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Abstract

We develop a simple model to study the coevolution of interaction

structures and action choices in prisoners’ dilemma games. Agents are

boundedly rational and choose both actions and interaction partners via

payoff-biased imitation. The dynamics of imitation and exclusion yields
polymorphic outcomes under a wide range of parameters. Whenever

agents hold some information beyond their interaction neighbors defec-

tors and cooperators always coexist in disconnected components. Other-

wise polymorphic networks can emerge with a center of cooperators and

a periphery of defectors. Any stochastically stable state has at most two

disconnected components. Simulations confirm our analytical results and

show that the share of cooperators increases with the speed at which the

network evolves, increases with the radius of interaction and decreases

with the radius of information.
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1 Introduction

1.1 Motivation

In this paper we aim to study the implications of the freedom to choose one’s in-
teraction partners for the emergence of cooperation in social dilemma situations.
The paradigmatic model to analyze those situations is the prisoners’ dilemma.
In this game there are two actions, cooperation and defection. Defection is a
dominant strategy but cooperation yields the highest benefit to the community.
We consider agents interacting in a 2 × 2 prisoners’ dilemma game with their
neighbors through an (endogenous) network and study the coevolution of inter-
action structure and behavior, i.e. try to explain how the dynamics of linking
choices influences action choices and vice versa.
A novelty of our model is that we introduce acute bounded rationality into

a model of endogenous network formation. More specifically we focus on imi-
tation. Imitation is widely recognized to be an important form of learning in
humans.1 Existing models of imitation in networks focus exclusively on im-
itation of actions, assuming either a fixed interaction structure or a different
learning rule for link revision.2 As a distinct and natural feature, we assume
that agents learn about both actions and links through (payoff-biased) imitation.
More precisely imitation learning is modeled as follows.

� Agents choose the action with the highest average payoff in their informa-
tion neighborhood.

� They search new interaction partners locally using information from the
agents in their information neighborhood. Link creation occurs with focus
on the payoff of the interaction neighbors of the node in question.

� Agents face a fixed capacity constraint and link destruction depends on
the opportunity cost of maintaining a link.

An important aspect of such a model of local search is the amount of in-
formation that agents have. Therefore we parametrize the radius of interaction
and information of the agents. This allows us to cover a wide range of applica-
tions. A large information radius (relative to the interaction radius) can reflect
situations where relevant information travels easily through the network. Think
for example about information about one’s friend’s friends or the gossip in a
village about the interaction of geographical neighbors. Situations where rele-
vant information is hard to obtain are reflected in a small information radius
(relative to the interaction radius). An example might be the interactions of
buyers and sellers in a supply chain. The smaller both the radius of interaction
and information, the more important is of course the network for the outcome
of the game and the learning process.

1For an experiment on imitation learning see Apestegúıa, Huck and Öchssler (2007).
2The related literature is described in detail in Section 1.2.
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Our main analytical result shows that polymorphic states evolve under rea-
sonable assumptions on the payoff parameters. Exclusion of defectors from ben-
eficial interactions with cooperators forces them to interact with other defectors
thereby stabilizing polymorphic outcomes under these conditions. A high de-
gree of clustering (that is endogenously produced) favors the emergence of such
polymorphic states. Furthermore we show that whenever agents hold some infor-
mation beyond their interaction radius defectors and cooperators never interact
in stochastically stable states, i.e. they are found in disconnected components.3

On the other hand if agents only interact with and hold information about their
first-order neighbors graphs in stochastically stable states can display a center
of cooperators and a periphery of defectors. We also find that polymorphic
stochastically stable states will consist of at most two disconnected components
and monomorphic stochastically stable states will be connected (i.e. consist of
one component).
We then simulate the model to gain insight into the importance of different

parameters of the model, as well as into the topology of stochastically stable
graphs. Confirming our analytical results, we find that polymorphic states tend
to emerge. The share of cooperators in such states increases with the rela-
tive speed at which the network evolves (relative to actions). It increases with
the radius of interaction and decreases with the radius of information. Maybe
somewhat counter-intuitively thus more anonymity helps cooperation.
Consistently with empirical findings on social networks, and as a natural

consequence of our assumptions, graphs display high clustering coefficients and
moderately short average distances. More precisely, we reproduce the trade
off between these two characteristics present in small world models (Watts and
Strogatz (1998)). As in their model, the larger the radius of local search (i.e.
the larger the information and interaction radius of the agents) the smaller is
the clustering coefficient and the shorter is the average distance. Note though
that as we always assume the search radius to be small relative to the size of
the network the clustering coefficient never vanishes and average distances are
higher than in random networks.
The paper is organized as follows. In Section 1.2 we relate our paper to the

existing literature. In Section 2 we describe in detail the model, the learning
dynamics and the analytical tools used. In Section 3 we present our main
analytical results. In Section 4 we illustrate some of them through simulations
and derive additional results describing equilibrium action choices and network
topologies. In Section 5 we discuss several extensions of the model. Section 6
concludes. The proofs are relegated to an appendix.

1.2 Literature

Eshel, Samuelson and Shaked (1998) have analyzed imitation of behavior when
agents are located on a circle. They found that cooperation in the prisoners’

3This contrasts with static models (like Eshel, Samuelson and Shaked (1998) or Mengel
(2007)), where full defection prevails whenever agents hold some information beyond their
interaction radius.
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dilemma can survive but that states where all agents cooperate are never sta-
ble.4 The intuition is that - as agents can only imitate their interaction neigh-
bors - defectors will end up interacting with defectors and cooperators with
other cooperators. This reveals the social benefit of cooperation and prevents
that cooperators imitate defection. Mengel (2007) has shown though that this
result is not robust. Firstly it does not hold if agents are allowed to hold some
information beyond their interaction neighbors, secondly it does not extend to
general networks and thirdly it is sensitive to minor changes in the imitation
rule.
In recent years the coevolution of network structure and action choice in

games has received increasing attention. Goyal and Vega-Redondo (2005) as
well as Jackson and Watts (2002) study the coevolution of linking and action
choices in Coordination Games. Both rely on myopic best responses as learning
dynamics. The difference is that in Goyal and Vega-Redondo (2005) linking
choice is unilateral (directed graph) and in Jackson and Watts (2002) bilateral
(undirected graph). Goyal and Vega-Redondo (2005) find that for high linking
costs the efficient action emerges and for low costs the risk-dominant action.
The results in Jackson and Watts (2002) are more ambiguous. Skyrms and
Pemantle (2000) investigate the dynamics of imitation in a stag hunt game,
relying on simulation techniques.
To our knowledge the coevolution of interaction structure and behavior in

the prisoners’ dilemma has not been studied analytically.5 One reason is of
course that if best response dynamics are used all outcomes will involve full
defection, as defection is a dominant strategy in this game. A way to model a
non-trivial situation is to study more bounded rational learning dynamics, like
for example imitation. There are several simulation studies studying coopera-
tion in endogenous networks. All these rely on relatively complicated and partly
arbitrary assumptions though. Biely, Dragosits and Thurner (2005) for example
assume that agents find new partners through recommendation and that only
cooperators can form new links. Hanaki et al. (2005) assume that while agents
imitate action decisions, linking decisions are made rationally through myopic
cost-benefit comparisons. There seems a priori no reason for us to assume that
agents display a different degree of rationality in their linking and action deci-
sions. Zimmermann and San Miguel (2005) assume that only links between two
defectors are cut. As an immediate consequence of this assumption cooperators
have a higher degree in their model and thus a higher total payoff. For other
simulation studies see Zimmermann, Egúıluz and San Miguel (2004), Abramson
and Kuperman (2001) or Ebel and Bornhold (2002). Ule (2005) simulates an
interesting model of repeated interaction in which agents are forward-looking to
some degree.
Also related are models of local search like Jackson and Rogers (2007) or

Vázquez (2003) as well as models of preferential attachment (Barabási and Al-

4Previously also Nowak, Bonhoeffer and May (1994) have investigated cooperation in local
interaction models through simulations.

5There are a few works pertaining to the literature on complex networks where some
analytical results are obtained, for example Zimmermann and San Miguel (2005).
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bert (1999)), in which link imitation occurs without taking into account payoffs
explicitly. In the latter class of models agents simply (unilaterally) link to the
node with the highest degree. The coevolution of cooperation and network
structure has been studied experimentally by for example Riedl and Ule (2002).

2 The Model

2.1 The Network

There are i = 1, ...n agents playing a 2 × 2 prisoners’ dilemma game through
a network. The network is endogenous, i.e. players decide who to form links
with. Denote l = (li1, ...lin) the vector of linking decisions of player i, where
lij ∈ {0, 1}. A link ij is formed whenever lijlji = 1, i.e. if and only if both players
“wish” to have the link. The set of first-order neighbors (or links) of any agent
i is denoted N1

i = {j 6= i|lijlji = 1} with cardinality ηi. Let it be a convention
that lii = 0,∀i = 1, ..n. The set of all linking decisions L = {l1, ...lL} and the set
of players (nodes) N = {1, ...n} jointly define the network G = (N,L). Denote
χ ⊆ G a connected component of the graph, i.e. a maximal subset of nodes
s.th. ∀i, j ∈ χ there is a path joining them.6 No agent can be an element of two
different components. Consequently the components χ ⊆ G define a partition
of the graph. Finally denote χ(i) the component that contains agent i and let
ρ ∈ {[1, n] ∩ N} be the number of components of a graph.
Interactions are not necessarily restricted to an agent’s first-order neighbors.

