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A STRUCTURAL MODEL FOR CREDIT-EQUITY DERIVATIVES

AND BESPOKE CDOS

CLAUDIO ALBANESE AND ALICIA VIDLER

Abstract. We present a new structural model for single name equity and
credit derivatives which we also correlate across reference names to produce a
model for bespoke synthetic CDOs. The model captures volatility and outlook
risk along with correlation risk for small and for large moves separately. We

show that the model calibrates well to both equity structured products and
credit derivatives. As examples, we discuss a number of single name derivatives
on IBM spanning the credit-equity spectrum and ranging from volatility swaps,

to cliquets, CDS options and CDSs on leveraged loans with pre-payment risk.
We also use the model to price tranches on the investment grade DJ.CDX.IG
index along with tranches on the high yield index DJ.CDX.HY. We show that
the model gives consistent and high precision pricing across all these derivative
asset classes. We show that this can be achieved consistently, with the very
same parameter choices across these diverse derivative assets and making use
of only minor explicit time dependencies.

1. Introduction

Devising a structural model for bespoke CDOs, equity structured products and
the new generation of volatility sensitive credit derivatives is an exercise at reconcil-
ing opposites: equity versus CDS spread volatilities, correlations between equity re-
turns versus systematic industry sector risk, single name long-dated path-dependent
derivatives versus tranche spreads, investment grade versus high-yield synthetic
credit portfolios, equity versus mezzanine and senior tranches. In this paper we
present a 5-factor structural model which accomplishes these multiple objectives.
The stochastic factors are firm equity value, name outlook, equity volatility, recov-
ery rates and number of shares outstanding. As a single name example we take an
IBM dataset and calibrate to high precision to American options, variance swaps,
CDS spread curves and historical CDS spread volatilities. Within this framework
we price single name derivatives probing vega convexity such as volatility swaps,
capped/floored cliquets and EDSs along with volatility sensitive credit derivatives
such as CDS options, CDSs on leverage loans and soft risky annuities.

We then extrapolate the IBM model to other reference names by resetting the
initial condition. This way we model names in the DJ.CDX.IG standard invest-
ment grade portfolio and the DJ.CDX.HY standard high yield portfolio achieving
a perfect fit to their CDS curve. We introduce two separate correlation factors for
each industry sector, one for equity returns and one for systematic credit risk and
calibrate to high precision to the 10-year term structure of tranche spreads across
the various segments of the capital structure for both portfolios with the very same
parameters.
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Model parameters are time-homogeneous with only few exceptions: an exogenous
interest rate, a term structure of recovery rates to fit CDS spread curves and a
slowly varying term structure of the systematic credit correlation factor to fit senior
tranche spreads. We make use of operator methods, the theory of Abelian path
dependent options and dynamic conditioning. We avoid Monte Carlo simulations
altogether for both path-dependents and basket derivatives and achieve a noiseless
and efficient numerical framework which yields smooth price sensitivities and is
ideally suited for the emerging multi-core architectures.

The quest for a satisfactory modeling framework for bespoke CDOs is attract-
ing considerable interest and we can hardly make justice of the literature be-
ing generated. A sample of papers which we found stimulating are (Andersen
and Sidenius 2004),(Giesecke and Goldberg 2005), (Hull and White 2003), (Joshi
and Stacey 2005), (Lucas et al. 2001), (O’Kane and Livesey 2004), (Li 2000),
(Schonbucher 2006), (di Graziano and Rogers n.d.). On our account, we first de-
veloped models combining jumps and local volatility for single name credit deriva-
tives using analytically solvable schemes (Albanese et al. 2003), (Albanese and
Chen 2005a), (Albanese and Chen 2005b), (Albanese and Chen 2004). Then we
shifted towards rating models specified non-parameterically (Albanese et al. 2005-
2006). Finally, we concluded it was necessary to incorporate detailed volatility
information in our model and developed an interest in equity derivatives and struc-
tured equity products which has led to the present paper. We came to conclude
that to meet the many objectives of this complex problem, nothing short of a uni-
fied credit-equity structural model can meet all the requirements and set out to
build one.

The model we present here is robust and parameterized in a quite intuitive
and controllable way. Our main focus in this article is to explain the modeling
assumptions and user interface of the model which are indeed quite simple. The
internal numerical workings we devised to support this modeling framework are
innovative and it would be difficult to make justice of their complexities in a short
paper as this one is intended to be. Instead we review some key technical concepts
and give snippets of derivations which we found of key importance.

2. The single name model

The single-name modeling framework we adopt is a 3-factor defaultable equity
model with stochastic volatility and stochastic outlook dynamics. The factors are
subsequently augmented to 5 by incorporating stochastic recovery rates and a sto-
chastic number of shares outstanding. We find that postulating a slowly varying
stochastic outlook dynamics alongside a faster mean-reverting volatility dynamics
is essential in order to reconcile within a time-homogeneous framework implied
volatilities of equity options and variance swap rates along with the term structure
of historical CDS spread volatilities. The two differ by a substantial factor of or-
der 2 to 4. The gap in volatilities can be reconciled within a 3-factor model like
ours because the information affecting equity volatilities is shorter lived than the
information affecting spread volatilities.

