the measure of systemic risk derived from our contagion through distress mechanism.

It complements traditional methods and provide a measure of the systemic importance of a

bank even when default cascades models predict no impact at all. In particular, the DR is

an extension of the so-called DebtRank algorithm introduced by Battiston et al. (2012). It is

inspired by feedback centrality and takes recursively into account the impact of the distress

of an initial node across the whole network.7

The DR is a measure of the centrality of the bank in the network and quantifies the

propagation and the final outcome in terms of the economic value of the network potentially

affected by the initial shock through the cascade of contagion.

Definition 1. The DR of the bank i expresses the fraction of the total economic value of the

network - excluding the bank i - posed at risk by some exogenous shock that hits the bank i.
It captures the potential negative externality imposed to the network by the bank, excluding

the direct impact of the exogenous shock.

As an illustrative example, let’s compute the DR of the bank i. Consider a simplified

chain of unsecured loans granted by bank k to bank j and by bank j to bank i, whose

amounts are denoted as xkj and xji, respectively. Let Ei, Ej and Ek be the equity of the

7Feedback centrality measures have found successful applications in many domains like rankings in the
world- wide-web (e.g. PageRank). Feedback centrality has a physical analogy with the in-flow in a non-
homogeneous diffusion process.
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three banks and E = Ei + Ej + Ek. In the paper, we use the Tier1 capital. A shock of

size s hits the bank i, the targeted bank, that suffers a loss Li = s. Even when Ei ≥ s, the

bank i is still able to transmit some contagion to bank j as the loss Li erodes its equity and

increase the bank i fragility. In particular, the loss for bank j is taken to be proportional to

the value xji (the loan to bank i) and to the factor hi = min[1, Li/Ei].
8

In this way, the algorithm embeds a type of convexity in the distance to default: the

lower the equity Ei, the lower the ability of bank i to absorb the shock, the higher the

contagion it transmits to bank j. The rationale is that the value of bank i’s obligations

decreases as bank i becomes closer to default and the value of its obligations to j declines.

Consider the case in which the initial, exogenous shock is large enough (s > Ei) and the

targeted bank i defaults. The impact on bank j is Wij = min[1, xji/Ej], with Wij = 1 when

the shock that propagates to bank j is large enough to knock the bank j down. The shock

propagates along the contagion path and reaches the bank k. The impact on the latter is

Wjk = min[1,Wijxkj/Ek]. In this simplified case, the DR of bank i is equal to:

DRi = Wij

Ej

E − Ei

+Wjk

Ek

E − Ei

(1)

After simple manipulations we get:

DRi =
1

E − Ei

[

xji +
xji

Ej

xkj

]

(2)

The first addendum in the brackets is the loss induced to bank j; the second is the loss

to bank k, derived as the impact xik/Ej transmitted by bank j and the exposures of bank

k to bank j. The overall loss to the network (the number of the expression in brackets)

is divided by the total equity of the system, to have a measure of the relative disruption

induced by the bank i on the network. Capital plays as a buffer that smooths the effects of

the initial shock to i along the cascade. In general, in a more complex network, bank k may

have several debtors that, as bank j, are exposed to the contagion from bank i. Following

the initial shock to bank i, at each iteration of the algorithm, some banks down the chain

are affected. The sum of the losses occurred to these banks, at each iteration, is used to

calculate the DR of the bank i.

One major refinement of our paper is that we explicitly account for a measure of riskiness

8Note that when the Li > Ei the bank i defaults. We assume that in the short run the recovery rate is
negligible and the value of its liabilities drops to zero.
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of the bank’s assets. Indeed, two banks may have the same leverage (ratio of total assets to

equity) but the composition of the asset side may differ substantially. More in detail, in the

previous example, the impact of bank j to bank k is

Ŵjk = min[1, cj Ŵijxkj/Ek]

where

cj =
Average Tier1 ratio

Tier1 ratio of bank j

where, as standard, the Tier1 ratio is defined as the ratio of Tier1 capital to Risk-Weighted

Assets. The coefficient c captures the riskiness of the bank relative to an overall average,

across banks and time; c acts as a buffer (it is lower than 1) for banks with a Tier1 ratio

above the average, and as an amplification mechanism for the others.

