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EXPLAINING THE LOGIC OF PURE PREFERENCE IN A NEURODYNAMIC STRUCTURE

C-René Dominique* 

SUMMARY:

This paper uses Category Theory to integrate a nonlinear, nonhomogeneous ordinary differential equation system into an 
input/output representation in an attempt to capture the mechanism behind the formation of pure preference in humans. The 
model shows that the human brain belongs to the class of functions U � C2(R3, R). In addition, it shows that there exists an 
emerging factor, e, absent from Boolean logic, but is sine qua non for expressing a preference. The factor, e, may be 
associated with ‘judgement’ which, in turn, may neatly subsume ‘consciousness’, the arrival of new information, and cases of 
selection under risks and uncertainty.  
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1-INTRODUCTION 

Over the centuries, the study of the structure of human preference has engaged the attention of a very diverse 

group of scholars, namely, philosophers, psychologists, and economists. I single out these three groups because a 

significant portion of their respective literature is devoted to that topic. However, as regard the fundamental 

question: Why, from two suitably matched items, one comes to be preferred to the other? No intra or inter-group 

consensus has emerged to date. This paper will try to provide an answer, while focusing on the construct of the 

economists and on the problems to which it gives rise. 

The pioneers of the economists’ construct recognized quite early on the complexity involved, but in their 

eagerness to build a social science, they decided to ignore the ‘brain’, out of which nothing could have been 

directly observed and understood, to rely on Boolean logic to build a construct they thought would have allowed 

them to make a multiform and frontal attack on the slipperiness of the subject. Consequently, they approached it 

either as ‘pure preference’, or as some related rubrics, such as ‘selection of alternatives under certainty, risks and 

uncertainty’, ‘decision theory’, ‘rational choice’, etc., or as an offshoot of the latter, known as ‘utility theory’. 

But, regardless of the way they approached the subject, numerous difficulties, to be discussed shortly, remain 

unresolved. 

Many are those who see this as an impasse. In other disciplines (e.g. physics), the way to overcome an impasse is 

to make either a partial or complete break with the past. Should economics follow suit? I think so, but when and 

how will such a consensus ever be reached? No one can say at this juncture. At any rate, the purpose of this paper 

is to suggest a partial break that requires, as a first step, a closer attention to the topology of the structure that 

generates pure preference in humans. The paper starts with the ‘observables’, but will not follow the behavioristic 

route to conjectures. Instead, it will integrate three well-studied concepts that allow the introduction of time, an 

important missing element in my view. To do so, I will use Category Theory to merge a dynamic structure with 

an emerging property (analyzed by Beltrami, 1987) with an Input/Output structure (in the sense of Casti (1989)), 

and next rely on the Classification Theorem (due to Thom, 1975) to mathematically classify the brain and help 

analyze the results. 



Admittedly, the brain is an exceedingly complex object, and I do not claim to have extensive knowledge about it, 

although, to date, no one has come up with a robust theory of the brain. However, no violence is done by 

comparing it to a dynamic input/output structure, because it is largely so, among other things. If, as I postulate, 

pure preference is indeed time-dependent, then there is a good chance that a differentiable mapping that takes 

sensory inputs and memory at time t0 and delivers an output some time t1 will increase our understanding. If 

further its results are cast in terms of a universal unfolding, they will provide still a better understanding of the 

formation of pure preference; furthermore, the ‘universal unfoldings’ identified by Thom comprise a very broad 

class of functions whose solutions are easy to interpret. Anyhow, this is the plan of action for peering into brains’ 

functionalism, although, I should perhaps state right at the outset that because the analysis starts with observables, 

I am not restricting myself to the case of ‘complete certainty’; for, in reality, I am aiming at a result that will be 

generic enough to subsume the concepts of risks and uncertainty.   