We calibrate the stochastic outlook term affecting long time scales by fitting
the CDS curve and use this information for long-dated extrapolations of the im-
plied volatility surface for equity options and for pricing equity structure products
affected by vega convexity, from capped and floored cliquets to volatility swaps.
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Along with equity structure product we also obtain a model fitting CDS spread
volatilities to high precision which is thus suitable to price CDS options, soft risky
annuities and CDSs on leveraged, amortizing loans affected by pre-payment risk.
We stress time-homogeneity as a key property and requirement for our single name
model. Apart from an exogenously specified term structure of interest rates, we
achieve high precision calibration to all of our objectives within the bounds of a
time-homogenous model. We take the view that whenever precision needs to be
absolute and perfectly accurate fits are required, then one should still insist on
high precision calibration of a time-homogeneous model and allow for only small
time-inhomogeneous adjustments having a minor impact on forward volatilities and
forward correlations.

We use operator methods and express our model in terms of a Markov generator
given by a time dependent matrix of the form

Lα(x, a,b;x′, a′, b′; t) =
(

Dout(x;x′|a, b)δaa′ − Jout(x, a;x′, a′|b)
)

δbb′

(1)

+Jvg(x;x′|b)δaa′δbb′ + Vsv(b; b
′|x, a)δxx′δaa′ + Jα

jtd(t)(δx′0 − δxx′)δaa′δbb′ .(2)

A state variable is given by a triplet y = (x, a, b) whereby x is related to the
stock price by a function S(x), a is an outlook indicator and b is associated to
volatility regimes. In our example, x = 0, ...69, the variable a takes two values
and distinguishes between a stable and a negative outlook and the variable b takes
three values corresponding to three levels for volatility: low, medium and high.
The index α denotes the reference name. As we explain in more detail below, we
assume that only the last jump-to-default term is name specific.

The Markov generator satisfies the following three conditions corresponding to
probability positivity and conservation and to arbitrage freedom, respectively:

Lα(x, a, b;x′, a′, b′; t) ≥ 0 if (x, a, b) 6= (x′, a′, b′)(3)
∑

x′,a′,b′

Lα(x, a, b;x′, a′, b′; t) = 0(4)

∑

x′,a′,b′

Lα(x, a, b;x′, a′, b′; t)(S(x′) − S(x)) = r(t)S(x)(5)

for all triples (x′, a′, b′). Here r(t) is an exogenously specified interest rate that we
assume to be piecewise constant. The matrix Dout(x;x′|a, b) is tridiagonal and is
chosen in such a way that the arbitrage free condition above is satisfied.

The operator Jout(x, a;x′, a′|b)
)

models jumps downwards which, in our specific
example, are chosen to be of size 12% if the outlook is negative and small symmetric
jumps of size 2% if the outlook is stable. Both jumps are finite activity and occur
with yearly frequency. The operator Jvg(x;x′|b)δaa′δbb′ describes a variance-gamma
process of log-normal volatility dependent on the state variable b and of the form
Sβ(S)−1 where β(S) is the function in Fig. 1. The variance rate is chosen to be 4%
and is of the order of the rate estimated econometrically, not sufficient to sustain
an implied volatility skew over medium or long time horizons. The first two terms
admits the state x = 0 as an absorbing point. The operator Vsv(b; b

′|x, a)δxx′δaa′

describes a mean reverting process on the volatility regimes.



4 CLAUDIO ALBANESE AND ALICIA VIDLER

The operator Jα
jtd(t) is represented as the sum of three terms describing jump

to default, i.e.:

(6) Jα
jtd(t) = Jisα

jtd (t) + Jsec
jtd(t) + J

jur
jtd(t)

We assume that these matrix elements are non-negative for all times t ≥ 0. The
function Jisα

jtd (t) describes idiosyncratic jump to default, is name dependent and
uncorrelated across different names. For times t up to two years from current
time, this first term is chosen in a minimalistic way so to fit the term structure of
digital CDS spreads. For such short maturities, this term is essential to achieve
a perfect fit as the other terms in the generator describing a gradual process to
default are unable to generate sufficiently large default probabilities. For longer
time horizons, Jisα

jtd (t) is extrapolated as a constant function. This ensures that
for maturities exceeding two years the shape of the CDS curve is controlled by the
function β(S) and by the definition of the outlook dynamics, namely the process
to default prevails on the jump-to-default mechanism as the leading contributor
to the total probability of default. The term Jsec

jtd(t) is shared by all names in the
same sector, equals zero during the first two years period and then grows slowly.
Similarly for the term J

jur
jtd(t) which is shared by all names in the portfolio. These

latter jump-to-default terms model sector-wide and jurisdiction-wide default event,
these are very rare events whose implied probability is chosen to fit the senior
tranche spreads.

To find option prices along with CDO tranche spreads under this model we need
to accomplish three basic tasks. The first is to evaluate numerically the single name
propagator satisfying the equation

(7)
d

dt1
Uα(t1, t2) + Lα(t1)U

α(t1, t2) = 0,

with final time condition Uα(t2, t2) = I, the identity operator, for all time ordered
pairs t1 ≤ t2. The second task is to evaluate more general propagators carrying
path information for path-dependent options. The third is to correlate across a large
number of names, possibly in the hundreds, while keeping the numerical complexity
within reasonable bounds.

The single-name propagator satisfying equation (7) is given by the path-ordered
exponential

(8) Uα(t1, t2) = P exp

(
∫ t2

t1

Lα(s)ds

)

.