Denote NZ
i the set of agents agent i interacts with or the “interaction neigh-

borhood” of player i. Furthermore the set of agents i interacts with NZ
i will in

general not coincide with the set of agents i has information about. Denote the
latter set - the information neighborhood of agent i - by N I

i .When we say that
i has information about j we mean that i knows j’s average payoff, degree and
the identity of the other players that j interacts with. Let it be a convention
that NZ

i does not contain the player i herself while N I
i does - i.e. while players

do not interact with themselves they have information about themselves. As
an illustration consider agents on a circle with interaction radius Z = 1 and
information radius I = 2.

....

NI
iz }| {

(i− 2)− (i− 1)| {z }
NZ
i

− i− (i+ 1)| {z }
NZ
i

− (i+ 2)− (i+ 3) ...

Of course both NI
i and NZ

i vary endogenously with changes in the linking
decisions of the agents. Denote nIi (t) (n

Z
i (t)) the cardinality of the set N

I
i (N

Z
i )

at time t. As mentioned before the smaller Z and I the more important is the
network for the outcome of the game and the learning process. As Z and I
approach the diameter of the network (defined as the largest distance between
any two nodes) we approach a global interaction setting. Finally note that the

6A path between i and j is a finite set of links connecting i and j.
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relation “j is an element of NI
i (N

Z
i )” is symmetric, i.e. j ∈ N I

i (N
Z
i )⇔ i ∈ N I

j

(NZ
j ).

2.2 The Game

Individuals play a one-shot symmetric 2× 2 game with their interaction neigh-
bors. The set of actions is given by {C,D} for all players. For each pair of
actions zi,zj ∈ {C,D} the payoff πi(zi, zj) that player i earns when playing
action zi against an opponent who plays zj is given by the following matrix.

C D
C a b
D c d

(1)

We are interested in the case c > a > d > b > 0, i.e. the case where
matrix (1) represents a prisoners’ dilemma.7 Assume also that a > b+c

2 , i.e.
that cooperation (C) is efficient. The payoffs at time t for player i from playing
action zi when the graph is G are given by8

Πti(z
t
i , z

t
j , G

t) =
X

j∈NZ
i (t)

πi(z
t
i , z

t
j). (2)

When choosing an action through the imitation learning process specified
below agents are interested in the average (per interaction) payoff an action
yields (in their information neighborhood). This seems the appropriate measure
as we assume that agents are myopic and thus choose actions not foreseeing
possible changes in the network. Consequently they are interested in whether
an action performs good in a given interaction irrespective of whether players
choosing this action have many interaction partners or not. Average payoffs
(per interaction) for player i at time t are given by

Π
t

i(z
t
i , z

t
j ,G

t) =
Πti(z

t
i , z

t
j , G

t)

nZi (t)
. (3)

In practice there are a large variety of factors (such as time and resource con-
straints) that limit the “linking capacity” of agents. We summarize such re-
strictions through the following simple assumption.
Assumption 1: No agent can have more than η ∈ {[2, n) ∩N} links.
We assume that η ≥ 2 to allow a connected graph to form. Assumption 1 can

be rationalized through a strictly convex cost-function for maintaining links. In
the existing literature mostly constant marginal costs for forming links have been

7The assumption that all payoffs are strictly positive is made to simplify the exposition of
the model and the main results.

8In equation (2) agents get the same payoff from all their interaction partners. One could
also imagine a situation where - as in the connections model from Jackson andWolinsky (1996)
- payoffs are discounted in proportion to the geodesic distance between the two interaction
partners.
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assumed with the consequence that equilibrium graphs were either complete or
emtpy.9 Our equilibrium networks will be more realistic than these, but of
course still quite stylized. Before starting to describe the learning dynamics let
us introduce some notation.
Sample Payoffs

Denote Π
t
(N I

i ) =
¡
nIi (t)

¢−1P
k∈NI

i (t)
Π
t

k(·) the average per interaction pay-

off of all agents contained in N I
i at time t. Analogously denote Π

t
(NZ

j ∩ NI
i )

the average per interaction payoff of all agents in the set
©
NZ
j (t) ∩NI

i (t)
ª
at

time t and Π
t
(N I

i (z)) the average per interaction payoff of all agents in N I
i (t)

that choose action z. Let it be a convention that Π
t
(N I

i (z)) = 0 if card{j ∈
N I
i (t)|zj = z} = 0. Furthermore denote Πtmin(N

1
i ) = minj∈N1t

i
π(zi, zj).the

minimum payoff that player i obtains from any of her first-order neighbors.

2.3 Learning Dynamics

At each point in time t = 1, 2, 3.... the state of the system is given by the vectors
of actions and linking decisions of all agents s(t) = ((zti , l

t
i))

n
i=1 . Denote S the

state space. Agents learn about optimal behavior through imitation. More
precisely in each period t the following happens.

1. α agents are randomly selected to revise their action choice. Each agent i
compares the average per interaction payoff in her information neighbor-

hood of the two actions. If and only if Π
t−1
(NI

i (¬zi)) > Π
t−1
(N I

i (zi)) she
changes her action.10 With small probability εz she reverses her choice.

11

2. β links ij with j ∈ N I+Z
i (t − 1) are randomly selected for revision. If

the link ij does not exist (ij /∈ Gt−1) i and j are given the possibility to
add it. If ηi(t − 1) < η agent i chooses lij = 1. If ηi(t − 1) = η agent
i compares the average payoff of the agents interacting with j that she

knows about, Π
t−1
(NZ

j ∩N I
i ), to the payoff she derives from her “worst”

link, Πt−1min(N
1
i ). If and only if Π

t−1
min(N

1
i ) < Π

t−1
(NZ

j ∩ N I
i ), she chooses

lij = 1.

Agent j goes through the symmetric process. If and only if lijlji = 1
the link ij is added. If ηi(t − 1) = η agent i destroys the links with her
“worst” neighbors. With small probably εl their decisions are reversed and
a randomly chosen link is added or destroyed. Finally any node exceeding
the linking constraint randomly severs one of her links.

9See Goyal and Vega-Redondo (2005) or Jackson and Watts (2002). Jackson and Watts
(2002) also consider a capacity constraint in their model of coevolving network and action
choices in a coordination game. Whereas in their model a player that has reached the con-
straint is simply assumed not to want to form links anymore, he can in our model by severing
other links.
10The notation ¬zi is used to indicate the action not chosen by i.
11This is the “imitate the best average” rule often used in the literature (Eshel, Samuelson,

Shaked (1998), Schlag (1998), Apestegúıa, Huck and Öchssler (2006)).
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3. The game (1) is played and agents receive the payoffs.

If they are given the opportunity to revise their action choice, agents choose
the action that has obtained the highest average payoff among all agents within
their information radius I. Revising their linking choices agents search for new
partners within their search radius I+Z. Note that these are all the agents they
know of, i.e. the agents they have information about (within radius I) as well
as the interaction partners of these agents (within I + Z).12 They then choose
to link to a randomly chosen agent from this set whenever they are either not
linking constrained or whenever they expect to obtain higher payoffs from this
agent then from their currently ”worst” neighbor.
Note that if Z > 1 the set NI+Z

i can contain agents that i is already inter-
acting with. Why would she want to form links with these agents at all ? The
reason of course is that (if Z > 1) any such agent can give i access to other

agents. The payoff that other agents linked to j obtain (Π
t−1
(NZ

j ∩ NI
i )) is a

proxy for the payoff that i can expect from being linked to j.Of course this is
not the most sophisticated decision rule, as (depending) on the node in ques-
tion agents might or might not have more and better information to evaluate
whether a link is worthwhile. We chose to stick to the simple formulation here.
In section 5.2 we will discuss how robust our link formation process is.
To finish this subsection we want to discuss how I and Z affect the two di-

mensions of the learning dynamics. Of course the larger I the more information
agents have. If I−Z is large the information about the payoffs of the two actions
will be of a more “global” nature as N I

i (z) will reflect less the local topology
i faces. Under this condition it is also likely though that the two sets NZ

j and©
NZ
j ∩N I

i

ª
coincide i.e. that the information agents have about potential new

partners is more precise. If I − Z is small (maybe even negative) information
about action payoffs will strongly reflect the local topology but information
about new partners will be less precise.

2.4 Techniques used in the Analysis

The learning process described in subsection 2.3 gives rise to a finite Markov
chain, for which the standard techniques apply. Denote P 0(s, s0) the transition
probability for a transition from state s to s0 whenever εz = εl = 0 and P

ε(s, s0)
the transition probability of the perturbed Markov process with strictly positive
trembles −→ε = (εz, εl). We make the following assumption on noise.
Assumption 2: εz = ξεl for some constant ξ > 0.

13

An absorbing set under P 0 is a minimal subset of states which, once entered
is never left. An absorbing state is a singleton absorbing set, or in other words

Definition 1 State s is absorbing ⇔ P 0(s, s) = 1.

12Remember that having information about an agent means knowing her average payoffs,
degree and the identity of her interaction partners.
13We assume thus (as e.g. Jackson (2002)) that εz and εl tend to zero at the same rate.