2-PRELIMINARIES 

Unable to observe brains’ function, economists made a foray into Boolean logic to study preference as an 

axiomatic foundation on which to rest their theory of utility. That effort may be said to have started in earnest 

with Bernoulli (1738), passing through Savage (1954) and Arrow and Debreu (1954), to arrive finally at Debreu 

(1959) in which the construct receives its final form. But subsequent observed anomalies, such as ‘preference 

reversal (1) obviously pointed to some underlying weakness in their representation, weakness whose nature has 

never been identified. It was therefore carried over to the utility apparatus in the forms of paradoxes (see, for 

example, the ‘Allais Paradox’(2)), or surprises detected in experimental designs such as the Ultimatum Game (3). 

To see how these difficulties may have arisen, let us turn to the underlying axioms.  

Using economists’ terminology and symbols, the construct may be succinctly represented as follows. There exists 

a binary relation, P, on a non-empty set X of commodity bundles whose elements are, say, x, y, z, etc., which may 

also be viewed as decision alternatives or outcomes of choice. To describe the P-relation, two main symbols, 

(xPy) and (xIy), are used throughout. The first says x is preferred to y and the other represents the relation of 

indifference. Following von Wright (1963), two axiomatic principles follow: 

���                                            (xPy)� �������	�

ii) ��������������������������������������������
��∨��
����

That is, by i) P is asymmetric, and by ii) if x is preferred to y, then x is either preferred to any third alternative z 

or z is preferred to y. If i) and ii) hold, the indifference relation is expressed as: 

iii)                                           (xIy) = � (xPy) and � (yPx).   

Alternatively, from i) and ii), economists claim that the notion of strict preference obtains, which means that x is 

strictly preferred to y if and only if x is as good as y and y is not as good as x. Then strict preference is supposed 

to be irreflexive and transitive, making the indifference relation reflexive, symmetric, and transitive. These latter 



assumptions are not supported by empirical tests. And, in addition, nuanced or restatements of i) can not obviate 

the problem arising from the assumption of completeness and transitivity in ii). To put it more succinctly, let us 

return to von Wright’s representation above. That is, if i) and ii) hold, the P-relation is connected and transitive, 

and the I-relation is, therefore, reflexive, symmetric and transitive. But consider ii), while leaving aside for the 

moment the potential role of agents’ ‘state of mind’ to focus on products differentiation in modern markets. 

Producers’ obsession with product differentiation aims precisely at preventing the consumers’ ‘information set’ 

from being complete. Hence, producers’ behavior itself renders ii) too strong an assumption. Therefore, the P-

relation is not connected, meaning the ordering is not complete, and hence the transitivity of the I-relation does 

not obtain. Even if asymmetry and transitivity are imposed outright on the P-relation, the ranking order remains 

partial rather than complete and preference equality can not be recovered in iii). Nevertheless, economists went 

around these difficulties by imposing the additional axiom of continuity, which in essence, requires that the agent 

behave consistently. Then they posit the following: there exists, given the properties of X and P, a utility function 

u: X→ R, where R is the set of real numbers, if, for (xPy), u(x) ≥ u(y) for the agent whose strict preference is just 

described; although we should also note in passing that the identity of the agent and time are unspecified. But 

when intransitive choices are observed, the agent is accused of being irrational. Other related but unanswered 

questions are: As aggregation follows, is the decider representative? If not, how about decision by majority rule? 

And are agents’ preferences valid for all future times?    

Criticisms abound, but roundabout efforts to circumvent them do not convince (see, Sonnenschein, 1965; 

Fisfburn, 1970; Loomes and Sugden, 1982, among others), as anomalies continue to surface. What I think is 

happening in the above construct is that agents are unable to comply due either the lack of or timely information 

and to what I term “emotional drift”; I will come back to the latter. Indeed, what is frequently observed is y*(t 0) 

as outcome at time t0, and y*’(t1) at t1 later, or even y**(.), where [y*(.),and  y*’(.)] � R++ and y**(.) � R-- ; R++ 

and R-- are subsets of real numbers, defined as: R++ ={y � R| y > 0}, and R-- is its negative analog. In other 

words, y* may vary but stays in R++, or may jump to R-- upon a change in some parameter, absent from the 

economists’ representation. It is just like observing (xPy) at to and (yPx) at t1.  Invoking nonconvex preferences 

here (see, Barthold and Hochman, 1988) explains nothing other than another accusation of irrationality. Such 

anomalies have led von Wright (1963) to conclude: “Pure preference is in reality a ‘value judgement’ and is, in 

addition, relative since it may vary over time.” The very nature of the observables and the above comment by von 

