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ABSTRACT 
 
Nover and Hájek (2004) suggested a variant of the St Petersburg game 
which they dubbed the Pasadena game.  They hold that their game ‘is more 
paradoxical than the St Petersburg game in several aspects’.  The purpose 
of this article is to demonstrate theoretically and to validate by simulation, 
that their game does not lead to a paradox at all, let alone in the St 
Petersburg game sense.  Their game does not produce inconsistencies in 
decision theory.  
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The paradox of the St Petersburg paradox 

The St Petersburg game and the associated paradox are important in the field of 
decision theory involving situations of risk and uncertainty (Vivian 2003).   Any 
variant of this game is of interest.  Nover and Hájek (2004) suggest such a 
variant which they dubbed the Pasadena game, which they hold leads to a 
paradox more profound than the St Petersburg paradox.    To accept that the 
Pasadena game produces a paradox, in the St Petersburg game (or decision 
theory) sense, one must first establish what is meant by a paradox in that sense.   
 
In the 1700s it was thought that people should make decisions in terms of the 
mathematical expectancy decision criterion, a decision criterion usually credited 
to Pierre de Fermat (1601-1665) and Blaisé Pascal (1623-1662).  Daniel 
Bernoulli (1738/1954) tried to demonstrate that decision makers do not, in fact, 
make decisions in line with expected values.  He gave a number of examples 
which he thought illustrated that point.  One of these is what is known as the St 
Petersburg game.  In this game a fair coin is flipped until a head appears, 
whereupon Peter (the casino owner) pays Paul (the gambler) $2

i-1, if the head 
appeared on the ith flip.  According to traditional wisdom1 the expected value 
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is, where pi is the probability that outcome Ci will appear.   

Accordingly: 

∑= ii CpXE }{

 
E{X} = 20/21 + 21/22 + 22/23 … 
 
E{X} = 1/2 + 1/2 + 1/2 …  = ∞ 
 
Thus according to traditional wisdom, if the E{X} decision criterion is applied 
to the St Petersburg game, one would expect gamblers to be prepared to wager 
very very large sums to play the game.  Empirical evidence, on the other hand, 
indicates that gamblers, quite rightly, are not willing to wager more than a few 
dollars.  Herein lies the paradox or as Todhunter (1865:220) put it, ‘The 
paradox then is that the mathematical theory is apparently directly opposed to 
the dictates of common sense.’  In order that the Pasadena game constitute a 
paradox, in the St Petersburg game sense, it is necessary to show that empirical 
evidence about amounts wagered is grossly out of line with that suggested by 
decision theory, in particular, the expected value decision criterion. 
 
With this background the game suggested Nover and Hájek (2004) and dubbed 
by them to be the Pasadena game, is examined.  In the Pasadena game, the prize 
is $((-1) i-1 . 2i)/i which can be compared to $2i-1 of the St Petersburg game.  The 
Pasadena prize is much more complex and can result in the gambler, paying the 
casino, instead of being paid by the casino.  The E {X} of the Pasadena game is 
determined by the following harmonic series: 
 
E{X} = 2 -1 . $((-1) 1-1 21)/1 + 2 -2 . $((-1) 2-1 22)/2  + …  $((-1) i-1)/i + … 
 
E{X} = 1 - 1/2  + 1/3 - 1/4  + 1/5 – 1/6 …  $((-1) i-1 /i + …        ………. (1) 
 
This is the series for ln 2.  Thus: 
 
E{X} = ln 2 ≈ $0.69 
 
So unlike the St Petersburg game, with an infinite expected value, the Pasadena 
game has a very modest, finite expected value.  Nover and Hájek (2004) 
unfortunately do not suggest how much they believe a gambler would be 
prepared to pay to play their game, but if it is shown that gamblers are prepared 
to pay an amount of the order of $0.69 then there is of course, no paradox in the 
St Petersburg game or any other sense.  Since the expected value of their game 
is a very modest amount, it seems reasonable to accept that gamblers will be 
prepared to play an amount of this order.  Thus unlike the St Petersburg game, 
the Pasadena game does not on the face of it produce a paradox, at all, in the 
field of decision theory. 
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If it is clear that the Pasadena game does not produce a paradox why then do the 
authors believe their game produces a problem?  It is because they hold that the 
expected value of their game depends on how the terms in the series are 
arranged and summated.  This in itself is an extraordinary view, since it is 
contrary to the well-known commutative law of addition A+B = B+A.  One 
should not expect the mere rearrangement of a series to produce different 
results. 
 