This assumption is relaxed in Section 5.1.
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As (given that −→ε > 0) trembles make transitions between any two states
possible, the perturbed Markov process is irreducible and hence ergodic, i.e. it
has a unique stationary distribution denoted µε. This distribution summarizes
both the long-run behavior of the process and the time-average of the sample
path independently of the initial conditions.14 The limit invariant distribution
µ∗ = limε→0 µε exists and its support {s ∈ S| limεz→0 µ

εz(s) > 0} is a union of
some absorbing sets of the unperturbed process. The limit invariant distribution
singles out a stable prediction of the unperturbed dynamics (εz = 0) in the sense
that for any ε > 0 small enough the play approximates that described by µ∗ in
the long run. The states in the support of µ∗ are called stochastically stable
states.

Definition 2 State s is stochastically stable ⇔ µ∗(s) > 0.

Denote ω the union of one or more absorbing sets and Ω the set of all
absorbing sets. DefineX(ω, ω0) the minimal number of mutations (simultaneous
trembles) necessary to reach ω0 from ω.15 The stochastic potential ψ(s) of a
state s ∈ Ω is defined as the sum of minimal mutations necessary to induce a
(possibly indirect) transition to s from any alternative state s0 ∈ Ω, i.e. ψ(s) =P

s0∈ΩX(s
0, s).

Result (Young 1993) State s∗ is stochastically stable if it has minimal stochas-
tic potential, i.e. if s∗ ∈ argmins∈Ω ψ(s).

The intuition behind Young’s result is simple. In the long run the process
will spend most of the time in one of its absorbing states. The stochastic
potential of any state s is a measure of how easy it is to jump from the basin
of attraction of other absorbing states to the basin of attraction of state s by
perturbing the process a little. Ellison (2000) has shown that the time needed

to converge to a stochastically stable state s is bound by O
³
ε−maxs0∈ΩX(s

0,s)
´

where maxs0∈ΩX(s0, s) is the maximum over all states of the smallest number
of mutations needed to reach state s. The resulting wait time can be quite long,
which is a criticism often brought forward to this type of models. Note though
that - as in our model both action imitation and the search for new partners
occur on a purely local level - the speed of convergence is independent of the
size of the population.

3 Analysis

We first characterize the set of absorbing states of the dynamic process. We
then provide a characterization of the set of stochastically stable outcomes.

14See for example the classical textbook by Karlin and Taylor (1975).
15It is important to note that these transitions need not be direct (i.e. they can pass through

another absorbing set).
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3.1 Absorbing States

Before we start our characterization of absorbing states let us remind the reader
of some definitions.

Definition (Eccentricity) The eccentricity of a node in a graph (or com-
ponent) is the largest distance from it to any other node in the graph
(component).

Definition (Periphery) The periphery of a graph (or component) is the set
of nodes that have maximal eccentricity.

Definition (Center) The center of a graph (or component) is the set of nodes
that have minimal eccentricity.

Our first proposition has three parts. The first part places restrictions on the
topology of networks that can arise in an absorbing state. Due to our assumption
on linking constraints these restrictions will be weaker than those obtained in
previous works on the coevolution of behavior and interaction structure.16 On
the other hand we will observe richer and more interesting network topologies.
The second and third part of the proposition characterize action choices.

Proposition 1 (Absorbing States)

(i) In any absorbing state ηi ≤ η,∀i ∈ G. If for some i : ηi < η ⇒ ∀j ∈©
N I+Z
i ∩ \N1

i

ª
: ηj = η.

(ii) All states where zi = zj ,∀i, j s.t. χ(i) = χ(j) and (i) holds are absorbing.

(iii) There exists bZ(I) s.t. ∀Z ≤ bZ(I) polymorphic components with defec-
tors in the periphery and cooperators in the center can be part of an ab-
sorbing state whenever payoffs are contained in a non-empty set Ψ (I, Z)
⊂
©
(d, a) ∈ [b, c]×

£
max

©
b+c
2 , d

ª
, c
¤ª
.

Proof. Appendix.
Obviously states where some agents exceeding the linking constraint (ηi > η)

are not absorbing. Furthermore if an agent i is not linking constrained either all
her potential partners must be so or her search set (N I+Z

i ) must be empty. This
is essentially what condition (i) is saying. If these conditions hold it is also quite
obvious that states where all agents choose the same action are absorbing, as well
as states where agents that choose different actions are in different components
of the graph.
Part (iii) of Proposition 1 is the most interesting one. It shows that ”truly”

polymorphic absorbing states exist, in which cooperators and defectors are in
the same component and interact with each other. In all such components the
center always consists of cooperators, while defectors are found at the periphery.

16The topology most often observed in this literature is the complete graph. See Goyal and
Vega-Redondo (2005) or Jackson and Watts (2002).
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(But not all such components are part of an absorbing state). Loosely speaking
one could say that the defectors act as “parasites” on a largely cooperative
component. The conditions on the payoff parameters ensure that no agent is
willing to imitate the other action. If defection is ”too profitable” cooperators
will want to imitate the defectors. Naturally there must also exist an upper
bound on the interaction radius Z for which such states can be absorbing. If Z
is “too” large relative to I peripheral defectors will interact with “too many”
cooperators, increasing their average payoff (and making defection an attractive
action to imitate). A special case is given whenever Z = 1 or I ≤ 2. In these
cases (as we show in the appendix) neighboring defectors must form a clique, i.e.
they must all be linked to each other). Figure 1 illustrates such a polymorphic
component (the darker red nodes are defectors).

Fig. 1: Polymorphic Absorbing State

Why do polymorphic components need to have this particular structure?
This is basically a consequence of local search. First note that any cooperator i
linked to a defector k is always willing to substitute this link for a link with one
of k’s interaction neighbors (irrespective of the action that agent is taking).17 If
such a neighbor j ∈ N1

k is herself defecting she will want to link with i, if (except

for i) she observes only defectors. In this case Π
t
(NZ

i ∩N I
j ) > Πmin(N

1
j ). The

link ji will be established and the links ik and jk will be severed. Repeating
this argument it can be shown that any two cooperators connected through a
path of defectors will at some point find each other and form a link. But then
defectors must lie in the periphery of the component or must be directly linked
to another defector in the periphery. Note also that because of the local search
process, where agents meet each other explicitly through common neighbors, all
graphs will display a high degree of clustering.

17Note that the payoff she obtains from the defector Πmin(N
1
i ) = b < Π

t
(NZ

j ∩ NI
i ) no

matter what action j is taking, as j is linked to at least one defector i knows about (namely
her own first-order neighbor).
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3.2 Stochastically Stable States

Proposition 1 delimits the set of states that can potentially be stochastically
stable, since (as explained in subsection 2.4) every such state must be absorbing
for the unperturbed dynamics. In the following we will denote ωzρ the set of
absorbing states where all agents play action z and where the graph consists
of ρ disconnected components. Denote ∪ρ∈{1,..n}ωzρ = ωz. Analogously ωCD is
the set of polymorphic absorbing states. Of course we are ultimately interested
in the set of stochastically stable states. Our main result is Proposition 2.

Proposition 2 (Stochastically Stable States) All stochastically stable states
are contained in ωD1 ∪ ωCDρ , where ρ ≤ 2. There exists a threshold level
a∗(Z, I, η) ∈ (d, c) s.t. whenever a ≥ a∗(·) all stochastically stable states
are in ωCDρ , ρ ≤ 2.

Proof. Appendix.
Stochastically stable states are either polymorphic consisting of at most two

disconnected components or characterized by full defection and connected. A
sufficient condition for polymorphic states to emerge is that the payoff for joint
cooperation be high enough. How high that depends on the number of links η
each node can maintain and on the information (I) and interaction radius (Z).
What is the intuition for this result ? The tension in the prisoners’ dilemma

arises from the fact that while defection is a dominant strategy, cooperation
provides the highest benefit to a community (is efficient). This is all the more
so the higher the payoff parameter a ∈ (d, c). Cooperation then will emerge as
a stable outcome of the imitation learning process if cooperators interact with
increased probability among themselves. This reveals the social benefit of co-
operation and induces other agents to imitate cooperators. The most extreme
situation is a state where cooperators and defectors coexist in two different com-
ponents of the graph. Two forces in our model facilitate that the process arrives
at such a situation. Firstly as action imitation occurs among one’s information
neighbors only, defection will spread locally. Secondly as new links are searched
locally (at a radius of I +Z), cooperators can avoid the interaction with defec-
tors in their interaction neighborhood by cutting these links and linking up with
other cooperators. Of course if the defector payoffs are ”too high” cooperators
will easily tend to imitate defectors and cooperative components can easily be
destabilized. But what does ”high” mean exactly ? This depends of course on
the relative size of the interaction and information radius (Z, I) as well as on
the number of links η each node can maintain.
The relative size of the information radius I (relative to Z) has a double

effect on the dynamic process. A smaller information radius I (relative to Z)
forces defection to spread more “locally” and thus helps cooperation by forcing
defectors to interact among each other. On the other hand a higher information
radius I (relative to Z) improves the information agents have about potential
partners inside their search radius (I + Z) making it more easy for them to
exclude defectors from beneficial interactions with cooperators. The density of
the network (i.e. the number of nodes each agent can maintain η) affects the
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size of the agent’s sample (given Z and I) and consequently tends to exacerbate
the effects described before.18

Proposition 2 is proved through a series of Lemmata. We will now state
these Lemmata in turn to get a deeper intuition for our main result. The first
Lemma relates to the topology of graphs at any stochastically stable state.