There are two useful methods to express a path-ordered exponential. One is the
Feynman path-integral expansion
(9)

P exp

(
∫ t2

t1

Lα(s)ds

)

= lim
N→∞

(

I+δtNLα(t1)
)(

I+δtNLα(t1+δt2)
)

...
(

I+δtNLα(tN )
)

where δtN = t2−t1
N

. The second is Dyson’s formula

(10) P exp

(
∫ t2

t1

Lα(s)ds

)

=
∞
∑

n=0

1

n!
P

(
∫ t2

t1

Lα(s)ds

)n

.
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where

(11) P

(
∫ t2

t1

Lα(s)ds

)n

= n!

∫ t2

t1

ds1

∫ t2

s1

ds2....

∫ t2

sn−1

dsnL
α(s1)L

α(s2)...L
α(sn).

Dyson’s formula is useful mostly from a theoretical viewpoint. In the next section
we provide examples of its use by deriving a moment method to price a number of
Abelian path-dependent options, ranging from risky annuities to volatility swaps
and cliquets.

A remark that is quite central in both our calibration method for CDS curves
and in our model for industry sector systematic risk is that the operator Lα(t) can
be split as follows as the sum of two mutually commuting operators

(12) Lα(t) = L0(t) + J α
jtd(t).

Here, L0(t) consists of the sum of all the terms in (2) except the last, the time
dependency being inherited exclusively by the exogenous interest rate. Notice that
in our model we assume that these terms are not name specific. Moreover, J α

jtd(t)
is the name specific one-parameter family of operators of matrix elements

(13) J α
jtd(x, a, b;x′, a′, b′; t) = Jα

jtd(t)(δx′0 − δxx′)δaa′δbb′ .

Since the commutator [L0(t),Jjtd(t)] = 0 vanishes, single name propagators fac-
torize into the product of propagators corresponding to these two terms. More
precisely

Uα(t1, t2) = P exp

(

∫ t2

t1
(L0(s) + J α

jtd(s))ds

)

= P exp

(

∫ t2

t1
L0(s)ds

)

P exp

(

∫ t2

t1
J α
jtd(s)ds

)

= U0(t1, t2)U
α
jtd(t1, t2)(14)

The Feynman path integral representation is interesting in this context as this
formula can be implemented numerically very efficiently by the method of fast
exponentiation. The method works as follows. Assume that the name independent
dynamic generators L0(t) are piecewise constant as a function of time. Suppose
L0(t) = L0i in the time interval [ti, ti + (∆t)i]. Assume δt be chosen so small that
the following two conditions hold:

(FE1) min
y∈Λ

(1 + δtL0i(y, y)) ≥ 1/2

(FE2) log2

(∆t)i

δt
= n ∈ N.

This condition leads to intervals δt of the order of one hour of calendar time and
this is indeed the choice we make. To compute e(∆t)iL0i(x, y), we first define the
elementary propagator

(15) uδt(x, y) = δxy + δtLi(y, y)

and then evaluate in sequence u2δt = uδt · uδt, u4δt = u2δt · u2δt, ... u2nδt =
u2n−1δt · u2n−1δt. Matrix multiplication is accomplished numerically by invoking
the routine dgemm in Level-3 BLAS.

This factorization property is crucial as it allows us to correlate among names the
jump to default term in a very simple and straightforward way. The propagators
U0(t) describing the remaining part of the process to default are instead more
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difficult to correlate and for those we use the method of dynamic conditioning
below.

In Fig. 2 we show our fit of price quotes for American equity options of maturities
up to two years. We are within the bid-ask spreads with the exception of a couple of
out-of-the-money call options of maturity 2 years. In Fig. 3 we graph the implied
volatility surface for European options extrapolated to 12 years. The persistent
skew is a result of the outlook dynamics. Notice that this fit and extrapolation are
obtained with absolutely no explicit time dependencies with the exception of an
exogenous, deterministic interest rate.

3. Abelian Path Dependencies

In (Albanese 2006), we introduced the notion of Abelian path dependent options.
This theory identifies a class of path-dependent payoffs characterized by a commu-
tativity property for a certain operator algebra associated to the path dependent
option. More precisely, let It be the process for the path dependent structured leg
and let us approximate it as follows: It = (∆I)mt where mt is an integer value
process. If yt = (xt, at, bt), the lifted Markov generator for the joint process (yt,mt)
has the following form:

(16) L̃α(y, m; y′,m′; t) = Lα(y, m; y′,m′; t) + Aα(m;m′|y)δyy′ .

If the operators Aα(y) of matrix elements Aα(y)mm′ = Aα(m;m′|y) are mutu-
ally commuting for all y, i.e. they generate an Abelian operator algebra, then the
path-dependent is called Abelian. The representation theory for Abelian C∗ al-
gebras applies to this case, see (Bratteli and Robinson 2002) making the analysis
straightforward. In fact, an Abelian C∗ algebra can be represented as an algebra of
continuous functions on the set of maximal ideals endowed with a compact, Haus-
dorff topology. In our case this topological space is just finite. From a numerical
viewpoint, what matters is that if the Abelian property is satisfied, then generi-
cally there exists a non-singular linear transformation S(m; i) which diagonalizes
all the operators Aα(m;m′|y) simultaneously. Hence, the transformed lifted gener-

ator S−1L̃αS is a complex, block-diagonal matrix which can be fast-exponentiated
by means of the BLAS routine zgemm which implements a complex matrix-matrix
multiplication. This exponential gives the joint distribution of the pairs (yt,mt)
for all time horizons t. Risky annuities, volatility swaps, cliquets are all examples
of Abelian path dependent options along with lookback options, range accruals,
TARNs, faders, etc.. (Notice here one of the differences between probability theory
expressed via stochastic calculus as opposed to our formalism based on operator
methods: in the former one focuses on measure changes which are given by one pa-
rameter families of positive linear transformations, while in our case we can make
full use of general complex valued linear tansformations as the applicability of op-
erator methods does not hinge on the existence of a probabilistic interpretation for
the dynamic generators).