Wright define in essence the central question for us, namely, what is the topology of the object (the brain) that 

produces these observables? But beforehand, let us see what other scientists have found in their studies of the 

brain.  

3-ADDITIONAL REMARKS 

As philosophers, psychologists, and economists are unable to arrive at a consensus, neuroscientists have joined 

in, because they happen to have at their disposal technologies that simply were not available previously. With the 

advent of computed tomography (CT) scans, positron emission tomography (PET) scans, magnetic resonance 



imaging (MRI), functional magnetic imaging (fMRI), magneto-encephalography (MEG), and trans-cranial 

stimulation (TMS), neuroscientists are able to observe the inside of the brains of deciders in a non intrusive 

manner. They do not all agree on explanations, but there is no disagreement on the following: 

P1         Sequential changes in the permeability of nerve cell membrane to positive ions produce ‘ac-  
              tion potentials’ up to about 100 millivolts via the system of axons and synapses, and flows 
           .  or signals that travel at speed up to 525 feet per second;  

P2         starting with the concept of ‘brain-assembly’, researchers have identified permanent brain 
             circuitries, associated with perception, memory, and qualia. The processing that goes on, 
             from lower to higher regions, exists for all sensory information. In other words, extensive  
             circuitries are made of specialized and permanent neurons;  

P3         the permanent neurons are organized in neural networks consisting of layers of inter-con-
             nected processors via the system of synapses. They are, input, intermediate, and output pro-  
             cesssors. Thus, input signals from different channels accumulate in the intermediary layer un-
             til a critical level is reached, then the cell fires an output signal; 

P4        observed bottom-up and top-down effects have led many neuroscientists to conclude that an 
            emergent brain property allows humans to interpret raw data, make decisions, and initiate ac-
            tions. 

P1 and P2 may be extended with an example. Photons bouncing on an incoming automobile, say, first reach the 

eyes of an observer, where they form a pattern. Photoreceptors in the retina transform light waves into neural 

signals that are next sent to the lateral geniculate nucleus in the thalamus and the visual cortex in the occipital 

lobe. There, the rough shape of the automobile is recognized. Sub-patterns are next sent to a higher region for 

color identification, then to higher regions for determining motion and direction, and still to other regions where 

the identity of the automobile is encoded. Similar processing stream exists for sounds, touch, and other sensory 

information. Therefore, what one sees, feels or believes depends on extensive circuitries arising out of experience 

that stands to interpret raw information (4). Hence, P1and P2 refer to potentials that must be minimized, implying 

flows through electrical circuits. P3 leads to the notion of an input/output structure and the delay, �, between 

inputs and awareness or consciousness; for more on this, see Carter (2000, ch.3). The larger is the input, the 

higher the potential, and above a certain threshold, consciousness occurs. Finally, P1 to P4 suggest that the brain 

operates as a dynamo.  

Given these and the difficulties mentioned in Section 2, this paper proposes to tackle the problem with a dynamic 

input/output model in an attempt to uncover the nature of pure preference. The basic scheme is an integration of a 

dynamic model with emergent property in line with the previous work done by Beltrami (1987) in this regard into 

a modified version of Casti’s (1989) representation. The analysis to follow will then rely on Thom’s 

Classification Theorem on the general class of Universal Unfoldings. The advantage of doing so is that the 

dynamic structure is rescaled so that only three coefficients remain. Further, if relying on a dynamic input/output 

structure is intuitively appealing enough, it may not be so for universal unfoldings? Then, let me then remark at 

the outset that Thom’s Theorem is of great theoretical and empirical significance in this kind of analyses, as it 

considers a broad class of mathematical objects in which any two members of the same class can be smoothly 

deformed into one another by means of an appropriate change of coordinates in the underlying space; all such 



coordinate changes are origin-preserving diffeomorphisms.  