Lemma 1 (Topology) If η > 2 all polymorphic stochastically stable states
will consist of at most two disconnected components and all monomorphic
stochastically stable states will be connected.

Proof. Appendix.
There is a tendency in the process that leads to large components in stochas-

tically stable states. Note that one linking tremble suffices to connect any two
disconnected components in which agents choose the same actions. On the
other hand more than one tremble is generally needed for the reverse transi-
tion. It should be quite obvious that from some connected components strictly
more than one tremble is needed to separate them. In addition any connected
(monomorphic) component can be obtained from any other through a sequence
of ”one-trembles”. It is a standard result, that if a state s is reached from an-
other state s0 via one tremble then s cannot have higher stochastic potential
than s0. It then is a small step to show that - as some connected components
are very unlikely to ”break apart” (if η > 2) - all stochastically stable states
must have graphs with few components.19

What happens if η = 2? In this case all connected graphs are circles or lines.
Furthermore note that any rewiring of the graph will quickly lead to the creation
of triangles, because of the local nature of the search process. Consequently the
case where η = 2 is not very interesting and we will focus in the following on
the case η > 2.
Assumption 3: η > 2
Now we turn our attention to action choices. The first outcome is negative

showing that fully cooperative states are never stochastically stable.

Lemma 2 (Instability of Full Cooperation) States s ∈ ωC , where all agents
cooperate, are not stochastically stable.

Proof. Appendix.
The intuition for Lemma 2 is relatively simple. Starting from a coopera-

tive state s ∈ ωC assume one player trembles and switches to action D. This
player will have the highest possible payoff and will be imitated by some other
agents. The unperturbed process converges to either a polymorphic absorbing
state or a state characterized by full defection. Fully cooperative states are
thus easy to destabilize. On the other hand to reach a state of full coopera-
tion from a polymorphic state or a state of full defection always at least two

18The effect of these parameters will be illustrated further in our simulations in Section 4.
19Note that isolated agents can form new links only through mistakes. Hence if there are

many such agents (initially or during a transition) convergence to a stochastically stable state
might be very slow.
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trembles are needed. (One to induce the transition and one to induce the last
defector remaining to adopt the cooperative action). While fully cooperative
states are easy to destabilize, the next Lemma shows that this is not the case
for polymorphic states.

Lemma 3 (Polymorphic States - I) ∀s ∈ ωD1 ,∃ba(s) ∈ (d, c) s.t. whenever
a > ba(s) : ∃s0 ∈ ωCDρ , ρ ≤ 2 with X(s, s0) < X(s0, s).

Proof. Appendix.
Lemma 3 shows that (under some conditions on the payoff parameters) for

any state s characterized by full defection there exists a polymorphic state s0

such that s0 is more easily reached from s than vice versa. The intuition is as
follows. Starting from a state of full defection s ∈ ωD1 simultaneous trembles of
a small number of neighboring nodes can infect part of a component with coop-
eration and induce a transition to s0 ∈ ωCD2 , as all cooperators have incentives
to sever their links with defectors and form links among each other. The reverse
transition now is more difficult to achieve, because the linking dynamics makes
it difficult for defectors to find new partners. In particular there have to be
either a large number of linking trembles for such a transition to occur or else a
large enough number of action trembles s.t. cooperators might have incentives
to form links with defectors. Denoting a∗(·) = maxs∈ωD ba(s) these Lemmata
suffice to show Proposition 2. Note that the “reverse” to Lemma 3 is not true.
In particular ∀s0 ∈ ωCD2 there exists a value ba0(s) ∈ (d, c) s.t. whenever a > ba0(s)
one cannot find a state s ∈ ωD s.t. X(s0, s) < X(s, s0). At least two trembles
(possibly many more) are needed for the transition s0 → s (one action and one
linking tremble). But for high enough a the reverse transition can always also
be achieved after two trembles of neighboring agents and subsequent rewiring
of the graph. If s0 ∈ ωCD1 and I +Z = 2 then for high enough a there is no way
to induce a transition in which the defective action is imitated.
On the other hand it is shown in Lemma 4 below that states s0 ∈ ωCD1

are only stochastically stable if I + Z = 2. This Lemma is not necessary to
prove Proposition 2. We mention it here, because we think it is of independent
interest.

Lemma 4 (Polymorphic States - II) If a polymorphic state s ∈ ωCD1 is
stochastically stable, then there also exists a stochastically stable state
s0 ∈ ωCD2 . If I + Z > 2 states in s ∈ ωCD1 are not stochastically sta-
ble.

Proof. Appendix.
Polymorphic states where cooperators and defectors are in disconnected com-

ponents are “at least as stable” as states where they are in the same component.
The intuition is as follows. Starting from any state s ∈ ωCD1 one linking tremble
can cut off a subcomponent of defectors. The stochastic potential of the result-
ing absorbing state is not higher than that of s. Cutting off subcomponents of
defectors in this way and subsequently linking these components together leads
to a state s0 ∈ ωCD2 . This state (reached via a sequence of single trembles)
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cannot have higher stochastic potential than s. If I +Z > 2 this conclusion to-
gether with Lemma 1 imply that cooperators and defectors cannot be linked in
a stochastically stable state. Note though that Lemma 4 does not say anything
about the probability the limiting distribution places on the polymorphic states
in the case where I + Z = 2. In fact - as we illustrate in the next section - we
almost always observe polymorphic states s ∈ ωCD1 .
We have seen that while fully cooperative states will not be observed poly-

morphic states can often occur. The condition needed is that the payoff for
joint cooperation is high enough, where the last qualification depends on many
parameters of the model. The aim of the next section is thus twofold. Relying
on simulation techniques we illustrate on the one hand how likely outcomes of
the learning process look like, i.e. what the topology of networks and the dis-
tribution of actions will be. On the other hand we develop a better intuition of
how our different model parameters influence these outcomes.

4 Simulation Results

In this section we illustrate and complement the analytical results through simu-
lations. We explore essentially two aspects. First (under payoff parameters were
polymorphic structures are ”likely” to emerge) we show the effect of (β/α), I
and Z on the fraction of cooperators denoted by ϕc. We address this question
separately for I + Z > 2 and I + Z = 2. The difference between both cases
is that when I + Z > 2, stochastically stable polymorphic states are always
composed of two separate components. If I+Z = 2, there can be stochastically
stable states with polymorphic components, like those illustrated in Figure 1.
Second, we measure the effect of the search radius (I + Z) on the topology of
the graph, in particular with respect to average clustering and average distance
within components.
In all simulations there are n = 500 nodes, the initial network is random with

ηi ≤ η, η = 4, and the initial number of cooperators is 0.5 ∗n (randomly placed
on the graph). Payoff parameters are chosen such that for any I, Z, (β/α) poly-
morphic structures are ”very likely” to emerge (c = 1, a = 0.9, d = 0.01, b = 0).
We choose α = 1 and β ∈ {[1, 10] ∩ N}. The combinations of (I, Z) analyzed are
{(1, 1) , (1, 2) , (1, 3) , (2, 1) , (3, 1)}. For each case, we perform 100 realizations
of the dynamic process.

Result 1 If I + Z = 2, all realizations converge to a graph where the largest
component consists of a core of cooperators with cliques of defectors lying
on the periphery.20 The parameter β has almost no effect on the fraction
of cooperators (see the table below).21

20In Figure 1 we showed a typical example.

21Intervals are asymptotic, with ϕc ∈
∙
bϕc − 1.96

q
bϕc(1−bϕc)

100
,bρc + 1.96

q
bϕcc(1−bϕc)

100

¸
.
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β Interval for ϕc (95%)
1 [0.42, 0.54]
5 [0.41, 0.53]
10 [0.43, 0.55]

The intuition for this result is as follows. If I + Z = 2 imitation of the
defective action will necessarily lead to defectors interacting with each other
reducing their average payoff. The action imitation dynamics itself is able to
limit the spread of defection. Irrespective of the value of β defection never be
able to infect more than a small group of agents. The linking dynamics then
“locates” these defectors at the periphery of the graph, but naturally exclusion
(β) is not necessary in maintaining higher levels of cooperation.

Result 2 If I + Z > 2 the fraction of cooperators increases with β (the effect
being more important if I > Z). If β is not too small ϕc increases with
Z and decreases with I.

To illustrate this result, we show in the next table the intervals for ϕc and in
Figure 2 the observed distribution of ϕc for each sample. Panels (a) - (d) show
the effect of β, while (e) and (f), the effect of Z and I, respectively.

Interval for ϕc (95%)
β I = 1;Z = 2 I = 1;Z = 3 I = 2;Z = 1 I = 3;Z = 1
1 [0.39, 0.59] [0.32, 0.52] [0.02, 0.13] [0.04, 0.16]
5 [0.43, 0.63] [0.48, 0.68] [0.15, 0.32] [0.11, 0.27]
10 [0.43, 0.62] [0.50, 0.70] [0.23, 0.42] [0.19, 0.37]

Fig.2: Fraction of Cooperators.