In addition to applying block-diagonalization techniques, for most Abelian pay-
offs one can also use a moment method based on Dyson’s expansion. For instance,
to price a risky annuity, a building block in the valuation of CDS contracts, one
can use the following formula:

(17)
d

dǫ

∣

∣

∣

∣

ǫ=0

e(∆t)Lα
ǫ (y1, y2) = E0

[(
∫ ∆t

0

1(yα
s 6= 0)ds

)

δ(yα
∆t = y2)

∣

∣yα
0 = y1

]
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where yα
t is the lattice process followed by reference name α and

(18) Lα
ǫ (y; y′) = Lα(y; y′) + ǫ1(y 6= 0)δyy′ .

Similarly one can proceed to evaluate risky annuities associated to EDS contracts.
To value volatility swaps one can use the more general formula:

(19)
dn

dǫn

∣

∣

∣

∣

ǫ=0

e(∆t)Lα
ǫ (y1, y2) = E0

[(
∫ ∆t

0

vα(yα
s )ds

)n

δ(yα
∆t = y2)

∣

∣yα
0 = y1

]

where

(20) Lα
ǫ (y; y′) = Lα(y; y′) + ǫvα(y)δyy′

where v(y) is the state dependent variance given by

(21) vα(y) =
∑

y′

Lα(y, y′)

(

log
S(y′)

S(y)

)2

.

Notice that if only two moments are desired to reconstruct the joint distribution
of the underlying and realized variance, then equation (19) needs to be evaluated
only for n = 1, 2.

The credit counterparts to long-dated equity structured products are given by
emerging volatility sensitive single-name credit derivatives such as CDSs on lever-
aged loans subject to pre-payment risk, CDS options and soft risky annuities paying
a continuous cash-flow stream up to either maturity or up until a given constant
maturity CDS spread hits a pre-assigned barrier, whichever comes first. Exposures
of this nature are contained in bespoke CLOs and in managed synthetic CDOs
and thus have to be captured and modeled in a controllable fashion and with high
precision by a comprehensive model for bespoke baskets.

In Fig. 4 we show the term structure of CDS spreads for IBM assuming a
constant 40% recovery rate. A perfect fit falls in place when superimposing a
slightly time-varying term structure of recovery rates. In Figs. 10, 11 and 12 we
show the aggregate fit of the 3 year, 5 year and 10 year CDS digital spreads for
the DJ.CDX.IG components where market quotes are extrapolated assuming a flat
40% recovery rate. These graphs are obtained by using the IBM model as a proxy
for other names, recycling the same choice of model parameters across the pool of
names in the DJ.CDX.IG index while allowing ourselves only two modifications:
we reset the initial condition and we recalibrate the jump-to-default term in such
a way to obtain a perfect fit to digital CDS spread curve over the first two years
period. For the purpose of this fit, digital CDS spreads are extrapolated from the
vanilla ones by assuming 40% recovery rates. Since the jump-to-default operator
commutes with the rest of the generator as noticed above, this allows us to recycle
all the numerical evaluations across all names by using a factorization formula for
the single name propagators of the form in equation (14).

In Fig. 5 we plot the term structure of EDS spreads. This curve may not be
calibrated against very liquidly traded assets but nevertheless we find that it is an
important object as the EDS/CDS ratio is tightly related to the degree of vega
convexity.

As an example of an instrument sensitive to vega convexity, in Fig. 6 we plot
the volatility versus variance swap curves as a function of the outlook and volatility
regimes. The spread between these two rates is a function of the forward volatility
of realized volatility. As a further example, in Fig. 7 we show the term structures of
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cliquet price per-annum for both plain and capped and floored cliquets. Comparing
the two one sees that although the cap and the floor may balance out for short
maturities, as the maturity lengthens beyond 6-7 years the cap tends to appreciate
more than the floor. This is precisely due to increased equity volatility in scenarios
where the stock price falls.

Moving to the credit domain, in Fig. 8 we show the model implied term struc-
tures of at-the-money CDS option volatility with tenors 5, 7 and 10 years. Due to
the presence of two extra factors, stochastic volatility and stochastic outlooks, it
is possible to calibrate the model so that these at-the-money volatilities are at the
historical realized level which is quite high, between 30% and 50%, while the equity
return volatility is as low as 15%. The reason why these two different volatility
levels are compatible within our model is that CDS spread volatilities are mostly
affected by outlook dynamics while short term equity volatilities are mostly affected
by the stochastic volatility dynamics.