Finally, the method gets rid of possible infinite reverberations that can arise due to the

presence of loops (i.e. xjk > 0 and xkj > 0). In these cases, the contagion may bounce

several times between bank j and k, potentially until one or both default. To avoid this

problem, walks in which one or more edges are repeated more than once are excluded. At

each step t (the step is the time when the shock directly or indirectly reaches the node),

to the generic bank j we associate a state variable Sj that can take three values Inactive,

Distressed, Undistressed, so that:

Sj(t) =











Inactive if Sj(t− 1) = Distressed

Distressed if hj(t− 1) > 0 and Sj(t− 1) 6= Inactive

Undistressed otherwise

(3)

The algorithm stops when all banks are either in the Undistressed or the Inactive state.

3. Data description

Interbank linkages are the plumbing of financial markets. Exposures are surveyed within

the supervisory reports submitted monthly to the Bank of Italy. The historical depth of the

dataset hinges upon the continuity of data collection method: in principle, all information is

available on a monthly basis at least since the early 2000. However, the subsequent adoption

of different reporting templates complicates the coherent reconstruction of phenomena, for

which it may be necessary an aggregation of different technical forms. Taking into account

these difficulties, at this stage we have chosen to focus our preliminary analysis on unsecured

interbank relationships, from 2008 on. The resulting representation of the interbank market
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is a weighted and directed network, namely a set of nodes (banks) that are linked to each

other through different types of financial instruments (edges). The direction of the link goes

from the bank i having a liability to the bank j claiming the liability, and the weight is

the amount of the unsecured liabilities of i towards j. All data are available on a legal

entity basis, due to the regulatory purposes of the reporting. However, given the deeply

interrelated nature of financial markets and the significant concentration process which has

been undergoing in the past decade, both at the Italian and international level, we assume

that the economic agents underneath each transaction lie at the group level. For this reason,

in the first round of analysis we choose to consolidate individual data, leaving for a later

stage the analysis of the groups’ internal capital market. Finally, in our exercises we use

balance sheet information (e.g. total assets, core tier1 capital,...) from supervisory reports

and ad hoc data gathering, that are available both on a solo basis and a banking group level.

For a complete description of the Italian interbank network, see Bargigli et al. (2013).

4. The DR of Italian banking groups

4.1. The DR versus contagion through default

We compare our DR measure with the simplest, traditional indicator of systemic risk in

financial networks, namely the effects of a default of a bank in terms of other defaults in

the cascade. In Figure 1, these effects are measured as the ratio between the total equity

of banks that default in the cascade over the equity of the network. Only in few cases the

exogenous default of a bank brings about the default of other banks in the network and the

overall impact in terms of equity is small (in the worst case, it is about 2% of the total equity

of the system, against almost 18% for the DR measure).

Result 1. The DR differs substantially from indicators based exclusively on contagion-through-

default.

The DR is reported on the vertical axis. The horizontal axis shows the effect to the

network of a default of a bank, in terms of the fraction of the total equity of the network

that is lost when we restrict to contagion-through-default. Clearly, the DR predicts sizable

effects whereas the other measure typically shows no impact at all.

4.2. The DR before and after the sovereign debt crisis

Figures 2-6 report the DR of individual banks from 2008 to 2012. Graphs have a simple

interpretation. Each dot represents a banking group (consolidated data have been used,
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netting out infra-group relationships). The horizontal axis reports the size of the bank,

measured with its total assets (in millions of euros). The DR is reported on the vertical axis

and, in this case, is expressed as the fraction of the total equity of the system potentially

wiped out by an initial shock to a bank. In the DR computation, we exclude the direct

effect of the exogenous shock that hits the equity of the targeted bank. In this particular

case, we plot the DR of the bank associated to an exogenous shock that brings about the

default of the bank. The size of the dot depends on the interbank lending and borrowing of

the banking group with the network. Finally, the color of the dot represents the tier1 capital

ratio of the banking group.

Result 2. The DR of Italian banking groups has generally decreased since 2008.

The decline of the DR is very clear for medium and large banks. It is due to decreasing

interbank volumes exchanged in the unsecured market and to a quite intense process of banks

recapitalization (Figure 7).

Both phenomena reflect a global trend. However, while the sign of the impact of the two

trends on the DR is the same, they have polar opposite interpretations from a financial stabil-

ity perspective. Indeed, on the one hand, the proper functioning of the unsecured interbank

market is essential for an efficient use of liquidity within the financial system. The unsecured

interbank market dry-up during the sovereign debt crisis and the migration towards collater-

alized (often ECB) funding have been a widespread phenomenon in the Euro area periphery.