What is the intuition for this result? If I+Z > 2 higher values of β increase
the fraction of cooperators. Since action imitation in these cases allows for the
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infection of “many” agents, exclusion (β) is very effective in raising the number
of cooperators. Consider first the cases I = 1 and Z > I (panels (a), (b), (e)).
Cooperation has good chances, as the small information radius forces defectors
to interact with each other as a consequence of the action imitation process.22

On the other hand though (as Z (and thus Z + I) is “large” relative to I)
the quality of information about potential new links is relatively bad and the
linking dynamics leads to more “erroneous” new links reducing the effectiveness
of the exclusion mechanism. This is why the effect of β is less important in
the case Z > I compared to the case where I > Z. This becomes more visible
for higher values of β where exclusion plays a more important role. (Note that
the “marginal” effect of β is decreasing after some value, compare β = 5 and
β = 10). Now consider the case where Z = 1 and I > Z (panels (c), (d),
(f)). Clearly, being informed is not per se good for cooperation. Indeed, since
agents imitate average behavior in this radius, the higher is I the more probable
is that a cooperator imitates defection. On the other hand if the exclusion
mechanism works (high β), the linking dynamics is more accurate due to the
higher quality of information and less ”erroneous” choices are made. Inspecting
overall cooperation rates, it can be seen clearly that the negative effect of I on
the action imitation process dominates the positive effect of I on cooperation
through the linking dynamics. The latter effect though explains that β has a
higher “marginal” effect in the cases where I > Z (compared with I < Z). Next
we want to show some results on topology.

Result 3 Graphs obtained display an average clustering coefficient and average
distances that are both decreasing with I + Z.23

I + Z c (i) d (i)
2 0.531 7.6
3 0.237 5.8
4 0.088 4.1

Result 3 confirms our intuition about some of the topological features of the
components created by the dynamics. Of course, given the homogenous capac-
ity constraint, the degree distribution is approximately degenerate.24 Average
clustering (c (i)) and average distance (d (i)) are both decreasing with the search
radius I + Z. The search radius represents the extent of the locality in linking
dynamics. When I + Z is low, the probability that two first neighbors of any
agent i are connected themselves is very high, but since links are concentrated
within a small radius, the average distance between two nodes is large. When
I + Z is high, since each agent has more possible partners, the probability of

22Panel (b) shows that sometimes fully defective states have emerged in the case β = 1 and
Z = 3. This might be due to the random initial configuration or it might be the case that
for this range of parameters both full defection and polymorphic outcomes are stochastically
stable with the limiting distribution placing a far higher weight on polymorphic outcomes.
23We measure these characteristics on the larger component.
24See Subsection 5.2. for a brief discussion related to this assumption.
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choosing a second neighbor decreases (and so does the average clustering). But
on the other hand links with nodes that are relative far away are shortcuts that
reduce average distances. Note that these features are independent of β and on
the particular combination of I and Z.

5 Extensions and Discussion of Assumptions

5.1 Heterogenous Noise

In this subsection we will relax the assumption of homogenous noise (A2) and
consider two alternative assumptions.

A20 : εz = ξ
³
εξ

0

l

´
for some constants ξ > 0, ξ0 < 1.

A200 : εz = ξ
³
εξ

00

l

´
for some constants ξ > 0, ξ00 > 1.

In particular Assumption 20 seems to us very worthwhile investigating, as
it is a case that is intuitively relevant in many applications. Note also that
whereas an action tremble always is equivalent to one player making a mistake, a
linking tremble will often require two players to simultaneously make a mistake.
So even if each individual player is equally likely to make either mistake, a
linking tremble is still (as noise tends to zero) infinitely less likely than an
action tremble.25 Our results show that the conclusions from section 3 continue
to hold if and only if the probabilities of linking and action trembles are not too
different.

Proposition 3 (Rigid Links) Under A2 0 there exists a value ξ ∈ (0, 1) s.t.
whenever ξ0 < ξ all stochastically stable states are contained in ωCD2 .

Proof. Appendix.
If links are (sufficiently) more rigid than actions polymorphic states will

always emerge irrespective of the payoff parameters. The intuition is as follows.
First note that a change in the assumptions on noise naturally does not affect
the set of absorbing states which is still given by Proposition 1. But if action
choices are a lot more noisy then link choices polymorphic states tend to emerge
as action experimentation will lead to a higher variation in behavior across
agents. The unperturbed dynamics then stabilizes polymorphic states in which
cooperators and defectors are not linked, because cooperators will always desire
to link with each other. As linking trembles are rare these states - while they
are relatively likely to be reached - are very hard to destabilize. In a sense the
assumption of rigid links reinforces the importance of the network in shaping
long-run outcomes. As linking decisions are subject to relatively less error the
endogenous network can sanction defectors more effectively.

25Jackson and Watts (2002) maintain the assumption of homogenous noise throughout the
paper in a context (where as in the present paper) links are bilaterally formed. It would be
interesting to see how (if at all) their results change under the alternative assumptions.
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In other applications, for example when interactions are relatively anony-
mous, linking choice might be more noisy than action choice. In this case we
can state the following proposition.

Proposition 4 (Rigid Actions) Under A2 00 there exists a value ξ ∈ (1,∞)
s.t. whenever ξ00 > ξ all stochastically stable states are contained in ωD1 .

Proof. Appendix.
If actions are (sufficiently) more rigid than links, full defection will always

emerge irrespective of the payoff parameters. If link choices are very noisy agents
will relatively often connect to another agents they have no information about.
Of course in this context it is harder for cooperators to protect themselves from
exploitation. Note that in a sense Assumption 200 is closer to a setting in which
links are formed globally without information about the potential interaction
partners. It is quite intuitive that in such a setting defection stands the best
chances for survival.
We have seen that the outcomes of our model can change if alternative

assumptions on the relative importance of noise are used. The assumption of
homogeneous noise is thus not always innocuous. In fact Jackson and Watts
(2002) also conjecture that the results obtained in their model of coevolution of
interaction structure and action choices in a coordination game are sensitive to
these kind of changes.26 In the next subsection we discuss several other aspects
of the model that we think deserve further attention.

5.2 Alternative Assumptions

In this subsection we address in turn a number of variations of the basic model
to illustrate which assumptions are crucial and which could be relaxed.
Learning about Actions
Let us start with our action imitation rule. One could think of several

alternative ways to formulate payoff-biased imitation. Firstly agents could copy
the most successful agent in their information radius (instead of focusing on
the average payoffs of each action).27 Secondly they could compare the average
payoff of the alternative action against their own payoff. We think that our rule
is more intuitive than especially the first rule, as with this rule agents throw away
some information that is a priori just as relevant as the information considered.28

In any case our intuition is that results should not change much under either
rule. To see this we consider the conditions under which the rules differ. Under

26Bergin and Lipman (1996) show that stochastic stability is often sensitive to the pertur-
bation technology.
27This assumption is often used in simulations. See Abramson and Kuperman (2001),

Zimmerman, Egúıluz and San Miguel (2004), Zimmerman and Egúıluz (2005) or Hanaki et.
al (2007) among others.
28With the second rule this is not necessarily the case as my own payoff can give me better

information than my neighbors payoff, as we face different environments. Note also though
that our equilibrium networks are very homogenous. This argument is thus not very strong
in our case. Apestegúıa, Huck and Öchssler (2006) provide experimental support for our rule.
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the first alternative rule an agent i that would not change her action under
the basic rule would do so whenever there is an agent k ∈ NI

i |zk 6= zi s.t.

Π
t−1
k > Π

t−1
(NI

i (zi)) ≥ Π
t−1
(N I

i (¬zi)). Under the second alternative rule i

would act differently whenever Π
t−1
(N I

i (zi)) ≥ Π
t−1
(NI

i (¬zi)) > Π
t−1
i . These

conditions are unlikely to occur in our model, as in both cases one agent (either
k or i) have to face very different conditions from the other agents in NI

i . Since
the local nature of our model implies relatively homogenous local topologies
with high levels of clustering (or cycles with respect to I, Z) this is unlikely to
happen especially whenever |I − Z| is not too large.29

A third possibility is that agents consider total instead of average payoffs
when deciding to choose an action. Such an assumption would tend to favor
cooperative outcomes. As cooperators always want to form links with each
other severing links with defectors, there is a tendency during any transition
for defectors to have less links (and thus a smaller total payoff). We do not
choose such an assumption though, as it seems to imply a degree of forward-
looking behavior that is absent in our model of myopic agents. In particular
when choosing an action agents take as given the cardinality of their interaction
neighborhood and thus should be interested in the average per interaction payoff
of an action.30

Learning about Links
Next consider alternative link imitation rules. One possibility is that agents

search for new links globally. Note that as in this case the sets
©
NZ
j ∩NI

i

ª
can

be empty an additional rule is needed to evaluate potential new links. Irrespec-
tive of the specific form of such an additional rule, the results with global search
could change and more defection would be observed. The intuition is similar to
that of Proposition 4, as increasing the noise in link formation implies increasing
the probability of the formation of global links. Local search is a crucial element
of our model.
Other alternative assumptions pertain to how individuals evaluate potential

new links. One could imagine that any agent i evaluates a link to j through
the average per interaction payoff of all agents h ∈

©©
NZ
j ∩N I

i

ª
|ah = ai

ª
,

i.e. takes into account only agents that are playing the same action as herself.
Note that again as

©©
NZ
j ∩N I

i

ª
|ah = ai

ª
can be empty an additional rule

is needed for this case. We conjecture that this rule will work towards more
cooperative outcomes. To see this, consider a linking constrained cooperator i
with Πt−1min(N