They liken the series to a pack of cards which falls on the ground and when 
picked up can appear in different sequences, which can then be summated and 
depending on the way that the cards are rearranged, a different outcome arises.  
They hold that if the series is arranged as follows: 
 
E{X} = 1 -1/2  + 1/3 – 1/4  …  $((-1) i-1 /i + …                  …..……….  (2) 
 
then E{X} = ln 2 
 
However, if the series is rearranged as follows, they hold: 
 
E{X}  =  1+ (- ½ - ¼ - 1/6 - 1/8 - 1/10)+1/3+(-1/12 - 1/14 -1/16 -1/18 -1/20) 
… 
  =  1/5 +  (-1/22 …) 
 = ln 2 + ½ ln (1/5) 
 = -0.11 
 
However, if the series is rearranged as follows, they hold: 
 
E{X}  =  1+ (1/3+1/5 … 1/41 – 1/2)+(1/43+ … +1/511 - ¼ ) + (1/513+  
  …+1/5279 – 1/6) + ...                                           
  = 1 + 1.00406 + 1.00028 + 1.000011 + …          ………………   (3)          
 = ∞ 
 
However, if the series is rearranged as follows, they hold: 
 
E{X}  =  (1-1/2-1/4-1/6-1/8- … -1/62) + (1/3-1/64 … 1/906)+ (1/5-1/908  … 
  -1/9998) + ...                                                   . ………………. (4) 
                                                                     
  ≈ -1 - 1 - 1 … 
 
 = - ∞ 
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And thus according to them, simply by rearranging the series, the E{X} can 
have any value from - ∞ to + ∞.  According to this view the E{X} is 
indeterminable. 
 
Even if this view is correct (which is doubted), this still does not produce a 
paradox in the St Petersburg paradox or decision theory sense.  If the expected 
value cannot be determined, then it cannot be applied to make a decision and no 
paradox arises.  The problem and its solution then lies in the theory of harmonic 
series, not decision theory.   If their view is correct, it means that the harmonic 
series which is thought to sum to ln 2, in fact does not do so and as such will not 
do so in any application of the series and not only in the field of decision theory.  
 
Notwithstanding this, it can be shown that the Pasadena game does not produce 
a problem for decision theory since the series is (a) infinite in length only if an 
infinite number of games are played (which is impossible), (b) the order in 
which if the terms arise, arise naturally and once the vast number of negative 
terms, omitted by the authors in series (3) or positive terms omitted in series (4) 
are accounted for, the expected value is finite and still converges on ln 2. 
 
Bernoulli’s methodology after correcting his error 
The methodology suggested by Vivian (2003) and demonstrated by simulation 
Vivian (2004) can be applied to the Pasadena game.  The methodology is 
essentially the same as suggested by Bernoulli (1738/1954) himself after 
correcting for some errors in his methodology.  Bernoulli (1954/1738:32) 
pointed out that if the game is played N times, half of these cases are expected 
to end at the first flip of the coin, a quarter at the second, an eighth at the third 
and so on to infinity (sic).2 
 
Thus if the game is played N times, this series can be expressed as follows: 
 
N = N/2 +N/4 + N/8 …  ∞ (sic)  
or 
N = n1 + n2 + n3+ n4 + ….  ∞ (sic) Where n1 = N/2 and n2 = N/4 etc  
where: 
 
N = ∑ ni  
 
and  1 = ∑1/2 + ¼ … 
 
 1 = ∑ pi 

 

Where pi is the probability of the ith term. 
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Karl Menger (in Bernoulli 1954/1738:32 note 10) pointed to the error in 
Bernoulli’s statement when he wrote ‘Since the number of cases [N] is infinite, 
it is impossible to speak about half of the cases, one quarter of the cases, etc and 
the letter N in Bernoulli’s argument is meaningless.’ N simply cannot equal ∞  
if subjected to mathematical manipulation. 
 