The spike in the spreads between interbank rates and overnight index swap rates almost

worldwide is a clear footprint. Acharya and Merrouche (2010) and Christensen et al. (2009)

find a precautionary hoarding motive for the sudden dry-up of money markets. Conversely,

in Taylor and Williams (2008) the key driver is the sizable increase in counterparty risk.

Regardless the underlying cause, a decline in the volume exchanged in the interbank market

is generally perceived as the symptom of a disease and represents a major concern for a

smooth functioning of funding markets and for the transmission of monetary policy signals.

The decreasing activity in the domestic interbank market follows a generalized dry-up of

cross border flows, which has been particularly severe for some Euro Area economies over

the 2010-2011 period (BIS Quarterly Review, June 2012): Italian institutions were quite

dependent on this source of funding that supported a portion of the domestic interbank

market and they had to resort to retail funding and to the Eurosystem to replace some of

their maturing wholesale liabilities. On the other hand, the regulatory response following

the global financial crisis has also pushed for a recapitalization of most institutions. One

major example is the European Banking Authority EU-wide capital exercise, that led to
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an increase of EU banks’ capital positions of more than 200 billions of euros. The average

leverage levels (core capital) for Italian banks have significantly decreased (increased) over

the 2007-2011 period.

A decline of the DR due to stronger balance sheets is desirable; the same conclusion

cannot be drawn when the systemic risk declines because the traditional flows of liquidity

are impaired and the entire system is more dependent on central bank funding. We disen-

tangle the two effects with a simple comparative statics exercise (Figure 8), running the DR

algorithm on two “mixed” networks. The first one is made up with unsecured interbank

exposures at Dec-2008 (when they were relatively high) and with banks’ capital levels at

Dec-2012 (relatively high). In the second exercise, the DR is computed using exposures at

Dec-2012 (relatively low) and capital levels at Dec-2008 (relatively low).

We can quantify the impact of more robust balance sheets on systemic risk when banks

are more interconnected (Dec. 2008) and compare it with the effect of capital when volume

exchanged in the network are lower (Dec. 2012). Comparing the two panels of the left

column of Figure 8, the effect of recapitalization on systemic risk is clearly noticeable when

the interbank market functions properly, private liquidity flows are significant and intercon-

nectedness is high. On the contrary, comparing the panels of the right column, the effect of

higher capital in a low-interconnected network seems much less significant.

4.3. Interconnectedness and macroprudential regulation

A new macroprudential orientation of financial regulation has been undoubtedly one

of the key directions of the reform roadmap. Microprudential regulatory frameworks, by

focusing on the soundness of financial institutions taken in isolation and disregarding the

effects of macroeconomic variables, interlinkages and exposures to common risk factors, have

been identified for contributing factors for the run-up of the crisis. In the new perspective,

authorities are called to actively manage capital regulation along the business cycle.

In this section, we use our network approach to financial fragility to investigate the link

between bank’s capital and systemic risk. In particular, we focus on the ability of capital to

reduce the systemic risk imposed by the bank to the financial network through contagion.

In our view, the results of this section provide a solid argument in favor of a counter-cyclical

capital buffer in line with the Basel III Accord. In the spirit of the reform, the buffer would

be properly imposed (released) in the expanding (contracting) phase of the business cycle.

Our approach captures one particular aspect of the cycle, namely the “interconnectedness

cycle”: during the crisis many links in the interbank unsecured market have been replaced

by central bank funding.
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In terms of the algorithm, in all exercises presented so far, in order to compute the DR

of the bank, we impose an initial shock that brings about the default of the bank. One

undesirable consequence of this approach is that the capital of the bank i, by construction,

cannot affect the DR of the bank i: regardless the financial fragility of the bank, the initial

shock always induces the default. In this section, we introduce two variations.

1. The initial exogenous perturbation to the bank takes the form of shocks of different

size distributed with some probability density function. More in detail, while in the

baseline DR computation the initial shock is the default of the targeted bank i, in

the exercise presented in this section we hit bank i with a number of shocks, one at a

time, and for each shock we run the DR algorithm. Then, to each shock corresponds a

number that represents the equity of the network that is potentially wiped out. Finally,

we compute a weighted average of these numbers, using the Normal probability density

function to obtain the weights (in other terms, the effects of very small and very large

shocks have a lower weight). One major effect of this exercise is that the bank i’s

capital directly affects bank i’s DR.