1
i ) = a. If for any potential new link cooperator i only considers

those agents in
©
NZ
j ∩N I

i

ª
that are currently cooperating, she will never cut a

mutually cooperative link in order to form another new link. With the current
rule though this is possible if j is linked to many successful defectors.
At last, we want to address the problem of how to evaluate “worst links.” In

our model, Πt−1min(N
1
i ) corresponds to the minimum payoff that player i obtains

from any of her first-order neighbors. If Z = 1 this seems the only reasonable

29Note though that cliques of defectors at the periphery of a cooperative component are
(generically) not absorbing under the second alternative rule.
30Hanaki et al. (2007) for example use total payoffs as a criterium.
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rule. Yet if Z > 1 other rules could be possible. Indeed for some Z, I an
agent can have additional information she might want to use. For example
i could evaluate a link with j through the overall contribution of the link to
the payoff of i (i.e. through both the interaction with j and the interaction
with agents i uniquely interacts with because she is linked with j). Under this
alternative assumption two links ij, ih : aj = ah will typically have different
values for player i. Any such rule has severe drawbacks. In fact convergence
to an absorbing state can be almost impossible. Because of high clustering the
contribution of any link to the total payoff will be small and a preferred link
will always be found. Consequently agents will continuously rewire the network
until it consists of many complete components.
Not all links are worthwhile
Next we want to discuss the possibility that not all links are worthwhile. This

kind of assumption has been studied for example in Goyal and Vega-Redondo
(2005) or Jackson and Watts (2002). Suppose that the costs of maintaining links
are so high that links with a defector are not worthwhile for a cooperator. Then
of course we would not observe such links and absorbing states would either
be monomorphic or consist of separate components. If no links with a defector
are worthwhile at all (neither for a defector nor for a cooperator) non-empty
absorbing states will of course have to involve full cooperation.31 In our model
thus this extension does not seem particularly interesting.
Heterogenous capacity constraint
A more interesting variation seems to allow for less degenerate degree dis-

tributions. The homogeneous linking constraint allows us to obtain analytical
results while maintaining the spirit of the network analysis. Alternatively one
could for example assume that the capacity constraint of agent i (ηi) is a ran-
dom variable with discrete uniform distribution of support [1, η]∩N. The higher
η the more heterogeneity with respect to final degree distribution is possible. If
E (ηi) ≈ η (being η the homogenous capacity constraint of the present version)
absorbing states would essentially not change. The reason is that as agents fo-
cus on average (per interaction) payoffs when deciding on new links or actions
this heterogeneity would be approximately neutralized.

6 Conclusions

We develop a simple model to study the coevolution of interaction structures
and action choices in prisoners’ dilemma games. Agents are bounded rational
and choose both actions and interaction partners through payoff-biased imita-
tion. We find that polymorphic states evolve under a wide range of parameters.
Whenever agents hold some information beyond their interaction partners de-
fectors and cooperators will never interact in stochastically stable states, i.e.
they are found in disconnected components. Otherwise graphs in stochastically

31Zimmermann, Egúıluz and San Miguel (2004) assume throughout their model that links
between a cooperator and defector can survive but not links between two defectors. This
assumption seems rationalizable only in the context of unilateral link formation.
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stable states can consist of a core of cooperators with cliques of defectors lying
on the periphery of the component. Any stochastically stable state will consist
of at most two disconnected components. Simulating the model confirms our
analytical result that polymorphic states tend to emerge. The share of coop-
erators in such states increases with the speed at which the network evolves,
decreases with the radius of information and increases with the radius of inter-
action. Consistently with empirical findings on social networks, the networks
we obtain display high clustering coefficients and short average distances. Two
directions of further research seem promising to us. On the one hand it would
be interesting to incorporate more realistic degree distributions in analytical
models, that study the coevolution of interaction structures and behavior. Yet
it seems a difficult task to obtain analytical results in such settings. Also of
some interest is how (if at all) predictions of existing models that have analyzed
coordination games with best response dynamics change when more bounded
rational learning rules (like our imitation rule) are used.
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A Appendix: Proofs.

Proof of Proposition 1:
Proof. (i) Of course ηi ≤ η has to hold. Isolation (ηi = 0) can be part of any
absorbing state, since whenever ηi = 0 =⇒ cardN I+Z

i = 0. If ηi ∈ (0, η] a
necessary condition is that if ηi < η there cannot be potential partners for i,
i.e. ∀j ∈

©
N I+Z
i \N1

i

ª
: ηj = η.

(ii) States where for any i, j : χ(i) = χ(j) =⇒ zi = zj are absorbing, as no
agent has possibilities to imitate because cardN I

i (¬zi) = 0. Any monomorphic
state is of course absorbing.
(iii) First we show that defectors lie in the periphery of the component or

are directly linked to an agent in the periphery and that each defector j is at
a distance d (i, j) ≤ I + Z from some cooperator. Consider any mixed link ij
where zi = C. Since the cooperator i is obtaining the minimum possible payoff
from link ij, this can be absorbing only if either @h ∈ NI+Z

i : lhi = 1 or if
∃h ∈ N I+Z

i : lhi = 1 and hi is added, this change does not modify the structure
of the subgraph up to a permutation of the identity of the nodes connected to i.
It follows that all cooperators k 6= i ∈

©
NI+Z
i ∩ \N1

i

ª
need to have ηk = η and

cardN1
k (D) = 0. On the other hand any defector j

0 with d (i, j0) = I + Z that
is connected to i through some path of defectors is willing to form a link with i.

This is because Πt−1min

¡
N1
j0

¢
= d < Π

t−1 ¡
NZ
i ∩N I

j0

¢
, since

©
NZ
i ∩N I

j0

ª
contains

only defectors some of which are interacting with i. Consequently defectors
must be in the periphery. Suppose not. Then there exist two cooperators i and
i0 separated by a path of defectors. Cooperator i will form a link with defector
j0 at distance d (i, j0) = I+Z until finally i0 ∈ N I+Z

i . But then i and i0 will link
and all mixed links will finally be cut. It follows analogously that any defector
j must lie at a distance d (i, j) ≤ I + Z from cooperator i.
Next we prove that if defectors form a clique such states are absorbing and

if either I ≤ 2 or Z = 1 this is also a necessary condition. Assume that
either I = 1 or Z = 1 and that there is only one cooperator i linked to some
of a set of defectors. Any defector at a distance 2 ≤ d (i, j) ≤ I + Z has
incentives to link to cooperator i. If I = 1, defectors observe only defectors

interacting with cooperator i. But then Πt−1min

¡
N1
j

¢
= d < Π

t−1 ¡
NZ
i ∩N I

j

¢
.

If I > 1, any defector may observe in addition other cooperators, but since
Z = 1 these cooperators interact only with cooperators and again Πt−1min

¡
N1
j

¢
=

d < Π
t−1 ¡

NZ
i ∩N I

j

¢
. Thus some new links might be formed. This rewiring

can be part of a recurrent set if and only if N I+Z
i remains unchanged. It
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follows that the set of defectors must form a clique.32 Now assume I > 1 and
Z > 1. Again cooperator i has incentives to sever any of her mixed links. The
incentives of i’s potential partners depend on how many cooperators interact
with the defectors they observe. To characterize all structures also in this case
is impossible without further assumptions.
Now consider agents’ incentives to change actions. Assume that x defectors

form a clique and that there is only one cooperator i linked with them.33 Under
these conditions there exists a threshold for the interaction radius, bZ(I) such
that if Z < bZ(I) there always exists some set of values in the space (d, a) ,s.t.
such an action profile is absorbing. To simplify the exposition we assume c = 1
and b = 0. It should be clear that if i does not want to change action, then no
other cooperator h has incentives to do so. For cooperator i and any defector j
in the clique,

Πi
¡
N I
i (D)

¢
= Πj

¡
N I
j (D)

¢
= Π

t

j =
nZj − (x− 1) + (x− 1) d

nZj
.

Action choices are absorbing if and only if Πi
¡
N I
i (C)

¢
≥ Πtj ≥ Πj

¡
NI
j (C)

¢
.

Now we show that for each I, there exists bZ s.t. if Z ≤ bZ, it is always possible
to find some values of (d, a) ∈ [0, 1]×

£
max

©
1
2 , d
ª
, 1
¤
s.t. this is true. First of

all note that Π
t
j =

nZj −(x−1)+(x−1)d
nZj

is monotonously increasing in both Z and d.

The sample payoffs Πi
¡
NI
i (C)

¢
and Πj

¡
N I
j (C)

¢
are increasing in a. If Z < I,

an increase in Z has two effects. On the one hand each cooperator in the sets N I
i

and N I
j interacts with more cooperators increasing the sample payoff. But on

the other hand, more cooperators interact with defectors lowering the sample
payoffs. The net effect depends on the precise structure of the component.
Consider first the case where Z is small, in particular where Z = 1. Then
limd→0Πtj =

1
x ≤ 1

2 . On the other hand, for any a > 1
2 : Πi

¡
NI
i (C)

¢
=

( η−xη )a+ϕi(I)a
ϕi(I)+1

and Πj
¡
N I
j (C)

¢
=
( η−xη )a+ϕj(I)a

ϕj(I)+1
, where ϕi (I) and ϕj (I) are,

respectively, the number of cooperators h 6= i contained in NI
i and NI

j . (Recall

that ϕi (I) > ϕj (I) .) Then whenever a >
1
x

η
η−x ,

Πi
¡
N I
i (C)

¢
> Πj

¡
N I
j (C)

¢
> Π

t

j (d→ 0) ≈ 1

x
.