4-THE MODEL 

For the sake of clarity, let me first precise a few concepts. Consider a general class of smooth functions: 

(1) U(y (t), �) � C� (Rv+c, R), 

where U(.) is a potential, v is the corank of U(.), c is the codim of U(.), and  y(.) and � are, respectively, sets of 

variables and parameters, but y(.) is scalar valued. Thom studies the class for which v � 2, codim � 5; hopefully, 

our U(.) will fall within that range. More generally, however, for any such U(.), the equilibrium manifold, S � Rv+c

, defined by �U(.)/�y(.) = 0, is smooth. Let the orthogonal projection, Þ, of S onto the plane � � Rc + v, whose 

image under the projection is �,  where the tangent to S is normal to the plane, gives the bifurcation set B, defined 

as: 

    (2)                        B = {�c : �U(.)/�y(t) = 0,  det[�2U(.)/�y2(.) = 0,    c = 1, 2,…, 5}.  

Then S can be deformed locally into � in such a way that � is deformed into �. This holds for small perturbations 

of U.  

At first sight, the observables given in Section 2 suggest that the unknown U(.) is of the type, U(y(.), �) � C2 (R3, 

R), called the cusp catastrophe, but that is only a first impression, because the observed behavior of the unknown 

U(.) does not quite obey the dictates of the ordinary cusp catastrophe. Ours must be some transformed �(.) for the 

following reasons. The observables of U(.) � C2 (R3, R)  are characterized by: 

i) Outcomes, y*, y**, fall within a bounded interval u about the origin such that  {y* � u � R| 0 < y* � b},  
∀t, and {y**� u � R| - b � y** < 0}, ∀t , where –b and b are bifurcation points; 

  
ii) motion is uniform over u, except of course at bifurcation points. Hence a hysteresis cycle is observed.  

Whereas what is observed in the present case is:  

iii) y* depends on values of a specific parameter -1 � e � 1such that each change in e over the time interval [t0, 
t1], where t1 > t0, yields unique values of y*� u � R++, or unique values for y**� u � R--over the 
same time interval; 

iv) motion over u is not uniform. That is, y* may zigzag in R++, or jump to y** in R-- upon a change in e over 
the time interval. Hence �(.) is bimodal in the sense of Zeeman (1977).    

Put differently, observations show that outputs, y* and y**, assume fixed values for a given value of the control 

parameter e. From there, it may safely be inferred that y* and y** arise from some ��(.) whose characteristics we 

want to investigate. 

Beforehand, I will explain the input/output structure. It consists of a number of maps and sets. They are: 



                      � ={a1, a2 ,..., an } , the set of stimuli, 

                      Ÿ  = {y*, y**}, the set of observables or outcomes, 

                      Y = the state space, or the set of flows {y1(t), y2(t), e},  

                     Ψ: � � Ÿ ,     θ1: � � Y,    d: Y ��1,    h1 :�1 � Ÿ ,  h 2 : Ÿ � x, and  θ2 : Y�x.  

Ψ maps input into output; θ1 is an ‘into’ map of input stimuli into state space; d and h1 are ‘one-to-one’ and ‘onto’ 

mappings of flows into equilibrium values; h2, and θ2 are one-to-one and onto maps from �(.) to U(.) as shown in 

Figure 1. 