2. We compute the DR of the bank assuming an increase (call it DR+) and a decrease

(call it DR-) of the bank’s effective capital by the 20%. The outputs are two values,

namely DR+ and DR-, for each bank (at each date). The deviation of the DR from

the DR+ (DR-) represents the effect of an increase (decrease) of the bank’s capital on

its systemic risk.

Result 3. The impact of capital on systemic risk is higher when the network is intercon-

nected. This result supports the desirability of a counter-cyclical capital regulation of banks.

More in detail, for each bank, we first compute the difference between the DR and DR+.

The blue line in Figure 9 represents the evolution over time of the average value of this

difference for the top 5 banking groups, where December 2008 is taken as a reference point.

The red line is the same indicator for other medium/large banking groups.9

The impact of capital on systemic risk decreases substantially in the midst of the sovereign

debt crisis, with the dry-up of unsecured interlinkages. This result has a straightforward

implication in terms of capital regulation: authorities should be encouraged to actively

adjust capital regulation across the cycle as even small increases of the requirement (the

9The corresponding figures for the difference between DR- and the DR are almost perfectly identical,
suggesting a symmetric effect of the imposition and the release of the buffer, at each date.
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accumulation of a counter-cyclical capital buffer) in good times generate significant effects

in terms of reduction of the systemic risk. At the same time, the buffer may be released in

bad times, with an almost negligible increase of the systemic risk.

4.4. Size, interconnectedness and DR

The regulatory approach to systemic risk is changing. Several regulatory reforms are cur-

rently underway in all major jurisdictions worldwide and at the international level. These

reforms aim not only at increasing the capital and liquidity requirements for financial institu-

tions but, in some cases, at transforming the architecture of the financial system by imposing

constraints on activities and types of exposures. At the international level, the Basel III pro-

posal envisages an additional capital buffer for global systemically important banks (G-SIBs)

and, more broadly, for systemically important financial institutions (SIFIs).10 The G-SIB

surcharges will cope with the potential impact of an institution failure on the global financial

system and the wider economy. Interestingly, the focus of the Basel Committee goes beyond

the size of the financial institution and encompasses some measure of interconnectedness. In

the proposal, the latter is captured using three indicators, intra-financial system assets and

liabilities11, intra-financial system liabilities12 and the wholesale funding ratio. The proposal

surely represents a step forward. However, for each institution, the scores for the first two

indicators are calculated on the basis of the aggregate claims and obligations towards the rest

of the financial network. Our analysis emphasis the limits of measures based on aggregate

exposures and that neglect the topology of the network.

Result 4. The DR captures features of the systemic importance of a bank that go beyond

leverage, capital, size and interconnectedness.

As one would expect, the DR and the size of the bank are positively related. This is

mostly due to economies of scale in market making activity. In general, one important caveat

in the interpretation of the relationship between size and systemic risk is that we confine

the analysis to the domestic interbank market. Large institutions are more able to capture

10Consultation material can be found at http://www.bis.org/publ/bcbs207.htm.
11Lending to financial institutions (including undrawn committed lines), holdings of securities issued by

other financial institutions, net mark to market reverse repurchase agreements with other financial institu-
tions, net mark to market securities lending to financial institutions and net mark to market OTC derivatives
with financial institutions.

12Deposits by financial institutions (including undrawn committed lines), all marketable securities issued
by the bank, net mark to market repurchase agreements with other financial institutions, net mark to market
securities borrowing from financial institutions and net mark to market OTC derivatives with financial
institutions.
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funds in the cross-border interbank market thanks to higher visibility. Therefore, the whole

picture that includes foreign linkages would be different, especially in the first months of

our sample period, due to the intense cross-border interbank activity. For this reason, in

an extension of the exercise to the whole Euro area network, we would expect an increase

of the systemic risk posed by large banking groups. However, the relationship between size

and DR is absolutely non linear and banks with similar size may show very different DR

values. Interconnectedness plays a key role in determining the systemic risk of a bank.

Institutional features and banks’ business models may help explain the relatively high DR

of some medium-size institutions. They operate as a liquidity hub of regional networks of

very small, mostly co-operative banks.13

The systemic relevance of these banks is tied to the significant number of institutions

that would be involved in the distress-cascade, despite the relatively low size of their trades.