On the other hand for Z very large

Π
t
j (d→ 0)→ 1 > Πi

¡
N I
i (C)

¢
≈ Πj

¡
N I
j (C)

¢
→ a.

Consequently there exists a threshold value bZ(I), such that if Z < bZ there
always exists some set of values in the space (d, a) for which there are no incen-

32If there are more than one cooperator bridging the same subgraph of defectors, any
defector in the subgraph must be directly connected to all cooperators and cycles are not
possible since, when a cooperator changes a link from one defector to another, there exists
always the possibility that the set NI+Z

i of another cooperator changes.
33Of course x ≥ 2 has to hold.
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tives to imitate actions.34 Finally, the existence of absorbing states with linking
cycles can be shown analogously.35

s−trees
For most of the following proofs we will rely on the graph-theoretic tech-

niques developed by Freidlin and Wentzell (1984).36 They can be summarized
as follows. For any state s an s−tree is a directed graph on the set of absorbing
states Ω, whose root is s and such that there is a unique directed path joining
any other s0 ∈ Ω to s. For each arrow s0 → s00 in any given s−tree the “cost” of
the arrow is defined as the minimum number of simultaneous trembles necessary
to reach s00 from s0. The cost of the tree is obtained by adding up the costs of
all its arrows and the stochastic potential of a state s is defined as the minimum
cost across all s−trees.
Proof of Lemma 1:

Proof. Let G0 denote the set of graphs consisting of at most two disconnected
components. Let G1 be the set of graphs one tremble away from some graph in
G0. Define G2 to be graphs not in G0 ∪ G1 that are one tremble away from G1.
For τ > 2 let Gτ denote graphs not in Gj for any j < τ, that are one tremble
from Gτ−1. Note that these exhaust all graphs that could be part of absorbing
states. Consider an absorbing state graph G ∈ Gτ , τ > 0. Transitions from G
to some G0 ∈ Gτ−1can occur after just one tremble, as it is always possible that
two players i and h, with χ(i) 6= χ(h) and zi = zh form a link by mistake.
This implies that for any s with G ∈ Gτ , there exists s0 with G0 ∈ Gτ−1 s.t.
ψ(s0) ≤ ψ(s). (Starting from an s−tree one can always redirect an arrow from
s to a state s0 which is one tremble away). Thus to complete the proof we show
(i) that the stochastic potential of states with a graph in G0 is smaller than that
of states with a graph in G1 and (ii) that the stochastic potential of connected
monomorphic states is smaller than that of monomorphic states where graphs
consist of two disconnected components. Start with an absorbing state s with
G ∈ G1 and find a state s0 with graph G0 ∈ G0. We know that X(s, s0) = 1
and of course X(s0, s) ≥ 1. We will now see in which cases strict inequality
obtains. Consider first the transition through which s0 is reached from s. For
this transition a link ih is formed by mistake between i and h s.t. χ(i) 6= χ(h)
and zi = zh. If now either i or h is not linking constraint and in addition h
or i have a neighbor, say k, that is not linking constrained, then (at least) the
link ik (or hk) will be formed before an absorbing state is reached. But then
at least two trembles are needed for the transition s0 → s and consequently
X(s0, s) > 1. Note that such two states s0 and s can always be found. What
happens if for two states s with G ∈ G1 and s0 with graph G0 ∈ G0 we have
that X(s0, s) = 1 ? First note that for any s0 a state s00 with G00 ∈ G0 can be
found such that a) X(s00, s) > 1 and b) s00 can be reached from s0 via a series
of ”one-trembles”. But then we have that ψ(s00) ≤ ψ(s0). Consider thus states

34Note also that Π
t
j (d→ a) = (x−1)a+1

x
> a > Πj

³
NI
j (C)

´
(no intersection).

35We have characterized the sets bΨ and the particular form of the cliques exactly in the
case I = Z = 1.
36See also Young (1993, 1998).
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s0 where X(s0, s) > 1. Then starting from a minimal s−tree and add an arrow
s → s0. Then consider the old path s0 → s and take the first s000 on that path
(this could be s0) such that the arrow pointing away from s000 involves at least
two trembles. Such a state s000 must exist as at some point (at least) two links
have to be severed to separate the component of players and s000 must have a
graph in G0. Note that if starting from s0 the component is separated at least
two trembles are needed and thus s0 = s000. Thus s000 will have a graph in G0

and to separate the component at least two trembles will be needed (as any two
agents i and h (such that in s : χ(i) 6= χ(h)) who cut a link starting from s0 will
be in each other’s search radius and thus for s000 to be absorbing either have to
form a link (but then again s0 = s000) or either of them has to form a link with
another agent (but then at least two trembles are needed to reach s)). We have
shown that for any s with G ∈ G1 there exists a state s000 with graph G000 ∈ G0
s.t. ψ(s000) < ψ(s). The argument can be repeated starting from a monomorphic
state s with two disconnected components. This completes the proof.
Proof of Lemma 2:

Proof. It follows from Lemma 1 that if stochastically stable states that involve
full cooperation exist at least one of them has to be connected i.e. has to be
contained in the set ωC1 . We will now show that for any s ∈ ωC1 there exists
an alternative state in ωCD that has strictly less stochastic potential. For any
s ∈ ωD consider the state s0 ∈ ωCD reached via one tremble from s in the
following way. Assume one player i trembles and switches to action D. Then
for all agents j ∈ NI

i the average payoff of action D will exceed that of action
C. Assume α agents selected from that set switch to action D and that the
subgraph containing these agents is cut off (through rewiring of cooperating
neighbors who prefer being linked to a cooperator) only after κD > η agents in
total (including the mutant) have switched to D. Note that irrespective of the
payoff parameters and of I and Z this is always possible. State s0 contains thus
two disconnected components, one consisting of κD > η defectors and one of
n−κD cooperators. The reverse transition (s0 → s) will need at least 2 trembles,
as one link tremble has to occur to merge the two components and in addition at
least one of the defectors has to tremble to switch to cooperation. (Note again
that any single (non-isolated) defector will have a higher per interaction payoff
than cooperators). Next take a minimal s− tree and add the arrow s → s0 at
a cost of X(s, s0) = 1. Then consider the path s0 → s. If there is no other state
on this path, cut the arrow s0 → s. This yields an s0−tree with ψ(s0) < ψ(s).
If there is a state s00 ∈ ωC on this path, then we know that X(s0, s00) ≥ 2 (as a
single cooperator in a component of defectors will never be imitated). We can
cut the arrow s0 → s00 and have constructed again an s0−tree with ψ(s0) < ψ(s).
If s00 ∈ ωCD then we know that X(s00, s) ≥ 2 by the same argument as above.
Cutting the arrow s00 → s leaves us with a s00−tree that has ψ(s00) < ψ(s). This
completes the proof.
Distance between graphs
Before stating the next Lemma and its proof let us introduce the following

metric. Define y(G,G0) =
P

ij
|(lijlji)−(l0ijl0ji)|

2 to be the distance between the
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graphs G and G0 associated with states s and s0 respectively. The distance
y(G,G0) between two graphs simply measures the number of links that differ
between the two graphs.37 Furthermore denote ζZi (t) the share of agents j, k ∈
NZ
i at time t that are Z-th order neighbors themselves. ζZi (t) is a measure of

local clustering in i’s interaction neighborhood.
Proof of Lemma 3:

Proof. (i) Starting from a state s ∈ ωD1 we construct a state s0 ∈ ωCD2 as
follows. Assume that dκCe agents (where κC ∈ R) tremble and switch to ac-
tion C at time t. We want to consider the action choice of a defector k linked
with a cooperating agent i. Assume that all other cooperators are (1st−, 2nd−
....Zth−order) neighbors of i, i.e. are all interacting with each other. The aver-
age cooperator payoff Π

t
(NI

k (C)) that agent k observes is given by Π
t
(NI

k (C)) =

b+(a− b)h(κC , nZ , ζZi (t)) where h(·) is an increasing function of clustering and
of κC .

38 On the other hand the average defector payoff Π
t
(NI

k (D)) that agent

k observes is given by Π
t
(N I

k (D)) = d + (c − d)g(κC , n
Z , ζZi (t)) where g(·) is

a decreasing function of clustering and of κC . Denote the value of κC that

solves Π
t
(NI

k (C)) = Π
t
(N I

k (D)) by κ∗C . This value is in general a complicated
expression but note that (∂κ∗C/∂a) < 0. Now whenever agent k has incen-

tives to switch to cooperation (i.e. whenever Π
t
(N I

k (C)) > Π
t
(NI

k (D))) then
xC ≥ nZ + 1− κC agents can be infected through the ensuing operation of the
unperturbed action dynamics alone.
Through the linking dynamics then all cooperators will sever their remain-

ing links with defectors and form links among each other. (Note that this
is possible because xC + κC ≥ η + 1 so these agents can always at least
form the complete component. Furthermore they have incentives to do so, as

Πtmin(N
1
h) = b < Π

t
(NZ

j ∩ N I
h) for any pair of cooperating agents j, h. Note

also that by construction all these agents are in each other’s search set). The
resulting distance y(G,G0) between the graphs G and G0 associated with states
s and s0 respectively will satisfy y(G,G0) ≥ 3

2(1− ζ)nZ (η − 1). (The new com-
ponent in s0 will consist of at least nZ+1 agents, at least (1−ζ)nZ (η − 1) links
will be severed and (1−ζ)nZ(η−1)