There are other errors in his statement.  In practice not exactly N/2 games will 
terminate at the first throw of the coin.  For example if a coin is tossed 10 times, 
it is expected that in 5 cases a “head” will appear, but it is possible that any 
number from 0 to 10 will in fact appear.  Thus a more accurate statement is: 
 
N = (N/2 ± α1) +  (N/4 ± α2) + (N/8 ± α3) + ... 
 
Where ∑αi = 0  and α1/N:  α2/N: α3/N: α4/N: αi/N … all, as a consequence of the 
Law of Large Numbers, tend to 0 as N, the number of games played tend to 
infinity.  There is thus an implicit assumption in the traditional solution to St 
Petersburg that an infinite number of games are played, a factual impossibility.  
What is more important in practice, is what happens when a finite number of 
games is played, since this is possible. 
 
Bernoulli’s error can be corrected by setting N to a finite number, say, N=2k.  
This produces a finite series of terms as indicated in Table 1, which indicates 
the number of games expected to end after each flip of the coin.  There is an 
assumption that N is large and hence each αi/N = 0. 
 

Table 1: Expected number of games terminating at each flip, if the game is 

played 2
k
 times 

Term T1 T2 T3 … Tk 

ni 2k-1 2k-2 2k-3 … 2k-k 

pi 2-1 2-2 2-3  2-k 

 
The ni series constitutes a geometric progression, the sum of which is 2k – 1.  
Thus, it is expected that all games but one will end within a series of k terms.  It 
is also expected that each term in the series will in fact exist, ie αi/N is small or 
equal to 0.  The probability that all games will end by Tk thus equals zero.  
There is thus a series of k terms and single term exists beyond the kth term.  The 
total length of the series is k+1 terms.  Since N is an integer, only one game is 
expected to survive beyond the kth.  That single game can be any of the N games 
(i.e. it need not be the last game in the series of N games) but the probability 
decreases by ½, (since an additional flip of the coin is required), for each term 
beyond Tk, that this  surviving game is expected to end. 
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It should also be noted even if an enormous number of games is played, the 
series will be relatively short; certainly short enough to be summated manually, 
if necessary.  The theory of harmonic series will not be necessary, in practice, to 
add the series even for exceptionally large values of N.    For example if the 
game is played 230  (1 073 741 824) times the total length of the series is 
expected to consist of only 30 + 1 = 31 terms which can be summed manually 
without any difficulty. 
 
Now in the Pasadena game, in order to arrive at a value of ≈ 4 in series (3) 
above the Pasadena series (1) must progress to the term with a value of 1/5279 
ie the series must have at least 5279 terms.  This term is only expected to appear 
if the game is played at least N= 25279  times.  If it is recalled that 230 is in excess 
of a billion games, it is clear that 25279 is a number which is so great that it is 
impossible to actually play (or want to play) the game that number of times.  
Even if it was possible to play the games that number of times, the total for the 
series (summed in the fashion set-out by the authors) is only 4.004351 (ie a long 
way from infinity).3   However if series (3) is examined is it will be noted that 
only three negative terms (-1/2;-1/4 and -1/6) have been included.  Since the 
series is naturally harmonic, the other negative terms do in fact exist and must 
be accounted for ie (-1/8-1/10- ...-1/5278).  It these negative terms are summed 
their total is 3.311114 and the sum of the 5279 terms of the series becomes: 
4.004351 -  3.311114 = 0.6932396 which is approximately the value of ln 2 (ie 
0.693147106).  One may reshuffle the cards but when all is said and done, all 
the cards must still be summed, not only some of them. 
 
A similar analysis can be carried out on series (4) which will produce a similar 
outcome. 
 

Determining the expected value of the Pasadena game 

The E{X} of the Pasadena game is now determined. 
 
Let A(k) be the sum of the contributions of the first k terms and B(k) the 
contribution of the final term to the E{X} of the Pasadena game, then: 
 
E{Xk} = A(k) + B(k) 

 
Determining A(k) for the Pasadena game 

 
E{XN} is by definition = S/N where S is the sum of the outcomes of ∑ni.Xi and 
N the number of games which have been played.  E{XN} is simply the average 
outcome of playing the game N times.   
 