Having gained good quantitative control on CDS spread volatilities, one is well
positioned to price volatility sensitive single name credit derivatives with confi-
dence. In Fig. 9 we see the model implied spreads for a CDS on a portfolio of
three leveraged loans hypothetically entered into by the reference name IBM we
chose for this series of examples. The loans are amortizing, floating rate and, most
importantly, are subject to pre-payment risk. We model pre-payment by assuming
that when the constant maturity 5 year CDS spread hits the 80% of the spot level,
the pre-payment option is exercised by the borrower. Notice that the spreads on
a CDS on leveraged loans are substantially higher than those on a vanilla CDS.
A quantitative assessment of the stopping time for pre-payment is essential and
for this one needs a model which reflects well the CDS spread volatility and its
dynamics.

4. Dynamic Conditioning

The correlation model for CDOs is based on the notion that intra-sector correla-
tions tend to be higher then inter-sector correlations. We thus build a sector based,
multi-factor model. In the example in this paper, we consider the two standard
portfolios DJ.CDX.IG and DJ.CDX.HY and group all reference names contained
in either one of them into 9 investment grade sectors, namely: utilities, sovereigns,
media, industrial, financial, energy, consumer, material and technology. In addi-
tion, we find it necessary to add a special high yield sector containing names whose
5 year spread is above 500 bp and a special cross-over sector with names whose 5
year spread is between 250 and 500 bp. These choices are arguably questionable
and could greatly be refined. However we won’t go into much further depth to
analyze alternatives as our objective here is to demonstrate that, even with fairly
simplistic economic assumptions, parameters can be selected to achieve a high pre-
cision fit with observed market tranche spreads. This calibration can be achieved
across investment grade and high yield portfolios even with rather simple minded
choices. If a different and more refined view about sector classification was used, we
are confident the model could still be calibrated, although differences would emerge
when pricing bespoke tranches and assessing sensitivities.

We distinguish between correlations related to small deviations and correlations
related to large deviations or systematic sector risk. This reflects and is linked to
a split of the form in equation (12) of the generator into a sum of two mutually
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commuting operators, a jump to default generator plus a richer term describing a
gradual process to default. Leveraging on the factorization formula between path-
ordered exponentials, we can effectively correlate the two terms separately, as we
explain below.

Let α be a reference name in sector sec and jurisdiction jur and let us split the
generator for name α as follows:

(22) Lα =
(

L0 + J sec
jtd (t)

)

+ J jur
jtd (t).

The propagator factorizes as follows:
(23)

Uα(t1, t2) = P exp

(
∫ t2

t1

L0(s)

)

P exp

(
∫ t2

t1

J sec
jtd (s)ds

)

P exp

(
∫ t2

t1

J jur
jtd (s)ds

)

The second factor is then assumed to be shared across all names in each given
sector while the third is shared across all names in a given jurisdiction. Letting
the jump-to-default terms depend on time explicitly is a departure from our self-
imposed rule of keeping all parameters time homogeneous but we find that this is
needed in order to calibrate the systematic correlation terms to the term structure
of the senior tranche spreads. A time-homogenous choice would lead to senior
tranche spreads which are either to large for short maturities or too small for long
maturities.

Correlations among small deviations as they are captured by the first factor in
equation (23) is modeled using dynamic conditioning. This term is very relevant
as this has a great impact on tranche values on the lower segments of the capital
structure, such as equity, junior mezzanine and thin tranches. A version of dynamic
conditioning was introduced in our previous paper on CDO modeling (Albanese et

al. 2005-2006). However here we use a powerful multi-factor refinement of this
methodology, also reviewed in (Albanese 2006).

The new version of the method is illustrated in Fig. 13. To model correlations
we proceed in stages. At the first stage, we introduce a binomial processes for
each name and condition the continuous time lattice process for each name to this
one. To prevent a possible misunderstanding, let us emphasize that the binomial
trees used for conditioning should not be confused with Cox-Ross trees. We are not
approximating a very rich three-factor model with a binomial tree. Each vertex or
bond in one of our conditioning trees does not correspond to a particular stock price.
Instead, each vertex of the tree corresponds to a propagator from the root of the
tree to the given vertex, summarizing the transition probabilities across all paths
joining the root to the vertex itself. Each bond is instead associated to a propagator
conditional to a transition between the two vertices identifying the bond itself. The
conditioning is performed using rules which ensure that, upon resumming over all
the tree branches, one reobtains the unconditional propagators to high numerical
precision for each reference name. To greatly speed up the calculation of single name
sensitivities, we go one step further and evaluate the Fourier transforms of the single
name forward loss distribution on each bond. Fourier transform representations
are useful in this context as they allow one to deconvolve by simply taking ratios
between Fourier transforms and thus recycle conditional price information across
calculations of sensitivities corresponding to different reference names.
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To describe the technique of dynamic conditioning in more detail, consider the
name-indepedent portion U(y1, t1; y2, t2) of a single-name Markov propagator. Con-
sider also a name specific discrete binomial process hα

t ∈ Z on the conditioning tree
associated to name α, which is constant over the time intervals [Ti, Ti+1) where
Ti = T + i∆T . Here i = 0, 1, 2, ...N and ∆T = (T ′ − T )/N .