In particular, the increase of their DR is due to larger unsecured borrowing by co-operative

banks from ICCREA, their liquidity pool, that had access to ECB funding through the first

Long Term Refinancing Operation (LTRO).

5. Conclusions

In this work we try to put forward a new class of stress-testing techniques that (i) accounts

for non-linearities in contagion propagation that are typical of network-based models and

(ii) allows to identify systemically relevant institutions beyond default–cascade models. We

applied the methodology to a unique dataset of bilateral exposures in the Italian interbank

market.

Our results show that traditional indicators underestimate contagion risk. Our measure,

DR, captures features of a bank’s systemic relevance that would not be apparent under

standard default cascades models. DR estimates for the Italian banking system show that

systemic risk in the interbank network has decreased significantly since 2008. However, the

decline is mainly due to the fact that a crisis has indeed happened somewhere else in the

financial system, namely in the sovereign bond market, as opposed to increased capitalization

of the banking system. Such evidence strongly supports policy options in line with Basel

III such as counter-cyclical capital buffers for banks: the effect of a bank’s capital on its

systemic risk is much higher when the financial network is tightly interconnected, which is

13Figure 10 reports interbank exposures and Tier1 capital for Italian banking groups, classified with respect
to their size.
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most likely to happen in good times, its impact decreases with leverage in “bad” times.

Extensions of the current setting to liquidity-run contagion could complement policy-

makers discussion on countercyclical liquidity insurance fees.

List of Figures

Figure 1: DR versus contagion-through-default. Each dot is an Italian banking group. Vertical axis: DR;
horizontal axis: impact on the network measured with the equity loss, considering exclusively contagion-
through-default. Dot size: interbank lending and borrowing relative to total assets. December 2008.
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Figure 2: The DR of Italian Banking Groups at December 2008. Vertical axis: DR; horizontal axis: total
assets; dot size: interbank lending and borrowing; dot color: Tier1 ratio.
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Figure 3: The DR of Italian Banking Groups at December 2009. Vertical axis: DR; horizontal axis: total
assets; dot size: interbank lending and borrowing; dot color: Tier1 ratio.
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Figure 4: The DR of Italian Banking Groups at December 2010. Vertical axis: DR; horizontal axis: total
assets; dot size: interbank lending and borrowing; dot color: Tier1 ratio.
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Figure 5: The DR of Italian Banking Groups at December 2011. Vertical axis: DR; horizontal axis: total
assets; dot size: interbank lending and borrowing; dot color: Tier1 ratio.
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Figure 6: The DR of Italian Banking Groups at December 2012. Vertical axis: DR; horizontal axis: total
assets; dot size: interbank lending and borrowing; dot color: Tier1 ratio.

Figure 7: Interbank exposures and Tier1 capital of Italian banking groups (millions of euros).
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Figure 8: Lower volumes and higher capital. Top/left: DR at Dec. 2008. Top/right: DR at Dec. 2011.
Bottom/left: DR with Tier1 of Dec. 2012 and exposures of Dec. 2008. Bottom/right: DR with exposures
of Dec. 2012 and Tier1 of Dec. 2008. Vertical axis: DR; horizontal axis: total assets; dot size: interbank
exposures; dot color: Tier1 ratio.
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Figure 9: The impact of capital on the DR of top 5 and other medium/large Italian banking groups.
Dec 2008=100. Shock range =[1% - 15%] of total assets, interval between two successive shocks = 1%.
Probabilities of the shocks are taken from a Normal distribution, with mean= 5% and std deviation = 0.1.
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Figure 10: Interbank exposures (top panel) and Tier1 capital (bottom panel) by bank size measured with
total assets (TA, in millions of euros).
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6. Reverberations

In this paper we follow the DR methodology (Battiston et al. (2012)) and exclude second

order reverberation in loops. To clarify the issue, consider Figure (11), with a simplified

financial network, with 8 banks that interact through mutual exposures. Assume bank1

defaults following some exogenous event. For sake of simplicity, the contagion is taken to be

h = 0.5 for all exposures. What is key as regards reverberations, is the contagion between

bank 2 and bank 5, for instance. These two banks form a loop, as bank 2 is exposed to bank

5 and vice versa. In the cascade, the contagion may potentially reverberate ad infinitum or,

at least, until one or both banks default. In the present version of the paper, we consider

only one reverberation, excluding from the computation of the DR all the paths that have

been already visited.

Figure 11: Reverberations (read clockwise from the top-left).
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