E{XN} = S/N = n1/N . X1 + n2/N . X2 + n3/N . X3 + …  
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For the Pasadena game Xi = $((-1) i-1 2i)/i and if N = 2k games are played then 
each of the terms in the above series contribute towards the final value of 
E{XN} as shown in Table 2 below: 
 

Table 2: 

Term T1 T2 T3 … Tk T(k+1) T(k+2) … Total

ni 2k-1 2k-2 2k-3 … 2k-k 1 or 0 1 or 0 
1 or 

0 
N 

Xi 
(-1) 1-

1 2/1 
= 21/1 

(-1) 
2-1 
22/2 
= -
22/2 

(-1) 3-

1 23/3 
=23/3 

…
(-1) k-1 
2k/k 

(-1) k 
2k+1/(k+1)

(-1) k+1 
2k+2/(k+2) 

… 

 

n1/N . 
X1 

20 -1/2 1/3 ---
(-1)k-

1/k 
(-1) k 

21/(k+1) 
(-1) k+1 

22/(k+2) 
… 

 

 
From which it can be seen that for the first k terms of the series: 
 
A(k) = 1 – ½ + 1/3 – ¼ + 1/5 … (-1)k-1/k 
 
for any finite k. 
 
As pointed out the series is naturally harmonic with positive and negative terms 
appearing naturally in that order. The series is finite and does not need to be 
rearranged to arrive at a total and even if it is, if all the negative and positive 
terms are included one would arrive at the same answer. 
 
The above series, if infinite in number, is the series for ln 2.  The series 
converges to ln 2 = 0.693147 as the length of the series (i.e. number of games 
played) becomes increasingly large. 
 
Thus A(∞) = µ∞ for the Pasadena game = ln 2 ≈ 0,69 i.e. as N or k becomes 
increasingly greater, µ∞ tends to ln 2. 
 
Determining B(k), the contribution of the surviving game to the E{XN} of 

the Pasadena game. 

 

As indicated above, if N=2k games are played then N-1 games are expected to 
finish by the kth term in the series.  Thus only one game is expected to survive 
beyond this term. If B(k) represents the value of the contribution to the E{XN} 
from this final term then the E{XN} of the Pasadena game is: 
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E{XN} =  A(k) + B(k) 

 
Assuming αi = 0 for each of the k terms in the series, then it is expected that 
each term in the series will exist and the series will only terminate after the kth 
term.  There is thus a zero probability that it will end before the kth term and a ½ 
(50%) likelihood that all the games will end at the k+1 term, in which event this 
term will contribute  (-1) k 21/(k+1) to the E{XN}.  There is a corresponding 
50% likelihood that all games will end beyond the k+1 term.  Stating this 
another way one can be fifty percent confident that the series will terminate at 
the k+1 term. 
 
There is a ½2  (25%) likelihood that all the games will end at the k+2 term, in 
which event this term will contribute (-1) k+1 22/(k+2) to the E{XN}.  There is an 
accumulated likelihood of 75% that all games will end on or before the k+2 
term.  Stating this another way one can be 75% confident that the series will 
terminate by the k+2 term. 
 
There is a ½3  (12.5%) likelihood that all the games will end at the k+3 term, in 
which event this term will contribute (-1) k+2 23/(k+3) to the E{XN}.  There is an 
accumulated likelihood of 87.5 % that all games will end on or before the k+3 
term.  Stating this another way one can be 87.5% confident that the series will 
terminate by the k+3 term. 
 
There is a ½4  (6.25%) likelihood that all the games will end at the k+4 term, in 
which event this term will contribute (-1) k+3 24/(k+4) to the E{XN}.  There is an 
accumulated likelihood of 93.75 % that all games will end on or before the k+4 
term. Stating this another way one can be 93.75% confident that the series will 
terminate by the k+4 term. 
 
And so on. 
 