For the time being, I only note that maps θ1, d and h1 are necessary to prove: 

Proposition 1: The observables y*, y*’, y**, etc. are points on a bimodal manifold arising out of a dynamic 

                         structure consisting of 2 functions and a stochastic control variable.   
                                                                                                                                                                                                                    

                                                      Figure 1:The Input/output Structure
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While θ2 = h2 � (h1 o  d) is necessary to prove: 

Corollary 1: There exists at least one transformation of the manifold of Proposition 1 to �(x, �, β) � C2 ( R3, 

                      R). 

Let me remark that in this paper, I suppose the control factor, e, to be a dynamo effect, but it could arise from 

other causes. For example, it could arise out of an electromotive force created by the sodium and potassium ions 

down the axons. Or the output impulse in the brain may in reality be an electromagnetic wave. Only further 

research can provide a definitive answer. For the time being though, I will proceed on the assumption that it is 

due to a dynamo effect. As alluded to in Section 3, a dynamic structure that is capable of exhibiting emergent 

property, e, (which in turn may be associated with judgement, additional information, or even emotions from the 

limbic systems of human, here termed emotional drift) is the rescaled nonlinear, nonhomogeneous ordinary 

differential equation system of Beltrami (1987), inserted in Figure 1as map, d, where:

                                    d ={(y1, y2, �, t)| �1 = y2� – a1y1 and �2 = (1- y1�) – a2y2, ∀y}. 

 For tractability, the differentiable mapping, d, may be written as:  

                                                                        ( - a1 y1 + ��y2) → �1

    (3)                                                       d:                                            , 



                                                                       (1- y1 � – a2 y2) →�2         

where � = (y1 + e), and the dot refers to differentiation with respect to time. In equilibrium, �� �� �� �� ���

�ubstituting, rearranging, and applying map h1:[a1�1 /(�2 + e)] →�2 = y* in (3) give:  

    (4)                                                                  (h1   o  d): Y → y* ; 

the symbol, �� , stands for composition and recalling that e � R	(-1 ≤  e  < 0 ;  0 < e  ≤ 1);  a1 a2 ≠ 1. Upon the 

application of h1, the resulting the equilibrium equation is:  

                                                                                                                             

    (5)                                                       (y* + e)2 y*  = e + (1- a1 a2 ) y* . 

I now denote the cubic term on the left-hand side of (5) as m(y*) and the linear one on the right as g(y*). Then the 

equilibrium can now be read graphically at the intersection of m(y*) and g(y*) in Figures 2 and 3 for different 

values of e. 

                          Figure 2: e =1; a1 a2  = 3/4                                                           Figure 3: e = -1 ; a1 a2  = 3/4

                                          m(y*)                 

                                                                                                                                            m(y*)

                 .                                      g(y*)                                           y**                                                                    

             .                                                                       y*     

                                              y*                                               .

                                                                                              g(y*)

As shown, for a given value of a1 a2 = 3/4 and e =1, the cubic term in (5) has critical points at – 1/3 and -1. The 

unique equilibrium is y* =1/2, shown in Figure 2. When e = -1 in Figure 3, the cubic term admits critical points 

respectively at 1/3 and 1 and the unique equilibrium is now at y**= - 1/2. Thus, as e goes from 1 to -1, both 

curves abruptly shift, yielding a new equilibrium in the second quadrant. Hence e is the stochastic parameter 

locating equilibria on the bimodal manifold, proving Proposition 1. 

In other words, there are two equilibrium surfaces, and the cubic term is the loci of equilibria, ∀y. However, if e 

were to take a zero value, the cubic term would vanish according to (5). This would be in conformity with P4, in 

the sense that for e = 0, equilibria are simultaneously at y* = ± (1 – a1a2)1/2; that is, two real numbers whose sum 



is zero. From there, we conclude that without awareness, there can be no pure preference; but I will return to this 

later after dwelling a little more on the possible cause of the emergent factor, e.  

The emergent property, e, in this framework, arises naturally, I believe, as a torque applied to an electrical 

potential, or as the sums of components of directional vectors are crossed. In other words, equation (3) defines a 

vector field on the unknown � and the operator d crosses two orthonormal vectors, y1 and y2, yielding e. A 

natural system that does that is a dynamo, hence the reason for this approach. 