The elementary propagator for the process hα
t across neighboring time points Ti

is

(24) V (hα
i , Ti;h

α
i+1, Ti+1) = q+δhα

i
+1,hα

i+1
+ q−δhα

i
−1,hα

i+1

where q+, q− > 0 and q+ +q− = 1. On a general time interval [Ti, Tj ], we have that

(25) V (hα
i , Ti;h

α
j , Tj) =

∑

hα
t :hα

Ti
=hα

i
,hα

Tj
=hα

j

j−1
∏

k=i

V (hα
Tk

, Tk;hα
Tk+1

, Tk+1).

In our example, we find most effective to use symmetric trees with node splitting
probabilities q± = 1/2. We also use time intervals of one quarter of a calendar year.

Next we define a lifted conditional propagator Ū(yi, h
α
i , Ti; yj , h

α
j , Tj) in such a

way to preserve unconditional transition probabilities from the starting time at Ti,
i.e. so that

(26)
∑

hα
j

Ū(yi, h
α
i , Ti; yj , h

α
j , Tj) = U(yi, Ti; yj , Tj).

To do so, one strategy is to define two conditional propagators from each starting
node (hα

i , Ti), namely U+(yi, h
α
i , Ti; yi+1, h

α
i +1, Ti+1) and U−(yi, h

α
i , Ti; yi+1, h

α
i −

1, Ti+1) so that

U(yi, Ti; yi+1, Ti+1) = q+U+(yi, h
α
i , Ti; yi+1, h

α
i + 1, Ti+1)+

q−U−(yi, h
α
i , Ti; yi+1, h

α
i − 1, Ti+1).

The operator Ū(yi, h
α
i , Ti; yj , h

α
j , Tj) satisfying (26) is defined as the following sum

over paths on the conditional binomial tree:

Ū(yi, h
α
i , Ti; yj , h

α
j , Tj) =

∑

hα
t :hα

T1
=hα

i
,hα

Tj
=hα

j

∑

y1,..yj−1

∏

k=1..j

qhα
Tk

−hα
Tk−1

(hα
Tk−1

)×

Uhα
Tk

−hα
Tk−1

(yk−1, h
α
Tk−1

, Tk−1; yk, hα
Tk

, Tk).

Here, q1 = q+, q−1 = q−, U1 = U+, U−1 = U−.
Since in general the operators U+ and U− do not commute with each other,

each path hα
t in the summation on the right hand side of this equation represents

a different operator. In many situations one can however avoid the numerical com-
plexities of a non-recombining tree by finding modified versions of such operators
so that the kernels
(27)

Uhα
·

(yi, yk) =
∑

yi,..yj−1

∏

k=1..j

qhα
Tk

−hα
Tk−1

(hα
Tk−1

)Ū(yk−1, h
α
Tk−1

, Tk−1; yk, hα
Tk

, Tk)

are all equal to each other, for all paths originating from the root vertex, i.e. with
hα

t : hα
T0

= hα
0 , hα

Tj
= hα

j and at least one single fixed starting point y0 = ȳ0.

The reasons why we focus on the initial point y0 = ȳ0 only are manifold. Firstly,
in applications one needs to condition marginals only to spot values, as the price of
options in the hypothetical case asset prices were different is not known. Secondly,
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if we insisted on the same property being valid for all initial starting points we
would end up with a seriously ill posed problem of difficult solution. Because of
these reasons, we settle for the more modest objective of conditional recombination.
Namely, on each node (hα

i , Ti) with i > 0 we define

(28) Ū(yi−1, h
α
i−1, Ti−1; yi, h

α
i , Ti) = Uhα

i
−hα

i−1
(yi−1, h

α
i−1, Ti−1; yi, h

α
i , Ti)

in case hα
i = ±i. Otherwise, we determine this operator so that

Ū(ȳ0, h
α
0 , T0; yi, h

α
i , Ti) =
∑

yi−1∈Λ

Ū(ȳ0, h
α
0 , T0; yi−1, h

α
i−1, Ti−1)Ū(yi−1, h

α
i−1, Ti−1; yi, h

α
i , Ti)

for all yi ∈ Λ and a fixed ȳ0. This can be achieved in more than one way. Notice
however that, by construction, the arbitrariness of this choice does not reflect in
the transition probabilities from the root vertex at the initial condition.

It turns out that if we are interested only in synthetic CDOs on index portfolios
as opposed to forward starting portfolios or tranche options, then it is not even
necessary to define a full conditional dynamics. All that is needed is to define
marginals originating from the root vertex. In this case, it is not even necessary to
re-specify the dynamics on each particular bond, all that matters is to keep track
consistently of the combinatorial coefficients.

As a next step in the construction, consider sector specific processes cσ
t which

are piecewise constant across neighboring time points Ti. The dynamics of cσ
t is by

construction correlated to that of hα
t . More precisely, the propagator for the joint

process is

W (hα
i ,cσ

i , Ti;h
α
i+1, c

σ
i+1, Ti+1) =

q++(hα
i , cσ

i , i)δhα
i
+1,hα

i+1
δcσ

i
+1,cσ

i+1
+ q+−(hα

i , cσ
i , i)δhα

i
+1,hα

i+1
δcσ

i
−1,cσ

i+1

+ q−+(hα
i , cσ

i , i)δhα
i
−1,hα

i+1
δcσ

i
+1,cσ

i+1
+ q−−(hα

i , cσ
i , i)δhα

i
−1,hα

i+1
δcσ

i
−1,cσ

i+1

where q±±(hα
i , cσ

i , i) ≥ 0 and

(29) q++(hα
i , cσ

i , i) + q+−(hα
i , cσ

i , i) + q−+(hα
i , cσ

i , i) + q−−(hα
i , cσ

i , i) = 1.