E{XN} can also be expressed as µ∞ ± λ(k). Where λ is the difference between 
the actual outcome and µ∞.  It will be noted that λ becomes increasingly small as 
N (and k) increases.  
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Figure 1: E{X} of Pasadena games played 2^k times for confidence levels of 

50%; 75%; 87.5% and 93.75% 

93.75% 87.50%75%50%Ln 2 

E{X}

k 

2221 20 19 18 1716151413129 10 117 85 6 3 41 2

5

4

3

2

1

0

-1

-2

-3

 

The E{XN}s of Pasadena games which are played from 21 (2 games) to 222 

(4 194 312) games were calculated and the results are indicated in Table 3, for 
the above four confidence levels.  The results are also indicated in Figure 1.  It 
can be seen how the outcomes oscillate around ln 2. 

 

Simulation 

The above theory can be applied as a practical problem and the results verified 
by computer simulation.  Assume a casino owner wishes to offer the public the 
opportunity of playing the Pasadena game.  The owner wants to know much he 
should ask gamblers to wager.   
 
The solution to this problem will be something as follows: 
 
It is estimated that 219 (524 288) games will be played each month, or 6 291 456 
million games a year.  If the casino owner wishes to be 50 % confident that he 
will make a profit, the E{X}= A(k) + B(k) = 0.718 - 0.100 or $0.618 per game 
(see Table 3) above.  If the casino owner wishes to be 93.75% confident that he 
will make a profit, the E{X}= A(k) + B(k) = 0.718 + 0.71 or $1.428 per game 
(see Table 3) above and so on.   
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Empirical results may also be obtained by simulating the games.  The results of 
the simulations are indicated in Table 4 for a 12 months period, for confidence 
levels of 50% ($0.62 per game) and 93.75% ($1.41 per game).  It will be seen 
that the simulated results indicate that the casino owner can expect to make a 
profit at both levels and not surprisingly he makes a greater profit at the 93.75% 
confidence level.  Because of the oscillating nature in two months (7 and 12) the 
casino owner, does not make a payment, but is paid by the gamblers. 
                                                                                                                                                     

Table 3 : E{X} for k=2 to k=22 at various confidence levels 

Ln (2)

k A(k) B(k) E{X} λ(k) B(k) E{X} λ(k) B(k) E{X} λ(k) B(k) E{X} λ(k)