How can this physics explanation be cast into a biological one? The emergent factor, e, arises from neuronal 

flows from the brain stem to the cerebral cortex and its related circuits in response to input stimuli or memory. 

Neuroscientists call these circuits ‘brain assemblies. When these assemblies are aroused, e is not zero. Put 

differently, the level of consciousness depends inversely on the degree of synaptic inhibition. 

Turning now to Figure 1, the fact that map 
1 is only ‘into’ shows that the system is indeed an input/output 

system, as input signals can only be recovered from memory. Large populations of neurons or assemblies act in 

synch to represent and form memory. Subsets of these populations in the hippocampus, for example, respond to 

different aspects of a given input. Then, one may wish to consider memory as a valid input channel in biological 

systems. This would be quite correct, but here we have already included  memory in the specialized neurons 

living in state space, Y; at any rate, with no external inputs whatsoever, the system described in Figure 1 can exist 

only for a short interval �t. With external stimuli, the diagram commutes only on the right-hand side, as 
2 has a 

unique inverse. 

This result seems to imply that the Boolean logic assumed by economists might not be applicable to human 

preference formation. As shown above, y* = f(e), is the missing element and it might very well explain many an 

anomaly. Then, it also follows that there exists an optimal e. This can be verified by finding the slope of that 

relation in equilibrium. Total differentiation of (5) gives: 

(6) dy*/de = (1- 2ey*- 2y*2) � [3y*2 + 4ey* + e2 – (1- a1a2)] ��0. 

For a1a2 = 3/4, and 1 ≥ e >1/4, dy*/de < 0, meaning that y can be increased as e is decreased; but for e � 1/4, 

dy*/de > 0. Then, for:a1a2 = 3/4, e* = 1/4, dy*/de* > 0, but the constrained solution to (5) is: y*= 0.5768….I will 

return to this shortly. But, already, the structure of y*= f(e) (Figure 4) shows that there exists a limit to attempts at 

manipulating preferences.  

                                               Figure 4: The Structure of y* = f(e*) 
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Thom (1983, 107-08) has argued  that more often than not “ An elementary catastrophe is embedded in a larger 

system with time variable.” We can verify that assertion by first applying h2 to (5), where h2: 

y*�[x* – (2/3 e)], and that will identify the family of unfoldings to which ��	
���
�. The application gives: 

(7) - x*3 + (1 – a1 a2 - e2/3) x* + [ e/3 (1 + 2a1 a2 - 2e3/ 27)] = 0. 

Letting the splitting factor, α1 = (1 – a1a2 – e2/3) and the normal factor, α2 =[e/3 [1 + 2a1a2) – 2e2/9], then (7) 

becomes:

(8)                                               – x*3  + α1x* + α2 = ��(.)/ �x* = 0;  

since (8) is the gradient of �(x, α1, α2), then �(.) � C2 (R3, R), proving Corollary 1. 

Now if (8) is equivalent to (5), then the optimal solution to (8) should equal y* via the inverse of h2. The solution 

to (8) is x* = 0.7434…. Then: 

                                                       y* 
 x* or  y* + 2e/3 = 0.5768… + 1/6 = 0.7434… 

                                                                                                                                                                                                                    
Hence, (8) and (5) are equivalent, vindicating Thom (1983). 

Now, one may ask what the usefulness of (8) or (7) is? To answer this question, consider the gradient of the 

standard cusp catastrophe,                                                                     

    (9)                                                   grad (U(x, β1, β2) = -x3 + β1x + β2 = 0.  

An immediate consequence is that:     

(10)                                                       [(∇U(.))(�x(t)/�t] = � 
∇ �2                                                           

is negative on some open subset, �, at x* where it is zero. There can be no closed orbits, x* minimizes U on �, 


∇  is zero at x*, and therefore, the function V(x) = U(x) – U(x*) is Liapunov on �. We can now compare U(.) 

and �(.). In the case of U(.), both β1 and β2 are non zero constants. Then for higher values of both, we have a 

unique equilibrium. For low β2 and high β1 values, there are two stable equilibria, one in R++ and the other in R--.