Further equations to determine the coefficients q±±(hα
i , cσ

i , i) can be obtained by
postulating an intra-sector correlation factor ρασ ∈ [0, 1]. Given this correlation
parameter, we obtain a new equation by setting

(30) q++(hα
i , cσ

i , i) − q+−(hα
i , cσ

i , i) − q−+(hα
i , cσ

i , i) + q−−(hα
i , cσ

i , i) = ρασ.

Two more equations to complete the linear system follow by the requirements that
marginals be recovered by unconditioning, i.e.

q++(hα
i , cσ

i , i) + q+−(hα
i , cσ

i , i) = q+(31)

q−+(hα
i , cσ

i , i) + q−−(hα
i , cσ

i , i) = q−.(32)

In our example, to keep things simple we assume that ρσα = ρσ depends only on
the sector and not on the name in that sector. The intra-sector correlations in our
example are chosen according to the following table:
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Sector uti sov med ind fin ene con mat tec hy xor

Correlation 40% 40% 40% 40% 40% 40% 40% 40% 40% 60% 60%

Table 1. Sector correlations, where uti = utilities, sov =
sovereigns, med = media, ind = industrial, fin = financials, ene
= energy, con = consumer, mat = materials, tec = technology, hy
= high yield and xor = cross-over.

Due to the conditional recombination property, if y0 = ȳ0, then the conditional
propagators resum with a simple formula

∑

hα
t :hα

T
=0,hα

Tj
=hα

j

∑

y1,..yj−1

∏

k=1..j

W (hα
i , cσ

i , Ti;h
α
i+1, c

σ
i+1, Ti+1)×

qhα
Tk

−hα
Tk−1

(hα
Tk−1

)Ūhα
Tk

−hα
Tk−1

(yk−1, h
α
Tk−1

, Tk−1; yk, hα
Tk

, Tk)

=
∑

hα
j

W (0, 0, T0;h
α
j , cσ

j , Tj)Ū(y0, 0, T0; yj , h
α
j , Tj)

≡ Ũ(y0, 0, T0; yj , c
σ
j , Tj).

Since dynamic conditioning is applied only to reference name to the reference
name independent factor of single name propagators, it is straightforward to apply
the construction to all names in any given sector σ. Consider the lattice processes

y
(α)
t , for each α ∈ σ. Then, conditioned to starting all processes at fixed lattice

points y
(α)
0 = ȳ

(α)
0 and conditioned to cσ

Tj
= cσ

j , the multi-factor propagator factor-

izes into the product of conditional single factor propagators

(33)
∏

α∈σ

U(y
(α)
0 , 0, T0; y

(α)
j , cσ

j , Tj)

This is the key formula which we use in the following to correlate processes on a
sector basis while ensuring that numerical complexity increases only linearly with
the number of names in each sector Nσ.

The construction above can then be iterated to correlate sectors at a jurisdiction
level and proceed to the second level of the tree in Fig. 13. At this level, one
needs to introduce inter-sector correlation coefficients ρσj , where j represents the
jurisdiction. In our example, again for the sake of simplicity, we assume that the
ρσj are sector independent and are all equal to 60%.

One further extension of the above construction is to add additional risk factors
such as recovery rates and total number of share outstanding. These factors can be
added on a name by name basis simply by defining a process for these risk factors on
a separate tree and a corresponding correlation factor. We find that these factors
are not essential to achieve a high quality calibration but they do affect prices.
Hence, if one can estimate their volatility and correlation independently, it is useful
to know that they can be incorporated at marginal numerical cost.

In Fig. 16 we show the 10 year term structure of upfront fee for the 0-3 equity
tranche of the DJ.CDX.IG against market quotes. The model fits market quotes



A STRUCTURAL MODEL FOR CREDIT-EQUITY DERIVATIVES AND BESPOKE CDOS 13

within the bid ask spread. In Fig. 17 we show how the 03 tranche splits into 0-1,
1-2 and 2-3 equity tranchelets assuming no upfront fees.

In Fig. 18 and 20 we show the 10 year term structure of spreads for the 3-
7, 7-10, 10-15, 15-30 mezzanine and senior tranches of the DJ.CDX.IG against
market quotes. In Fig. 19 we show how the 10 year term structure of the 3-7
junior mezzanine tranche splits into term structures of spreads for the 5-7 and 3-7
mezzanine tranchelets, based on our model.

Next we consider the High Yield index. In Fig. 21 we plot the 10 year term
structure of upfront fee for the 0-10 and 10-15 equity tranches of the DJ.CDX.HY
against the 5 year market quote. Both fits are excellent. In Fig. 22 we show the
10 year term structure of for the 15-25 and 25-35 mezzanine and senior tranches of
the DJ.CDX.HY against the 5 year market quote. A small discrepancy is observed
only in the latter.