1 1.00 -1.00 0.00 -0.69 1.33 2.33 1.64 -2.00 -1.00 -1.69 3.20 4.20 3.51 0.69

2 0.50 0.67 1.17 0.47 -1.00 -0.50 -1.19 1.60 2.10 1.41 -2.67 -2.17 -2.86 0.69

3 0.83 -0.50 0.33 -0.36 0.80 1.63 0.94 -1.33 -0.50 -1.19 2.29 3.12 2.43 0.69

4 0.58 0.40 0.98 0.29 -0.67 -0.08 -0.78 1.14 1.73 1.03 -2.00 -1.42 -2.11 0.69

5 0.78 -0.33 0.45 -0.24 0.57 1.35 0.66 -1.00 -0.22 -0.91 1.78 2.56 1.87 0.69

6 0.62 0.29 0.90 0.21 -0.50 0.12 -0.58 0.89 1.51 0.81 -1.60 -0.98 -1.68 0.69

7 0.76 -0.25 0.51 -0.18 0.44 1.20 0.51 -0.80 -0.04 -0.73 1.45 2.21 1.52 0.69

8 0.63 0.22 0.86 0.16 -0.40 0.23 -0.46 0.73 1.36 0.67 -1.33 -0.70 -1.39 0.69

9 0.75 -0.20 0.55 -0.15 0.36 1.11 0.42 -0.67 0.08 -0.61 1.23 1.98 1.28 0.69

10 0.65 0.18 0.83 0.13 -0.33 0.31 -0.38 0.62 1.26 0.57 -1.14 -0.50 -1.19 0.69

11 0.74 -0.17 0.57 -0.12 0.31 1.04 0.35 -0.57 0.17 -0.53 1.07 1.80 1.11 0.69

12 0.65 0.15 0.81 0.11 -0.29 0.37 -0.33 0.53 1.19 0.49 -1.00 -0.35 -1.04 0.69

13 0.73 -0.14 0.59 -0.11 0.27 1.00 0.30 -0.50 0.23 -0.46 0.94 1.67 0.98 0.69

14 0.66 0.13 0.79 0.10 -0.25 0.41 -0.28 0.47 1.13 0.44 -0.89 -0.23 -0.92 0.69

15 0.73 -0.13 0.60 -0.09 0.24 0.96 0.27 -0.44 0.28 -0.41 0.84 1.57 0.87 0.69

16 0.66 0.12 0.78 0.09 -0.22 0.44 -0.25 0.42 1.08 0.39 -0.80 -0.14 -0.83 0.69

17 0.72 -0.11 0.61 -0.08 0.21 0.93 0.24 -0.40 0.32 -0.37 0.76 1.48 0.79 0.69

18 0.67 0.11 0.77 0.08 -0.20 0.47 -0.23 0.38 1.05 0.35 -0.73 -0.06 -0.75 0.69

19 0.72 -0.10 0.62 -0.07 0.19 0.91 0.22 -0.36 0.36 -0.34 0.70 1.41 0.72 0.69

20 0.67 0.10 0.76 0.07 -0.18 0.49 -0.21 0.35 1.02 0.32 -0.67 0.00 -0.69 0.69

21 0.72 -0.09 0.63 -0.07 0.17 0.89 0.20 -0.33 0.38 -0.31 0.64 1.36 0.66 0.69

22 0.67 0.09 0.76 0.06 -0.17 0.50 -0.19 0.32 0.99 0.30 -0.62 0.06 -0.64 0.69

Confidence level

50% 75% 93.75%87.50%
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Table 4: Results of simulating the Pasadena game 

Table 4: Results of simulation of the Pasadena game 

 

Month
Games 

played

Payments 

(determined 

from simulating 

the game(

50% 93.5% 50% 93.5%

1 524 288 $325 058.56 $739 246.08 $159 732.29 $165 326.27 $579 513.79

2 524 288 $325 058.56 $739 246.08 $364 323.23 -$39 264.67 $374 922.85

3 524 288 $325 058.56 $739 246.08 $321 081.83 $3 976.73 $418 164.25

4 524 288 $325 058.56 $739 246.08 $313 134.42 $11 924.14 $426 111.66

5 524 288 $325 058.56 $739 246.08 $710 653.92 -$385 595.36 $28 592.16

6 524 288 $325 058.56 $739 246.08 $394 595.07 -$69 536.51 $344 651.01

7 524 288 $325 058.56 $739 246.08 -$293 183.71 $618 242.27 $1 032 429.79

8 524 288 $325 058.56 $739 246.08 $455 697.66 -$130 639.10 $283 548.42

9 524 288 $325 058.56 $739 246.08 $349 582.40 -$24 523.84 $389 663.68

10 524 288 $325 058.56 $739 246.08 $343 957.75 -$18 899.19 $395 288.33

11 524 288 $325 058.56 $739 246.08 $334 912.83 -$9 854.27 $404 333.25

12 524 288 $325 058.56 $739 246.08 -$334 728.34 $659 786.90 $1 073 974.42

$3 900 702.72 $8 870 952.96 $3 119 759.36 $780 943.36 $5 751 193.60

Income Profit

Conclusion 

It is thus clear that the so-called Pasadena game does not lead to a paradox in 
the St Petersburg sense of a paradox.  Further it does not produce an anomaly in 
the field of decision theory.  Empirical results are in line with that predicted by 
the expected value criterion. 
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ENDNOTES 
1 Vivian (2003) argued that the traditional derivation of the expected value 
E{X} = ∞, of the St Petersburg game is correct only as a special case ie where 
an infinite number of games are played.  Generally E{X} is a function of the 
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number of games played N and is E{X} = k/2 + λ, when the game is played 
N=2k times and λ chosen to give the desired degree of confidence.  Vivian 
(2004) validated empirically the correctness of the equation. 
2 The statement was made by Bernoulli, however it is of course not possible, as 
Menger (infra) pointed out,  for the series to extend to infinity, since in this 
event N = ∞ in which case N/2 or N/4 etc becomes meaningless. 
3 The total was derived from setting up the series and summing it on an Excel 
spreadsheet. 