But, when we substitute α1 and α2 given above, we have �(.), written as:   

   (11)                                                                   x3 = α2 + α1x.    

Then for: 
                                                e = 1, there is a unique equilibrium, x*� R++ , ∀x; 
                                                e = -1, there is a unique equilibrium, x** � R--, ∀x 
                                                e = 0, equilibria are at x* =1/2, -1/2, and 0; the zero value is unstable. 

This then confirms what was alluded to above, namely, no preference can be expressed if e = 0. Observe further 



that, for a given value of the product of the coupling parameters, a1a2, the Jacobian of �(.) is: 

                                                               

                                                                      �2�/�x*2            3x2 - α1                        
    (12)                                                (J) =    �2�/�α�������������������������������
���������������������������������������������������������������������������α�������������������� ��   

Smooth changes in equilibria occur on the set defined by �2�/�x*2 = ��/�x* = 0. Hence (8) and (12) can be used 

to eliminate x*. With α1, α2, and a nonzero e, the geometrical structure of B (or the cusp curve on the projected 

plane), given at the beginning of Section 4, is: 

    (13)                              �1- a1a2 – e2/3�3 = 27/4 ��1 + 2a1a2�e/3 – 2e3/27�2. 

Since for U, β1
3 = 27β2

2/4, equation (13) gives the cusp curve �(.) and suffices to show the difference between U 

and �. 

Equation (7) is instructive in another way. We have two conditions to guide us: i) dy*/de � 0, and ii) dx*/de ��1. 

From (5): a1a2 = 3/4, e = 1/4, y* = 0.5768…, dy*/de > 0; from (7):a1a2 = 3/4, e =1/4, x* = 0.7434…., dx*/de < 1. 

But at e = 1/3, dx*/de = 1. This indicates that we should examine the solution to (5) at e = 1/3 as well. Then for 

a1a2 = 3/4, e = 1/3, y* = 0.5768…. and dy*/de > 0, but non constrained dy*/de = 0 at e = 1/4, y* =0.5930…, and 

dy*/de = 0 at e = 1/3, y* = 0.5598…. This tells us that the non constrained y* = f (e) picks at a higher value of y* 

than that shown in Figure 4, but also falls off more rapidly as well. From (5), we can then conclude the following: 

the best solution to (5) for a1a2 = 3/4, is e* = 1/4, and y* = 0.5768….In other words, y* can not be increased 

beyond 0.5768… even if we move to e = 1/3.This last result has implication for advertising, as I will explain in 

the next section.   

                                                                                                                                                                                                                    

5-DISCUSSION 

The nature of pure preference in humans is not well-known either to philosophers or scientists. However, there is 

a consensus to the effect that there can be no pure preference in the absence of something that scientists call 

consciousness. According to Carter (2000), over the last ten years, some 30,000 papers have been published on 

the topic. In the words of one scientist, all these papers slither around the subject, discuss various neural 

correlates, but little about consciousness. In other words, consciousness has not yielded to scientific investigation. 

David Chalmers (2002, p.50) puts it this way: “Consciousness poses the most baffling problem in the science of 

the mind. There is nothing that we know more intimately, . . ., but there is nothing that is harder to explain.” Here 

the answer is clear; it is due to the emerging stochastic factor. 

This is a good place to emphasize that brain activity ceases only at death, but here our approach provides a simple 



explanation of the difference between sleep and wakefulness. During sleep, the limbic system remains active, but 

flows to the cerebral cortex is negligible. The subject is not conscious because e is close to zero. Our approach 

also explains how anesthetics work That is, by simply reducing the size of neuronal assemblies; they reduce the 

value of e below the threshold necessary for consciousness.  