5. Numerical methods, computer engineering and conclusions

In our previous articles (Albanese et al. 2003), (Albanese and Chen 2005a),
(Albanese and Chen 2005b), (Albanese and Chen 2004), we modeled credit deriva-
tives by means of a new class of continuous time lattice models with numerical
techniques based on spectral analysis and the ability to evaluate special func-
tions numerically. As our research made progress, in a strive to gain flexibility
we moved toward a non-parametric framework. We experimented with spectral
methods based on numerical diagonalizations but found that Markov generators
with stochastic drift are subject to pseudo-spectrum pathologies which render them
nearly impossible to diagonalize within the confines of double precision arithmetics,
see (Trefethen and Embree 2006). We succeeded to make progress past this stum-
bling block only by rediscovering the method of fast exponentiation we discussed
above. This method had been known for decades but never quite made it into the
numerical PDE literature. For historical reasons, PDE methods have focused on
sparse BLAS level 2 techniques, mostly due to the preconception that large matri-
ces cannot be stored in memory and manipulated as full matrices. Although this
was true in the 60s and 70s when the field of numerical PDEs was created, it is
certainly not true any longer nowadays.

In today’s rapidly evolving technology landscape, enormous progress is being
made. Because of applications to computer graphics, a central focus of current
computer engineering is nowadays to improve on our ability of multiplying matri-
ces, i.e. of optimizing dgemm and zgemm by building and mass-producing special
purpose multi-core processors. Efficient, processor specific versions of dgemm de-
vised for general purpose single core CPUs have been available for two decades
at least (Goto and van de Geijn to appear) and have been improving. Emerging
hardware such as the Clearspeed accelerator boards and the IBM CELL processor
open a new era of rapid progress in this direction. As cluster computing hits a tech-
nology wall because of limited scalability and high power consumption rates, these
special hardware architectures with remarkably low power consumption rates give
staggering performance for matrix multiplication. It would seem that in Finance
there is still plenty of room to ride Moore’s law by refocusing on model building
techniques based on operator methods.

On the wave of the new computer technology, it is our opinion that operator
methods will come to play a central role in Mathematical Finance. We find that
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it can be highly rewarding to recast the mathematical framework of Finance on
the premise that we are able to evaluate matrix-matrix products very efficiently.
What we achieve is a unified modeling framework for single name equity and credit
derivatives based on a 3 factor model with the possibility to incorporate more factors
and to correlate hundreds of names without resorting to any Monte Carlo simulation
and with no numerical noise. In our understanding, the model here presented meets
all the requirements to be a high quality framework to price bespoke CDOs, equity
structured products and volatility sensitive credit derivatives, along with equity
baskets and a broad array of hybrids.
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Figure 1. Plot of the function β(S) defining the local volatility dependency.

Figure 2. Fit of American equity option quotes for maturities up
to two years.
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Figure 3. Implied volatility surface for European options extrap-
olated to 12 years.

Figure 4. Term structure of CDS spreads for IBM assuming a
constant 40% recovery rate. A perfect fit falls in place when su-
perimposing a slightly time-varying term structure of recovery
rates.
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Figure 5. Term structure of EDS spreads. The calibration of this
curve controls the degree of vega convexity.

Figure 6. Volatility versus variance swap curves as a function of
the outlook and volatility regimes.
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Figure 7. Term structures of cliquet price per-annum for both
plain and capped and floored cliquets.

Figure 8. Model term structure of at-the-money CDS option
volatility with tenors 5, 7 and 10 years.
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Figure 9. 10 year term structure of spreads for plain CDSs, amor-
tizing CDSs and a CDS on a portfolio of 3 leveraged amortizing
loans with pre-payment risk.

Figure 10. Aggregate fit of the 3 year CDS digital spreads for
the DJ.CDX.IG components where market quotes are extrapolated
assuming a flat 40% recovery rate.
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Figure 11. Aggregate fit of the 5 year CDS digital spreads for
the DJ.CDX.IG components where market quotes are extrapolated
assuming a flat 40% recovery rate.

Figure 12. Aggregate fit of the 10 year CDS digital spreads for
the DJ.CDX.IG components where market quotes are extrapolated
assuming a flat 40% recovery rate.
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Figure 13. Dynamic conditioning scheme for multi-sector modeling.
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Figure 14. 10 year term structure of loss distribution for the
DJ.CDX.IG portfolio, plotted quarter by quarter.

Figure 15. 10 year term structure of loss distribution for the
DJ.CDX.HY portfolio, plotted quarter by quarter.
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Figure 16. 10 year term structure of upfront fee for the 0-3 equity
tranche of the DJ.CDX.IG against market quotes. The model fits
market quotes within the bid ask spread.

Figure 17. 10 year term structure of the 0-1, 1-2 and 2-3 equity
tranchelets for the DJ.CDX.IG
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Figure 18. 10 year term structure of spreads for the 3-7, 7-10, 10-
15, 15-30 mezzanine and senior tranches of the DJ.CDX.IG against
market quotes.

Figure 19. 10 year term structure of the 3-5, 5-7 and 3-7 mezza-
nine tranchelets for the DJ.CDX.IG
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Figure 20. 10 year term structure of spreads for the 7-10, 10-15,
15-30 mezzanine and senior tranches of the DJ.CDX.IG against
market quotes.

Figure 21. 10 year term structure of upfront fee for the 0-10 and
10-15 equity tranches of the DJ.CDX.HY against the 5 year market
quote.
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Figure 22. 10 year term structure of for the 15-25 and 25-35
mezzanine and senior tranches of the DJ.CDX.HY against the 5
year market quote.
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