2 new links will be added, where ζ ∈ [0, 12) is a
parameter taking care of clustering.)
(ii) Consider the reverse transition from s0 ∈ ωCD2 to s ∈ ωD1 . Essentially

such a transition can occur in two ways. Either the cooperative component
χC(s0) is first infected by defection and then the graph is rewired to obtain state
s. (In this case the transition is indirect, i.e. passes through other absorbing
states among which at least one is in ωD2 .) Or first a sufficient number of linking

37This metric has been used previously by Goyal and Vega-Redondo (2005).
38This expression can be approximated by

Π
t
(NI

k (C)) = b+
(a− b)(κC − 1)

³
1 + ζZi (t) +

£
ζZi (t)

¤2
(κC − 2)

´

nZ
¡
1 + ζZi (t)(κC − 1)

¢

where we have made the assumption that nZh = nZ , ∀h ∈ NI
k . This assumption is not

restrictive, as more favorable transitions can always be found.
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trembles has to occur s.t. the ensuing operation of the unperturbed dynamics
permits infecting all agents with defection while rewiring the graph. (In this
case the transition is direct).
Consider the first type of transition. For this transition κAct.D action trem-

bles are needed to infect the cooperative component and then κLinkD ≥ y(G,G0)
5

linking trembles are needed to rewire the graph. The latter inequality holds
because each linking tremble can at most induce a rewiring of five links through
the unperturbed dynamics (Assume one link is randomly added and two links
severed. This leaves two agents below the linking constraint who can form a link
with two other agents below the linking constraint (if such agents exist in their
search set). This implies a total change of at most five links). Consequently

X(s0, s) ≥ 3(1−ζ)nZ(η−1)
10 +κAct.D with transitions of the first type. Now note that

while X(s0, s) is strictly increasing with the payoff parameter a ∈ (d, c), X(s, s0)
is decreasing in a. Consequently there exists ba1(s) s.t. X(s0, s) > X(s, s0) holds
whenever a > ba1(s). Now consider the second type of transition. First note that
a cooperating agent i ∈ χC(s0) linked to a defector j ∈ χD(s0) (after a linking
tremble) has incentives to switch to defection if and only if

a <
nIi (

C
D )[z

i
Dd+ (1− ziD)c]− ziCb

1− ziC
, (4)

where the factor nIi (
C
D ) gives the ratio of cooperators and defectors in the

set N I
i and ziD (ziC) is the share of defectors these defectors (cooperators)

interact with on average. Note also that whenever (4) fails no links will be
formed between neighbors h of i and neighbors k of j, unless h has a neigh-
bor who is playing defection. (If h does not have a defector neighbor, then

Πtmin(N
1
h) = a > Π

t
(NZ

k ∩ NI
h) if either j /∈

©
NZ
k ∩NI

h

ª
or i ∈

©
NZ
k ∩NI

h

ª
.

But if i /∈
©
NZ
k ∩N I

h

ª
i.e. if NZ

k ∩ N I
h ∩ χC(s0) = ∅ then a failure of (4)

implies Πtmin(N
1
h) = a > Π

t
(NZ

k ∩ NI
h)). Then any transition needs to sat-

isfy four conditions. There have to be incentives to imitate, each defector in

χC(s0) should be linked with a cooperator, in total y(G,G
0)

5 − 1 such pairs have
to exist and any linking trembles should reduce the distance y(G,G0). The
number of trembles needed to induce such a transition is thus strictly increasing
with the payoff parameter a. Consequently there exists a threshold level ba2(s)
such that whenever a > ba2(s), X(s0, s) > X(s, s0). Summing up whenever a >
ba(s) = max{ba1(·),ba2(·)} we have that X(s, s0) < X(s0, s). This completes the
proof.
Proof of Lemma 4:

Proof. Starting from any polymorphic absorbing state s ∈ ωCD1 with ρ sub-
graphs of defectors one linking tremble suffices to reach the absorbing state s00

where one component contains ρ − 1 subgraphs and there is a second compo-
nent of defectors. (Simply cut the “bridge” between the cooperating core and
the cooperator that sustains a clique of defectors). But then ψ(s00) ≤ ψ(s).
(Starting from a minimal s−tree simply add the arrow s→ s00 and cut the first
arrow leaving s00 on the path (s00, ..., s)). Repeating this argument it should be
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clear that there exists a state s000 consisting of a cooperator-component and ρ
defector components with ψ(s000) ≤ ψ(s). But then any two of these defector
components can be linked via one tremble, implying that there exists a state
s0 ∈ ωCD2 such that ψ(s0) ≤ ψ(s000) ≤ ψ(s). Now note that a component ρ is
either complete with all agents below the linking constraint or all agents except
one are linking constraint. But then whenever I + Z > 2 a transition from
any state s# with two defector components to a state s0 ∈ ωCD2 can always
be constructed such that after one linking tremble two more agents that are
under the linking constraint observe each other and want form a link. But then
y(G(s#), G(s0)) ≥ 2. Now starting from a minimal s#−tree adding the arrow
s# → s0 and cutting the arrow from the last state on the path (s0, ....s#) yields
an s0−tree with ψ(s0) < ψ(s#).
Proof of Proposition 2:

Proof. The first part follows immediately from Lemma 1 and 2. Focus thus
on the second part. Take any two states s ∈ ωD1 and s0 ∈ ωCD2 with X(s, s0) <
X(s0, s) (such states always exist if a > ba as we have seen in Lemma 3). Starting
from a minimal s−tree consider the path from s0 to s. Denote this path by
(s0, ..., s). We know from the proof of Lemma 3 that no state on this path will
be contained in ωC or ωCD (with the exception of the state s0). a) If (s0, ..., s) =
(s0, s) i.e. if the transition from s0 to s is direct we can infer immediately that
ψ(s0) < ψ(s). (Just redirect the arrow s0 → s. This yields an s0−tree with
ψ(s0) = ψ(s) + [X(s, s0)−X(s0, s)] < ψ(s)). b) Next assume that there exists
a state s00 ∈ (s0, ..., s) with s00 ∈ ωD2 . Note that X(s

00, s) = κLinkD > X(s, s0)
always holds under the assumption that a > a∗. But if X(s00, s) > X(s, s0) we
can find an s00−tree with ψ(s00) < ψ(s) simply adding the arrow s → s0 and
deleting the arrow s00 → s, and thus s cannot be stochastically stable. On the
other hand it follows from Lemma 1 that states in ωDρ where ρ > 1 cannot
be stochastically stable either. (c) Furthermore it follows from the proof of
Lemma 3 that whenever the path (s0, ..., s) in a minimal s−tree contains a state
s# ∈ ωD1 , it also contains a state s

00 ∈ ωD2 . But we have already seen that in this
case s is not stochastically stable. Consequently all stochastically stable states
are contained in ωCDρ where ρ ≤ 2.
Proof of Proposition 3:

Proof. First note that Lemma 1 still holds and thus all monomorphic stochas-
tically stable states have to have one component. Now starting from any state
s ∈ ωD1 construct an alternative state s

0 ∈ ωCD2 as follows. Assume that starting
from s a tremble by κ∗C agents occurs that is imitated by x agents s.t. subse-
quently κ∗C+x ≥ η+1 cooperating agents exist that are all in each other’s search
sets. These agents will prefer to form links with each other and to sever their
links with defectors. The unperturbed dynamics converges to a polymorphic
state. Now if ξ0 < ξ ≤ (κ∗C)−1 ∈ (0, 1), this is infinitely more likely to occur
(in the limit as εz → 0) as a single linking tremble. Now take any minimal
s−tree and add the arrow s → s0. On the path from s0 to s (in the old tree)
there has to be a state s00 from which a linking tremble has to occur to reach
s. Cut the arrow leaving from s00. The resulting tree is an s00−tree where s00

30



has less stochastic potential then s.39 Now s00 can either be polymorphic what
completes the proof (in fact s00 can coincide with s0) or it can be monomorphic
(with s00 ∈ ωD2 ) but then neither s nor s

00 can be stochastically stable because
of Lemma 1. Now together with Lemma 2 this implies that all stochastically
stable states have to be in ωCD2 .
Proof of Proposition 4:

Proof. Again observe that Lemma 1 still holds. Starting from any polymorphic
state s ∈ ωCD2 - where no defectors and cooperators are linked - construct an
alternative state s0 ∈ ωD1 as follows. Assume that starting from s a tremble by
2κ∗L agents occurs (κ

∗
L from each component) that form a link with each other.

Take κ∗L to be big enough s.t. the unperturbed dynamics afterwards converges
to a monomorphic state. Now if ξ00 > ξ ≥ 2κ∗L > 1 this is infinitely more likely
to occur (in the limit as εl → 0) as a single action tremble. Now take any
minimal s−tree and add the arrow s→ s0. On the path from s0 to s (in the old
tree) there has to be a monomorphic state s00 from which an action tremble has
to occur to reach s (it can well be that s00 coincides with s0). Cut the arrow
leaving from s00. The resulting tree is an s00−tree where s00 has less stochastic
potential then s. Now together with Lemma 1, Lemma 2 and Lemma 4 this
implies that all stochastically stable states have to be in ωD1 .

39Of course now as the probabilities of the two kinds of trembles are not of the same order,
one cannot just sum the number of trembles to obtain the stochastic potential but one has
to weight them with their respective probabilities (where less likely trembles have a higher
weight).
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