Conventional psychologists concentrate on building intuitive models of the mind. Some philosophers have 

traditionally dealt with the mind as though it is unconnected with the brain, while others (the monists) regard 

consciousness and the whole universe as one. Economists, for their part, ignore the brain to rely on Boolean 

logic; but their approach is unable to account for the observed pathologies in the behavior of economic agents. 

This paper proposes a unifying approach that incorporates recent discoveries in neuroscience into a dynamic 

input/output structure that seems to account for the missing element, namely, an emergent property that can be 

associated with judgement (consciousness for some) without which no preference can be expressed. 

Consequently, the monists may associate the element, e, to the kinds of emergent property observed in the 

unfolding of the laws of nature, except gravity of course. Physicists, e. g., Sir Roger Penrose,  who suggest that 

consciousness may be the interface between the fundamental quantum world of information and the classical 

world, may choose to view ‘e’ as an ‘information field’. Finally, economists who are in dearest need for a more 

robust setup may be able to rescue the demand side of their traditional model. For, if indeed the human brain 

operates like a dynamo, then individual preference may be indexed to a real number for each good or alternative, 

that is, eij, or agent i’s preference for good or alternative j. Next, set of indices may safely be established for 

comparables alternatives. In fact, eij may remain unchanged for quite some time, as in the case of an agent’s 

attraction to the color red, as long as there is no change in e; this would appear as fixed preference. Further, once 

a set of indices is on hand, the P-relation could really account for observations, in the sense that the observed 

hiccups discussed in the Introduction would not be viewed as pathologies. For example, preference reversal may 

be explained by a jump; or the subject may be thinking of the consequence of his or her choice. The indifference 

relation may be explained by e = 0 in equation (7); the result of the Ultimatum Game may be explained by an 

emotional understanding of fairness, followed by a flip in ei. This is to say that the rationality of the economic 

agent would become mental-state and time dependent, as suggested long ago by Elster, 1998).

Other features of the model are that the factor, e, is a missed bag, for, it can be associated with judgement or new 

information that perturbs e, or even cause e to change polarity. In the event that it is associated with new 

information, then, Figures 2 to Figure 4 would confirm what I have discussed elsewhere (Dominique, 1988), 

namely, there is little if any increasing returns to advertising. In fact, a closer look at (6) and Figure 4 shows none. 

Hence, advertising blitz or excessive propaganda might be a total waste, because for 1/4 � e � 1/3, preferences 

can not be increased further; that is, one cannot get more than 57.68 percent of what goes in, depending of course 

on the value of a1a2. This model also shows that a flip in e due to new information is a convincing explanation to 

speculative bubbles, which remains to date one of the most poorly understood and mysterious economic 

anomalies. Finally, if e is viewed as ‘judgement’, then our results can easily accommodate the concept of risks 



and uncertainty. 

   

NOTES 

(1) Preference reversal is an experimentally observed phenomenon in which participants are asked to choose between 
two suitably matched alternatives and to state the lowest amount of money they would be willing to accept in 
exchange for the selected alternative. The surprise comes when they place the lowest amount on the chosen one. 
The phenomenon was first observed by Litchenstein and Slovic (1971). 

(2) The Allais Paradox deals with examples that are not compatible with the conclusions of Bernoulli-based de-
         seigns. For more, see the entry: ‘Allais Paradox’ in the New Pelgrave Dictionary of Economics (1087, 80-82.  

(3) This experiment involves two players, A and B. A, say, is given a certain sum, y, and he or she must give a 
         certain percentage, k, of his choosing to B. If B accepts ky, then A keeps (1 – k)y. However, if B refuses ky 
         as she deems k too low, both players end up with nothing. The experiment shows that if k is set below 20  
         percent, the offer is rejected. This formulation is given in Thaler (2000). 

 (4)    Many of these findings are discussed in the popular press. See, for example, The New York Times, June 17,  
          2006 and Nov. 22, 2006; see also US & World Report of Oct.18, 2006.   
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